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Abstract The paper deals with affine selections of affine (both convex and concave)
multifunctions acting between finite-dimensional real normed spaces. It is proved
that each affine multifunction with compact values possesses an exhaustive family of
affine selections and, consequently, can be represented by its affine selections. More-
over, a convex multifunction with compact values possesses an exhaustive family of
affine selections if and only if it is affine. Thus the existence of an exhaustive family
of affine selections is the characteristic feature of affine multifunctions which differs
them from other convex multifunctions with compact values. Besides a necessary
and sufficient condition for a concave multifunction to be affine on a given convex
subset is also proved. Finally it is shown that each affine multifunction with compact
values can be represented as the closed convex hull of its exposed affine selections
and as the convex hull of its extreme affine selections. These statements extend the
Straszewicz theorem and the Krein–Milman theorem to affine multifunctions.
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1 Introduction

Let X and Y be two sets and let F: X ⇒ Y be a multivalued mapping or, shortly, a
multifunction from X into Y which assigns to each x ∈ X a (possibly empty) subset
F(x) ⊂ Y. The sets

dom F := {
x ∈ X | F(x) �= ∅}

and

gph F := {
(x, y) ∈ X × Y | y ∈ F(x)

}

are called the effective domain and the graph of the multifunction F respectively.
A single-valued mapping f: X → Y is called a selection of a multifunction

F: X ⇒ Y if f (x) ∈ F(x) for all x ∈ dom F.

A family F consisting of selections of a multifunction F: X ⇒ Y will be said to
be exhaustive for F if F(x) = { f (x) | f ∈ F } for all x ∈ dom F.

The axiom of choice guarantees the existence of selections for any multifunctions
with nonempty effective domain. However the existence of selections with desired
properties like continuity, measurability, differentiability or some algebraic proper-
ties is not so trivial (see, for instance, [1–4, 6, 18–20, 27, 33, 36–42]).

In the paper we deal with affine selections of affine multifunctions acting from a
finite-dimensional real normed space X into another finite-dimensional real normed
space Y and taking compact values. It should be noted that different authors
saying about affine multifunctions mean sometimes different things. When we say
that a multifunction is affine we mean that it is both convex and concave. Affine
multifunctions (under other title) were first studied by Gautier [7] and Lemarechal
and Zowe [16] for the case when X = R and dom F = [0, T] ⊂ R, T > 0. Affine
multifunction acting between arbitrary finite-dimensional vector spaces was studied
by Gorokhovik and Zabreiko [10, 11]. These studies were motivated by attempts
to extend to multifunctions classical notions of differentiability of functions based
on local approximations with affine functions. Notice that another approach to
differentiation of multifunctions when a derivative is defined as a multifunction
whose graph is a tangent or normal (in one or another sense) cone to the graph
of a multifunction that we differentiate is extensively developed now (see, for
example, [2, 13, 28–30, 35]). The realization of this approach based on the (limiting)
normal cone was thoroughly developed by Mordukhovich [21–24], the most detail
representation of these results can be found in his two-volume monograph [25, 26].

In this paper we continue the study of affine multifunctions originated in
[8–11]. Here we focus our attention on representations of affine multifunctions by
their affine selections. First we prove that each affine multifunction with compact
values possesses an exhaustive family of affine selections and, consequently, can be
represented by its affine selections. Moreover, we show that a convex multifunction
with compact values possesses an exhaustive family of affine selections if and only
if it is affine. Thus the existence of an exhaustive family of affine selections is the
characteristic feature of affine multifunctions which differs them from other convex
multifunctions with compact values.

As a subset of the normed vector space of single-valued affine functions from X
into Y the family of all affine selections of an affine multifunction with compact
values is convex and compact. It is natural to pose the converse question: when a
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given convex compact subset of single-valued affine functions is an exhaustive family
of affine selections for some affine multifunction? To show that this question is not
trivial we present an example of convex and compact subset of single-valued affine
functions from R to R that is an exhaustive family of affine selections for the concave
multifunction from R to R the restriction of which on any nontrivial interval of R is
not affine. In the paper we obtain necessary and sufficient conditions for a convex
and compact subset of single-valued affine functions to generate a multifunction that
is affine on a given convex subset.

