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Abstract. For the lower Weyl spectrum σ−w (T ) =
⋂

0≤K∈K(E)≤T

σ(T−K), where T is a positive operator

on a Banach lattice E, the conditions for which the equality σ−w (T ) = σ−w (T ∗) holds, are established.
In particular, it is true if E has order continuous norm. An example of a weakly compact positive
operator T on `∞ such that the spectral radius r(T ) ∈ σ−w (T ) \ (σf(T ) ∪ σ−w (T ∗)), where σf(T ) is
the Fredholm spectrum, is given. The conditions which guarantee the order continuity of the residue
T−1 of the resolvent R(., T ) of an order continuous operator T ≥ 0 at r(T ) /∈ σf(T ), are discussed.
For example, it is true if T is o-weakly compact. It follows from the proven results that a Banach
lattice E admitting an order continuous operator T ≥ 0, r(T ) /∈ σf(T ), can not have the trivial band
of order continuous functionals E∼

n in general. It is obtained that a non-zero order continuous operator
T : E → F can not be approximated in the r-norm by the operators from E∼

σ ⊗F , where F is a Banach
lattice, E∼

σ is a disjoint complement of the band E∼
n of E∗.
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1 Introduction and preliminaries.
This paper is a continuation of research which was begun by the author in notes [6, 7] and
devoted to special subsets of the spectrum of a positive operator T on a Banach lattice E.

For terminology, notions, and properties on the theory of Banach lattices and operators on
them not explained or proved in this note, we refer to [1, 8]; see also [15, 16]. Throughout the
note, unless otherwise stated, Banach lattices E and F will be assumed to be infinite dimen-
sional and an operator T from E into F (or into E) will be assumed linear and (norm) bounded.
In Sections 3-6 where the spectral properties are considered, spaces will be assumed complex,
and in Section 7 spaces will be assumed real. By the term operator, we mean a linear operator.

Let Z be a Banach space, T be a bounded operator on Z. We denote by N(T ) and R(T ) the
null space and the range of T , respectively. That is,

N(T ) = {z ∈ Z : Tz = 0}, R(T ) = {Tz : z ∈ Z}.

An operator T is said to be Fredholm ([1], p. 156; [3], p. 33) if the dimension of the null space
N(T ) and the dimension of the quotient space Z/R(T ) are both finite.

1

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/290220561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


As usual, the spectrum of an operator T on Z will be denoted by σ(T ). The Fredholm
spectrum ([1], p. 299; [3], p. 41) of an operator T is the set

σf(T ) = {λ ∈ C : λ− T is not a Fredholm operator on Z},
and the Weyl spectrum ([1], p. 312; [3], p. 133, 135) of an operator T is the set

σw(T ) =
⋂

K∈K(Z)

σ(T + K),

where K(Z) is the set of all compact operators on Z.
In the case, when T is a positive operator on a Banach lattice E, the lower Weyl spectrum

[6] of an operator T is the set

σ−w (T ) =
⋂

0≤K∈K(E)≤T

σ(T −K).

Clearly, the inclusions
σf(T ) ⊆ σw(T ) ⊆ σ−w (T ) ⊆ σ(T ) (1)

hold. In particular, if E is an infinite dimensional Banach lattice, then σ−w (T ) 6= ∅. In [7] the
example of an operator T ≥ 0 for which all inclusions of (1) are proper, was given.

This paper is devoted to investigate some properties of the lower Weyl spectrum σ−w (T ) of a
positive operator T on a Banach lattice E and a problems which are related to this.

Before the statement of the main results, recall some definitions and notations in Riesz
spaces and Banach lattices which will be used further on. Let E be a (Archimedean) Riesz
space. The cone of all positive elements of E is denoted by E+, i.e., E+ = {x ∈ E : x ≥ 0}.
The band B of E is called a projection band ([8], p. 32) whenever B ⊕Bd = E. For a Banach
lattice E the Lorenz seminorm on E is defined by the formula

‖x‖L = inf {sup
α
‖zα‖E : 0 ≤ zα ↑ |x|}. (2)

In a real Riesz space E a net xα is said to be order convergent to x ∈ E, xα
o−→ x, ([8],

p. 30) whenever there exists a net yα satisfying |xα − x| ≤ yα ↓ 0. An operator T : E → F ,
where E and F are real Riesz spaces, is said to be a regular operator ([8], p. 10) whenever it
can be written as a difference of two positive operators, and is said to be order continuous ([8],
p. 42) whenever xα

o−→ 0 in E implies Txα
o−→ 0 in F . The collection of all regular operators

and all order continuous operators from E into F will be denoted by Lr(E, F ) and Ln(E, F ),
respectively. For an operator T : E → F we say that its modulus |T | exists ([8], p. 9) whenever
the supremum |T | := T ∨ (−T ) exists in the canonical order of the space of all linear maps
from E into F . Obviously, if an operator T possesses a modulus, then T is regular. In the case,
when E and F are complex Riesz spaces, an operator T from E into F is called regular if its
real and imaginary parts are both regular; similarly for an order continuous operator. Every
operator T ∈ Ln(E, F ) is [2] order bounded, that is, mapping order bounded sets of E onto
order bounded of F .

If E and F are (real or complex) Banach lattices, then ([1], p. 22) every order bounded
operator T from E into F is bounded. Therefore, the inclusions Ln(E, F ) ⊆ L(E, F ) and
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Lr(E, F ) ⊆ L(E,F ) hold, where, of course, L(E, F ) is the space of all bounded operators
between E and F ; in particular, every positive operator T from E into F is bounded.

The operator T : E → F acting from a Banach lattice E to a Banach lattice F is said to be
an o-weakly compact ([8], p. 310) whenever T maps order bounded subsets of E onto relatively
weakly compact subsets of F . Clearly, every weakly compact operator and so every compact
operator, is o-weakly compact.

For an operator T ∈ Lr(E, F ), where E and F are real Banach lattices, its r-norm ([9];
[15], p. 27) is defined by

‖T‖r = inf {‖S‖ : 0 ≤ S ∈ L(E, F ), |Tx| ≤ S|x|, x ∈ E}.

Under the r-norm the space Lr(E, F ) is a Banach space. The inequality ‖T‖ ≤ ‖T‖r is valid.
If |T | exists its r-norm is ‖T‖r = ‖|T |‖. An operator T ∈ Lr(E, F ) is called r-compact [9] if it
can be approximated in the r-norm by an operators of finite-rank. Every r-compact operator T
possesses the modulus |T | and |T | is r-compact [9]. Thus, the space Kr(E,F ) of all r-compact
operators is a Banach lattice under the r-norm and the ordering induced by the canonical order
of L(E, F ).

For a (real or complex) Riesz space E we put E∼ = Lr(E,R) and E∼
n = Ln(E,R).

Through (E∼
n )◦ will be denoted the polar of the band E∼

n with respect to the dual system
〈E, E∗〉, that is,

(E∼
n )◦ = {x ∈ E : x∗x = 0 for all x∗ ∈ E∼

n }.
The band of all functionals in the Riesz space E∼ that are disjoint from the band E∼

n will be
denoted by E∼

σ .
A Banach lattice E has order continuous norm ([1], §2.3) if E∼

n = E∗; equivalently, E is
an ideal of E∗∗. The Banach lattice E is called a KB-space ([8], p. 225-226) if (E∗)∼n = E;
equivalently, E is a band of E∗∗.

We now state for convenience the following result [7] which has a specific importance below.
Theorem 1. Let T be a positive operator on a Banach lattice E such that the spectral radius

r(T ) /∈ σf(T ) and there exists a net of a compact operators Kα satisfying 0 ≤ Kαx ↑ Tx for
all x ≥ 0. If T is order continuous and the order continuous dual E∼

n separates the points of
E, then r(T ) /∈ σ−w (T ).

2 The statement of the main results.
It is well known that for an operator T on a Banach space Z the equality σw(T ) = σw(T ∗) holds,
where T ∗ is the adjoint of T . In Section 3 the question when an analogue holds for the lower
Weyl spectrum σ−w (T ), will be discussed. The main result of this section is the next theorem.

Theorem 2. Each of the following conditions ensures that for a positive operator T on a
Banach lattice E the equality σ−w (T ) = σ−w (T ∗) holds:

(a) The equality σw(T ) = σ−w (T ) is valid (in particular, σw(T ) = σ(T ));
(b) The equality σ−w (T ) = σ−w (T ∗∗) is valid;
(c) The Banach lattice E has order continuous norm;
(d) The operator T is order continuous and there exists a Banach lattice F such that E = F ∗

and F = E∼
n , moreover T ∗(E∼

σ ) ⊆ E∼
σ .
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The equality σ−w (T ) = σ−w (T ∗) does not hold for an arbitrary Banach lattice E. Namely,
Section 4 will be devoted the construction of a weakly compact positive operator T on the
space `∞ for which σ−w (T ) 6= σ−w (T ∗) (see, in particular, Example 14 below).

In Section 5, using this example, we will show that in Theorem 1 the assumption about the
order continuity of an operator T is essential (see Example 15).

The assumption in Theorem 1 that E∼
n separates E, will also be discussed. How important

it is, is closely connected with the search conditions which guarantee the order continuity of
the residue T−1 of the resolvent R(., T ) of an order continuous positive operator T at the point
r(T ). This is the aim of Section 6. The main result of this section is the next theorem.

Theorem 3. Let T be a positive order continuous operator on a Banach lattice E, more-
over r(T ) /∈ σf(T ). Then each of the following conditions ensures that the residue T−1 of the
resolvent R(., T ) at r(T ) is order continuous:

(a) The operator T is o-weakly compact;
(b) The band (E∼

n )◦ is a projection band and Lorenz seminorm (2) on (E∼
n )◦ is a norm.

