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A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers �I. D.
Feranchuk et al., Phys. Rev. B 67, 235417 �2003�� based on the distorted-wave Born approximation �DWBA�
is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This
approach takes into account the transformation of the modeling transition layer profile at the interface, which
is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated
without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of
scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on
the scattering angle. The experimental data are analyzed using the method developed.
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I. INTRODUCTION

A theoretical description of specular and off-specular �dif-
fuse� x-ray scattering from rough surfaces and interfaces is
of special importance for the analysis of modern semicon-
ductor and other nanoscale devices. As has been demon-
strated in pioneering work,1 the imperfection of surfaces and
interfaces is not comprehensively described by only the root
mean square of the roughness amplitude �; the roughness
correlation length Lc and fractal dimension 3−h have to be
considered, too.

The most effective method for the calculation of x-ray
scattering from rough surfaces has proved to be the distorted-
wave Born approximation �DWBA�, which is extensively
used in the literature �see, for example, Ref. 2�. For the ze-
roth approximation of the DWBA, either the specular reflec-
tion from perfect plane interface �Fresnel reflection� or the
reflection from interface modeled by transition layers with
profile delivering an exact solution3 are usually used. The
roughness correlations are taken into account in the first-
order DWBA on the deviation of a real scattering surface
from the model one. However, diffuse scattering leads to a
reduction of the intensity of specular �coherent� reflection
due to conservation of radiation flux. To calculate this loss,
typically the semiphenomenological Debye-Waller FDW
=exp�−2kz

2�2� or Nevot-Croce4 FNC=exp�−2kzk1z�
2� factor

is used, which, however, depends not on the roughness cor-
relations but solely on the parameter �. Here kz=k sin �, k
=2� /� and k1z=k�sin2 �+� are the projections of x-ray
wave vectors onto the z axis in a vacuum and medium, re-
spectively; � is the incidence angle; �����0 is the x-ray
polarizability of medium.

However, the reflection coefficient from rough surfaces,
as shown in Ref. 5, depends also on the roughness correla-
tions. This dependence is described by the second-order
DWBA, and both FDW and FNC are derived as limiting cases
for the magnitude of roughness correlation. The renormaliza-
tion of the coefficient Rs��� in Ref. 5 has been performed
with the accuracy of the second-order DWBA on the imper-
fection of the surface. As a result, the specular reflection
coefficient depends both on the parameter � and on the

roughness correlation. For large scattering angles, the phe-
nomenological “exponentiating” operation was applied to
Rs���, which calculated the first and the second DWBA ap-
proximations by expanding the exponent into series. In real
experiments, however, the exponential behavior of Rs��� at
large angles has not been observed.6 For example, for large-
amplitude yet long wavy �long correlation length Lc� rough-
ness, the x-ray scattering is close to the one from perfect
surface, where Rs��� decays as Rs�����−2 with an increase
of the scattering angle. Moreover, the above assumption is
not self-consistent: any renormalization of the Fresnel reflec-
tion coefficient is equivalent to the introduction of a transi-
tion layer at the interface,3 whereas solutions for perfect in-
terfaces are used for the calculation of the corrections for the
reflection coefficient and diffuse scattering intensity. The
semiphenomenological description of the exponential behav-
ior of the reflection coefficient at large scattering angles �
has been recently done in Ref. 6 too.

The main goal of the present work is development of the
method for calculation of specularly reflected intensity from
rough surfaces and interfaces without any phenomenological
assumptions. Recently, the solution of the x-ray scattering
problem from transition layers with an arbitrary profile ��z�
has been reported,7 which delivers an analytical expression
for the reflection and transmission coefficients from the pro-
file ��z� with a high accuracy. This self-consistent approach
�SCA� formulates a consistent description of specular and
diffuse scattering for the high-order DWBA. Thus, in the
zeroth DWBA it is not necessary to fix a profile of the tran-
sition layer. The solution of the wave equation7 is used in-
stead, where the variable profile ��z ,kz� depends on kz. Fur-
ther, using a zeroth-order wave field, the cross section of
x-ray scattering averaged over the statistical distribution of
roughness is calculated. The equation for the determination
of the initial profile ��z ,kz� follows from the zero condition
for the sum of corrections to the specular reflection, which
are caused by roughness correlations. The derived profile of
transition layers as well as the renormalized reflection coef-
ficient depend then on both � and Lc. If a more accurate
calculation is required, this iteration scheme can be contin-
ued by tuning a profile in the way that the higher corrections
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to the reflection coefficient are set to zero. This self-
consistency of the zeroth potential is equivalent to partial
summation of infinite DWBA series. A similar approach has
been used for the solution of the wave equation for discrete
spectrum.8