We introduce also the notion of exposed selections as well as the notion of extreme
selections of a multifunction and prove that each affine multifunction with compact
values can be represented as the closed convex hull of its exposed affine selections
and as the convex hull of its extreme affine selections. These statements extend the
Straszewicz theorem and the Krein–Milman theorem to affine multifunctions.

2 Preliminaries

Let X and Y be finite-dimensional normed vector spaces over reals R.

A multifunction A : X ⇒ Y is called

i.) convex if

αA (x1) + (1 − α)A (x2) ⊂ A (αx1 + (1 − α)x2)

for all x1, x2 ∈ dom A and α ∈ [0, 1];
ii.) concave if dom A is a convex subset of X and

αA (x1) + (1 − α)A (x2) ⊃ A (αx1 + (1 − α)x2)

for all x1, x2 ∈ dom A and α ∈ [0, 1];
iii.) affine if

αA (x1) + (1 − α)A (x2) = A (αx1 + (1 − α)x2)

for all x1, x2 ∈ dom A and α ∈ [0, 1].
It follows immediately from the above definition that a multifunction A : X ⇒ Y

is affine if and only if it is both convex and concave on dom A .

Convex multifunctions were studied by many authors, see, for instance, [2, 17, 31,
32, 34, 35] and references therein. For concave multifunctions we can refer to the
paper [12] devoted to fans (positively homogeneous and concave multifunctions).
As it was noted above affine multifunctions were studied in [7–11, 16].

Throughout the paper we will suppose that values of multifunctions involved in
the study are convex and compact subsets of Y. As is known [14] the collection K (Y)

of all compact convex subsets of Y equipped with the addition (by Minkowski) and
multiplication by nonnegative reals is a semilinear space [14]. The function

dH(M, N) := inf{α � 0 | M ⊂ N + αBY , N ⊂ M + αBY}
(BY is the unit ball in Y) called the Hausdorff distance determines a structure of a
metric space on K (Y).

Thus a multifunction F: X ⇒ Y with compact convex values can be interpreted as
the single-valued function from dom F ⊂ X into the semilinear metric space K (Y).
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Many concepts like continuity, uniform continuity, Lipschitz continuity and some
others for such multifunctions coincide with analogous notions for single-valued
mappings acting from one metric space to another.

In what follows we will denote multifunctions with compact and convex values by
symbol F: X → K (Y).

Given a multifunction F: X → K (Y), the support function of F is the real-valued
function sF: dom F × Y∗ → R defined by

sF(x, y∗) := max
{〈y, y∗〉 | y ∈ F(x)

}
.

Here Y∗ stands for a norm dual of Y.

It is easy to verify that a multifunction A : X → K (Y) is affine (respectively,
convex or concave) if and only if for each y∗ ∈ Y∗ the partial function sA (·, y∗) :
dom A → R is affine (respectively, concave or convex) on Y∗. For more detail dual
characterizations of affine multifunctions we refer to the papers [10, 11].

Throughout this paper the collection of all affine multifunctions acting from X
into Y and taking compact values will be denoted by A(X, Y). The main aim of the
paper is to study representations of affine multifunctions of A(X, Y) by their affine
selections.

By symbol A(X, Y) we will denote the vector space of single-valued affine
functions from X into Y. For X and Y are finite-dimensional the vector space
A(X, Y) is also finite-dimensional. Since the vector space A(X, Y) is isomorphic
to the cartesian product L(X, Y) × Y, where L(X, Y) stands for the vector space
of linear mappings from X into Y, we will present an element of A(X, Y) as a pair
(A, b) with A ∈ L(X, Y) and b ∈ Y. Besides we will suppose that some norm that is
compatible with norms on X and Y is defined on A(X, Y). In particular, we can
suppose that ‖(A, b)‖A(X, Y) := max{‖A‖L(X, Y), ‖b‖Y}. Thus A(X, Y) is a finite-
dimensional normed space.

Given a multifunction F: X → K (Y), the collection of all affine selections of F
will be denoted be LF . It is easy to verify that for any multifunction F: X → K (Y)

the collection LF is a convex and closed (possibly, empty) subset of the normed
vector space A(X, Y).

On the other hand, each nonempty compact convex subset L of A(X, Y)

generates the concave multifunction FL : X ⇒ Y defined by

FL (x) = {
Ax + b | (A, b) ∈ L

}
(1)

with dom FL = X and FL (x) ∈ K (Y) for all x ∈ X.