Moreover, it turns out that the problem of the order continuity of the residue T−1 of R(., T )
at r(T ) leads to a study of compact order continuous operators on spaces with trivial order
continuous dual, and is connected with the approximation problem. This is a treatment of
Section 7. We give here the basic result of it.

Theorem 4. Let E and F be two Banach lattices, and let T : E → F be a non-zero order
continuous operator. Then T /∈ E∼

σ ⊗ F , where the closure in Lr(E, F ) with the r-norm.
In particular, if E∼

n = {0}, then T is not r-compact.

3 When does the equality σ−w (T ) = σ−w (T ∗) hold?
First note that the inclusion σ−w (T ∗) ⊆ σ−w (T ) always holds. Indeed, if λ /∈ σ−w (T ), then
λ /∈ σ(T − K) for some K ∈ K(E), 0 ≤ K ≤ T . So λ /∈ σ(T ∗ − K∗) and 0 ≤ K∗ ≤ T ∗,
that is, λ /∈ σ−w (T ∗). Below the conditions when the equality σ−w (T ) = σ−w (T ∗) holds, will be
proved (see Theorem 2 above).

For a Banach space Z, jZ will denote the natural embedding jZ : Z → Z∗∗. We shall iden-
tity jZ(Z) with the space Z without any further explanations. When we do so, the identification
will be clear from the context. The following lemma is known. We include here a short proof
for the sake of completeness, and because the construction of the required operator is important
later on.

Lemma 5. Let Z be a Banach space and an operator T ∈ L(Z∗). The following assertions
are equivalent:

(a) The subspace Z of Z∗∗ is T ∗-invariant;
(b) There exists a unique operator S ∈ L(Z) such that S∗ = T ;
(c) The operator T is σ(Z∗, Z)-continuous.
In particular, S ∈ K(Z) iff T ∈ K(Z∗). If Z is a Banach lattice, then S ≥ 0 iff T ≥ 0.
Proof. (a) ⇒ (b) For an arbitrary element y ∈ Z there exists a unique element x ∈ Z such

that
jZ(x) = T ∗(jZ(y)). (3)
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Put Sy = x. Fix z ∈ Z and z∗ ∈ Z∗. The relations

(S∗z∗)z = z∗(Sz) = jZ(Sz)z∗ = (T ∗(jZ(z)))z∗ = jZ(z)Tz∗ = (Tz∗)z

hold, hence S∗ = T .
(b) ⇒ (c) If a net z∗α

σ(Z∗,Z)−→ 0, then we have (Tz∗α)z = z∗α(Sz) → 0 for an arbitrary z ∈ Z,

so Tz∗α
σ(Z∗,Z)−→ 0.

(c) ⇒ (a) Fix z ∈ Z. Let z∗α
σ(Z∗,Z)−→ 0. From the relations (T ∗jZ(z))z∗α = (Tz∗α)z → 0, it

follows that the functional T ∗jZ(z) is σ(Z∗, Z)-continuous, whence T ∗jZ(z) ∈ Z.
The last assertions follow at once from the equality S∗ = T . ¤
Lemma 6. Let a Banach lattice E be the direct sum of projection bands Bi, that is, the

equality E =
n⊕

i=1

Bi holds. If T is a positive operator on E such that Bi is T -invariant for all

i = 1, ..., n, then σ−w (T ) =
n⋃

i=1

σ−w (Ti), where Ti is the restriction of T to Bi.

Proof. If λ /∈ σ−w (Ti) for all i, then there exist an operators Ki ∈ K(Bi) satisfying the

relations 0 ≤ Ki ≤ Ti and λ /∈ σ(Ti −Ki). The operator K =
n⊕

i=1

Ki is compact, 0 ≤ K ≤ T

and λ /∈ σ(T −K) =
n⋃

i=1

σ(Ti −Ki), so λ /∈ σ−w (T ).

For the converse, if λ /∈ σ−w (T ), then λ /∈ σ(T −K), where K ∈ K(E) and 0 ≤ K ≤ T .

Bands Bi are K-invariant therefore, K has a representation K =
n⊕

i=1

Ki with Ki ∈ K(Bi) and

0 ≤ Ki ≤ Ti. Clearly, λ /∈ σ(Ti −Ki) for all i, whence λ /∈
n⋃

i=1

σ−w (Ti). ¤

We proceed now to the proof of Theorem 2 (see Section 2) which collects the necessary
conditions guaranteeing the validity of the equality σ−w (T ) = σ−w (T ∗).

Proof of Theorem 2. (a) The desired equality follows from the relations

σ−w (T ∗) ⊆ σ−w (T ) = σw(T ) = σw(T ∗) ⊆ σ−w (T ∗).

(b) Sufficiently to observe that

σ−w (T ∗∗) ⊆ σ−w (T ∗) ⊆ σ−w (T ) = σ−w (T ∗∗).

(c) Let λ /∈ σ−w (T ∗). There exists a compact operator K on E∗ such that 0 ≤ K ≤ T ∗

and λ /∈ σ(T ∗ − K). Clearly, 0 ≤ K∗ ≤ T ∗∗ and E is K∗-invariant as E is a T ∗∗-invariant
ideal of E∗∗. By Lemma 5, there exists a compact operator S on E satisfying 0 ≤ S ≤ T and
S∗ = K. Finally, the operator λ− (T − S) is invertible, that is, λ /∈ σ−w (T ) thus, the inclusion
σ−w (T ) ⊆ σ−w (T ∗) is valid, as required.

(d) First of all we remark that F = (F ∗)∼n . In particular, F has order continuous norm.
From the order continuity of the operator T , we have T ∗(F ) ⊆ F . Define an operator T ′ as the
restriction of T ∗ to E∼

n = jF (F ). Since E∼
σ is T ∗-invariant, then Lemma 6 implies

σ−w (T ′) ⊆ σ−w (T ∗). (4)
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By Lemma 5, there exists a positive operator S on F satisfying the following equalities S∗ = T
and jF (Sx) = T ∗jF (x) for all x ∈ F (see (3)). So the restriction T ′ to F coincides with S, it
follows σ−w (S) = σ−w (T ′). Using the assertion (c) and (4), we have

σ−w (T ) = σ−w (S∗) = σ−w (S) = σ−w (T ′) ⊆ σ−w (T ∗) ⊆ σ−w (T ),

hence σ−w (T ) = σ−w (T ∗). ¤
In the next section an example of an operator T such that σ−w (T ) 6= σ−w (T ∗), will be given

(Example 14).
The condition (b) of the previous theorem implies the necessity of the study of the connec-

tion between σ−w (T ) and σ−w (T ∗∗). Recall that for an operator T ∈ L(Z), where Z is a Banach
space, ρ∞(T ) denotes the unbounded component in C of the resolvent set ρ(T ) of T .

Theorem 7. Let T be a positive operator on a Banach lattice E having order continuous
norm. Then:

(a) r(T ) ∈ σ−w (T ) implies r(T ) ∈ σ−w (T ∗∗);
(b) If for every K ∈ K(E∗∗), 0 ≤ K ≤ T ∗∗, the equality

ρ(T ∗∗ −K) = ρ∞(T ∗∗ −K) (5)

holds, then σ−w (T ) = σ−w (T ∗∗).
Proof. (a) If r(T ) /∈ σ−w (T ∗∗), then for some K ∈ K(E∗∗), 0 ≤ K ≤ T ∗∗, the operator

r(T )− (T ∗∗ −K) is invertible. Therefore, r(T ) > r(T ∗∗ −K) ≥ r(T −K|E), where K|E is
the restriction of K to E, that is, r(T ) /∈ σ−w (T ).

(b) If λ /∈ σ−w (T ∗∗), then for some K ∈ K(E∗∗), 0 ≤ K ≤ T ∗∗, we have ([1], p. 256)

λ ∈ ρ(T ∗∗ −K) = ρ∞(T ∗∗ −K) ⊆ ρ(T −K|E),

whence λ /∈ σ−w (T ). ¤
The equality (5) holds for every bounded operator T on a Banach space Z with the spectrum

of T is at most countable. Namely, in this case

ρ(T + S) = ρ∞(T + S) (6)

for every S ∈ I(Z), where I(Z) is the set of all inessential operators on Z ([3], §7.1; in
particular, p. 379), that is, I(Z) is a collection of an operators on Z defined by

{S ∈ L(Z) : T + S is Fredholm operator on Z whenever T is Fredholm operator on Z}.

The inclusion ([1], p. 162; [3], p. 371) K(Z) ⊆ I(Z) is valid. For the proof of (6) it is enough
to show that for every operator S ∈ I(Z) the spectrum of T + S is at most countable. Indeed,
in this case there is a path joining an arbitrary point of ρ(T + S) with a point of the circle
{λ : |λ| = r(T +S)} and lying inside of ρ(T +S), whence the equality ρ(T +S) = ρ∞(T +S)
follows. So fix λ ∈ σ(T + S) \ σ(T ). The equality σf(T ) = σf(T + S) implies λ /∈ σf(T + S).
There is a path lying outside σf(T +S) and joining λ with some point ξ ∈ ρ(T +S), hence ([1],
p. 300) λ is an isolated point of σ(T +S) and so of σ(T +S)\σ(T ). Therefore, σ(T +S)\σ(T )
and so σ(T + S) is at most countable.

6



In the case T ∈ Ln(E), where E is a Banach lattice, the band E∼
n is T ∗-invariant. Denote

the restriction of T ∗ to E∼
n by T ′. The proof of the following assertion is analogous to the part

(b) of Theorem 7: If ρ(T ∗ − K) = ρ∞(T ∗ − K) for every 0 ≤ K ∈ K(E∗) ≤ T ∗, then
σ−w (T ′) ⊆ σ−w (T ∗).