The nonperturbative description of x-ray scattering from
rough surfaces has been recently considered in Refs. 9 and
10. In the former publication, the wave equation has been
solved by a method different than DWBA, whereas in the
latter article the integral equation for the angular distribution
of scattered radiation has been obtained, which is valid for
any values of roughness and correlation length. However,
both approaches result in cumbersome expressions for the
scattered intensity and are not easy to use for the fitting of
real experimental measurements. In Refs. 11 and 12, the
variational profile parameters have been also used for the
description of diffuse scattering. Contrary to the approach
presented here, the authors used a fixed-exponential form for
renormalization of the reflection and transmission coeffi-
cients. Caticha13 has proposed a self-consistent method for
specular x-ray reflectivity from an arbitrary profile. A de-
tailed comparison of his approach with the one developed by
us was done in Ref. 7.

The article is structured in the following way. In Sec. II,
the general DWBA scheme is discussed for wave equations,
which describes the transmission of x rays through the
boundary between two media modeled by transition layers
with an arbitrary profile. In Sec. III, a self-consistent method
for the calculation of the intensity of specular reflection is
presented taking into consideration the second-order DWBA
and wave fields derived in Ref. 7. In Sec. IV, the experimen-
tal data are evaluated by the method developed and charac-
teristic intervals for scattering angles are distinguished,
where the reflected intensity depends on the scattering angle
� in different ways.

II. DWBA IN THE CASE OF A TRANSITION LAYER
WITH ARBITRARY PROFILE

The dielectric constant of any medium for x rays is a
scalar value, making the polarization effects negligible, and
thus the propagation of electromagnetic waves with arbitrary
polarization is described by the solution �k��r�� of the scalar
wave equation2

�	 + k2 − V�r����k��r�� = 0, �1�

with standard asymptotical boundary conditions, which cor-
respond to scattering on the surface that is unlimited in the
direction x �Ref. 3�:

�k��r�� � eik�·r� + R�k�,p��eip� ·r�, pz � 0, z → − 
 ,

�k��r�� � T�k�,p��eip� ·r�, pz � 0, z → 
 , �2�

where k� is the wave vector of incident and p� of scattered
�p2=k2� waves, respectively, R�k� , p�� and T�k� , p�� are the am-
plitudes of the reflected and transmitted waves, the condition
p��=k�� defines the case of specular reflection, and p���k�� is
the case of diffuse scattering.1

The angle ���c=�����1, corresponding to effective in-
teraction length l���−1, plays an essential role in the scat-
tering from surface. Because the value of l exceeds essen-
tially the atomic dimension, the interaction potential between
x rays and semi-infinite media is determined from the
expression3

V�r�� = k2����H�z − z0�x,y�� , �3�

where H�z−z0�x ,y�� is the Heaviside function with random
function argument z0�x ,y� defining the surface roughness
�Fig. 1�. The ideal, perfectly smooth surface corresponds to
z0=0.

The main problem in the solving of Eq. �1� is that the
function �k��r�� is a complex nonlinear functional of random
function z0�x ,y�. This fact does not permit us to construct a
closed equation for the function ��k��r��	 averaged over the
distribution z0�x ,y�. The common solution for this problem
in x-ray reflectometry is based on the proportionality of the
amplitude of specular �coherent� reflection to the entire
sample surface �S. At the same time, the amplitude of dif-
fuse �incoherent� scattering is proportional to ��S and is
small even for large roughness, which makes it possible to
take it into account by the DWBA.3 The potential �3� is
written in the form

V�r�� = V0�z� + 
V1�r��


 V0�z� + 
�k2����H�z − z0�x,y�� − V0�z�� ,

V0�z� 
 k2������z� , �4�

where V0�z� is the one-dimensional coherent potential of the
transition layer, taking into account the influence of rough-
ness on specular reflectivity; the dimensionless function ��z�
defines the profile of this layer,3 and by definition ��z�→0,
z→−
, ��z�→1, and z→
. The formal parameter 
 is in-
troduced to order the terms of the perturbation series on their
smallness, and in the final expressions it will be set to zero

FIG. 1. Scattering of x rays from a rough surface. The reflection
R��� and transmission T��� coefficients depend on the scattering
angle � and are expressed through the scattering amplitude T�k� , p��
for different wave vectors of the final state �2�.