3 When is a Convex Multifunction Affine?

The simplest sufficient condition for a convex multifunction with compact values to
be affine is presented in the following proposition.

Proposition 1 [10, 11] Let A : X ⇒ Y be a convex multifunction with compact values.
If A (x0) is a singleton (i.e. A (x0) = {y0}) for some point x0 ∈ ri (dom A ) then A is
actually a single-valued affine function on dom A .

Here ri (dom A ) stands for the relative interior of dom A .
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The single-valuedness of convex multifunctions was also studied in [5].
The next assertion will used below to construct affine selections of affine

multifunctions.

Proposition 2 For any affine multifunction A ∈ A(X, Y) and any y∗ ∈ Y∗ the multi-
function A (·, y∗): X ⇒ Y, defined by

A (x, y∗) :=
{

y ∈ A (x) | y∗(y) = max
z∈A (x)

y∗(z) = sA (x, y∗)
}

,

is also an affine multifunction of A(X, Y) with domA (·, y∗) = domA .

Proof Take any y∗ ∈ Y∗. Since for every x ∈ dom A the set A (x) is convex and
compact and, consequently, A (x, y∗) is a nonempty, compact and convex subset of
Y, we conclude that A (x, y∗) ∈ K (Y) for all x ∈ dom A (·, y∗) and dom A (·, y∗) =
dom A .

To prove that A (·, y∗) is affine we need show that

αA (x1, y∗) + (1 − α)A (x2, y∗) = A (αx1 + (1 − α)x2, y∗)

for all x1, x2 ∈ dom A (·, y∗) and α ∈ [0, 1].
Since A (αx1+(1−α)x2, y∗) ⊂ A (αx1+(1−α)x2) and αA (x1) + (1 − α)A (x2) =

A (αx1 + (1 − α)x2) then for any y ∈ A (αx1 + (1 − α)x2, y∗) there exist y1 ∈ A (x1)

and y2 ∈ A (x2) such that y = αy1 + (1 − α)y2. From y1 ∈ A (x1) and y2 ∈ A (x2) we
obtain y∗(y1) � sA (x1, y∗) and y∗(y2) � sA (x2, y∗). Suppose that at least one of the
latter two inequalities is strict. Then

y∗(y) = αy∗(y1) + (1 − α)y∗(y2) < αsA (x1, y∗) +
+ (1 − α)sA (x2, y∗) = sA (αx1 + (1 − α)x2, y∗),

but it contradicts y ∈ A (αx1 + (1 − α)x2, y∗). It proves the inclusion

αA (x1, y∗) + (1 − α)A (x2, y∗) ⊃ A (αx1 + (1 − α)x2, y∗).

The converse inclusion is proved in the similar way. �

In the proof of the next theorem we will need the notion of an exposed point of a
convex set.

Let C be a convex set of a vector space Y. A point y0 ∈ C is called an exposed
point of C if there exists a linear function y∗: Y → R such that

{
y ∈ C | y∗(y) = max

z∈C
y∗(z)

}
= {

y0
}
,

or, in other words, if in the vector space Y there exists a hyperplane that is support
to C at the point y0 ∈ C and such that its intersection with C consists of the only
point y0.

The collection of all exposed points of a convex set C is denoted by exp C. By
the Straszewicz theorem [15, 34] for any compact convex set C the subset of exposed
points exp C is nonempty and C = cl (conv (exp C)), where cl M and conv M stand
for the closure and the convex hull of a set M.
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Theorem 1 Any affine multifunction A : X → K (Y) admits affine selections.

Proof Let x0 ∈ ri (dom A ). Since A (x0) is a nonempty compact convex subset of
Y then exp A (x0) �= ∅. Choose ŷ ∈ exp A (x0). By the definition of an exposed
point there exists a linear function ŷ∗ ∈ Y∗ such that {ŷ} = {y ∈ A (x0) | ŷ∗(y) =
sA (x0, ŷ∗)}. From Proposition 2 we have that the multifunction

A (·, ŷ∗) : x ⇒
{

y ∈ A (x) | ŷ∗(y) = sA (x, ŷ∗)
}

is affine and dom A (·, ŷ∗) = dom A . Besides, since x0 ∈ ri (dom A (·, ŷ∗)) and
A (x0, ŷ∗) = {ŷ}, we conclude by Proposition 1 that a multifunction A (·, ŷ∗): X ⇒ Y
is actually single-valued for all x ∈ dom A . Thus A (·, ŷ∗) is a single-valued affine
selection of A . �

Remark 1 If an affine function A ∈ A(X, Y) is also positively homogeneous then
each affine selection of A is in fact a linear function. The existence of linear
selections for positively homogeneous and affine multifunctions was proved by
Zaslavski [42]. Thus Theorem 1 extends his result to arbitrary affine multifunctions
of A(X, Y).

