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Abstract. For the lower Weyl spectrum o, (T') = N o(T— K), where T is a positive operator
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on a Banach lattice F, the conditions for which the equality o, (T") = o (T™*) holds, are established.
In particular, it is true if £ has order continuous norm. An example of a weakly compact positive
operator T on (o, such that the spectral radius 7(7") € oy, (T) \ (0¢(T) U o, (T™*)), where o¢(T) is
the Fredholm spectrum, is given. The conditions which guarantee the order continuity of the residue
T_; of the resolvent R(.,T") of an order continuous operator 7' > 0 at r(T) ¢ o¢(T'), are discussed.
For example, it is true if 1" is o-weakly compact. It follows from the proven results that a Banach
lattice £/ admitting an order continuous operator 7" > 0, r(T") ¢ o¢(T'), can not have the trivial band
of order continuous functionals F; in general. It is obtained that a non-zero order continuous operator
T : E — F can not be approximated in the 7-norm by the operators from £ ® F', where F' is a Banach
lattice, 7 is a disjoint complement of the band £} of E'*.
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1 Introduction and preliminaries.

This paper is a continuation of research which was begun by the author in notes [6, 7] and
devoted to special subsets of the spectrum of a positive operator 7' on a Banach lattice E.

For terminology, notions, and properties on the theory of Banach lattices and operators on
them not explained or proved in this note, we refer to [1, 8]; see also [15, 16]. Throughout the
note, unless otherwise stated, Banach lattices £ and F' will be assumed to be infinite dimen-
sional and an operator 7" from E into /' (or into £) will be assumed linear and (norm) bounded.
In Sections 3-6 where the spectral properties are considered, spaces will be assumed complex,
and in Section 7 spaces will be assumed real. By the term operator, we mean a linear operator.

Let Z be a Banach space, 7" be a bounded operator on 7. We denote by N (7") and R(T') the
null space and the range of T', respectively. That is,

NT)={2€Z:T2=0}, R(T)={Tz:z¢€ Z}.

An operator 7' is said to be Fredholm ([1], p. 156; [3], p. 33) if the dimension of the null space
N(T') and the dimension of the quotient space Z/R(T') are both finite.
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As usual, the spectrum of an operator 7" on Z will be denoted by o(T'). The Fredholm
spectrum ([1], p. 299; [3], p. 41) of an operator 7' is the set

o¢(T) = {X € C: A = T is not a Fredholm operator on Z},

and the Weyl spectrum ([1], p. 312; [3], p. 133, 135) of an operator 7' is the set

ou(T) = () o(T+K),
KeKk(2)

where KC(Z) is the set of all compact operators on Z.
In the case, when T’ is a positive operator on a Banach lattice F, the lower Weyl spectrum
[6] of an operator 7' is the set

o (T)= (] oT-K).

0<KeK(E)<T

Clearly, the inclusions
0t(T) € 0(T) € 0y (T) € o(T) (1)

hold. In particular, if F is an infinite dimensional Banach lattice, then o (T") # ). In [7] the
example of an operator 7" > ( for which all inclusions of (1) are proper, was given.

This paper is devoted to investigate some properties of the lower Weyl spectrum o, (1) of a
positive operator 7' on a Banach lattice £/ and a problems which are related to this.

Before the statement of the main results, recall some definitions and notations in Riesz
spaces and Banach lattices which will be used further on. Let £ be a (Archimedean) Riesz
space. The cone of all positive elements of F is denoted by E+,i.e., ET = {x € E : = > 0}.
The band B of E is called a projection band ([8], p. 32) whenever B & BY = E. For a Banach
lattice I the Lorenz seminorm on E is defined by the formula

2]l = inf {sup [|za]lz - 0 < za T [2]}. (2)

In a real Riesz space E a net z,, is said to be order convergent to v € E, x,, 25 x, (8],
p- 30) whenever there exists a net y, satisfying |z, — z| < y, | 0. Anoperator T : £ — F,
where I and F' are real Riesz spaces, is said to be a regular operator ([8], p. 10) whenever it
can be written as a difference of two positive operators, and is said to be order continuous ([8],
p. 42) whenever z, — 0 in E implies 7'z, — 0in F. The collection of all regular operators
and all order continuous operators from E into F' will be denoted by £,(E, F') and L, (E, F'),
respectively. For an operator 7' : £ — F we say that its modulus |T| exists ([8], p. 9) whenever
the supremum |7'| := TV (—T) exists in the canonical order of the space of all linear maps
from E into F'. Obviously, if an operator 7' possesses a modulus, then 7" is regular. In the case,
when E and F' are complex Riesz spaces, an operator 7' from E into [ is called regular if its
real and imaginary parts are both regular; similarly for an order continuous operator. Every
operator T € L,,(E, F') is [2] order bounded, that is, mapping order bounded sets of £ onto
order bounded of F'.

If £ and F' are (real or complex) Banach lattices, then ([1], p. 22) every order bounded
operator 7" from E into F' is bounded. Therefore, the inclusions £,,(E, F) C L(E, F) and
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L.(E,F) C L(E,F) hold, where, of course, L(F, I') is the space of all bounded operators
between £ and F’; in particular, every positive operator T' from E into F' is bounded.

The operator 7' : © — F' acting from a Banach lattice £’ to a Banach lattice F' is said to be
an o-weakly compact ([8], p. 310) whenever 1" maps order bounded subsets of I onto relatively
weakly compact subsets of F'. Clearly, every weakly compact operator and so every compact
operator, is o-weakly compact.

For an operator 7' € L,.(E, F'), where E and F are real Banach lattices, its r-norm ([9];
[15], p. 27) is defined by

T, =inf{||S]: 0< S € L(E,F), |Tx| < S|, = € E}.

Under the r-norm the space L, (E, F') is a Banach space. The inequality ||7'|| < ||T||,- is valid.
If |T| exists its r-normis || 7’|, = |||T’|||. An operator T" € L,.(E, F') is called r-compact [9] if it
can be approximated in the r-norm by an operators of finite-rank. Every r-compact operator T’
possesses the modulus |7'| and |T| is 7-compact [9]. Thus, the space KC,.(E, F') of all r-compact
operators is a Banach lattice under the r-norm and the ordering induced by the canonical order
of L(E,F).

For a (real or complex) Riesz space £ we put £~ = L,.(E,R) and £ = L,(E,R).
Through (E;°)° will be denoted the polar of the band £, with respect to the dual system
(E, E*), that is,

(EX)={xeE:z"x=0foralla” € E}.

The band of all functionals in the Riesz space £ that are disjoint from the band £, will be
denoted by E7.

A Banach lattice E has order continuous norm ([1], §2.3) if £ = E*; equivalently, E is
an ideal of £**. The Banach lattice F is called a K B-space ([8], p. 225-226) if (E*)) = E;
equivalently, £ is a band of E**.

We now state for convenience the following result [7] which has a specific importance below.
Theorem 1. Let T" be a positive operator on a Banach lattice E such that the spectral radius
r(T) ¢ o¢(T) and there exists a net of a compact operators K, satisfying 0 < K,x T Tx for
all x > 0. If T' is order continuous and the order continuous dual E;; separates the points of

E, then r(T) ¢ o, (T).

2 The statement of the main results.

It is well known that for an operator 7" on a Banach space Z the equality o (7)) = o (T™) holds,
where 7™ is the adjoint of 7". In Section 3 the question when an analogue holds for the lower
Weyl spectrum o, (7°), will be discussed. The main result of this section is the next theorem.

Theorem 2. Each of the following conditions ensures that for a positive operator T on a
Banach lattice E the equality o (T) = o, (T*) holds:

(@) The equality 0 (T) = o, (T) is valid (in particular, o (T) = o(T));

(b) The equality o, (T) = o, (T**) is valid,

(¢) The Banach lattice E has order continuous norm,

(d) The operator T is order continuous and there exists a Banach lattice F' such that E = F*
and F = E’, moreover T*(E>) C E.



The equality o, (T)) = o, (T*) does not hold for an arbitrary Banach lattice £. Namely,
Section 4 will be devoted the construction of a weakly compact positive operator T' on the
space U, for which o, (T') # o, (T*) (see, in particular, Example 14 below).