FERANCHUK, FERANCHUK, AND ULYANENKOV PHYSICAL REVIEW B 75, 085414 �2007�

085414-2




=1. Using the potential �4�, Eq. �1� is transformed to the
integral equation

�k��r�� = �k�
�0��r�� + 

 dr��Gk�r�,r���V1�r����k��r��� . �5�

The zeroth approximation �
k�
�0��r�� is derived from the equa-

tion with potential V0�z�:

�	 + k2 − V0�z���k�
�0��r�� = 0, �k�

�0��r�� = eik��·r��kz
�z� , �6�

and boundary conditions for the one-dimensional wave equa-
tion are

� d2

dz2 + kz
2 − k2���z���kz

�z� = 0, kz = �k2 − k�
2 ,

�kz
�z� � eikzz + R�0��kz�e−ikzz, z → − 
 ,

�kz
�z� � T�0��kz�eik1zz, k1z = �kz

2 + k2�,z → 
 , �7�

which deliver the zeroth approximation R�0��kz� for the
specular reflection coefficient. The Green function Gk�r� ,r��
satisfies the equation

�	 + k2 − V0�z��Gk�r�,r��� = ��r� − r��� , �8�

and according to the general theory of differential equations
can be expressed5 through two fundamental solutions of Eq.
�7�:

Gk�r�,r��� = 

�k��� ��k

dk���

4�2 eik��·�r�−r���gkz�
�z,z��, kz� = �k2 − k��

2,

gkz�
�z,z�� = −

�kz�
�z1��−kz�

�z2�

W
, z1 = min�z,z�� ,

z2 = max�z,z�� ,

W = �−kz�

d�kz�

dz
− �kz�

d�−kz�

dz
. �9�

Using Eqs. �6�–�9� and iteration scheme for approximate
solution of Eq. �5�, the formal series of DWBA’s can be
obtained for the scattering amplitude T�k� , p��. The square of
this amplitude delivers in the differential cross section of
x-ray scattering in the half plane z�0.5 The explicit expres-
sions for the terms of this series up to the second order of the
potential V1�r��—i.e., the parameter 
—are

T�k�,p�� � T�0��k�,p�� + 
T�1��k�,p�� + 
2T�2��k�,p�� + ¯ ,

T�0��k�,p�� = R�0��kz��2��2��p�� − k��� ,

R�0��kz� =
 dz eikzzV0�z��kz
,

T�1��k�,p�� =
 dr� ei�p��−k���·r��−kz

* V1�r���pz
,

T�2��k�,p�� =
 dr� dr��

�k��� ��k

dk���

kz�
ei�k��� −k���·r�ei�p��−k��� �·r���−kz

* �z�

�V1�r����kz�
�z��−kz�

* �z��V1�r����pz
�z�� , �10�

where R�0��kz� is the specular reflection coefficient from the
interface with profile ��z�. The observed differential cross
section of x-ray scattering is calculated as1

d�

d�
=

1

16�2 ��T�k�,p���2	 , �11�

after averaging �¯	 over the ensemble of random functions
z0�x ,y�. In the zeroth approximation, the only specular re-
flection ��R�0��kz��2 is obtained from Eq. �10�. The diffuse
scattering1 is caused by the fluctuations of the scattering
square amplitude—i.e., appears in the first-order DWBA
�
2���T�1��k� , p���2	− ��T�1��k� , p��	�2�. Thus, its contribution to
the cross section has the same order as the term depending
on the second-order DWBA �
2R�0��kz��T�2��k� , p��	, and
therefore, for the calculation of the scattering cross section
both contributions have to be taken into account.5 The valid-
ity conditions for the approach presented coincide rather
with the validity area of the DWBA than the one of pertur-
bation theory. Concerning the validity of DWBA conver-
gence, it might be defined by the ratio of the spectral inten-
sity of specular reflection to diffusely scattered intensity.3

This is because of the cross section of x-ray scattering from
the averaged potential V0�z� is proportional to the square of
the sample surface S, whereas scattering from fluctuations
depends on the roughness rms, correlation length, and scat-
tering angle.