Theorem 2 A convex multifunction A : X ⇒ Y with compact values is affine if and
only if in the space of single-valued affine mappings A(X, Y) there exists a nonempty
compact convex subset L such that

A (x) = {Ax + b | (A, b) ∈ L } for all x ∈ dom A . (2)

Proof Sufficiency. By the assumptions of the theorem a multifunction A : X ⇒ Y
is convex. On the other hand, the equality (2) implies that A coincides on dom A
with the restriction of the concave multifunction FL defined by (1). Thus, A is both
convex and concave on dom A and, hence, it is affine.

Necessity. Without loss of generality we can suppose that 0 ∈ ri (dom A ). Let
U be the linear hull of dom A and let P : X → U be a projector of X on U.

Define the multifunction A1 : X → K (Y) by setting A1(x) = A (Px) for all x ∈ X.

It follows immediately from the definition of A1 that dom A1 = dom A + ker P and
0 ∈ int (dom A 1). Here ker P := {x ∈ X | P(x) = 0} stands for the kernel of P. It is not
hard to see that A1 is an affine multifunction and A1(x) = A (x) for all x ∈ dom A
and, consequently, LA1 ⊂ LA .

Now we will show that LA1 is a bounded subset of the space of single-valued affine
mappings A(X, Y).

Let c(x) := max
y∈A1(x)

‖y‖. Since for each x ∈ dom A1 the value A1(x) is a compact

subset of Y, then 0 < c(x) < +∞ for x ∈ dom A1. By the definition of a selection
we have Ax + b ∈ A1(x) for all x ∈ dom A1 and, hence, ‖Ax + b‖ � c(x) for all
x ∈ dom A1 and for all (A, b) ∈ LA1 . Consequently, for all (A, b) ∈ LA1 we have
‖b‖ � c(0) and

‖Ax‖ � ‖Ax + b‖ + ‖b‖ � c(x) + c(0) for all x ∈ dom A1.
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Since 0 ∈ int (dom A 1) we conclude from the latter inequality by the Banach–
Steinhaus principle that there exists a real C > 0 such that

‖A‖L(X, Y) � C for all (A, b) ∈ LA1 .

Thus

‖(A, b)‖A(X, Y) � max{C, c(0)} for all (A, b) ∈ LA1 .

It proves that LA1 is a bounded subset of A(X, Y). As was noticed above LA1 is
also closed and convex, therefore we conclude that LA1 is a compact convex subset
of A(X, Y).

To complete the proof we need to show that LA1 is an exhaustive family of
affine selections for A . It follows from the proof of Theorem 1 that for each
point x ∈ int (dom A1) the set {Ax + b | (A, b) ∈ LA1} contains all exposed points
of A1(x). Consequently, by the Straszewicz theorem [15, Theorem 4.5] for each point
x ∈ int (dom A1) we have A1(x) = cl (conv {Ax + b | (A, b) ∈ LA1}). Since LA1 is a
convex and compact subset of A(X, Y) the set {Ax + b | (A, b) ∈ LA1} is also con-
vex and compact. Hence, A1(x) = {Ax + b | (A, b) ∈ LA1} for all x ∈ int (dom A1).

Due to the Hausdorff continuity of affine multifunctions [11, Proposition 3.13], the
latter equality is extended to the whole effective domain dom A1. Thus LA1 is an
exhaustive family of affine selections for A1 and, hence, for A . �

Corollary 1 For any affine multifunction A ∈ A(X, Y) there exists an exhaustive
family of affine selections which is a compact convex subset of the normed vector space
A(X, Y) of single-valued affine functions.

4 When is a Concave Multifunction Affine?

In this section we will study affine multifunctions as a subclass of concave multi-
functions. Our aim is to find such characteristic features of affine multifunctions that
differ them from other concave multifunctions.