The proof of the following assertion is quite similar to that of the part (a) of Theorem 7:
If 0 ≤ T ∈ L(E), a closed ideal A of E is T -invariant, then the inclusion r(T ) ∈ σ−w (T |A),
where T |A is the restriction of T to A, implies r(T ) ∈ σ−w (T ).

We close this section with few remarks dealing with Lozanovsky’s spectrum [6]

σl(T ) =
⋂

0≤Q≤T
Q≤K∈K(E)

σ(T −Q)

of a positive operator T on a Banach lattice E. The conditions when σw(T ) ⊆ σl(T ) holds, are
given in [7]. Again σl(T

∗) ⊆ σl(T ) is valid. The following theorem is similar to Theorem 2.
Theorem 8. Each of the following conditions ensures that for a positive operator T on a

Banach lattice E the equality σl(T ) = σl(T
∗) holds:

(a) The equality σl(T ) = σl(T
∗∗) is valid;

(b) E and E∗ are atomic with order continuous norms;
(c) E is a KB-space.
Proof. (a) The proof is analogous to the proof of the part (b) of Theorem 2.
(b) The inequalities 0 ≤ Q ≤ K, where K is a compact operator either on E or on E∗,

imply [17] the compactness of Q, hence σl(T ) = σ−w (T ) and σl(T
∗) = σ−w (T ∗). By the part (c)

of Theorem 2, we have σ−w (T ) = σ−w (T ∗), so σl(T ) = σl(T
∗).

(c) The Banach lattice E is a band of E∗∗ as E is a KB-space. Define the real positive
order projection from E∗∗ onto E by PE . Let λ /∈ σl(T

∗). Then the operator λ − (T ∗ − Q) is
invertible, where 0 ≤ Q ≤ T ∗, Q ≤ K ∈ K(E∗). The space E = jE(E) is Q∗-invariant. By
Lemma 5, there exists operator Q0 on E satisfying Q∗

0 = Q,

0 ≤ Q0 ≤ T (7)

and jE(Q0y) = Q∗(jE(y)) for all y ∈ E. The space E is also PEK∗-invariant. There exists
K0 ∈ K(E) such that jE(K0y) = PEK∗(jE(y)) for all y ∈ E. Then for x ∈ E+ we have

jE(Q0x) = Q∗(jE(x)) = PEQ∗(jE(x)) ≤ PEK∗(jE(x)) = jE(K0x),

hence
Q0 ≤ K0 ∈ K(E). (8)

Thus, according to the invertibility of the operator λ − (T − Q0) and the relations (7) and (8),
we have λ /∈ σl(T ), so σl(T ) = σl(T

∗). ¤
In the proof of the part (c) of the previous theorem the existence of (positive) projection

from E∗∗ onto the ideal E was only used. In fact, this implies [14] that E is a KB-space.
Remark also that E∗ has order continuous norm iff E∗ is a KB-space. In particular, if E∗∗ is a
Banach lattice with an order continuous norm then E is a KB-space (see [8], p. 225).

It is not known if the equality σl(T ) = σl(T
∗) holds for an arbitrary positive operator T on

a Banach lattice E.
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4 An example of an operator T such that σ−w (T ) 6= σ−w (T ∗).
If a Banach lattice E has order continuous norm, then σ−w (T ) = σ−w (T ∗) (Theorem 2, (c)). The
main example of a Banach lattice which does not have order continuous norm, is the space `∞
of all bounded sequences with the sup norm. Below the example of a weakly compact positive
operator T on the space `∞ such that σ−w (T ) 6= σ−w (T ∗), will be obtained.

First of all we recall some definitions and results about `∞. The space `∞ is an AM -
space with a unit e = (1, 1, . . .), so by Kakutani-Bohnenblust-M.Krein-S.Krein theorem ([8], p.
194), `∞ is lattice isometric onto a space C(K) of all continuous functions on some Hausdorff
compact topological space K; in fact, K is homeomorphic to the Stone-C̆ech compactification
βN of the set of natural numbers N. The Banach lattice `∗∞ can be identified with the direct sum
of `1 and `s

∞ = {x∗ ∈ `∗∞ : x∗(c0) = {0}}, where c0 is the space of all sequences converging to
zero, by this (`∞)∼n = `1 and (`∞)∼σ = `s

∞, in particular, `1 ⊥ `s
∞.

It is easily to see that an operator T on `∞ is norm bounded iff T has a representation
Tx = (x∗1x, x∗2x, . . .), where x∗n ∈ `∗∞ and sup

n
‖x∗n‖ < ∞. In this case the order continuity of

T is equivalent to the condition x∗n ∈ `1 for all n. The following result gives the conditions of
the compactness of an operator T .

Lemma 9. Let Tx = (x∗1x, x∗2x, . . .) be a bounded operator on `∞, x∗n ∈ `∗∞. Then:
(a) An operator T is compact iff the set {x∗n}∞n=1 is relatively norm compact in `∗∞;
(b) An operator T is weakly compact iff the set {x∗n}∞n=1 is relatively weakly compact in `∗∞.
Proof. (a) Necessity. The set TU , where U is the closed unit ball of `∞, is relatively norm

compact. Therefore ([11], p. 260), for an arbitrary ε > 0 there exist a disjoint partition of the

set of natural numbers N =
m⋃

i=1

Ni and elements ni ∈ Ni such that sup
n∈Ni

|(Tx)ni
− (Tx)n| ≤ ε

for all x ∈ U and i = 1, ..., m. Whence sup
n∈Ni

|x∗ni
x − x∗nx| ≤ ε, so sup

n∈Ni

‖x∗ni
− x∗n‖ ≤ ε for

i = 1, ..., m, that is, {x∗n}∞n=1 ⊆
m⋃

i=1

B(x∗ni
, ε), where B(x∗ni

, ε) is the closed ball centered at x∗ni

with radius ε. The last inclusion means that the set {x∗n}∞n=1 is totally bounded, so is relatively
norm compact.

The sufficiency contains in [5] (the proof of Theorem 2). For the sake of completeness we
include the proof. Let the sequence xk ∈ `∞, ‖xk‖ ≤ M , M > 0. By passing to a subsequence
if needed, we can assume that lim

k→∞
x∗nxk = zn for all n. The sequence Txk converges to the

element z = (z1, z2, . . .) ∈ `∞ in the norm. In fact, assuming by way of contradiction and
passing to one more subsequence if necessary, we can find a subsequence nk of N such that

|x∗nk
xk − znk

| ≥ ε1 > 0 (9)

for all k, x∗nk
→ x∗0 in the norm of `∗∞ and lim

k→∞
znk

= z0. Then

lim
k→∞

x∗0xk = z0. (10)

Indeed, fix ε2 > 0 and choose k1 such that ‖x∗0− x∗nk1
‖ ≤ ε2

3M
, |z0 − znk1

| ≤ ε2
3

. There exists k2

such that |x∗nk1
xk − znk1

| ≤ ε2
3

for each k ≥ k2. So |x∗0xk − z0| ≤ ε2 for k ≥ k2, that is, (10)
holds. Finally, lim

k→∞
(x∗nk

xk − znk
) = 0, contrary to (9).
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(b) The operator T on `∞ is weakly compact iff ([8], p. 335, 347) T is a Dunford-Pettis
operator, that is, T carries weakly convergent sequences onto norm convergent sequences. Let

xk
σ(`∞,`∗∞)−→ 0. The sequence Txk → 0 in the norm of `∞ iff lim

k→∞
x∗nxk = 0 uniformly for n. By

Grothendieck theorem ([16], p. 126), the letter is equivalent to the assertion that the set {x∗n}∞n=1

is relatively weakly compact. ¤
Lemma 10. Let Tx = (x∗1x, x∗2x, . . .) be a positive operator on `∞, moreover ‖T‖ ≤ 1,

x∗n ∈ `s
∞ and lim

n→∞
‖x∗n‖ = 1. Then ‖T k‖ = 1 for all k; in particular, r(T ) = 1.

Proof. From the equalities ‖T‖ = ‖Te‖ and ‖x∗n‖ = x∗ne, we get 1 ≥ ‖T‖ = sup
n
‖x∗n‖ ≥ 1,

hence ‖T‖ = 1. So ‖T k‖ ≤ 1 for all k, that is,

0 ≤ T ke ≤ e. (11)

Next, if x = (x1, x2, . . .) ∈ `∞, 0 ≤ x ≤ e and lim
n→∞

xn = 1, then lim
n→∞

(Tx)n = 1. Actually,
we have

(Tx)n = x∗nx = x∗ne− x∗n(e− x) = ‖x∗n‖ → 1

as e − x ∈ c0. From the last relations, the elementary induction and the inequalities (11), it is
easy to see that lim

n→∞
(T ke)n = 1 for all k. Hence, ‖T k‖ = 1. Now by Gelfand formula ([1], p.

243), the equality r(T ) = 1 is obvious. ¤
On the other hand, the space `∗∞ is an AL-space, so by Kakutani-Bohnenblust-Nakano the-

orem ([8], p. 192), there exists a lattice isometry Φ`∗∞ from `∗∞ onto the space of all integrable
functions L1(Ω∞, µ∞), moreover the measure µ∞ is not σ-finite and is not purely atomic (if
the functional x∗ ∈ `∗∞ is a generalized limit, then [4] the restriction of µ∞ to the support of
the function Φ`∗∞x∗ is a non-atomic measure). By this, the band Φ`∗∞`1 is a L1-space associated
with an atomic measure.