To use formulas �6�–�11�, the analytical expression for the
profile of the zeroth approximation ��z� has to be chosen
and then the explicit expression for �kz

�z� has to be found. In
the meantime, a definite distribution model for the ensemble
of random functions z0�x ,y� has to be selected. In Ref. 5, the
perfect plane interface has been selected as the zeroth ap-
proximation, which is a typical choice for DWBA applica-
tions:

��z� � �0�z� = H�z� ,

�kz

�0��z� = �eikzz + r�0�e−ikzz�H�− z� + t�0�eik1zzH�z� ,

r�0��kz� =
kz − k1z

k1z + kz
, t�0��kz� =

2kz

k1z + kz
, �12�

where r�0� and t�0� are expressions for the Fresnel reflection
and transmission coefficients for an ideal surface. For this
choice of initial profile, the first- and second-order DWBA
corrections for the specular reflection coefficient, accounting
roughness correlations, can be calculated.5 For small scatter-
ing angles, the specular reflection coefficient varies in depen-
dence on the roughness correlations within the limits

SELF-CONSISTENT APPROACH TO X-RAY REFLECTION… PHYSICAL REVIEW B 75, 085414 �2007�

085414-3



r�0��kz��1 − 2�2kz
2� � Rs�kz� � r�0��kz��1 − 2�2kzk1z� .

�13�

At small scattering angles kz��1, the calculations of Ref. 5
are completely microscopical. They demonstrate that recon-
struction of the transition layer, which influences the reflec-
tion coefficient, depends on both averaged roughness and
roughness correlations. However, at larger scattering angles
the formula for specular reflection, inequality �13�, fails, and
accounting for high-order terms in �10� is necessary, which is
difficult to realize in practice. A commonly accepted ap-
proach to solve this problem is an additional phenomenologi-
cal assumption about terms in parentheses in �13�, which are
supposed to be the first terms in the expansion over the pa-
rameter kz� of the Gaussian exponent �“exponentiating” op-
eration�. The latter makes a renormalization of the reflection
coefficient:

r�0��kz�e−2�2kz
2

� Rs�kz� � r�0��kz�e−2�2kzk1z. �14�

Depending on the correlations, this exponent reduces to the
Debye-Waller or Nevot-Croce exponent.5

This simple renormalization describes the experimental
data well when the measured sample possesses a roughness
of small amplitude. However, for larger � values, the ob-
served Rs�kz� may considerably differ from the exponential
one. Therefore, for large roughnesses an alternative phenom-
enological approximation has been proposed,6 which intro-
duces an additional parameter, a maximal roughness ampli-
tude. This approach has proved to describe well the
experimental data from samples with a very rough surface, as
shown in Ref. 6. Nevertheless, the solution of the following
problem remains actual and demanded: is a microscopical
description of the reflection from an imperfect surface pos-
sible for arbitrary scattering angles by a low-order DWBA
and without any additional assumptions?

III. SELF-CONSISTENT APPROACH TO THE
CALCULATION OF X-RAY SCATTERING

The physical reason for the necessity of the renormaliza-
tion of the specular reflection coefficient is conservation of
the photons flux. The emission of diffuse x-ray scattering is
compensated for by the reduction of the intensity of specular
reflection.5 The calculated intensity of diffuse scattering de-
pends on the DWBA order applied; therefore, the corrections
for R�0��kz� also vary in each higher DWBA. These correc-
tions, however, cannot be summed up in the general case,
which causes the phenomenological modeling of R�0��kz� in
conventional theories.

The key point of the proposed self-consistent approach is
not to fix the profile of the transition layer initially, but to
consider

��0��z� ⇒ ��kz,z� �15�

as a variational function changing with the DWBA order and
depending on kz. This additional degree of freedom can be
used for the transformation of the differential cross section of
x-ray scattering, simulated on the basis of the DWBA. The
physical meaning of the variational profile dependence on kz
is conditioned by the dependence of the averaged within the
higher DWBA order surface potential on the projection of
the correlation length onto the incidence beam �see Eq. �42�
below�.

Assume that the differential cross section of x-ray scatter-
ing �11� is calculated with an accuracy up to the second order
of 
. Then performing an averaging over the ensemble of
random functions z0�x ,y�, it is expressed as1

d�

d�
=

1

16�2 �T�k�,p���2,

�T�k�,p���2 = ��T�0�
„���kz,z��… + 
�T�1�

„���kz,z�…�	�2

+ 2
2 Re�T�0�*
„���kz,z��…�T�2�

„���kz,z��…	��

+ 
2���T�1��k�,p���2	 − ��T�1��k�,p��	�2� . �16�

All the terms in this expression are functionals of the profile
��kz ,z�. This profile can be chosen in such a way that the
sum of all terms in specular reflection �p��=k���, except the
first one, equals zero:

�
2���T�1�
„���kz,z�…�	�2 + ���T�1��k�,p���2	 − ��T�1��k�,p��	�2��

+ 2 Re�T�0�*
„���kz,z��…�
�T�1�

„���kz,z��…	

+ 
2�T�2�
„���kz,z��…	����p��=k��� = 0. �17�

The solution to this functional equation delivers the func-
tion ��kz ,z�, which is a profile of the transition layer, and the
specular reflection coefficient is

R�kz� � T�0�
„kz,���kz,z��… , �18�

with already performed renormalization. Thus, the scattering
cross section for all exit angles is separated into coherent
specular and incoherent diffuse scattering.