From the results of the previous section we conclude that the necessary condition
for any (including concave) multifunction to be affine is the existence of an exhaus-
tive family of affine selections. Moreover, this family is a compact convex subset in
the space of single-valued affine functions A(X, Y). However, as it shows the next
example, this condition is not sufficient for a multifunction to be affine.

Example 1 The multifunction F: R ⇒ R with gph F:= {(x, y) | y2 − x2 � 1} is
concave and the compact convex subset LF = {(a, b) | a2 + b 2 � 1} of A(R, R) is the
exhaustive family of affine selections of F. It is not difficult to see that the restriction
of F on any open interval of R is not affine.

Above observations motivate the following question.
Let L be a compact convex subset of A(X, Y) and let FL be a multifunction

defined by (1), Q a nonempty convex subset of X. Under which conditions on L
and Q the restriction of the multifunction FL on the set Q is affine?
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For any x ∈ X, y∗ ∈ Y∗ by symbol L (x, y∗) we denote a subset of L defined by

L (x, y∗) := {(A, b) ∈ L | y∗(Ax + b) = max
(A′, b ′)∈L

y∗(A′x + b ′)}.

Theorem 3 Let L be a compact convex subset of A(X, Y) and let FL be the
multifunction defined by (1). The restriction FL on a nonempty convex subset Q of X
is affine if and only if for any y∗ ∈ Y∗ the inclusion L (x1, y∗) ⊂ L (x2, y∗) holds for
all x1 ∈ ri Q, and x2 ∈ Q.

Proof Assume by contradiction that FL is affine on Q and L (x1, y∗) �⊂ L (x2, y∗)
for some y∗ ∈ Y∗ and a couple of points x1, x2 ∈ Q with x1 ∈ ri Q. Then for any
(A, b) ∈ L (x1, y∗) such that (A, b) �∈ L (x2, y∗) we have

y∗(Ax1 + b) = max
(A′, b ′)∈L

y∗(A′x1 + b ′) = max
y∈FL (x1)

y∗(y)

and

y∗(Ax2 + b) < max
(A′, b ′)∈L

y∗(A′x2 + b ′) = max
y∈FL (x2)

y∗(y).

From x1 ∈ ri Q we have that x1 = αx2 + (1 − α)x′
2 for some x′

2 ∈ Q and α ∈ (0, 1).

Since the multifunction FL is affine we obtain the inequality

y∗(Ax1 + b) = max
y∈FL (x1)

y∗(y) = max
y∈FL (αx2+(1−α)x′

2)
y∗(y)

= α max
y∈FL (x2)

y∗(y) + (1 − α) max
y∈FL (x′

2)
y∗(y)

> αy∗(Ax2 + b) + (1 − α)y∗(Ax′
2 + b)

= y∗(Ax1 + b)

but it is impossible. The contradiction proves a necessary part of the theorem.
Now, let L be a compact convex subset of A(X, Y) such that for any y∗ ∈ Y∗ the

inclusion L (x1, y∗) ⊂ L (x2, y∗) holds for all x1 ∈ ri Q, and x2 ∈ Q.

As it was noted above for any compact convex subset L of A(X, Y) the multi-
function FL is concave and dom FL = X. Besides FL is bounde d, Lipschitzian and
uniformly continuous in the Hausdorff sense on the whole space X.

Let x1, x2 be arbitrary points of ri Q. Then xα := αx1 + (1 − α)x2 ∈ ri Q for
all α ∈ [0, 1]. From the assumptions of the sufficient part of the theorem we
obtain for all y∗ ∈ Y∗ the equalities max

y∈FL (xα)
y∗(y) = max

y∈FL (xi)
y∗(y), i = 1, 2. Con-

sequently, for all y∗ ∈ Y∗ we have sFL (xα, y∗) = max
y∈FL (xα)

y∗(y) = α max
y∈FL (x1)

y∗(y)+
(1 − α) max

y∈FL (x2)
y∗(y) = αsFL (x1, y∗) + (1 − α)sFL (x2, y∗). Thus FL (xα) =

αFL (x1) + (1 − α)FL (x2) for all x1, x2 ∈ ri Q and α ∈ [0, 1]. It follows immediately
from the definition that the multifunctionFL is affine on ri Q. Since FL is Hausdorff
continuous it is affine on the whole set Q. �
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Corollary 2 A concave multifunction A ∈ A(X, Y) is affine if and only if in the space
of single-valued affine mappings A(X, Y) there exists a nonempty compact convex
subset L such that

A (x) = {Ax + b | (A, b) ∈ L } for all x ∈ dom A

and, moreover, for any y∗ ∈ Y∗ the inclusion L (x1, y∗) ⊂ L (x2, y∗) holds for all
x1 ∈ ri (dom A ), x2 ∈ dom A .