In Section 5, using this example, we will show that in Theorem 1 the assumption about the
order continuity of an operator T' is essential (see Example 15).

The assumption in Theorem 1 that £ separates £, will also be discussed. How important
it is, is closely connected with the search conditions which guarantee the order continuity of
the residue 7"_; of the resolvent R(.,T") of an order continuous positive operator 7" at the point
(7). This is the aim of Section 6. The main result of this section is the next theorem.

Theorem 3. Let T' be a positive order continuous operator on a Banach lattice E, more-
over r(T) ¢ o¢(T). Then each of the following conditions ensures that the residue T_1 of the
resolvent R(.,T) at r(T) is order continuous:

(a) The operator T' is o-weakly compact;

(b) The band (E;)° is a projection band and Lorenz seminorm (2) on (E>')° is a norm.

Moreover, it turns out that the problem of the order continuity of the residue 7" of R(.,T)
at r(7) leads to a study of compact order continuous operators on spaces with trivial order
continuous dual, and is connected with the approximation problem. This is a treatment of
Section 7. We give here the basic result of it.

Theorem 4. Let & and F' be two Banach lattices, and let T : E — F be a non-zero order
continuous operator. Then T ¢ Ey @ F, where the closure in L,.(E, F') with the r-norm.
In particular, if E, = {0}, then T is not r-compact.

3 When does the equality o (T') = o_ (T*) hold?

First note that the inclusion o (7T*) C o (7T) always holds. Indeed, if A ¢ o_(T), then
AN¢o(T—K)forsome K € K(E),0 < K <T.SoA¢ o(T*—K*)and 0 < K* < T*,
that is, A ¢ o_ (T*). Below the conditions when the equality o (7') = o (T*) holds, will be
proved (see Theorem 2 above).

For a Banach space Z, j, will denote the natural embedding j, : Z — Z**. We shall iden-
tity jz(Z) with the space Z without any further explanations. When we do so, the identification
will be clear from the context. The following lemma is known. We include here a short proof
for the sake of completeness, and because the construction of the required operator is important
later on.

Lemma 5. Let Z be a Banach space and an operator T' € L(Z*). The following assertions
are equivalent:

(a) The subspace Z of Z** is 1™ -invariant,

(b) There exists a unique operator S € L(Z) such that S* =T,

(¢) The operator T is o(Z*, Z)-continuous.

In particular, S € K(Z) iff T € K(Z*). If Z is a Banach lattice, then S > 0 iff T > 0.

Proof. (a) = (b) For an arbitrary element y € Z there exists a unique element x € Z such
that

jz(x) = T*(z(y))- (3)



Put Sy = z. Fix z € Z and 2* € Z*. The relations
(572%)z = 27(52) = jz(52)2" = (T7(jz(2)))2" = jz(2)T=2" = (T2")z

hold, hence S* =T
(b) = (c) If anet 2 oz
o(Z*,2)
— 0.
(¢) = (a) Fix z € Z. Let 2}, 77220, From the relations (T*jz(2))zs = (Tzk)z — 0, it

follows that the functional 7%j(z) is o(Z*, Z)-continuous, whence T*j(z) € Z.
The last assertions follow at once from the equality S* =T U

) 0, then we have (T'z})z = 2} (Sz) — 0 for an arbitrary z € Z,

so Tz

Lemma 6. Let a Banach lattice I/ be the direct sum of projection bands B;, that is, the

equality E = @ B; holds. If T' is a positive operator on E such that B; is T-invariant for all

=1
n

i=1,...,n,then o, (T) = | o (T;), where T; is the restriction of T to B,;.

w
i=1

Proof. If \ ¢ o (7;) for all 7, then there exist an operators K; € K(B;) satisfying the
relations 0 < K; < T; and A ¢ o(T; — K;). The operator K = @ K; is compact, 0 < K < T

=1
n

and\ ¢ o(T— K)=Jo(T; — K;),s0\ & o (T).
i=1
For the converse, if A ¢ o (T'), then A ¢ o(T — K), where K € K(E)and 0 < K < T.
Bands B; are K-invariant therefore, K has a representation X = @ K; with K; € K(B;) and
i=1

0 < K; <T,. Clearly, A ¢ o(T; — K;) for all i, whence A ¢ J o, (7). O

=1
We proceed now to the proof of Theorem 2 (see Section 2) which collects the necessary
conditions guaranteeing the validity of the equality o (7') = o, (T™).
Proof of Theorem 2. (a) The desired equality follows from the relations

0y (T7) C 0, (T) = 0w(T) = 0w (T") S 0, (T7).
(b) Sufficiently to observe that
0y (T™) C o (T7) C 0y, (T) = o, (T™).

(c) Let A ¢ o (T*). There exists a compact operator K on E* such that 0 < K < T*
and A\ ¢ o(T* — K). Clearly, 0 < K* < T* and F is K*-invariant as £ is a T**-invariant
ideal of £**. By Lemma 5, there exists a compact operator .S on F satisfying 0 < S < T and
S* = K. Finally, the operator A — (7" — S) is invertible, that is, A ¢ o, (T") thus, the inclusion
o (T) C o, (T*) is valid, as required.

(d) First of all we remark that ' = (F™*). In particular, F' has order continuous norm.
From the order continuity of the operator 7', we have 7 (F") C F. Define an operator 7" as the
restriction of 7% to £ = jr(F). Since E is T*-invariant, then Lemma 6 implies

0 (T) € o (T7). (4)



By Lemma 5, there exists a positive operator .S on F’ satisfying the following equalities S* = T
and jp(Sz) = T*jp(z) for all x € F (see (3)). So the restriction 7" to F' coincides with .S, it
follows o, (S) = o, (T"). Using the assertion (c) and (4), we have

0 (T) = 0,(5%) = 0,(5) = 0, (T") C 0, (T7) S oy (T),

hence o (T') = o, (T%). O

In the next section an example of an operator 7" such that o (T') # o (T*), will be given
(Example 14).

The condition (b) of the previous theorem implies the necessity of the study of the connec-
tion between o (T') and o, (T™*). Recall that for an operator T' € L(Z), where Z is a Banach
space, po(1") denotes the unbounded component in C of the resolvent set p(7") of T'.

Theorem 7. Let T' be a positive operator on a Banach lattice F/ having order continuous
norm. Then:

(@) r(T) € o, (T) implies r(T) € o, (T**);

(b) If for every K € IC(E*), 0 < K < T™**, the equality

p(T" = K) = puo(T* — K) (5)

holds, then o, (T) = o (T**).

Proof. (a) If 7(T") ¢ o, (T**), then for some K € K(E**), 0 < K < T**, the operator
r(T) — (T** — K) is invertible. Therefore, r(17') > r(T** — K) > r(T — K|g), where K| is
the restriction of K to E, thatis, r(T") ¢ o, (T).

(b) If \ ¢ o, (T**), then for some K € K(E*),0 < K < T**, we have ([1], p. 256)

ANep(T™ = K) = poo(T™ = K) C p(T — K|p),

whence A ¢ o (T). O
The equality (5) holds for every bounded operator 7" on a Banach space Z with the spectrum
of T is at most countable. Namely, in this case

p(T +5) = poo(T +5) (6)

for every S € Z(Z), where Z(Z) is the set of all inessential operators on Z ([3], §7.1; in
particular, p. 379), that is, Z(Z) is a collection of an operators on Z defined by

{S € L(Z): T+ S is Fredholm operator on Z whenever T is Fredholm operator on Z}.

The inclusion ([1], p. 162; [3], p. 371) K(Z) C Z(Z) is valid. For the proof of (6) it is enough
to show that for every operator S € Z(Z) the spectrum of 7"+ S is at most countable. Indeed,
in this case there is a path joining an arbitrary point of p(7" + S) with a point of the circle
{A:|A| =r(T'+S)} and lying inside of p(T'+5), whence the equality p(T'+.5) = poo (T +5)
follows. So fix A € o(T' + S) \ o(T). The equality o¢(T) = o¢(T + S) implies A ¢ o¢(T + 5).
There is a path lying outside o¢(7'+.5) and joining A\ with some point { € p(T'+ 5), hence ([1],
p. 300) A is an isolated point of o(7'+.5) and so of o(T'+.S) \ o (T'). Therefore, o(T+5)\ o (T')
and so o(7T" + S) is at most countable.