The principal problem of algorithm realized in Eqs.
�15�–�17� is the analytical solution of the equation for the
zeroth approximation �7� for arbitrary profile ��z�. This so-
lution has been proposed in Ref. 7 as an ansatz:

�kz
�z� = ��z�T�0�eik1zz + �1 − ��z���Rs

�0�e−ikzz + eikzz� .

�19�

The reflection and transmission coefficients in Eq. �19�, are
expressed through the potential amplitude in Eq. �3�, A
=k2����, and integrals of function ��z�:

Rs
�0��kz� =

iA�K�2kz�L�k1z − kz��k1z + kz� − K�0�L�k1z + kz��k1z − kz�� − 2kzL�k1z + kz��k1z − kz�
iA�K�− 2kz�L�k1z + kz��k1z − kz� − K�0�L�k1z − kz��k1z + kz�� + 2kzL�k1z − kz��k1z + kz�

, �20�
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T�0��kz� =
A2�K2�0� − K�2kz�K�− 2kz�� + 4kz

2

2iA�K�− 2kz�L�k1z + kz��k1z − kz� − K�0�L�k1z − kz��k1z + kz�� + 4kzL�k1z − kz��k1z + kz�
, �21�

K�r� = 

−





dz eirz��z��1 − ��z��, L�r� = 

−





dz eirz��z����z� . �22�

As shown in Ref. 7, the function �19� with coefficients �20�
and �21� approximates7 the solution for Eq. �3� with high
accuracy for different profiles of the transition layer. Both
amplitudes and phases of the transmission and reflection co-
efficients are correctly calculated within the entire angular
region already in zeroth approximation. Moreover, the itera-
tion scheme for exact solution is established and converges
quickly to exact solution.

For the first DWBA order, Eq. �17� with perturbation
potential �4� is

�T�1�
„���0��z��…	 =
 dr� ei�p��−k���·r��−kz

* �z���H�z − z0�x,y��	

− ��0��z���kz
�z� = 0 �23�

and the solution for the profile ��0��z� is

��0��z� = �H�z − z0�x,y��	 .

Thus, in the first-DWBA-order SCA results in a known fact:
the specular reflection from rough surfaces depends on the
potential of the transition layer, which is the result of the
averaging of a real potential over the surface. Assuming the
Gaussian distribution of roughness amplitudes on the sur-
face, the profile of the transition layer is expressed through
the error function4

��0��z� = �H�z − z0�x,y��	 =
1

��2�



−


z

dz0e−z0
2/2�2

= �� z

��2
� . �24�

Figure 2 shows the simulation �dashed line� of specular
x-ray reflectivity of wavelength �=1.54055 Å from crystal
Si0.65Ge0.35 ��=−1.99�10−5+ i5.27�10−7� with transition
layer of profile �23� with �=40 Å made by formula �20�. For
comparison, solution of the wave equation �7� for this profile
based on Parratt’s formalism14 �solid line� and reflectivity
obtained by renormalization of the Fresnel coefficient by FNC
�dots� are shown, too. Because of the profile’s natural edge,
the numerical solution of �7� does not coincide with the exact
result at large scattering angles, which is given by the Born
approximation and is an exponential asymptotic of the re-
flection coefficient.3 At the same time, the interpolation by
FNC and self-consistent approximation both result in an exact
asymptotic formula.7

For the second-order DWBA, the correlation of
roughness1 has to be taken into account in the averaging of
Eq. �16�. For homogeneous surfaces and the standard defini-
tion of the correlation function,

��z0�r��� − z0�r�� + R� ���2	 = g�R�� , �25�

with fractal model1 used here and further:

g�R�� = 2�2�1 − e−�R�/Lc�2h
� , �26�

where h is the fractal dimension and Lc is the correlation
length.