5 Exposed and Extreme Affine Selections of Affine Multifunctions

Let C be a convex set. A point y ∈ C is called an extreme point of C provided for
any two points c, d ∈ C such that (c + d)/2 = y one has y = c = d. The subset of all
extreme points of C is denoted ext C.

As is well-known [34] each exposed point of C is an extreme point. Thus,
exp C ⊂ ext C. Notice, that the latter inclusion is proper, in general. Besides we recall
that by the Krein–Milman theorem for a compact convex set C of a finite-dimensional
space one has C = conv (ext C).

We say that a selection f: X → Y of a multifunction F: X → K (Y) is ex-
posed (respectively, extreme) if f (x) ∈ exp F(x) [respectively, f (x) ∈ ext F(x)] for all
x ∈ dom F.

In this section we show that, like compact convex sets, affine multifunctions of
A(X, Y) are entirely characterized by their exposed and extreme affine selections.

Theorem 4 For any affine multifunction A ∈ A(X, Y) the set of all its exposed affine
selections Exp A is nonempty and

A (x) = cl (conv {Ax + b | (A, b) ∈ Exp A }) for all x ∈ dom A .

Proof Let A ∈ A(X, Y) be an affine multifunction and let x̂ ∈ ri (dom A ) and
ŷ ∈ exp A (x̂). It was shown in the proof of Theorem 2 that there exist ŷ∗ ∈Y∗, ŷ∗ �=0,

and an affine selection (A, b) of the multifunction A such that ŷ = Ax̂ + b and
A (x, ŷ∗) = {Ax + b} for all x ∈ dom A . From the latter equality and definitions of
an exposed point and of the multifunction A (x, ŷ∗) we conclude that (A, b) is an
exposed affine selection of the affine multifunction A .

Thus we see that Exp A �= ∅. Moreover, for any point x ∈ ri (dom A ) and
y ∈ exp A (x) there exists an exposed affine selection (A, b) ∈ Exp A such that
y = Ax + b . By Straszewicz’s theorem we obtain that A (x) = cl (conv {Ax +
b | (A, b) ∈ Exp A }) for all x ∈ ri (dom A ). Since A is Hausdorff continuous this
equality is extended to all x ∈ dom A . �

The next corollary was actually proved in the proof of the above theorem.

Corollary 3 An affine selection (A, b): x → Ax + b of an affine multifunction A ∈
A(X, Y) is exposed if and only if Ax0 + b ∈ exp A (x0) at least for one point
x0 ∈ ri (dom (A ).
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Now we prove the criterium for recognizing the extreme points of convex sets.
We shall need this criterium in proving the theorem on a representation of an affine
multifunction with its extreme affine selections.

Proposition 3 Let C be a convex subset of the finite-dimensional space Y with
dim C � 1. A point y0 ∈ C is an extreme point of C if and only if there exists an finite
ordered family of linearly independent linear functions {y∗

1, y∗
2, . . . , y∗

k} ⊂ Y∗,
1 � k � dim C, such that y0 is a unique point of C satisfying the following equalities

y∗
i (y0) = max

z∈Ci−1

y∗
i (z), i = 1, 2, . . . , k, (3)

where C0 = C, Ci = {y ∈ Ci−1 | y∗
i (y) = max

z∈Ci−1

y∗
i (z)}, i = 1, 2, . . . , k − 1.

Proof Sufficiency. Let a point y0 ∈ C be a unique point of C satisfying the equalities
(3) where {y∗

1, y∗
2, . . . , y∗

k} ⊂ Y∗ is an finite ordered family of linearly independent
linear functions of Y∗. It immediately follows from the definition of an exposed point
that y0 is an exposed and, hence, extreme point of the set Ck−1. Since Ck−1 is the
intersection of Ck−2 with the hyperplane Hk−2 := {y ∈ Y | y∗

k−2(y) = max
z∈Ck−2

y∗
k−2(z)}

supporting to Ck−2 we can conclude by Lemma 4.1 of [15] that y0 ∈ ext Ck−2. In
turn, Ck−2 is the intersection of Ck−3 with the hyperplane Hk−2 := {y ∈ Y | y∗

k−3(y) =
max

z∈Ck−3

y∗
k−3(z)} supporting to Ck−3 and, hence, y0 ∈ ext Ck−3. Arguing further in such

a way we shall get on the (k − 1)-th stage that y0 ∈ ext C.