In the case 7' € L,(F), where E is a Banach lattice, the band £ is T*-invariant. Denote
the restriction of 7 to £ by T". The proof of the following assertion is analogous to the part
(b) of Theorem 7: If p(T* — K) = poo(T* — K) for every 0 < K € K(E*) < T*, then
oy (T7) € 0, (T7).

The proof of the following assertion is quite similar to that of the part (a) of Theorem 7:
If0 < T € L(FE), a closed ideal A of E is T-invariant, then the inclusion r(T) € o_(T|a),
where T'| 4 is the restriction of T to A, implies r(T) € o (T).

We close this section with few remarks dealing with Lozanovsky’s spectrum [6]

o) = (] oT-Q)

0<Q<T
QEKEK(B)

of a positive operator 7" on a Banach lattice F. The conditions when o, (7") C o(T") holds, are

given in [7]. Again 0y(7*) C 01(T") is valid. The following theorem is similar to Theorem 2.

Theorem 8. Each of the following conditions ensures that for a positive operator T on a
Banach lattice E the equality o1(T) = oy(T*) holds:

(@) The equality o1(T) = oy(T*") is valid,

(b) E and E* are atomic with order continuous norms;

(¢) £ is a K B-space.

Proof. (a) The proof is analogous to the proof of the part (b) of Theorem 2.

(b) The inequalities 0 < ) < K, where K is a compact operator either on £ or on E*,
imply [17] the compactness of @, hence 01(T") = o, (T') and 0y(T™*) = o (T™). By the part (c)
of Theorem 2, we have o (T') = o, (T%), so oo(T) = oy(T™).

(¢) The Banach lattice £ is a band of £** as E is a K B-space. Define the real positive
order projection from E** onto E by Pg. Let A ¢ o1(T*). Then the operator A — (T* — @) is
invertible, where 0 < Q < T*, Q < K € K(E*). The space £ = jg(FE) is Q*-invariant. By
Lemma 5, there exists operator () on E satisfying Qf = @,

0<Q<T (7)

and jr(Qoy) = Q*(je(y)) for all y € E. The space E is also PgpK*-invariant. There exists
Ky € K(F) such that jgp(Koy) = PeK*(je(y)) forall y € E. Then for x € E™ we have

Je(Qor) = Q" (je(x)) = PeQ"(jr(r)) < PeK*(jr(v)) = jr(Kov),

hence

Qo < Ko € K(E). (8)
Thus, according to the invertibility of the operator A — (7" — (Q)y) and the relations (7) and (8),
we have A ¢ 0y(T), so o1(T) = oy (T™). O

In the proof of the part (c) of the previous theorem the existence of (positive) projection
from E** onto the ideal £ was only used. In fact, this implies [14] that E is a K B-space.
Remark also that £* has order continuous norm iff £* is a K B-space. In particular, if £** is a
Banach lattice with an order continuous norm then FE is a K B-space (see [8], p. 225).

It is not known if the equality o1(T) = o1(T*) holds for an arbitrary positive operator T on
a Banach lattice I.



4 An example of an operator 7T such that o (T) # o_ (T™).

If a Banach lattice E has order continuous norm, then o (T) = o, (T*) (Theorem 2, (c)). The
main example of a Banach lattice which does not have order continuous norm, is the space ¢,
of all bounded sequences with the sup norm. Below the example of a weakly compact positive
operator 7" on the space /., such that o (T) # o, (T), will be obtained.

First of all we recall some definitions and results about /... The space /., is an AM-
space with a unite = (1, 1,...), so by Kakutani-Bohnenblust-M.Krein-S.Krein theorem ([8], p.
194), ., is lattice isometric onto a space C'(K) of all continuous functions on some Hausdorff
compact topological space K; in fact, K is homeomorphic to the Stone-Cech compactification
BN of the set of natural numbers N. The Banach lattice £ can be identified with the direct sum
of {1 and 5 = {z* € % : x*(cy) = {0} }, where ¢ is the space of all sequences converging to
zero, by this ({o,) = (1 and ({,)y = (3, in particular, ¢, L (5.

It is easily to see that an operator 7" on /., is norm bounded iff 7" has a representation
Tx = (xjz, x5z, ...), where ) € (% and sup ||z} || < co. In this case the order continuity of
T' is equivalent to the condition = € ¢; for le n. The following result gives the conditions of
the compactness of an operator 7'.

Lemma9. Let Tx = (25z, x5z, .. .) be a bounded operator on l,, x¥, € (*_. Then:

(a) An operator T is compact iff the set {x}°2 . is relatively norm compact in 0% ;

(b) An operator T is weakly compact iff the set {x*}°°_, is relatively weakly compact in (*_.

Proof. (a) Necessity. The set T'U, where U is the closed unit ball of /., is relatively norm
compact. Therefore ([11], p. 260), for an arbitrary ¢ > 0 there exist a disjoint partition of the

set of natural numbers N = [ J IV; and elements n; € N; such that sup |(T'z), — (Tz),| <€

i=1 neN;
. * * * *
forall x € U andi = 1,...,m. Whence su}\? ]:pmx —xrx| <€ s0 su}\? ||xn — x| < efor
neN; neiv;

m
i=1,..,m,thatis, {z;}°, C |J B(x},,¢), where B(z}, ,€) is the closed ball centered at z;
=1

with radius e. The last inclusion means that the set {z }°° , is totally bounded, so is relatively
norm compact.

The sufficiency contains in [5] (the proof of Theorem 2). For the sake of completeness we
include the proof. Let the sequence xy € (., ||zk|| < M, M > 0. By passing to a subsequence
if needed, we can assume that klirgo 2T, = 2y for all n. The sequence T’z converges to the

element z = (z1, 29, ...) € {4 in the norm. In fact, assuming by way of contradiction and
passing to one more subsequence if necessary, we can find a subsequence n;, of N such that

08, 2k — 2| > €1 > 0 (9)
for all k, z;, — 7 in the norm of £3 and ]}Lrgo Zn, = %0. Then
lim xjz) = 2. (10)
k—oo

Indeed, fix €, > 0 and choose k; such that ||zf — Ty | < 3%, [20 = 2, | < . There exists ky
such that \x;klxk - an1| < 2 foreach k > ky. So |z{7, — 29| < € for k > ky, that is, (10)

holds. Finally, klim (z}, Tk — 2n,) = 0, contrary to (9).
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(b) The operator 7" on /., is weakly compact iff ([8], p. 335, 347) T is a Dunford-Pettis

operator, that is, 7' carries weakly convergent sequences onto norm convergent sequences. Let
Loo 3 . . . .
Ty 0(—> ) 0. The sequence 7'z — 0 in the norm of ¢, iff khm z, x = 0 uniformly for n. By
— 00

Grothendieck theorem ([16], p. 126), the letter is equivalent to the assertion that the set {x }2 ;
is relatively weakly compact. U

Lemma 10. Let Tx = (xjx,x5x,...) be a positive operator on {«,, moreover ||T| < 1,
x € 05, and lim ||z%|| = 1. Then ||T*|| = 1 for all k; in particular, r(T) = 1.

Proof. From the equalities || T'|| = ||Te|| and ||z}|| = x}e, we get1 > ||T'|| = sup ||z} || > 1,
hence ||T|| = 1. So ||T*|| < 1 for all k, that is,

0<Tre <e. (11)

Next, if = (21,22,...) € e, 0 <z < eand lim z,, = 1, then lim (Tz), = 1. Actually,

n—oo n—oo

we have
(Tz), =z, =256 —ay,(e —x) = [[a,]| — 1

as e — x € cg. From the last relations, the elementary induction and the inequalities (11), it is
easy to see that lim (7%e) =1 for all k. Hence, || T%|| = 1. Now by Gelfand formula ([1], p.

243), the equality r(7') = 1 is obvious. O

On the other hand, the space ¢%_ is an AL-space, so by Kakutani-Bohnenblust-Nakano the-
orem ([8], p. 192), there exists a lattice isometry ®,- from £3 onto the space of all integrable
functions L; (e, i), moreover the measure io, is not o-finite and is not purely atomic (if
the functional x* € ¢%_ is a generalized limit, then [4] the restriction of ji, to the support of
the function ®,. z* is a non-atomic measure). By this, the band ®,. /; is a L-space associated
with an atomic measure.