To continue our discussion, we need the following construction. Let (Ω, Σ, µ) be an arbi-
trary non-atomic probability measure space. Define the function r0 ≡ 1. There exists disjoint
measurable sets A11 and A12 such that Ω = A11 ∪ A12 and µ(A11) = µ(A12) = 1

2
. Put

r1 = χA12 − χA11 . Sets Ani, 1 ≤ i ≤ 2n, and the sequence rn, n ∈ N, will be constructed by
induction. Assume that sets Ani, 1 ≤ i ≤ 2n, with the properties

Ani ∩ Anj = ∅, i 6= j, Ω =
2n⋃
i=1

Ani, µ(Ani) =
1

2n

and the function rn =
2n∑
i=1

(−1)iχAni
have been constructed. Next, there exist sets An+1,i,

1 ≤ i ≤ 2n+1, such that

An+1,i ∩ An+1,j = ∅, i 6= j, Ω =
2n+1⋃
i=1

An+1,i, µ(An+1,i) =
1

2n+1
,

moreover if i is odd, then An+1,i ∪ An+1,i+1 = An, i+1
2

. Now the function rn+1 is defined

by rn+1 =
2n+1∑
i=1

(−1)iχAn+1,i
. Any sequence constructed as above is called a sequence of

9



Rademacher functions (see [1], p. 496-497). Clearly, |rn| = 1. The relation rn
σ(L1,L∞)−→ 0

is valid.

Lemma 11. Let Bn =
2n−1⋃
i=1

An,2i−1, where sets Ani were defined above. Then for every

subsequence Bni
the equality µ(

m⋃
i=1

Bni
) = 1− 1

2m holds for all m. In particular, µ(
∞⋃
i=1

Bni
) = 1.

Proof. It suffices to establish that the set Bn1 ∪ . . . ∪ Bnm can be written as a union of
2nm − 2nm−m (different) sets of the form Anm,i. To verify this, we use induction on m. For
m = 1 the set Bn1 consists of 2n1−1 = 2n1 − 2n1−1 sets of the form An1,i. For the induction
step, suppose that the statement is true for some m. Then for every k the set Bn1 ∪ . . . ∪ Bnm

consists of 2nm+k−2nm−m+k sets of the form Anm+k,i and the set Ω\ (Bn1∪ . . .∪Bnm) consists
of 2nm−m sets of the form Anm,i. Therefore, the set Bnm+k \ (Bn1 ∪ . . . ∪ Bnm) can be written
as a union of 2nm−m+k−1 sets of the form Anm+k,i, so the set Bn1 ∪ . . .∪Bnm ∪Bnm+k consists
of 2nm+k−2nm−m+k +2nm−m+k−1 sets of the form Anm+k,i. Taking k = nm+1−nm, we obtain
that the set Bn1 ∪ . . . ∪Bnm+1 can be written as a union of

2nm+1 − 2nm+1−m + 2nm+1−m−1 = 2nm+1 − 2nm+1−(m+1)

sets of the form Anm+1,i, as desired. ¤
If E is an ideal of the space of measurable functions L0(ν), then for an arbitrary measurable

set A the order projection on the space E defined by PAx = χAx, x ∈ E.
Lemma 12. Let E be a Banach function space associated with L0(ν). If the sequence

zn ∈ E+, moreover zn → z 6= 0 in E, then there exist a subsequence znk
, a set A with

ν(A) > 0 and a number a > 0 such that znk
≥ aχA for all k.

Proof. There exist a set B, ν(B) > 0, and a number a > 0 satisfying PBz ≥ aχB. Indeed,

sets Bi = {s : z(s) ≥ 1
i
} have the property

∞⋃
i=1

Bi = {s : z(s) > 0}, hence ν(Bi0) > 0 for

some i0 as z 6= 0. Putting B = Bi0 , a = 1
2i0

, we obtain PBz ≥ 2aχB. The sequence zn has ([1],
p. 195) a subsequence znk

which is relatively uniformly convergent to z, that is, there exists a
positive function u ∈ L0(ν) such that for each ε > 0 the inequality |znk

− z| ≤ εu holds for all
k ≥ kε. For some A ⊆ B, ν(A) > 0, the function PAu is bounded. Pick ε1 > 0 such that the
inequality ε1PAu ≤ aχA is valid. Then

ε1PAu ≥ |PAznk
− PAz| ≥ PAz − PAznk

for k ≥ kε1 , whence

znk
≥ PAznk

≥ 2aχA − ε1PAu ≥ 2aχA − aχA ≥ aχA,

as claimed. ¤
Lemma 13. Let rn be a sequence of Rademacher functions on a space Ω with a non-atomic

probability measure µ defined above, and let E be a Banach function space associated with
L0(µ). If a sequence zn ∈ E such that the set {zn}∞n=1 is relatively norm compact in E and the
inequalities r0 + rn ≥ zn ≥ 0 hold in L0(µ) for every n ∈ N, then zn → 0 in E.
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Proof. The sequence of Rademacher functions rn is equal rn =
2n∑
i=1

(−1)iχAni
, where sets

Ani are defined above, Bn =
2n−1⋃
i=1

An,2i−1. Obviously, 0 ≤ PBnzn ≤ PBn(r0 + rn) = 0 hold in

L0(µ) thus,
PBnzn = 0 (12)

for all n. Assume that some subsequence znk
of zn satisfies znk

→ z 6= 0 in E. By Lemma
12, we can find a measurable set A, µ(A) > 0, and a number a > 0 such that the inequality
znk

≥ aχA holds for all k. From (12), we get PBnk
χA = χA∩Bnk

= 0, that is, µ(A ∩ Bnk
) = 0.

This gives µ(A ∩
∞⋃

k=1

Bnk
) = 0. By virtue of Lemma 11, we have µ(A) = 0, a contradiction.

So z = 0. Therefore, the zero function is the only accumulation point of the set {zn}∞n=1 in E,
whence zn → 0 in E. ¤

Now we are ready to give an example of an operator T such that σ−w (T ) 6= σ−w (T ∗).
Example 14 (a weakly compact positive operator T on `∞ satisfying σ−w (T ) 6= σ−w (T ∗)).
Step 1. The construction of T .
Let Φ`∗∞ be a lattice isometry from `∗∞ onto L1(Ω∞, µ∞). Fix an arbitrary measurable set A,

µ∞(A) > 0, such that the restriction µA of the measure µ∞ to A is the non-atomic measure. We
can assume that µ∞(A) = 1. Put x∗0 = Φ−1

`∗∞
χA. Consider an arbitrary Rademacher sequence rn,

n ∈ N, supported by A with the measure µA. In the case of the necessity, we can consider the
sequence rn as a sequence in L1(Ω∞, µ∞). Let x∗n = x∗0 + Φ−1

`∗∞
rn. Clearly, x∗n ∈ `s

∞ for n ≥ 0.

The relation rn

σ(L1,L∗1)−→ 0 implies x∗n
σ(`∗∞,`∗∗∞)−→ x∗0. Consider the operator T on `∞ defined by

Tx = (x∗1x, x∗2x, . . .). Then ‖T‖ = 1 and T ≥ 0 as ‖x∗n‖ = 1 and x∗n ≥ 0 for all n. By Lemma
9, (b), the operator T is weakly compact. Furthermore, the relation T (c0) = {0} implies

T ∗(`∗∞) ⊆ `s
∞. (13)

Step 2. The equalities

σf(T ) = σw(T ) = {0}, σ(T ) = {0, 1} (14)

are valid.
Since T is weakly compact, by Dunford-Pettis theorem ([8], p. 337), the operator T 2 is

compact, so T is a Riesz operator, i.e., σf(T ) = σw(T ) = {0}. In particular, every non-zero
point λ ∈ σ(T ) is an eigenvalue of T . The equality Te = e implies {0, 1} ⊆ σ(T ). Fix a
non-zero λ ∈ σ(T ). From the above, it follows that Tx = λx for some x 6= 0. The equalities
x∗0x = lim

n→∞
x∗nx = λ lim

n→∞
xn give

lim
n→∞

xn =
1

λ
x∗0x. (15)

So λxn = x∗nx = 1
λ
x∗0x, hence xn = 1

λ2 x
∗
0x for all n. In particular, x∗0x 6= 0. Using (15) once

more, we have 1
λ
x∗0x = 1

λ2 x
∗
0x therefore, λ = 1. Consequently, σ(T ) = {0, 1}. Remark also

that we have established the following equality for the null space of the operator I − T

N(I − T ) = {ae : a ∈ C}. (16)

11



The proof of the equality
N(I − T ∗) = {ax∗0 : a ∈ C} (17)

is similar.
Step 3. Let K be a compact operator on `∞ presenting in the form Kx = (z∗1x, z∗2x, . . .),

z∗n ∈ `∗∞, and satisfying the inequalities 0 ≤ K ≤ T . Then z∗n → 0 in `∗∞.
Indeed, the inequalities 0 ≤ K ≤ T imply 0 ≤ z∗n ≤ x∗n, On the other hand, according to

Lemma 9, (a), the set {z∗n}∞n=1 is relatively norm compact in `∗∞, hence 0 ≤ Φ`∗∞z∗n ≤ χA + rn

and {Φ`∗∞z∗n}∞n=1 is relatively norm compact in L1(µA). Using Lemma 13, we conclude that
Φ`∗∞z∗n → 0 in L1(µA) thus, z∗n → 0 in `∗∞.