Necessity. It is easily seen that an extreme point y0 of a convex set C also is
a relatively boundary point of C. Consequently (see, for instance, [34, Corollary
11.6.2]), there exists a linear function y∗

1 ∈ Y∗, y∗
1 �= 0, that is not constant on C

and achieves a maximum over C at the point y0. Thus, for C1 := {y ∈ C | y∗(y) =
max
z∈C

y∗
1(z)} we have dim C1 < dim C and y0 ∈ C1.

When C1 = {y0}, the one-element family {y∗
1} is a desired ordered family of linear

functions and the proof is complete.
In the case when C1 �= {y0} we shall have that y0 ∈ ext C1 (see, for instance,

Lemma 4.1 of [15]) and we can continue to construct a desired family of linear
functions. To this end we choose a linear function y∗

2 ∈ Y∗ that is not constant on
C1 and achieves a maximum over C1 at the point y0. Notice that, since y∗

2 is not
constant on C1 whereas y∗

1 is constant on C1, the linear functions y∗
1, y∗

2 are linearly
independent. Besides,

y∗
i (y0) = max

z∈Ci−1

y∗
i (z), i = 1, 2, (C0 = C)

and for C2 := {y ∈ C1 | y∗(y) = max
z∈C1

y∗
1(z)} we have dim C2 < dim C1 and y0 ∈ C2.

Provided C2 = {y0}, the ordered two-element family {y∗
1, y∗

2} is a desired family of
linear functions and the proof is complete.

In the case when C2 �= {y0} we shall continue the process of the construction of
the desired family. Since 1 � dim C � dim Y < +∞ we shall get on some k-th stage
with 1 � k � dim C the ordered linearly independent family y∗

1, y∗
2, . . . , y∗

k of linear
functions satisfying (3) and such that Ck = {y0}. Thus the desired family will be
constructed. �
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Theorem 5 For any affine multifunction A ∈ A(X, Y) the set of all its extreme affine
selections Ext A is nonempty and

A (x) = conv {Ax + b | (A, b) ∈ Ext A } for all x ∈ dom A . (4)

Proof Since Exp A ⊂ Ext A and by Theorem 4 Exp A �= ∅, we also have
Ext A �= ∅.

To prove the equality (4) we associate with each finite ordered family of linear
functions {y∗

1, y∗
2, . . . , y∗

k} ⊂ Y∗ the family of the multifunctions
{
A (·, y∗

1), A (·, y∗
1, y∗

2), . . . ,A (·, y∗
1 , y∗

2, . . . , y∗
k)

}

defined by

A (x, y∗
1) :=

{
y ∈ A (x) | y∗

1(y) = max
z∈A (x)

y∗
1(z)

}
,

A (x, y∗
1 , y∗

2) :=
{

y ∈ A (x, y∗
1) | y∗

2(y) = max
z∈A (x, y∗

1)
y∗

2(z)

}

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

A (x, y∗
1 , y∗

2, . . . , y∗
k) :=

{
y ∈ A (x, y∗

1 , y∗
2, . . . , y∗

k−1) | y∗
k(y)= max

z∈A (x, y∗
1 ,y∗

2,...,y
∗
k−1)

y∗
k(z)

}
.

It follows from Proposition 2 that all multifunctions of this family are affine and the
effective domain of each of them coincides with dom A . Besides it is immediate from
the above definition that

A
(
x, y∗

1 , y∗
2, . . . , y∗

k

) ⊂ A
(
x, y∗

1 , y∗
2, . . . , y∗

k−1

) ⊂ . . .A
(
x, y∗

1

) ⊂ A (x) (5)

for x ∈ dom A .