To continue our discussion, we need the following construction. Let (£2, %, 1) be an arbi-
trary non-atomic probability measure space. Define the function 7y = 1. There exists disjoint
measurable sets A;; and Ajy such that = Aj; U Ajp and p(Aqy) = p(Ap) = % Put
1= XA — XAy Sets Ay, 1 < < 27 and the sequence 7, n € N, will be constructed by

induction. Assume that sets A,,;, 1 < ¢ < 2", with the properties

27L

1
AmmAn: 1 B Q= Ani7 Anz = 5.
J @ ? ;é j &:! lt< ) 2n
2n ,
and the function r, = > (—1)"xa,, have been constructed. Next, there exist sets A, 1,

i=1
1 <4 < 271 such that
2n+1

. 1
AngriN Anir; =0, i # 4, Q= Anirsy nlAnir) = ol

i=1

moreover if 7 is odd, then A, 11, U App1401 = An, i1 Now the function 7, is defined
2n+1 .
by rpp1 = Y (—=1)'xa,,,,- Any sequence constructed as above is called a sequence of

i=1



Rademacher functions (see [11, p. 496-497). Clearly, |r,| = 1. The relation r, ~ -5~ ¢

is valid.
2n—1

Lemma 11. Let B, = |J An2i-1, where sets A,; were defined above. Then for every
=1 .
subsequence B, the equality (| J Bp,) = 1— 2%” holds for all m. In particular, un(\ B,,) = 1.
i=1 i=1
Proof. It suffices to establish that the set B,, U ... U B, can be written as a union of
2nm — 2rm=m (different) sets of the form A, ;. To verify this, we use induction on m. For
m = 1 the set B, consists of 2"~ = 2™ — 2m1~1 gets of the form A,, ;. For the induction
step, suppose that the statement is true for some m. Then for every k the set B,,, U ... U B,
consists of 2mm Tk — 2nm=m+k getg of the form A, 1; and the set Q\ (B,,, U...UB,, ) consists
of 2"m~™ sets of the form A, ;. Therefore, the set B,,,, 1 \ (B, U...U B, ) can be written
as a union of 2"~ +k=1 gets of the form A, +kirsotheset B, U...UB, UDB,, . consists
of 2mmFh — gnm=mtk 4 gnm=m+k=1 getg of the form A,,, 1 ;. Taking k = n,, 1 — Ny, We obtain
that the set B,,, U... U B can be written as a union of

Nm+1

QnmAl _ 9Nm41—m | 2nm+1—m—1 — QNm+l _ 2nm+1—(m+1)

sets of the form A as desired. O

If F is an ideal of the space of measurable functions L(v), then for an arbitrary measurable
set A the order projection on the space F defined by Pyx = x4z, x € E.

nm+17i’

Lemma 12. Let E be a Banach function space associated with Ly(v). If the sequence
2, € ET, moreover z, — z # 0 in E, then there exist a subsequence Zn,, a set A with
v(A) > 0 and a number a > 0 such that z,, > ax 4 for all k.

Proof. There exist a set B, v(B) > 0, and a number a > 0 satisfying Pgz > ayp. Indeed,
sets B; = {s : z(s) > 1} have the property |J B; = {s : z(s) > 0}, hence v(B;,) > 0 for
i=1

some ig as z # 0. Putting B = B;,, a = ﬁ, we obtain Ppz > 2ax . The sequence z, has ([1],
p. 195) a subsequence z,, which is relatively uniformly convergent to z, that is, there exists a
positive function v € L (v) such that for each € > 0 the inequality |z,, — 2| < eu holds for all
k > k. Forsome A C B, v(A) > 0, the function P4u is bounded. Pick ¢; > 0 such that the
inequality €; Pau < a) 4 is valid. Then

€1Pau > |Pyzn, — Paz| > Paz — Pazp,
for k > k., whence
Zny, = Pazn, 2 2ax4 — 61Pau > 2ax4 — axa = axa,

as claimed. O

Lemma 13. Let r,, be a sequence of Rademacher functions on a space ) with a non-atomic
probability measure i defined above, and let E be a Banach function space associated with
Lo(p). If a sequence z,, € E such that the set {z,}°° , is relatively norm compact in E and the
inequalities 1o + 1, > 2, > 0 hold in Lo(u) for everyn € N, then z, — 0 in E.

10



on )
Proof. The sequence of Rademacher functions r,, is equal 7, = > (—1)"x4,,, Where sets
i=1
Qn—l

A,; are defined above, B, = |J A, 2,-1. Obviously, 0 < Pg 2, < Pp, (10 + 1,) = 0 hold in
i=1

Lo () thus,
Pg, 2, =0 (12)

for all n. Assume that some subsequence z,, of z, satisfies z,, — z # 0in £. By Lemma
12, we can find a measurable set A, ;(A) > 0, and a number a > 0 such that the inequality
Zn,, > ax holds for all k. From (12), we get Pp, x4 = Xanp,, = 0, thatis, (AN B,,)=0.

This gives u(AN U By,,,) = 0. By virtue of Lemma 11, we have ;1(A) = 0, a contradiction.
k=1

So z = 0. Therefore, the zero function is the only accumulation point of the set {z,}°°, in F,
whence z, — 01in F. O

Now we are ready to give an example of an operator 7" such that o (T') # o (T%).
Example 14 (a weakly compact positive operator T on (o, satisfying o (T) # o (T*)).
Step 1. The construction of 7.

Let ®,-_be alattice isometry from £} onto L (2, fioo). Fix an arbitrary measurable set A,
oo(A) > 0, such that the restriction pi4 of the measure yi, to A is the non-atomic measure. We
can assume that o, (A) = 1. Put 2§ = <I>;*1 x 4. Consider an arbitrary Rademacher sequence r,,
n € N, supported by A with the measureop 4. In the case of the necessity, we can consider the
sequence 7, as a sequence in Ly (Qx, ftoo). Let ) = xf + q)[*;rn. Clearly, z;, € £ forn > 0.

Ly) o (€50,455)

o(Lq,L% . . .
The relation r,, el 0 implies =, == z{. Consider the operator 7" on /., defined by
Tx = (xjz, 25z, ...). Then |[T|| = land T > O as ||z} || = 1 and z} > O for all n. By Lemma
9, (b), the operator 71" is weakly compact. Furthermore, the relation 7'(cy) = {0} implies

T*(65) € 0. (13)
Step 2. The equalities
o¢(T') = 0w(T) = {0}, o(T) ={0,1} (14)

are valid.

Since T is weakly compact, by Dunford-Pettis theorem ([8], p. 337), the operator T2 is
compact, so 7" is a Riesz operator, i.e., 0¢(T) = o (T) = {0}. In particular, every non-zero
point A € o(7) is an eigenvalue of 7. The equality Te = e implies {0,1} C (7). Fix a
non-zero A € o(T"). From the above, it follows that 7'z = Az for some x # 0. The equalities
ror = lim zjx = A lim z,, give

n—oo n—oo

1
nh_g T, = Xxéa: (15)
So Az, = o = jxjx, hence z, = szafa for all n. In particular, 2z # 0. Using (15) once
more, we have +zjz = spafw therefore, A = 1. Consequently, o(T") = {0,1}. Remark also
that we have established the following equality for the null space of the operator I — T’

NI —T)={ae:ae€C}. (16)

11



The proof of the equality
NI —-T%) ={azxy:a € C} (17)

is similar.

Step 3. Let K be a compact operator on /,, presenting in the form Kz = (z{z, z5x,...),
zr € U5, and satisfying the inequalities 0 < K < T'. Then 2} — 0in £Z_.

Indeed, the inequalities 0 < K < T imply 0 < 2 < 27, On the other hand, according to
Lemma 9, (a), the set {2 }°° | is relatively norm compact in £, hence 0 < ®p. 2% < x4 + 1y,
and {25}, is relatively norm compact in L;(j4). Using Lemma 13, we conclude that
Py 2 — 0in Ly(pa) thus, 27 — 0in £5.