Step 4. The equality
σ−w (T ) = {0, 1} (18)

is valid.
The inclusions σf(T ) ⊆ σ−w (T ) ⊆ σ(T ) and Step 2 give {0} ⊆ σ−w (T ) ⊆ {0, 1}. We will

show that 1 ∈ σ−w (T ). In fact, let 0 ≤ K ≤ T hold, where K ∈ K(`∞), Kx = (z∗1x, z∗2x, . . .),
z∗n ∈ `∗∞. The relations ‖T −K‖ ≤ ‖T‖ = 1 are valid and functionals x∗n − z∗n belong to `s

∞.
Using Step 3, we have z∗n → 0 in `∗∞ therefore, ‖x∗n − z∗n‖ = (x∗n − z∗n)e = 1 − z∗ne → 1 as
n →∞. This implies, via Lemma 10, that r(T−K) = 1, so 1 ∈ σ(T−K). Hence, 1 ∈ σ−w (T ).

Step 5. The spectral radius r(T ) = 1 is a simply pole of the resolvent R(., T ), moreover
for the residue T−1 of R(., T ) at the point λ = 1 the equality T−1 = x∗0 ⊗ e holds.

According to Step 2, we have σf(T ) = {0}. This guarantees that the point λ = 1 is a
pole of R(., T ) and T−1 is a finite-rank operator. For every element x ∈ `∞ the equalities
T 2x = T (x∗1x, x∗2x, . . .) = (x∗0x)e hold as lim

n→∞
x∗nx = x∗0x. Hence, if (I − T )2x = 0, then

x−2Tx+T 2x = 0 or xn−2x∗nx+x∗0x = 0 for all n. Therefore, lim
n→∞

xn = x∗0x, so x∗nx = x∗0x.

This implies xn = x∗0x. We get N((I − T )2) = {ae : a ∈ C}. Now a glance at (16) yields
N(I − T ) = N((I − T )2), so α(I − T ) = 1, where α(I − T ) is the ascent of I − T . It
follows ([1], p. 80, 267) that the point λ = 1 is a simply pole of R(., T ). Using (16), (17) and
the equalities ([1], p. 266, 268) R(T−1) = N(I − T ) and R(T ∗

−1) = N(I − T ∗), we obtain a
representation of the operator T−1 in the form T−1 = x∗0 ⊗ e, as desired.

Step 6. Let x∗∗0 be a positive functional on `∗∗∞ satisfying the relations x∗∗0 (`1) = {0} and
‖x∗∗0 ‖ ≤ 1. Then for the operator K = x∗∗0 ⊗ x∗0 the inequalities 0 ≤ K ≤ T ∗ hold.

Indeed, if 0 ≤ x∗ ∈ `1, then Kx∗ = 0 ≤ T ∗x∗. Let 0 ≤ x∗ ∈ `s
∞. The equality

T ∗x∗ = ‖x∗‖x∗0 (19)

is valid, so Kx∗ = (x∗∗0 x∗)x∗0 ≤ ‖x∗‖x∗0 = T ∗x∗.
Step 7. Let x∗∗0 be a positive functional on `∗∗∞ satisfying the relations x∗∗0 (`1) = {0} and

‖x∗∗0 ‖ ≤ 1, moreover x∗∗0 x∗0 = 1. If K = x∗∗0 ⊗ x∗0, then r(T ∗ −K) = 0.
Assume by way of contradiction that λ = r(T ∗ −K) > 0. The number λ is an eigenvalue

of the operator T ∗ −K as σf(T
∗ −K) = σf(T ) = {0}. So

T ∗x∗ −Kx∗ = λx∗ (20)

for some positive functional x∗ ∈ `∗∞, ‖x∗‖ = 1. The equality T ∗
−1T

∗ = T ∗
−1 yields

λT ∗
−1x

∗ = T ∗
−1T

∗x∗ − T ∗
−1Kx∗ = T ∗

−1x
∗ − T ∗

−1Kx∗.
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Using Step 5, we have

(1− λ)x∗0 = (1− λ)T ∗
−1x

∗ = T ∗
−1Kx∗ = ((Kx∗)e)x∗0 = (x∗∗0 x∗)x∗0.

Hence,
λ = 1− x∗∗0 x∗. (21)

According to (13) and (20), we have x∗ ∈ `s
∞. It follows from (19) that

λx∗ = ‖x∗‖x∗0 −Kx∗ = ‖x∗‖x∗0 − (x∗∗0 x∗)x∗0 = (1− x∗∗0 x∗)x∗0.

The equality (21) implies x∗ = x∗0. So λ = 1 − x∗∗0 x∗ = 1 − x∗∗0 x∗0 = 0, which is impossible.
Therefore, r(T ∗ −K) = 0.

Step 8. The equality σ−w (T ∗) = {0} is valid.
There exists a positive functional x∗∗0 satisfying all condition of Step 7. In fact, consider the

functional x∗ on L1(Ω∞, µ∞) defined by x∗x =
∫
A

x dµ∞. Then the functional x∗∗0 = Φ∗
`∗∞

x∗

satisfies the desired conditions. Using Steps 6 and 7, we get the relations 0 ≤ K ≤ T ∗ and
r(T ∗ −K) = 0, where K = x∗∗0 ⊗ x∗0, hence 1 /∈ σ−w (T ∗). On the other hand,

{0} = σw(T ∗) ⊆ σ−w (T ∗) ⊆ σ−w (T ) = {0, 1}.
Thus, σ−w (T ∗) = {0}.

Finally, according to Steps 4 and 8 the relation σ−w (T ) 6= σ−w (T ∗) holds. ¤
Nevertheless, remark that for the operator T from the previous example the equalities

σl(T ) = σl(T
∗) = {0} satisfy. Indeed, it suffices to observe that the operator T is dominated

by the rank-one operator 2x∗0 ⊗ e (we use the notations from Example 14).
It is easy to see that the operator T from Example 14 is not order continuous. In general,

if T is an arbitrary bounded operator on `∞, then the order continuity of T is equivalent to the
fact that the subspace `1 of `∗∞ is T ∗-invariant. If `s

∞ is also T ∗-invariant (equivalently, c0 is
T -invariant) and T is positive, then, using Theorem 2, (d), we have σ−w (T ) = σ−w (T ∗). It is
not known if the equality σ−w (T ) = σ−w (T ∗) holds for an arbitrary positive order continuous
operator T on a Banach lattice E.

5 The order continuity is important in Theorem 1!
The objective of this section is to show the essentiality of the assumption about the order conti-
nuity of the operator T in Theorem 1 (see Section 1).

Example 15. We will use the notations and results from Example 14. The positive operator
Tx = (x∗1x, x∗2x, . . .) acts on `∞. The order continuous dual (`∞)∼n = `1 separates `∞. Ac-
cording to (14) and (18), we have r(T ) = 1 /∈ σf(T ) and 1 ∈ σ−w (T ). Obviously, the sequence
Knx = (x∗1x, . . . , x∗nx, 0, 0, . . .) of positive compact operators satisfies the property Kn ↑ T
(such sequence exists for each positive operator on a Banach function space associated with a
σ-finite atomic measure). ¤

It is not known if the assumption in Theorem 1 that E∼
n separates E, is essential.

The main tool of the proof of Theorem 1 (see [7], the proof of Theorem 20) is the following
theorem about the Frobenius normal form [7].
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Let B be a projection band of E. Through PB will be denoted the order projection onto B,
i.e., if x = x1 + x2, where x1 ∈ B, x2 ∈ Bd, then PBx = x1. Put TB = PBTPB and denote
the restriction TB to B by T̃B. Recall that in a Dedekind complete Riesz space every band is a
projection band ([8], p. 33).

Theorem 16. Let E be a Dedekind complete Banach lattice such that E∼
n separates the

points of E. Let T be a positive order continuous operator on E, moreover r(T ) /∈ σf(T ). Then
there exist T -invariant bands Bi, E = Bn ⊃ Bn−1 ⊃ . . . ⊃ B0 = {0}, such that if the equality
r(TBi∩Bd

i−1
) = r(T ) holds for some i = 1, ..., n, then the operator T̃Bi∩Bd

i−1
is band irreducible.

In fact (see [7], Section 2.2), the assertion that E∼
n separates E, is only necessary as the

condition which guarantees the order continuity of the residue T−1 of R(., T ) at r(T ) (see
Theorem 3 above). Thus, the question arises naturally: Does the order continuity of the operator
T imply the order continuity of the residue T−1 in the general case? The affirmative answer will
main the validity of Theorem 16 and so Theorem 1 by the additional assumption of the Dedekind
completeness without the condition that E∼

n separates E.
In the following section we will discuss this question in detail.

6 The order continuity of the residue.
The main task of this section is to discuss the conditions of the order continuity of the residue
T−1 of the resolvent R(., T ) at r(T ).

Recall that if G is some set of linear functionals on Y and H ⊆ Z, where Y and Z are
vector spaces, then

G⊗H = {
k∑

i=1

y′i ⊗ zi : y′i ∈ G, zi ∈ H, i = 1, ..., k, k ∈ N}.

In particular, if Y and Z are Banach spaces, then Y ∗ ⊗ Z is the set of all finite-rank operators
from Y into Z.

Let T be a positive operator on some Banach lattice E. If the spectral radius r(T ) is a pole
of the resolvent R(., T ), then R(., T ) has the Laurent expansion

R(λ, T ) =
1

(λ− r(T ))m
T−m + . . . +

1

λ− r(T )
T−1 + T0 + (λ− r(T ))T1 + . . . , (22)

around r(T ), where m is the order of the pole of R(., T ) at r(T ). Mention that T−m ≥ 0 and all
operators Ti are real. The spectral radius r(T ) /∈ σf(T ) iff ([1], p. 300-302) r(T ) > 0, the point
r(T ) is a pole of R(., T ) and the residue T−1 ∈ E∗ ⊗ E; by this T−i ∈ E∗ ⊗ E, i = 1, ...,m.