The x-ray scattering cross section from potential �3� with
accuracy up to 
2 is obtained by averaging of Eq. �16� on a
Gaussian distribution of the random function z0�x ,y� with the
correlator �25�:

d�

d�
=

k4���2

4
S�T�k�,p���2,

FIG. 2. The simulated x-ray reflectivity curves from a rough
Si0.65Ge0.35 layer on a Si substrate by different methods: numerical
solution of Parratt’s equation for the erf profile �solid line�, renor-
malized by the Nevot-Croce factor the reflection coefficient �dots�,
and SCA in the first DWBA order �dashed line�
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�T�k�,p���2 = ��p�� − k�����T�0�
„kz,���1��z��… + 
B�kz��2

+ 2
2k2 Re�T�0�*
„kz,���1��z��…�T�2��kz���

+ 
2K�k�,p�� , �27�

where S is the surface area of the sample. All the terms in
�27� have a clear physical interpretation and are calculated as
described below. The function

T�0�
„kz,���1��z��… = 


−





dz eikzz��1��z��kz
�z� �28�

is the amplitude of specular reflection from the profile
��1��z�. The additional contribution of the first order B�kz�
into the specular amplitude is caused by the difference be-

tween the function ��1��z� and profile �24�, which is taken as
the error function ��0��z�. The latter does not depend, by
definition, on the roughness correlation:

B�kz� = 

−





dz �−kz

* �z����0��z� − ��1��z���kz
�z� . �29�

The term T�2��kz� in �27� corresponds to a double scatter-
ing of the wave field within the media5 and is calculated as
the second-order correction in the solution of Eq. �5�. The
term K�k� , p�� is a single incoherent scattering depending on
the root-mean-square fluctuation ��V2	− �V	2� of the scatter-
ing potential �3� after averaging over the correlated rough-
ness distribution:

T�2��k�� = 

�k��� ��k

dk���

kz�



−





dz

−





dz�
 dR� �ei�k��� −k���·R� ��−kz

* �z���kz�
�z���−kz�

* �z��kz
�z�

��

−





da1

−





da2W�a1,a2,R��H�z� − a1�H�z − a2� + ���0��z� − ��1��z�����0��z�� − ��1��z���� , �30�

K�k�,p�� =
1

4�2

−





dz

−





dz�
 dR� �

−





da1

−





da2W�a1,a2,R��ei�p��−k���·R� ��−pz

* �z��H�z� − a1��kz

* �z���−pz
�z�H�z − a2��kz

�z� .

�31�

The functions �kz
�z� are the solutions of the wave equa-

tion �7� with profile ��1��z�, and the two-dimensional distri-
bution of the roughness amplitudes W�a1 ,a2 ,R�� is

W�a1,a2,R�� =
1

��
� 1

�2g�R��
e−�a1 + a2�2/4�2

e−�a1 − a2�2/2g�R��

−
1

2�
e−�a1

2+a2
2�/2�2� , �32�

with the correlation function g�R�� from Eq. �26�.

IV. CALCULATION OF X-RAY REFLECTIVITY

The differential cross section �27� describes both specular
�p��=k��� and diffuse scattering K�k� , p��, when the transverse
component of the wave vector is not preserved. The term
K�k� , p�� is nonzero for p��=k��, and the variational profile
��1��z� has to be calculated taking in consideration this term
in Eq. �17�. To proceed with the simulations, the number of
quanta, N�n��, registered by the detector in the direction of the
unit vector n� = �k�� /k ,−kz /k�, which corresponds to specular
reflection, is calculated. The value of N�n�� depends on the
width of angular cone 	� covered by detector �Fig. 1�:

N�n�� = I0
 dn��f�n� − n���
d�

d��
,

f�n� − n��� = exp�−
	x

2

�x
2 −

	y
2

�y
2 �, 	� = �n� − n��� . �33�

Here I0 is an incident beam intensity, f�n� −n�� is the detector
instrumental function assumed to be a Gaussian, and the unit
vector n�� defines the direction of the wave vector p� . Because
of in reflectometry experiments detectors with small angular
resolution ��x��y �1� are used, the integration over n�� in
Eq. �33� is carried out in the plane perpendicular to n� . The
differential cross section �27� is related, however, to the
sample surface,1 and therefore the variations of the wave

vector and the vector 	� are connected as

qx = kz	x, qy = k	y . �34�

Substituting �27� into �33�, the number of photons scattered
by the incident at angle � to the sample surface beam and
detected in the direction of specular reflection is

N��� = N0
k4���2

4kz
2 ��T�0�

„kz,���1��z��… + 
B�kz��2

+ 2
2 Re�T�0�*
„kz,���1��z��…T�2��kz��

+ 
2
 dq��e−qx
2/kz

2�x
2−qy

2/k2�y
2
K�k�,p��� , �35�

where N0= I0Skz /k is a number of photons at the sample
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surface in time unit, and p��=k��+q�� and pz=�k2− p�
2 .