Step 4. The equality

o7 (T) = {0,1} (18)
is valid.

The inclusions o¢(T") C o (T') C o(T') and Step 2 give {0} C o, (T) C {0,1}. We will
show that 1 € o, (7). In fact, let 0 < K < T hold, where K € K({), Kz = (z{z, 25z, .. .),
2 € (*,. The relations |7 — K|| < ||T'|| = 1 are valid and functionals z} — 2 belong to ¢5_.
Using Step 3, we have 2z — 0 in £ therefore, ||z} — 2¥|| = (2} — 2f)e = 1 — zfe — 1 as
n — oo. This implies, via Lemma 10, that (7' — K) = 1,s01 € o(T'— K). Hence, 1 € o, (T).

Step 5. The spectral radius (7") = 1 is a simply pole of the resolvent R(.,T"), moreover
for the residue 7, of R(.,T") at the point A = 1 the equality 7" = 2§ ® e holds.

According to Step 2, we have o¢(7) = {0}. This guarantees that the point A = 1 is a
pole of R(.,T) and T_, is a finite-rank operator. For every element z € (., the equalities
T?*v = T(zix,zx,...) = (xjzr)e hold as lim x*x = xjz. Hence, if (I — T)%*x = 0, then

n—oo

r—2Tx+T?*x = 0orx,—2z;x+axjr = 0 for all n. Therefore, lim x,, = ziz, so zix = ziz.

This implies z,, = zfz. We get N((I —T)*) = {ae : a € C}. Now a glance at (16) yields
N(I—=T) = N((I-=T)%, so a(I —T) = 1, where a(I — T) is the ascent of [ — T. It
follows ([1], p. 80, 267) that the point A = 1 is a simply pole of R(.,T'). Using (16), (17) and
the equalities ([1], p. 266, 268) R(1-1) = N(I —T) and R(T*,) = N(I —T*), we obtain a
representation of the operator 7_; in the form 7" ; = 2§ ® e, as desired.

Step 6. Let x§* be a positive functional on ¢’ satisfying the relations xj*(¢;) = {0} and
|z5*|| < 1. Then for the operator K = z{* ® x{ the inequalities 0 < K < T hold.

Indeed, if 0 < z* € {1, then Kz* =0 < T™z*. Let 0 < z* € ¢3_. The equality

Trz® = ||l (19)
is valid, so Ka* = (z§*a*)zf < ||z*||z§ = T z*.
Step 7. Let a§* be a positive functional on £ satisfying the relations xj*(¢;) = {0} and
|lzg*]| < 1, moreover xi*zy = 1. If K = x{* ® zf, then r(T* — K) = 0.
Assume by way of contradiction that A = (7" — K) > 0. The number \ is an eigenvalue
of the operator T* — K as o¢(T* — K) = o¢(T') = {0}. So
T 2" — Kx* = \z* (20)
for some positive functional z* € %, ||z*|| = 1. The equality 7*,7* = T*, yields

AT* o = T* T*a* — T Ka* = T* 2" — T* Kx".

12



Using Step 5, we have
(1—=Nzyg=1-NT" 2" =T Kz* = ((Ka")e)xy = (z57z")xg.

Hence,
A=1—aj"z" (21)

According to (13) and (20), we have z* € £_. It follows from (19) that

kk ok

Art = lat|ag — Ka® = ||a|ag — (2572")ag = (1 — 257" )ag.

% Lk *ok Lk

The equality (21) implies 2* = x5. So A = 1 — z5*2* = 1 — x5*2; = 0, which is impossible.
Therefore, r(7T* — K) = 0.
Step 8. The equality o (7™) = {0} is valid.
There exists a positive functional z;* satisfying all condition of Step 7. In fact, consider the
functional x* on Lq (s, ioo) defined by z*x = f Z dji. Then the functional z§* = @E& ¥
A

satisfies the desired conditions. Using Steps 6 and 7, we get the relations 0 < K < 7™ and
r(T* — K) =0, where K = z{* ® =, hence 1 ¢ o_ (7). On the other hand,

{0} = 0w(T7) € 0, (T7) € 0, (T) = {0, 1}.

Thus, o (T*) = {0}.
Finally, according to Steps 4 and 8 the relation o (T') # o_ (1) holds. O

Nevertheless, remark that for the operator 7' from the previous example the equalities
o(T) = o(T*) = {0} satisfy. Indeed, it suffices to observe that the operator 7" is dominated
by the rank-one operator 2z; ® e (we use the notations from Example 14).

It is easy to see that the operator 7" from Example 14 is not order continuous. In general,
if T' is an arbitrary bounded operator on /., then the order continuity of 7' is equivalent to the
fact that the subspace ¢, of ¢ is T™-invariant. If {2 is also 7™-invariant (equivalently, cy is
T-invariant) and 7" is positive, then, using Theorem 2, (d), we have o (7)) = o (T™). It is
not known if the equality o, (T) = o, (T*) holds for an arbitrary positive order continuous
operator T' on a Banach lattice E.

S The order continuity is important in Theorem 1!

The objective of this section is to show the essentiality of the assumption about the order conti-
nuity of the operator 7" in Theorem 1 (see Section 1).

Example 15. We will use the notations and results from Example 14. The positive operator
Tx = (ziz,z5z,...) acts on . The order continuous dual (/) = ¢; separates (.. Ac-
cording to (14) and (18), we have 7(T') = 1 ¢ o¢(T) and 1 € o (T). Obviously, the sequence

Ky,x = (23z,...,252,0,0,...) of positive compact operators satisfies the property K,, T T
(such sequence exists for each positive operator on a Banach function space associated with a
o-finite atomic measure). U

It is not known if the assumption in Theorem 1 that I separates L, is essential.

The main tool of the proof of Theorem 1 (see [7], the proof of Theorem 20) is the following
theorem about the Frobenius normal form [7].

13



Let B be a projection band of E. Through Pg will be denoted the order projection onto 5,
Le., if v = z1 + xo, where 1 € B, x5 € B4, then Pgx = 1. Put Ty = PgT Pg and denote
the restriction Tz to B by T’z. Recall that in a Dedekind complete Riesz space every band is a
projection band ([8], p. 33).

Theorem 16. Let E be a Dedekind complete Banach lattice such that L separates the
points of E. Let T be a positive order continuous operator on E, moreover r(T) ¢ o¢(T'). Then
there exist T-invariant bands B;, E = B,, D B,—1 D ... D By = {0}, such that if the equality
r(Ts,npa ) = r(T) holds for some i =1, ...,n, then the operator TBWS,;{1 is band irreducible.

In fact (see [7], Section 2.2), the assertion that £ separates L/, is only necessary as the
condition which guarantees the order continuity of the residue 7 of R(.,7T) at r(T") (see
Theorem 3 above). Thus, the question arises naturally: Does the order continuity of the operator
T imply the order continuity of the residue I'_; in the general case? The affirmative answer will
main the validity of Theorem 16 and so Theorem 1 by the additional assumption of the Dedekind
completeness without the condition that £ separates F.

In the following section we will discuss this question in detail.

6 The order continuity of the residue.

The main task of this section is to discuss the conditions of the order continuity of the residue
T_, of the resolvent R(.,T) at r(T).

Recall that if G is some set of linear functionals on Y and H C Z, where Y and Z are
vector spaces, then

k
G®H:{Zy£®zi Yy €G, z€H, i=1,..,k, ke NL

i=1

In particular, if Y and Z are Banach spaces, then Y* ® Z is the set of all finite-rank operators
from Y into Z.