Next, if an operator T ≥ 0 is order continuous, then ([1], p. 256) R(λ, T ) is also order
continuous for each λ > r(T ). Nevertheless, this fact and the relation (we assume that r(T ) is
a pole of R(., T ) of the order m)

T−m = lim
λ↓r(T )

(λ− r(T ))mR(λ, T ) (23)

do not imply the order continuity of the operator T−m in general. Actually, there exists [13]
the example of a sequence of order continuous positive operators which converge in norm to a
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positive operator which is not order continuous (even σ-order continuous). Here the following
result holds (see [13], Theorem 2.16, where the given fact was established for rather other class
than the class of order continuous operators, while in the our case the proof of it is analogous
and will be omitted).

Lemma 17. Let E and F be Banach lattices and suppose that the Lorenz seminorm (2) on
F is a norm, i.e., for x ∈ F the equality ‖x‖L = 0 implies x = 0 (in particular, this is true when
F∼

n separates F or F is an AM -space with a unit). If a sequence Sk ∈ Ln(E, F ) converges in
L(E,F ) to S ≥ 0, then S ∈ Ln(E, F ).

Therefore, if 0 ≤ T ∈ Ln(E), the Lorenz seminorm on E is a norm and for R(., T ) the
expansion (22) holds, then, using (23), we have T−m ∈ Ln(E). When E is a Dedekind complete
AM -space with a unit, for the proof sufficiently to observe that ([1], p. 96-97) the space Ln(E)
is a band of the Banach lattice L(E) and so is closed (for the operator norm). In fact, in this
case it is easy to see from the equalities

Ti = lim
λ↓r(T )

(λ− r(T ))−i

(
R(λ, T )− 1

(λ− r(T ))m T−m − . . .− (λ− r(T ))i−1Ti−1

)
, (24)

i ≥ −(m− 1), that the relations Ti ∈ Ln(E) hold.
Lemma 18. Let E and F be two Riesz spaces, moreover E∼

n = {0}. Then the equality
(E∼ ⊗ F ) ∩ Ln(E,F ) = {0} is valid.

Proof. An operator K ∈ (E∼ ⊗ F ) ∩ Ln(E, F ) has a representation K =
k∑

i=1

x∗i ⊗ xi with

x∗i ∈ E∼ and elements x1, . . . , xk in F linearly independent. Let a net zα ↓ 0 in E. The net x∗i zα

converges to some number ai, i = 1, ..., k, as every functional x∗ ∈ E∼ has the decomposition

x∗ = (x∗)+ − (x∗)−. Then Kzα
o−→

k∑
i=1

aixi. Taking into account the order continuity of K,

the last relation yields
k∑

i=1

aixi = 0. Hence, ai = 0. Thus, x∗i are order continuous. Therefore,

x∗i = 0 for all i. So K = 0, as required. ¤
The following result which at once follows from the previous lemma, gives a necessary

condition of the order continuity of the residue.
Theorem 19. Let T be a positive operator on a Banach lattice E, r(T ) /∈ σf(T ). If

there is at least one an order continuous operator among of the operators T−m, . . . , T−1 in the
expansion (22), then E∼

n 6= {0}.

We start our discussion on a sufficient conditions of the order continuity of T−1 with the
next auxiliary results.

Lemma 20. Let E be a Riesz space, let E0 be a finite dimensional vector subspace of E,
and let Γ be a vector subspace of the space of linear functionals on E separating the points of

E. If a net zα ∈ E0 and zα
σ(E,Γ)−→ 0, then zα

o−→ 0 in E.
Proof. The collection of restrictions of functionals from Γ to E0 will be denoted by Γ0.

Clearly, Γ0 separates E0, so the topology σ(E0, Γ0) is well defined and it coincides with ev-
ery Hausdorff linear topology on E0. In particular, it coincides with the topology generated

by the norm ‖z‖ = max
1≤i≤n

|bi|, where z =
n∑

i=1

biei and e1, . . . , en is a basis of E0. Then
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‖zα‖ → 0 or max
1≤i≤n

|bαi| → 0, where zα =
n∑

i=1

bαiei. Therefore, max
β≥α

‖zβ‖ ↓α 0, hence

|zα| ≤ (max
β≥α

‖zβ‖)
n∑

i=1

|ei| ↓α 0, that is, zα
o−→ 0. ¤

The following lemma is similar to Lemma 17.
Lemma 21. Let E and F be Banach lattices, moreover F∼

n separates F . If a sequence
Sk ∈ Ln(E, F ) converges in L(E, F ) to S ∈ E∗ ⊗ F , then S ∈ Ln(E, F ).

Proof. Let a non-zero functional x∗ ∈ F∼
n . By Lemma 20, it is enough to show that if a net

xα
o−→ 0 in E, then x∗(Sxα) → 0. There exists a net zα ↓ 0 satisfying |xα| ≤ zα. Fix ε > 0

and an index α0. Pick k0 with ‖S − Sk0‖ ≤ ε
2‖x∗‖‖zα0‖

(we can assume zα0 6= 0) and α1 ≥ α0

with |x∗(Sk0xα)| ≤ ε
2

for α ≥ α1. Then

|x∗(Sxα)| ≤ |x∗((S − Sk0)xα)|+ |x∗(Sk0xα)| ≤ ε

2
+ |x∗(Sk0xα)| ≤ ε

for α ≥ α1, as claimed. ¤
Lemma 22. If a net zα in a Banach lattice E is relatively weakly compact set and zα

o−→ 0,

then zα
σ(E,E∗)−→ 0.

Proof. Pick a net yα with |zα| ≤ yα ↓ 0. Let z be a weak cluster point of the set {zα},
that is ([11], p. 29), for each σ(E, E∗)-neighbourhood U of the point z and each α0 there exists
α ≥ α0 such that zα ∈ U . Fix β. For α ≥ β we have z−yβ ≤ z−yα ≤ z−zα. For an arbitrary
x∗ ∈ (E∗)+ and ε > 0 pick α′ ≥ β with x∗(z − zα′) ≤ ε. Hence x∗(z − yβ) ≤ ε, so z ≤ yβ for
all β. Consequently, z ≤ 0. Analogously, −z ≤ 0. Finally, z = 0. We obtain that the zero is
only a weak cluster point of {zα}.

Fix x∗ ∈ E∗. If the net x∗zα does not converge to zero, then for every α there exists βα ≥ α
such that

|x∗zβα| ≥ ε > 0. (25)

The set {zβα} is a net. Indeed, for indexes βα1 , . . . , βαn pick α0 satisfying α0 ≥ βαi
for all

i = 1, ..., n. Then βα0 ≥ βαi
. Therefore ([11], p. 29), the net {zβα} has a weak cluster point

z′. Obviously, z′ is also a weak cluster point of {zα}. So, as showed above, z′ = 0, which is
impossible in view of (25). Thus, lim

α
x∗zα = 0, as desired. ¤

Lemma 23. Let T be an o-weakly compact order continuous operator acting from a Banach
lattice E onto a Banach lattice F . Then the inclusion R(T ∗) ⊆ E∼

n is valid.
In particular, for E = F and λ 6= 0 the inclusion N∞(λ − T ∗) ⊆ E∼

n holds, where

N∞(λ− T ∗) =
∞⋃

k=1

N((λ− T ∗)k).

Proof. We may suppose that the operator T is real. Consider a net xα
o−→ 0 in E. Assume

xα is order bounded. By the order continuity of T , we have Txα
o−→ 0. On the other hand, by

the o-weakly compactness of T , the set {Txα} is relatively weakly compact. Using Lemma 22,

we obtain Txα
σ(E,E∗)−→ 0, hence x∗(Txα) → 0. So the relation T ∗x∗ ∈ E∼

n holds, as desired.
In the case, when E = F and λ 6= 0, it suffices to observe that ([3], p. 3) the inclusion

N∞(λ− T ∗) ⊆ R(T ∗) is valid. ¤
Corollary 24. Suppose that there exists a non-zero o-weakly compact order continuous

operator T : E → F , where E and F are Banach lattice. Then E∼
n 6= {0}.
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Lemma 25. Let T be a positive operator on a Banach lattice E, moreover r(T ) /∈ σf(T ). If
B is a T -invariant projection band, then in a sufficiently small deleted neighbourhood of r(T )
we have

PBR(λ, T )PBd = R(λ, TB)PBTPBdR(λ, TBd).

Proof. The relation [10] r(T ) /∈ σf(TB) ∪ σf(TBd) is true. Therefore, in some sufficiently
small deleted neighbourhood U of r(T ) the operators R(., TB) and R(., TBd) are well defined.
The band B is R(λ, T )-invariant for λ ∈ U . Then for λ ∈ U we have

(λ− TB)PBR(λ, T )PBd(λ− TBd) = PB(λ− TPB)R(λ, T )(λ− PBdT )PBd =

= PB(λ− T + TPBd)R(λ, T )(λ− PBdT )PBd = PB(I + TPBdR(λ, T ))(λ− PBdT )PBd =

= PB(λ− PBdT )PBd + PBTPBdR(λ, T )(λ− T + PBT )PBd =

= PBTPBd(I + R(λ, T )PBT )PBd = PBTPBd ,

and the proof is finished. ¤
Our purpose here is to establish Theorem 3 (see Section 2) giving the necessary conditions

of the order continuity of the residue.
Proof of Theorem 3. (a) The equality R(T ∗

−1) = N((r(T ) − T )m) is valid, where m is
the order of the pole of R(., T ) at r(T ). By Lemma 23, R(T ∗

−1) ⊆ E∼
n . The operator T−1

has a representation T−1 =
k∑

i=1

x∗i ⊗ xi with elements x1, . . . , xk linearly independent. Pick

functionals z∗1 , . . . , z
∗
k with z∗j xi = δji, i, j = 1, ..., k. Since T ∗

−1z
∗
j = (

k∑
i=1

xi ⊗ x∗i )z
∗
j = x∗j , we

have x∗j ∈ E∼
n . Therefore, T−1 ∈ Ln(E).