For any profile ��1��z�, the main contribution to Eq. �35�
in the region of small scattering angles is given by the term
��T�0�(kz , ���1��z��)�2. However, for scattering angles larger
than total external reflection angle ���c=���0�, the specular
reflection coefficient decreases drastically, and correlation ef-
fects, being included in Eq. �35�, become essential. The pro-
file ��1��z� has to be selected in a way that the sum of the
following terms is equal to zero for all kz:

2 Re�T�0�*
„kz,���1��z��…�
B�kz� + 
2T�2��kz��� + 
2�B�kz��2

+ 
2
 dq��e−qx
2/kz

2�x
2−qy

2/k2�y
2
K�k�,p�� = 0. �36�

Then the number of detected photons �35� is

N��� = N0�Rs
�0�
„kz,���1��z��…�2, �37�

where the specular reflectivity Rs
�0� is calculated from Eq.

�20� and depends on the amplitude of coherent scattering
�28�, according to7

k2�

2
T�0�

„kz,���1��z��… = − kzRs
�0�
„kz,���1��z��… .

To qualitatively consider the correlation effects in x-ray
reflectivity, the measured6 x-ray reflectivity �Fig. 3� from a
rough Si0.65Ge0.35 surface is analyzed. The x-ray polarizabil-

ity of the sample is �0=−1.99�10−5+ i5.27�10−7, and x
rays with wavelength Cu K� have been used. The scanning
angle � is in degrees, and the intensity is normalized to unity.

The theoretical surface profile ��0��z� is chosen according
to Eq. �24� as an error function if the Gaussian roughness
distribution and first-order DWBA are assumed. The analyti-
cal function �kz

�0��z� and reflection coefficient �Rs
�0�(kz ,

���0��z��)�2 have also been calculated and are shown by the
dashed line in Fig. 3. The fit obtained demonstrates a good
agreement for the angles �r����c and roughness �
�45.0 Å. For a qualitative analysis of the reflectivity curve,
an additional parameter �r has been introduced to distinguish
different regions of scanning angles. This parameter deter-
mines the range where the specular reflection from an aver-
aged interface profile dominates over the diffuse scattering—
i.e., the interval where the intensity drops exponentially:

�r �
1

2k�
. �38�

For the angles ���r, however, the intensity decreases as
a power function, and therefore the renormalization
�Rs

�0�(kz , ���1��z��)�2 due to second-order DWBA corrections
is essential. To determine a profile ��1��z� accounting for
correlations, Eq. �36� has to be solved. As the solution for
this equation is convenient to obtain directly a specular am-
plitude instead of the profile ��1��z�,

T�0�
„kz,���1��z��… = 


−





dz eikzz��1��z��kz

�1��z� , �39�

where the function �kz

�1��z� is a solution of the wave equation
for the considered profile of the transition layer.

The solving of cumbersome integral equation is simplified
due to the following reasons: �i� accuracy up to the second
order of 
 is required, and �ii� the angular region ���r is
considered, where the reflection coefficient is small indepen-
dently of the profile shape. In this angular region,

�kz

�1��z� � �kz

�0��z� � eikzz, �40�

and the terms of Eq. �35� are

T�0�
„kz,���1��z��… � T�0�

„kz,���0��z��… − B�0��kz� ,

B�kz� � B�0��kz� = 

−





dz eikzz��1��z��kz

�0��z� . �41�

Then Eq. �35� is resolved with respect to B�0��kz�, and the
expression for the scattered amplitude is obtained assuming

=1 and with the above-mentioned accuracy:

T�0�
„kz,���1��z��… =��T�0�

„kz,���0��z��…�2 + 2 Re�T�0�*
„kz,���0��z��…R̃�2��kz�� +
 dq��e−qx

2/kz
2�x

2−qy
2/k2�y

2
K̃�k�,p�� , �42�

where R̃�2� and K̃ correspond to profile ��0��z�. The correction ��1��z� for zeroth-order profile is calculated using Fourier
transformation of �41�, and generally it depends on both z and kz.