Let LA as was denoted above be the collection of all affine selections of a multi-
function A and let x0 ∈ ri (dom A ) and y0 ∈ ext A (x0). By Theorem 1 there exists an
affine selection (A, b) ∈ LA such that y0 = Ax0 + b . Since y0 ∈ ext A (x0) we can
claim by the criterium proved in Proposition 3 that there exists an ordered linearly
independent family of linear functions {y∗

1 , y∗
2, . . . , y∗

k} ⊂ Y∗, 1 � k � dim A (x0),

satisfying the equality A (x0, y∗
1 , y∗

2, . . . , y∗
k) = {Ax0 + b}. It is immediate from the

inclusions (5) that {Ax0 + b} ∈ A (x0, y∗
1 , y∗

2, . . . , y∗
i ), i = 1, 2, . . . , k.

Thus we have that {Ax0 + b} ∈ A (x0, y∗
1). Comparing the definitions of

A (x0, y∗
1) and of LA (x0, y∗) we can see that Ax0 + b ∈ A (x0, y∗

1) is equivalent
to (A, b) ∈ LA (x0, y∗). Since x0 ∈ ri (dom A ), we conclude from Theorem 3 that
LA (x0, y∗) ⊂ LA (x, y∗) for all x ∈ dom A and, hence, (A, b) ∈ LA (x, y∗) for all
x ∈ dom A or, equivalently, Ax + b ∈ A (x, y∗

1) for all x ∈ dom A . Thus (A, b) is
an affine selection of the multifunction A (·, y∗

1).

Arguing in the analogous manner we deduce from {Ax0 + b} ∈ A (x0, y∗
1, y∗

2) and
x0 ∈ ri (dom A ) that Ax + b ∈ A (x, y∗

1, y∗
2) for all for all x ∈ dom A or, equiva-

lently, that (A, b) is an affine selection of the multifunction A (·, y∗
1, y∗

2).

Appealing to analogous arguments we shall obtain on the k-th stage that Ax + b ∈
A (x, y∗

1, y∗
2, . . . , y∗

k) for all for all x ∈ dom A . Since A (x0, y∗
1, y∗

2, . . . , y∗
k) =
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{Ax0 + b} and x0 ∈ ri (dom A ), it follows from Proposition 1 that the multifunc-
tion A (·, y∗

1, y∗
2, . . . , y∗

k) is, in fact, single-valued and, hence, A (x, y∗
1, y∗

2, . . . , y∗
k) =

{Ax + b} for all x ∈ dom A .

Thus, for each x ∈ dom A the point y = Ax + b is the unique point of A (x) which
satisfies the equalities (5) with C = A (x). Consequently, it follows from the criterium
proved in Proposition 3 that Ax + b ∈ extA (x) for all x ∈ dom A , that is (A, b):
X → Y is an extreme affine selection of the multifunction A .

Thus, for any point x ∈ ri (dom A ) and y ∈ ext A (x) there exists an extreme affine
selection (A, b) ∈ Ext A such that y = Ax + b . By the Krein–Milman theorem we
obtain that A (x) = conv {Ax + b | (A, b) ∈ Ext A } for all x ∈ ri (dom A ). Since A
is Hausdorff continuous this equality is extended to all x ∈ dom A . �

The following corollary immediately follows from the proof of the above theorem.

Corollary 4 An affine selection (A, b): x → Ax + b of an affine multifunction
A ∈ A(X, Y) is extreme if and only if Ax0 + b ∈ ext A (x0) at least for one point
x0 ∈ ri (dom (A ).

Example 2 [7, 11, 16]. Let X = R, Y = R
2. The multifunction A : R ⇒ R

2 of
A(R, R

2) defined by

gph A = {
(x, y) ∈ R × R

2 | |y1| � 1 − x, |y2| � 1 + x
}

is affine on its effective domain dom A = [−1, 1]. There are exactly four extreme
affine selections of the multifunction A :

(A1, b 1); x → (−x + 1, −x − 1); (A2, b 2); x → (−x + 1, x + 1);
(A3, b 3); x → (x − 1, −x − 1); (A4, b 4); x → (x − 1, x + 1).

Consequently, by Theorem 4 we have

A (x) = conv {(−x + 1, −x − 1), (−x + 1, x + 1), (x − 1, −x − 1), (x − 1, x + 1)}
for all x ∈ [−1, 1].

Notice that the multifunction

P : x ⇒ conv {(−x + 1, −x − 1), (−x + 1, x + 1), (x − 1, −x − 1), (x − 1, x + 1)}
is concave on the whole line R whereas its restriction to each of three intervals
[−∞, −1], [−1, 1] and [1, +∞] is affine.
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