(b) Step 1. The case (E∼
n )◦ = {0}, that is, the band E∼

n separates E.
In this case the validity of the given assertion was mentioned in [7]. The proof will be

derived here because it was omitted in [7]. Moreover, for the completeness and by the reason
of a significance of this assertion, we will give the proof in two different ways.

The first way. Since r(T ) /∈ σf(T ), the operators T−m, . . . , T−1 in (22) are of finite rank.
Now the desired assertion follows at once from the relations (23), (24) and Lemma 21.

The second way. The idea of the proof is borrowed from [12], Propositions 4, 5, where
the analogous statement was proved for the case σf(T ) = {0}. Let T ′ be the restriction of T ∗ to
E∼

n . Then r(T ) = r(T ′) /∈ σf(T
′). If m be the order of the pole of R(., T ) at r(T ), then

N((r(T )− T ′)m) ⊆ N((r(T )− T ∗)m),

dim N((r(T )− T ∗)m) = dim N((r(T )− T )m) < ∞.
(26)

Next, let T ′′ be the restriction of (T ′)∗ to (E∼
n )∼n . The Banach lattice E can be considered as

a subspace of (E∼
n )∼n . If jn is this natural embedding, then the equality jn(Tx) = T ′′(jn(x))

holds. So
N((r(T )− T )m) ⊆ N((r(T )− T ′′)m) ⊆ N((r(T )− (T ′)∗)m). (27)

Using
dim N((r(T )− (T ′)∗)m) = dim N((r(T )− T ′)m) < ∞
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and the relations (26) and (27), we have

R(T ∗
−1) = N((r(T )− T ∗)m) = N((r(T )− T ′)m) ⊆ E∼

n .

Consequently, T−1 ∈ Ln(E).
Step 2. The general case.
The band (E∼

n )◦ is T -invariant. Put B = (E∼
n )◦. The relation E = Bd ⊕ B is valid.

The operators TB and T̃B are order continuous and [7] r(TB) = r(T̃B) holds. The band B is
T−1-invariant, whence

PBdT−1PB = 0. (28)

We wish to show that r(T̃B) < r(T ) holds. To see this, let r(TB) = r(T ). Then [10]
r(TB) /∈ σf(TB), so r(T̃B) /∈ σf(T̃B). The Lorenz seminorm on B is a norm. By remarks after
Lemma 17, the non-zero finite-rank operator (T̃B)−mB

= (T̃B − r(T̃B))mB−1(T̃B)−1, where
(T̃B)−1 and mB is the residue and the order of the pole of R(., T̃B) at r(T̃B), respectively, is
order continuous. According to the relation B∼

n = {0} and Lemma 18, which is impossible.
Thus, r(T̃B) < r(T ).

So [7]
(TB)−1 = (T−1)B = 0, (29)

moreover r(T̃Bd) = r(T ). Since the band (Bd)∼n separates Bd, using Step 1, we get the order
continuity of the residue (T̃Bd)−1 of R(., T̃Bd) at r(T̃Bd). If (TBd)−1 is the residue of R(., TBd)
at r(TBd), then the band Bd is (TBd)−1-invariant and [7] the restriction (TBd)−1 to Bd coincides
with (T̃Bd)−1. Therefore, the operator

(T−1)Bd ∈ Ln(E), (30)

so the operators
(TBd)−i = (T − r(TBd))i−1(TBd)−1, i ≥ 1,

are also order continuity. Using Lemma 25, we have

PBR(λ, T )PBd = R(λ, TB)PBTPBdR(λ, TBd),

where functions R(λ, TB) and R(λ, TBd) are analytic on some deleted neighbourhood of the
point r(T ) and have representations

R(λ, TB) =
∞∑
i=0

(−1)i(λ− r(T ))iR(r(T ), TB)i+1,

R(λ, TBd) =
1

(λ− r(T ))m
(TBd)−m + . . . +

1

λ− r(T )
(TBd)−1 + (TBd)0 + . . .

(here m is the order of the pole of R(., TBd) at r(T )). Using the order continuity of R(r(T ), TB)
and of (TBd)−i, i = 1, ..., m, we get PBT−1PBd ∈ Ln(E). So according (28), (29) and (30)

T−1 = (T−1)B + PBT−1PBd + PBdT−1PB + (T−1)Bd = PBT−1PBd + (T−1)Bd ∈ Ln(E),

and the proof is finished. ¤

18



In the case of (a) the previous theorem is true if instead of the point r(T ) an arbitrary non-
zero isolated point λ0 of the spectrum σ(T ), λ0 /∈ σf(T ), is considered.

In the general case it is not known if the order continuity of T ≥ 0, r(T ) /∈ σf(T ), implies
the order continuity of the residue T−1 of R(., T ) at r(T ). Moreover, the author does not know
an example of a Banach lattice E such that the band (E∼

n )◦ is not a projection band.

If 0 ≤ T ∈ L(E), where E is a Banach lattice, and r(T ) /∈ σf(T ), then the residue T−1

of R(., T ) at r(T ) is a non-zero finite-rank operator. If, in addition to this, E∼
n = {0} (most

important examples of Banach lattices satisfying the property E∼
n = {0} are an AM -space

C[0, 1] and its a Dedekind completion), then by Lemma 18, the operator T−1 can not be order
continuous. Thus, a question arises naturally: Can a positive order continuous operator T ,
r(T ) /∈ σf(T ), on a Banach lattice E with the property E∼

n = {0} exist? The affirmative
answer to this question means that the order continuity of the operator T does not imply the
order continuity of the residue T−1 of R(., T ) at r(T ). As it see from the proof of Theorem 3
(see the case of (b), Step 2), the negative answer should have meant the order continuity of T−1

if (E∼
n )◦ is a projection band. By Corollary 24, such operator T can not be o-weakly compact,

so it can not be compact. In particular, there exists no a non-zero order continuity compact
operator on C[0, 1]. In the next section this result will be derived (see Corollaries 33, 34 below)
from other a more general result (see Theorem 4 above) which allows looking at the reason
of the absence of a non-zero order continuous compact operator on C[0, 1] in a new fashion,
namely with the point of view of the approximation problem. Remark also that the conditions
0 ≤ T ∈ Ln(C[0, 1]) imply r(T ) ∈ σf(T ) as the Lorenz seminorm on C[0, 1] is a norm.

7 Compact order continuous operators.
Let E and F be two Banach lattices. If a Banach lattice F has the approximation property
(in particular, is an AM -space), then every compact operator K : E → F is the limit in
the operator norm of a sequence of finite-rank operators. On the other hand, every operator
S ∈ E∗ ⊗ F , where E and F are arbitrary Banach lattices, has a decomposition S = S1 + S2

with S1 ∈ E∼
n ⊗ F ⊆ Ln(E, F ) and S2 ∈ E∼

σ ⊗ F , moreover E∼
n ⊗ F ⊥ E∼

σ ⊗ F in L(E, F )
(see Lemma 28). Below the conditions when an order continuous operator T : E → F can be
approximated by an operators from E∼

σ ⊗ F , will be considered.

Lemma 26. Let T and K be an operators from a Riesz space E into a Riesz space F (not
necessarily Dedekind complete) such that T ∈ Ln(E,F ) and K ∈ (E∼

σ )+⊗F+. If an operator
S : E → F satisfies the inequalities T + S ≥ K and S ≥ 0, then S ≥ K.

In particular, if the modulus |T −K| exists, then |T −K| ≥ K.

Proof. The operator K has a representation K =
k∑

i=1

x∗i ⊗ xi, x∗i ∈ (E∼
σ )+, xi ∈ F+.

Obviously, the relation
k∑

i=1

x∗i ⊥ E∼
n is valid. Fix ε > 0 and z ∈ E+. The equality ([8], p. 46)

inf{sup
α

k∑
i=1

x∗i zα : 0 ≤ zα ↑ z} = 0 holds. Consequently, there exists a net zα, 0 ≤ zα ↑ z,
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satisfying
k∑

i=1

x∗i zα ≤ ε for all α. Then

T (z − zα) ≥ K(z − zα)− S(z − zα) =

=
k∑

i=1

(x∗i (z − zα))xi − S(z − zα) ≥
k∑

i=1

(x∗i z − ε)xi − Sz = Kz − ε

k∑
i=1

xi − Sz.

Using z − zα ↓ 0 and T ∈ Ln(E, F ), we infer 0 ≥ Kz − ε
k∑

i=1

xi − Sz. Since ε is arbitrary, this

implies 0 ≥ Kz − Sz. Hence, S ≥ K, and we are done.
If |T −K| exists, then the inequality |T −K| ≥ K −T implies T + |T −K| ≥ K, whence

|T −K| ≥ K. ¤
Recall that a locally convex-solid topology on a Riesz space F is a locally convex topology

generated by a family of lattice seminorms {pi : i ∈ A} on F , that is, seminorms having the
property: |x| ≤ |y| in F implies pi(x) ≤ pi(y) for every i ∈ A (for details, see [8], §11).