Let 7" be a positive operator on some Banach lattice E. If the spectral radius r(7) is a pole
of the resolvent R(.,T'), then R(.,T’) has the Laurent expansion

1
T m+...+—T 1 +To+AN—r(T)T1+..., (22)

ROLT) = X —r(T)

1
(A =r(T))m
around r(7T"), where m is the order of the pole of R(.,T") at 7(T"). Mention that 7",,, > 0 and all
operators 7; are real. The spectral radius (7") ¢ o¢(T) iff ([1], p. 300-302) r(7") > 0, the point
r(7T) is a pole of R(.,T) and the residue 7"_; € E*® E;bythisT ;€ E*®@ E, i =1,...,m.
Next, if an operator 7' > 0 is order continuous, then ([1], p. 256) R(\,T) is also order
continuous for each A > r(7"). Nevertheless, this fact and the relation (we assume that r(7") is
a pole of R(.,T") of the order m)
T .= lim A—r(T)"R\,T 23
Jim (A= r(T)"ROLT) (23)
do not imply the order continuity of the operator 7", in general. Actually, there exists [13]
the example of a sequence of order continuous positive operators which converge in norm to a

14



positive operator which is not order continuous (even o-order continuous). Here the following
result holds (see [13], Theorem 2.16, where the given fact was established for rather other class
than the class of order continuous operators, while in the our case the proof of it is analogous
and will be omitted).

Lemma 17. Let I/ and F' be Banach lattices and suppose that the Lorenz seminorm (2) on
Fis anorm, i.e., for v € F the equality ||x||, = 0 implies x = 0 (in particular, this is true when
F7 separates F or F' is an AM-space with a unit). If a sequence Sy, € L,(E, F') converges in
L(E,F)toS>0,thenS € L,(E,F).

Therefore, if 0 < T € L,(F), the Lorenz seminorm on F is a norm and for R(.,T) the
expansion (22) holds, then, using (23), we have 7"_,,, € £,,(E). When FE is a Dedekind complete
AM -space with a unit, for the proof sufficiently to observe that ([1], p. 96-97) the space L,,(E)
is a band of the Banach lattice £(F) and so is closed (for the operator norm). In fact, in this
case it is easy to see from the equalities

. _ 1 i—1
T, = Alig(%) (A —r(T)) (R()\,T) — WT,WL — .. —(A=r(D)) T“), (24)

i > —(m — 1), that the relations T; € L,,(E) hold.

Lemma 18. Let E and F be two Riesz spaces, moreover E' = {0}. Then the equality
(E~®@ F)NL,(E,F)={0} is valid.

Proof. An operator K € (E~ ® F)N L,(E, F) has a representation K = Z xf ® x; with

x; € E~ and elements 1, . . ., xj in F' linearly independent. Let anet z, | 0in E The net 2 z,
converges to some number a;, 2 = 1, ..., k, as every functional x* € E~ has the decomposmon
k
r* = (2*)* — (2*)". Then Kz, — Y_ a;x;. Taking into account the order continuity of K,
i=1
k
the last relation yields > a,x; = 0. Hence, a; = 0. Thus, z} are order continuous. Therefore,

=1
x; = 0forall 7. So K = 0, as required. U

The following result which at once follows from the previous lemma, gives a necessary
condition of the order continuity of the residue.

Theorem 19. Let T be a positive operator on a Banach lattice E, r(T) ¢ o¢(T). If
there is at least one an order continuous operator among of the operators T, ..., T 1 in the
expansion (22), then E # {0}.

We start our discussion on a sufficient conditions of the order continuity of 7' ; with the
next auxiliary results.

Lemma 20. Let E be a Riesz space, let Ey be a finite dimensional vector subspace of E,

and let ' be a vector subspace of the space of linear functionals on E separating the points of

E. Ifanet z, € Eyand z, Ug) 0, then zo — 0in E.

Proof. The collection of restrictions of functionals from I' to Ej will be denoted by I'y.
Clearly, I’y separates Ey, so the topology o(Fy, I'g) is well defined and it coincides with ev-
ery Hausdorff linear topology on Ej. In particular, it coincides with the topology generated

n
by the norm ||z|| = 1n<11a<);|bi], where z = 3 bie; and ey,... e, is a basis of Ey. Then
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n
|2all — 0 or max |by;| — 0, where z, = > baie;. Therefore, max ||z5]| | 0, hence
n
7] < (max]lzs]) 3 lei] Lo 0, thatis, zo — 0. O

The following lemma is similar to Lemma 17.

Lemma 21. Let I¥ and F' be Banach lattices, moreover F’ separates F'. If a sequence
Sy € L,(E, F) convergesin L(E,F)toS € E*® F, then S € L, (E, F).

Proof. Let a non-zero functional 2* € F°. By Lemma 20, it is enough to show that if a net
To — 0in E, then 2*(Sx,) — 0. There exists a net z, | 0 satisfying |z,| < z,. Fix e > 0
and an index ag. Pick ko with ||.S — S, || < m (we can assume z,, # 0) and a; > ap

2|z
with |2*(Sk,24)| < § for a > a;. Then
* * * € *
|27 (Sza)| < [27((5 = Sko)2a)| + 27 (SkyTa)| < 5 + [27(Skea)| < €

for o > o, as claimed. O

Lemma 22. If a net z, in a Banach lattice E is relatively weakly compact set and z, —— 0,

then z, U(E—’Ej) 0.

Proof. Pick a net y, with |z,| < y, | 0. Let z be a weak cluster point of the set {z,},
that is ([11], p. 29), for each o(E, E*)-neighbourhood U of the point z and each « there exists
a > ag such that z, € U. Fix 5. For o > 3 we have z —y3 < 2 —y, < z— 2,. For an arbitrary
z* € (E*)T and € > 0 pick o > [ with 2*(z — z,) < e. Hence z*(z — y5) < ¢, s0 2z < yg for
all 5. Consequently, z < 0. Analogously, —z < 0. Finally, z = 0. We obtain that the zero is
only a weak cluster point of {z,}.

Fix o* € E*. If the net 2™z, does not converge to zero, then for every « there exists 3, > «
such that

|z*25,| > €> 0. (25)

The set {23, } is a net. Indeed, for indexes f3,,, ..., Ba, pick « satisfying oy > [3,, for all
i = 1,...,n. Then B,, > B,,. Therefore ([11], p. 29), the net {z3, } has a weak cluster point
z'. Obviously, 2’ is also a weak cluster point of {z,}. So, as showed above, 2z’ = 0, which is
impossible in view of (25). Thus, li;n z*z, = 0, as desired. O

Lemma 23. Let T’ be an o-weakly compact order continuous operator acting from a Banach
lattice E onto a Banach lattice F. Then the inclusion R(T*) C E.” is valid.

In particular, for E = F and X\ # 0 the inclusion N>°(\ — T*) C E holds, where
N*A=T") = U N((A=T%)").

k=1

Proof. We may suppose that the operator T is real. Consider a net z, — 0 in £. Assume
1, is order bounded. By the order continuity of 7', we have Tz, — 0. On the other hand, by
the o-weakly compactness of 7', the set {7z, } is relatively weakly compact. Using Lemma 22,

we obtain T'z,, 7BED 0, hence x*(Tx,) — 0. So the relation T*z* € E holds, as desired.
In the case, when £ = F and \ # 0, it suffices to observe that ([3], p. 3) the inclusion
N®(\—=T*) C R(T™) is valid. O
Corollary 24. Suppose that there exists a non-zero o-weakly compact order continuous
operator T : E — F, where E and F are Banach lattice. Then E;’ # {0}.
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Lemma 25. Let T be a positive operator on a Banach lattice E, moreover r(T) ¢ o¢(T). If
B is a T-invariant projection band, then in a sufficiently small deleted neighbourhood of r(T')

we have
PgR(A\,T)Pga = R(\, Tp)PgT PgaR(\, Tga).

Proof. The relation [10] 7(T") ¢ o¢(Ts) U 0¢(T'ga) is true. Therefore, in some sufficiently
small deleted neighbourhood U of r(T") the operators R(.,T5) and R(., Tga) are well defined.
The band B is R(\, T')-invariant for A € U. Then for A € U we have

(A = Tg)PsR(\, T)Pga(A — Tga) = Pg(A — TPg)R(A\, T)(A — PgaT)Pga =

= Pg(A =T 4+ TPga)R(N\, T)(\ — PgaT)Ppa = Pg(I +TPpaR(\,T))(A— PgaT)Ppga =
= Pg(A — PgaT)Ppa + PgT Pga RN\, T)(A — T + PgT)Ppa =
= PgTPga(I + R(\, T)PgT)Ppa = PgT Pga,
and the proof is finished. U

Our purpose here is to establish Theorem 3 (see Section 2) giving the necessary conditions
of the order continuity of the residue.
Proof of Theorem 3. (a) The equality R(7*,) = N((r(T") — T)™) is valid, where m is

the order of the pole of R(.,7) at (7). By Lemma 23, R(T*,) C E". The operator 7"
k

has a representation 71 = > xf ® x; with elements x4, ...,z linearly independent. Pick
i=1
k
functionals z7, ..., z; with zjz; = 6, 4,5 = 1,..., k. Since T*, 25 = (3_ 7; ® 17)2} = x, we
i=1

have x; € E}. Therefore, T, € L, (E).