FIG. 3. The fitted by SCA experimental reflectivity from a
Si0.65Ge0.35 sample with large roughness �Ref. 6�. For the fitting of
the entire area of scattering angle, formula �45� has been used with
the following parameters: �=45 Å, h=2, and �=k2�c�x�yLc

2

=0.012. For comparison the dashed line shows the reflected inten-
sity renormalized by conventional Nevot-Croce factor. The vertical
lines distinguish the angle areas with different behavior of x-ray
reflectivity.
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Similarly to Ref. 5, the approximation �40� for function �kz

�0��z� is used for the calculation of the amplitudes �42�. Moreover,

the influence of the amplitude R̃�2� is negligible at the considered angles because of exponentially decreasing T�0�*�kz�.
Averaging K̃�k� , p�� over the roughness distribution with the function �26�, the following expression for the x-ray intensity in the
direction of the specular beam is

N��� = N0��Rs
�0�����2 +

k5���2

4�2kz
3��x�y


−





dX

−





dY e−kz
2�x

2X2/4−k2�y
2Y2/4�e−kz

2�2�1−g�R��� − e−kz
2�2

�� . �43�

For the angles ���r, the dependence of the specularly
reflected intensity on the incidence angle is mostly governed
by the second term in Eq. �43� and decreases as a power
function:

N��� � N0
1

�4 . �44�

The tiny oscillations within the area between 1° and 2° of the
exit angle, which are not explained by presented approach,
may be associated with the special sample structure. The
large roughness of the surface has been artificially created by
large-scale gratings on the surface, which are supposed to be
random. However, some ordering of this grating is probable,
which causes the oscillating behavior of the reflectivity
curve. Another effect influencing the behavior of the curve is
seen in the region ���c, where the decrease of the reflec-
tion coefficient occurs.2 This effect is due to an effective
reduction of sample size LS at small scattering angles com-
paratively to that illuminated by an x-ray beam of size LB
and area LB / sin �. This effect is taken into account by modi-
fication of Eq. �43� with Heaviside function2

Neff��� = N���H�sin � −
LB

LS
� + sin �N���H�LB

LS
− sin �� .

�45�

Formulas �43� and �45� have been used to fit the experimen-
tal data in Fig. 3. For convenience reasons, the vertical lines
separate the regions of qualitatively different behavior of the
reflectivity curve. The best fit is found for �=45 Å, h=2. An
additional parameter has been introduced regulating the con-
tribution of diffuse scattering �second term in Eq. �43�� into
the total intensity:

� = k2�c�x�yLc
2 =

Lc
2

Scoh
. �46�

The physical meaning of this parameter is the ratio of the
area illuminated by the x-ray sample, where the correlations
are essential, to the tangential coherence area Scoh, which is
set up by angular resolution of the detector.2 The fitting in
Fig. 3 is obtained at �opt�0.012. The specular x-ray reflec-
tivity depends on the correlation length through the dimen-
sionless parameter �46�, which also contains the detector pa-
rameters �x ,�y. The draft value of Lc in the considered

experiment is found to be Lc�700 Å, which follows from
�x��y �0.1�c.

For x-ray reflectometry, one more characteristic parameter
has to be considered: the angle �d, after which reflectivity
depends dominantly on detector noise, background, geo-
metrical factors, measurement dynamical range, beam size,
parameters �x ,�y, etc. The nonexponential behavior of the
reflection coefficient due to correlation effects in the inter-
mediate angular region �d����r is essential when the con-
dition

�r =
1

k�
� �d �47�

is fulfilled.6 The value �d depends on the dynamical range of
the detector used in the experiment. Therefore, the roughness
amplitude, at which the correlations can be observed in the
reflection coefficient, depends also on experimental condi-
tions

� �
1

k�d
. �48�

For smaller roughness amplitudes, the Nevot-Croce factor is
satisfactory for data fitting. The upper limit for � is defined
by the applicability of the DWBA; i.e., the spectral density
of the specular �coherent� beam is higher than the one of the
diffuse �incoherent� intensity:3

� �
1

k�c
. �49�

For the experimental data considered here, �49� results in �
�70 Å.

V. CONCLUSIONS

Further modification of the distorted-wave Born approxi-
mation for specular x-ray scattering from rough surfaces and
interfaces is considered, which uses a self-consistent method
for the profile of interface transition layer. The approach re-
ported permits one to take into account the change of profile
due to roughness correlations. Using the SCA method, the
reflection coefficient can be calculated for each DWBA order
without any additional assumptions on its asymptotic behav-
ior. The experimental x-ray data from rough sample surfaces
are evaluated, and the behavior of the reflectivity is analyzed
for various scattering angle regions.
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