Lemma 27. Let 0 ≤ T ∈ Ln(E, F ), where E and F are Riesz spaces. Then for every
element z ∈ E+ satisfying Tz > 0 there exist no a collection of an operators Ki ∈ (E∼

σ )+⊗F+,
i ∈ A, and a locally convex-solid topology τz on F such that zero belongs to the τz-closures of
the set {|T −Ki|z : i ∈ A}.

Proof. Assuming by way of contradiction, we find a net Kα ∈ (E∼
σ )+ ⊗ F+ and a locally

convex-solid topology τz on F such that moduli |T −Kα| exist and

|T −Kα|z τz−→ 0. (31)

The inequality |Tz −Kαz| ≤ |T −Kα|z implies |Tz −Kαz| τz−→ 0, so

Kαz
τz−→ Tz. (32)

On the other hand, Lemma 26 guarantees |T −Kα| ≥ Kα, hence |T −Kα|z−Kαz ≥ 0. Since
the cone F+ is τz-closed, it follows from the relations (31) and (32) that−Tz ≥ 0. This implies
Tz ≤ 0, which is a contradiction. ¤

Clearly, if an operator K ∈ E∗ ⊗ F , where E and F are Banach lattices, then the modulus
of K exists and is r-compact (see Section 1). In fact, |K| belongs to the closure of (E∗)+⊗F+

in Lr(E, F ) with the r-norm ([16], p. 253-254, the proof of Theorem IV.4.6).
Lemma 28. Let E and F be two Banach lattices. If K1 ∈ E∼

n ⊗F and K2 ∈ E∼
σ ⊗F , then

inf {|K1|, |K2|} = 0 in an ordered vector space L(E,F ).
Proof. From the preceding discussion there exist moduli |K1| and |K2|. Obviously, if

K1 =
k∑

i=1

x∗i ⊗ xi with x∗i ∈ E∼
n , xi ∈ F , then

|K1| ≤
k∑

i=1

|x∗i ⊗ xi| =
k∑

i=1

|x∗i | ⊗ |xi| ≤
k∑

i=1

|x∗i | ⊗
k∑

i=1

|xi| = x∗ ⊗ x,

where x∗ =
k∑

i=1

|x∗i | ∈ (E∼
n )+, x =

k∑
i=1

|xi|. Analogously, |K2| ≤ y∗ ⊗ y, y∗ ∈ (E∼
σ )+, y ∈ F+.

Now remain to notice that

(x∗ ⊗ x) ∧ (y∗ ⊗ y) ≤ (x∗ ⊗ (x + y)) ∧ (y∗ ⊗ (x + y)) = (x∗ ∧ y∗)⊗ (x + y) = 0
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as x∗ ⊥ y∗. ¤
Lemma 29. Let K ∈ E∼

σ ⊗ F , where E and F are two Banach lattices. Then we have
|K| ∈ (E∼

σ )+ ⊗ F+, where the closure in Lr(E,F ) with the r-norm.
Proof. There exists a sequence Kn ∈ (E∗)+ ⊗ F+ converging to the operator |K| in

the r-norm. For an arbitrary n the operator Kn has a decomposition Kn = Kn1 + Kn2 with
Kn1 ∈ (E∼

n )+ ⊗ F+ and Kn2 ∈ (E∼
σ )+ ⊗ F+. Consider the band BE∼σ ⊗F generated by the

set Kr(E, F ) of E∼
σ ⊗ F . By the previous lemma, Kn1 ⊥ BE∼σ ⊗F in Kr(E, F ). Obviously,

|K| ∈ BE∼σ ⊗F , so Kn1 ⊥ Kn2 − |K| in Kr(E, F ). Then

|Kn1|+ |Kn2 − |K|| = |Kn1 + Kn2 − |K|| = |Kn − |K|| → 0

in Kr(E, F ). The inequality |Kn1| + |Kn2 − |K|| ≥ |Kn2 − |K|| implies Kn2 → |K| in the
r-norm, as claimed. ¤

Lemma 30. Let E and F be two Riesz spaces. If an operator T ∈ Ln(E, F ) possesses a
modulus |T |, moreover for every x ∈ E+ the equality

|T |x = sup {Ty : |y| ≤ x} (33)

holds, then also |T | ∈ Ln(E, F ).
For the case of a Dedekind complete Riesz space F the proof of this assertion can be found

in [15], p. 29-30, Proposition 1.3.9 (see also [8], p. 43, Theorem 4.3). In the our case the proof
of it is analogous, but for the sake of completeness we include the proof.

Proof. Consider a net xα ↓ 0 in E. Let |T |xα ≥ z ≥ 0 in F . Fix an index β. For every
|y| ≤ xβ and α ≥ β the inequality

|y − (y+ ∧ xα − y− ∧ xα)| ≤ xβ − xα

holds. Therefore,
Ty + z − |T |xβ ≤ |T (y+ ∧ xα)|+ |T (y− ∧ xα)|.

Hence, using the relations y+ ∧ xα ↓ 0, y− ∧ xα ↓ 0 and the order continuity of T , we obtain
Ty + z ≤ |T |xβ . It follows from (33) that z ≤ 0. ¤

Now we are in a position to prove Theorem 4 (see Section 2).
Proof of Theorem 4. Assume by way of contradiction that the operator T ∈ Lr(E, F ) and

there exists a sequence Kn ∈ E∼
σ ⊗F which is convergent to T in the r-norm. Then the operator

T is r-compact. In particular [9], the modulus of T exists and the equality (33) is valid. By
Lemma 30, |T | is order continuous. Next, |Kn| → |T | in the r-norm. By Lemma 29, we can
assume that Kn ∈ (E∼

σ )+⊗F+. Obviously, |Kn−|T ||z → 0 in F for each z ∈ E+. According
to Lemma 27, we have |T |z = 0 and hence T = 0, a contradiction. ¤

Lemma 31. For a Banach lattice E and an AM -space F the next statements hold:
(a) If a sequence Kn ∈ E∗⊗F converges in L(E, F ) to an operator T , then T ∈ Lr(E, F )

and Kn → T in the r-norm;
(b) The equality K(E, F ) = Kr(E, F ) is valid.
Proof. (a) Since F is an AM -space, by Krengel theorem ([8], p. 271), the space K(E, F )

of all compact operators from E into F is a Banach lattice under the r-norm. The sequence Kn

is a ‖ · ‖r-Cauchy sequence. Indeed,

‖Kn −Km‖r = ‖|Kn −Km|‖ = ‖|Kn −Km|∗∗‖. (34)

21



Next, the relation Kn −Km ∈ E∗ ⊗ F implies ([16], p. 296)

|Kn −Km|∗∗ = |K∗∗
n −K∗∗

m |. (35)

The space F ∗∗ is ([8], p. 188, 193) a Dedekind complete AM -space with a unit, so ([1], p. 96)

‖|K∗∗
n −K∗∗

m |‖ = ‖K∗∗
n −K∗∗

m ‖ = ‖Kn −Km‖.
Therefore, using (34) and (35), we have ‖Kn−Km‖r = ‖Kn−Km‖ → 0 as n, m →∞. Thus,
Kn converges in the r-norm. Obviously, Kn → T in the r-norm.

(b) By Grothendieck’s results ([16], p. 239; [1], p. 125-129), an AM -space F has the ap-
proximation property, that is, every operator K ∈ K(E, F ) can be approximated in the operator
norm by an operators of finite rank. It remains to use of (a). ¤

Now we are ready to derive a number of corollaries of Theorem 4.
Corollary 32. Let E and F be two Banach lattices, moreover F is an AM -space. If a

non-zero operator T belongs to Ln(E,F ), then T /∈ E∼
σ ⊗ F , where the closure in L(E, F )

with the operator norm.
Proof. If there exists a sequence Kn ∈ E∼

σ ⊗ F which is convergent to the operator T in
L(E,F ), then by previous lemma, Kn → T in the r-norm. It is a contradiction in view of
Theorem 4. ¤

Corollary 33. If E and F are Banach lattices, F is an AM -space, E∼
n = {0}, then

K(E, F ) ∩ Ln(E, F ) = {0}.
Corollary 34. If E is an AM -space with E∼

n = {0} (for example, E = C[0, 1]), then
K(E) ∩ Ln(E) = {0}.

In the case of a Dedekind complete Banach lattice F the space Lr(E, F ) is a Banach lattice
under the r-norm ([8], p. 248), so the band Ln(E, F ) of order continuous operators is closed in
the r-norm, that is, the relations Sk ∈ Ln(E, F ), Sk → S in the r-norm, imply S ∈ Ln(E, F ).
The next theorem improves this fact and Theorem 4.

Theorem 35. Let E and F be two Banach lattices with F Dedekind complete, and let
Si ∈ Ln(E,F ) and Ki ∈ E∼

σ ⊗ F be two arbitrary collections of an operators, i ∈ A. If
inf
i∈A

‖Si −Ki‖r = 0, then inf
i∈A

‖Ki‖r = 0.

Proof. Clearly, inf
i∈A

‖|Si| − |Ki|‖r = 0. Fix ε > 0. Using Lemma 29, we find an operators

Qi ∈ (E∼
σ )+ ⊗ F+ such that

inf
i∈A

‖|Si| −Qi‖r = 0, sup
i∈A

‖|Ki| −Qi‖r ≤ ε. (36)

The inequality |Si| + ||Si| − Qi| ≥ |Qi| is valid. By Lemma 26, ||Si| − Qi| ≥ |Qi|, it follows
from (36) that inf

i∈A
‖Qi‖r = 0. Using (36) once more, we have ‖Ki‖r ≤ ε + ‖Qi‖r for all i, so

inf
i∈A

‖Ki‖r ≤ ε. Letting ε ↓ 0 yields inf
i∈A

‖Ki‖r = 0, as desired. ¤
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