(b) Step 1. The case (E;")° = {0}, that is, the band E~ separates F.

In this case the validity of the given assertion was mentioned in [7]. The proof will be
derived here because it was omitted in [7]. Moreover, for the completeness and by the reason
of a significance of this assertion, we will give the proof in two different ways.

The first way. Since r(T") ¢ o¢(T'), the operators T_,,, ..., T_; in (22) are of finite rank.
Now the desired assertion follows at once from the relations (23), (24) and Lemma 21.

The second way. The idea of the proof is borrowed from [12], Propositions 4, 5, where
the analogous statement was proved for the case o¢(7") = {0}. Let 7" be the restriction of 7* to
Ex.Thenr(T) = r(T") ¢ o¢(T"). If m be the order of the pole of R(.,T) at r(T'), then

N((r(T) =T")™) € N((r(T) =T%)™),
(26)
dim N((r(T) = T*)™) =dim N((r(T) = T)™) < oc.
Next, let 7" be the restriction of (7”)* to (E,’)~. The Banach lattice E can be considered as
a subspace of (E>)>. If j, is this natural embedding, then the equality j,(Tx) = T"(j.(x))

holds. So
N((r(T)=T)™) C N((r(T) =T")™) € N((r(T) — (T")")™). (27)

Using
dim N((r(T) — (T")")™) =dim N((r(T) = T")™) < o0

17



and the relations (26) and (27), we have
R(TZy) = N((r(T) = T%)™) = N((r(T) = T")") € E7.

Consequently, 7", € L, (E).

Step 2. The general case.

The band (E7)° is T-invariant. Put B = (E7)°. The relation £ = BY @ B is valid.
The operators T and T} are order continuous and [7] r(Tjs) = r(T3) holds. The band B is

T ,-invariant, whence
PgaT_1Pg = 0. (28)

We wish to show that 7(T3) < r(T) holds. To see this, let #(T;3) = (7). Then [10]
r(T) ¢ o¢(Tg), so 7(T) ¢ o¢(Tg). The Lorenz seminorm on B is a norm. By remarks after
Lemma 17, the non-zero finite-rank operator (fB)_mB = (Tg — r(Tp))™(T)_,, where
(T5)_1 and my is the residue and the order of the pole of R(.,T;) at r(T), respectively, is
order continuous. According to the relation B, = {0} and Lemma 18, which is impossible.
Thus, 7(T;) < r(T).

So [7]

(T5) -1 = (T1)p =0, (29)

moreover r(Tga) = r(T). Since the band (B%)> separates BY, using Step 1, we get the order
continuity of the residue (Tga)_; of R(., Tga) at 7(Tga). If (Tga)_y is the residue of R(., Tja)
at r(Tga), then the band BY is (T’za)_;-invariant and [7] the restriction (Tza)_; to B9 coincides
with (TBd)_l. Therefore, the operator

(T_1)pa € L(E), (30)

so the operators A
(Tpa)—s = (T = 1(Tpa))" H(Tpa) 1, P21,

are also order continuity. Using Lemma 25, we have
PgR(A\,T)Pga = R(\, Tg)PgT PgaR(\, Tga),

where functions R(\,Ts) and R(\,Tza) are analytic on some deleted neighbourhood of the
point r(7") and have representations

o0

R(\,Tg) = Z(—l)i(/\ —r(T))'R(r(T), Tp)™,
RO\ Tpa) = W(TBd)_m P A_;T(T)(TBCI)_1 + (Tpa)o+ ...

(here m is the order of the pole of R(.,Tza) at (T’)). Using the order continuity of R(r(T"), Tp)
and of (T'’ga)_s, i =1,...,m, we get PgT_1Pga € L,,(E). So according (28), (29) and (30)

T—l - (T_l)B + PBT—IPBd + PBdT_lpB + (T—l)Bd - PBT—lde + (T—l)Bd c £n<E),

and the proof is finished. 0
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In the case of (a) the previous theorem is true if instead of the point r(7") an arbitrary non-
zero isolated point )\ of the spectrum o (T"), \g ¢ o¢(T), is considered.

In the general case it is not known if the order continuity of T > 0, r(T') & o¢(T), implies
the order continuity of the residue T, of R(.,T) at r(T'). Moreover, the author does not know
an example of a Banach lattice £ such that the band (E)° is not a projection band.

If 0 < T € L(E), where E is a Banach lattice, and (1) ¢ o¢(T"), then the residue 7
of R(.,T) at r(T) is a non-zero finite-rank operator. If, in addition to this, £, = {0} (most
important examples of Banach lattices satisfying the property E~ = {0} are an AM-space
C'0,1] and its a Dedekind completion), then by Lemma 18, the operator 7" can not be order
continuous. Thus, a question arises naturally: Can a positive order continuous operator T,
r(T) ¢ o¢(T), on a Banach lattice E with the property E; = {0} exist? The affirmative
answer to this question means that the order continuity of the operator 7" does not imply the
order continuity of the residue 7°; of R(.,T") at 7(T"). As it see from the proof of Theorem 3
(see the case of (b), Step 2), the negative answer should have meant the order continuity of 7"
if (E,7)° is a projection band. By Corollary 24, such operator 7" can not be o-weakly compact,
so it can not be compact. In particular, there exists no a non-zero order continuity compact
operator on C[0, 1]. In the next section this result will be derived (see Corollaries 33, 34 below)
from other a more general result (see Theorem 4 above) which allows looking at the reason
of the absence of a non-zero order continuous compact operator on C[0, 1] in a new fashion,
namely with the point of view of the approximation problem. Remark also that the conditions
0<TeL,(C|0,1]) imply r(T') € o¢(T") as the Lorenz seminorm on C'[0, 1] is a norm.

7 Compact order continuous operators.

Let ¥ and F' be two Banach lattices. If a Banach lattice F' has the approximation property
(in particular, is an AM-space), then every compact operator K : E — F' is the limit in
the operator norm of a sequence of finite-rank operators. On the other hand, every operator
S € E*® F, where E and F are arbitrary Banach lattices, has a decomposition S = S; + S5
with S} € B @ F C L,(E,F)and S, € EY ® F, moreover EX @ FF 1. EX ® Fin L(E, F)
(see Lemma 28). Below the conditions when an order continuous operator 7' : £ — F' can be
approximated by an operators from £ @ I, will be considered.

Lemma 26. Let T' and K be an operators from a Riesz space E into a Riesz space F' (not
necessarily Dedekind complete) such that T € L,,(E,F)and K € (EJ)" ® F*. If an operator
S . E — F satisfies the inequalities T + S > K and S > 0, then S > K.

In particular, if the modulus |T — K| exists, then |T — K| > K.

k
Proof. The operator K has a representation K = Y xf ® z;, xf € (EX)*, x; € FT.
=1

k
Obviously, the relation > z7 L E~ is valid. Fix e > 0 and z € E™. The equality ([8], p. 46)
=1

k
inf{sup > 27z, : 0 < z, T z} = 0 holds. Consequently, there exists a net z,, 0 < z, T z,
a =1
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k
satisfying > x7z, < € for all . Then
=1

T(z—24) > K(z—24) = S(z — 2a) =

k
(2= za))xi — S(2 — 24) g riz —€)T SZ—KZ—EE r; — Sz.

=1

||M?r

k

Using z — 2z, | Oand T € L, (E, F), weinfer 0 > Kz — € Y x; — Sz. Since € is arbitrary, this
implies 0 > Kz — Sz. Hence, S > K, and we are done. =

If |7 — K| exists, then the inequality |7'— K| > K — T implies '+ |T'— K| > K, whence
T — K| > K. O

Recall that a locally convex-solid topology on a Riesz space F'is a locally convex topology
generated by a family of lattice seminorms {p; : i € A} on F|, that is, seminorms having the
property: |x| < |y| in F implies p;(x) < p;(y) for every i € A (for details, see [8], §11).

Lemma 27. Let 0 < T € L,(E,F), where E and F are Riesz spaces. Then for every
element z € E* satisfying Tz > 0 there exist no a collection of an operators K; € (E;)TQFT,
1 € A, and a locally convex-solid topology T, on F' such that zero belongs to the T,-closures of
the set {|T — K;|z :i € A}.

Proof. Assuming by way of contradiction, we find a net K, € (E>)* ® F and a locally
convex-solid topology 7, on F such that moduli |T" — K| exist and

T — K|z 75 0. (31)
The inequality [Tz — K,z| < |T — K,|z implies [Tz — K,z| — 0, so
Koz Tz (32)

On the other hand, Lemma 26 guarantees |T'— K| > K,, hence |T' — K, |z — K,z > 0. Since
the cone F'" is 7,-closed, it follows from the relations (31) and (32) that —7'z > 0. This implies
Tz < 0, which is a contradiction. O

Clearly, if an operator K € E* ® F', where E and ' are Banach lattices, then the modulus
of K exists and is r-compact (see Section 1). In fact, | K| belongs to the closure of (E*)* @ F'*
in £,(E, F) with the r-norm ([16], p. 253-254, the proof of Theorem 1V.4.6).

Lemma 28. Let E and F’ be two Banach lattices. If K1 € £ ® Fland Ky € E) ® F, then
inf {| K1, |K2|} = 0 in an ordered vector space L(E, F).

Proof. From the preceding discussion there exist moduli |K| and |K5|. Obviously, if

k
= > xf ®x; withz! € EY, x; € F, then
i=1

k k k k
Kl < fot @al = Y lail @ ful < Y lail @ ful = 2" @,
=1 =1 =1 =1

k k

where 2* = > |zf| € (E)T, x = ) |a;|. Analogously, |Ks| < y* @y, y* € (E))T,y € FT.
i—1 i=1

Now remain to notice that

(TR)ANY Ry <@ @+y) AW @@ +y)=@" Ay )@ (x+y) =0
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as x* L y*. U
Lemma 29. Let K € E) ® F, where E and F' are two Banach lattices. Then we have
|K| € (Ex)t ® F*, where the closure in L,.(E, F') with the r-norm.

Proof. There exists a sequence K,, € (E*)™ ® F* converging to the operator |K| in
the r-norm. For an arbitrary n the operator K, has a decomposition K,, = K,; + K, with
K. € (E))T ® F*and K,y € (E})" @ F'. Consider the band By~gr generated by the
set K,.(E, F) of E ® F. By the previous lemma, K,; L Bp.gp in K.(E, F). Obviously,
|K| € Bgrgp, 50 Ky L Ky — |K|in K. (E, F). Then

[ K| + [Kng — [K|| = [Kn1 + Ky — [K]| = [K, — [K][ =0

in C,.(E, F). The inequality |K,;| + |Kn2 — |K|| > | K2 — | K| implies K,,» — |K| in the
r-norm, as claimed. |
Lemma 30. Let E and F be two Riesz spaces. If an operator T € L, (E, F) possesses a

modulus |T'|, moreover for every x € E™ the equality
Tz = sup{Ty : [y| < x} (33)

holds, then also |T'| € L,,(E, F).

For the case of a Dedekind complete Riesz space F' the proof of this assertion can be found
in [15], p. 29-30, Proposition 1.3.9 (see also [8], p. 43, Theorem 4.3). In the our case the proof
of it is analogous, but for the sake of completeness we include the proof.

Proof. Consider a net z, | 0in E. Let |T|x, > z > 0in F. Fix an index (. For every
ly| < x5 and o > [ the inequality

ly— (" ANza —y~ Axo)| <ap— 24

holds. Therefore,

Ty+z—|Tlws < |T(y" Aza)| +[T(y~ Aza)l-
Hence, using the relations y* Az, | 0, y~ A 2, | 0 and the order continuity of 7', we obtain
Ty + z < |T|xp. It follows from (33) that z < 0. O

Now we are in a position to prove Theorem 4 (see Section 2).

Proof of Theorem 4. Assume by way of contradiction that the operator 7' € L,.(E, F') and
there exists a sequence K,, € £ ® F' which is convergent to 7" in the r-norm. Then the operator
T is r-compact. In particular [9], the modulus of 7' exists and the equality (33) is valid. By
Lemma 30, |7'| is order continuous. Next, |/,,| — |T'| in the r-norm. By Lemma 29, we can
assume that K, € (E>)* ® F*. Obviously, |K,, — |T'||z — 0 in F for each z € E*. According
to Lemma 27, we have |T'|z = 0 and hence T" = 0, a contradiction. O

Lemma 31. For a Banach lattice E and an AM -space F' the next statements hold:

(@) If a sequence K,, € E* ® F converges in L(E, F) to an operator T, then T € L,(E, F)
and K,, — T in the r-norm;

(b) The equality K(E, F) = K.(E, F) is valid.

Proof. (a) Since F'is an AM-space, by Krengel theorem ([8], p. 271), the space C(E, F)
of all compact operators from FE into F'is a Banach lattice under the r-norm. The sequence K,
isal| - ||,-Cauchy sequence. Indeed,

”Kn_Km||7": |||Kn_Km||| = |||Kn_Km|**|| (34)
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Next, the relation K,, — K,,, € E* ® F implies ([16], p. 296)
[ K = Ko™ = |7 — K (35)
The space F** is ([8], p. 188, 193) a Dedekind complete AM -space with a unit, so ([1], p. 96)
I = Kol = 1T = Kl = (1K = Ko

Therefore, using (34) and (35), we have || K, — K,,||» = || K}, — K || — 0as n,m — oo. Thus,
K, converges in the r-norm. Obviously, K,, — T'in the r-norm.

(b) By Grothendieck’s results ([16], p. 239; [1], p. 125-129), an AM-space F’ has the ap-
proximation property, that is, every operator K € C(E, F') can be approximated in the operator
norm by an operators of finite rank. It remains to use of (a). U

Now we are ready to derive a number of corollaries of Theorem 4.

Corollary 32. Let E and F be two Banach lattices, moreover F is an AM-space. If a
non-zero operator T belongs to L,,(E, F), then T ¢ Ey ® F, where the closure in L(E, I)
with the operator norm.

Proof. If there exists a sequence K,, € E ® F' which is convergent to the operator 7' in

L(E, F), then by previous lemma, K,, — T in the r-norm. It is a contradiction in view of
Theorem 4. O

Corollary 33. If E and F are Banach lattices, F is an AM-space, E = {0}, then
K(E,F)NL,(E,F)=1{0}.

Corollary 34. If E is an AM-space with E;, = {0} (for example, E = C|0,1]), then
K(E)N L,(E)={0}.

In the case of a Dedekind complete Banach lattice F' the space L,.(E, F') is a Banach lattice
under the r-norm ([8], p. 248), so the band £,,(E, F') of order continuous operators is closed in
the r-norm, that is, the relations Sy, € L, (E, F'), Sy — S in the r-norm, imply S € L,,(E, F).
The next theorem improves this fact and Theorem 4.

Theorem 35. Let E and F' be two Banach lattices with F' Dedekind complete, and let
S; € L,(E,F)and K; € EY ® F be two arbitrary collections of an operators, i € A. If
’mAf |S; — K|, = 0, then in£ | K- = 0.
1€ 1€

Proof. Clearly, infl 11S:| — | Kil||l» = 0. Fix € > 0. Using Lemma 29, we find an operators
1€
Q; € (EX)" ® F* such that

inf [[|5i] = Qill» = 0, sup[|[Ki] = Qill» <e. (36)
€A iCA

The inequality |.S;| + ||5;] — Q;| > |@;] is valid. By Lemma 26, ||S;| — Q;| > |Q;], it follows
from (36) that in£ |Q:]l- = 0. Using (36) once more, we have || K|, < e + ||Q;||, for all 7, so
1€

‘m£ | Kil|» < e. Letting € | 0 yields in£ | K| = 0, as desired. O
(IS S
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