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Abstract. Let T be a positive operator on a Banach lattice .. Some properties of Weyl essential spectrum

oew(T), in particular, the equality oey (1) = (\  o(T+ K), where IC(E) is the set of all compact
0<KeK(E)

operators on FE, are established. If 7(7") does not belong to Fredholm essential spectrum oe¢(7), then

r(T) & o(T + a|T-1|) for every a # 0, where T is a residue of the resolvent R(.,T') at 7(7T"). The new

conditions for which r(T") & o¢¢(T") implies 7(T') & 0o, (T) = N o(T—K), are derived. The
0<KeK(E)<T
question when the relation oy (7') C 06(7') holds, where o) (T) = (| o(T—@Q) is Lozanovsky’s
0<Q<T
Q<SKeK(E)

essential spectrum, will be considered. Lozanovsky’s order essential spectrum is introduced. A number
of auxiliary results are proved. Among them the following generalization of Nikol’sky’s theorem: if
T is an operator of index zero, then 7' = R + K, where R is invertible, K > 0 is of finite rank.
Under the natural assumptions (one of them is 7(7") ¢ o4¢(T")) a theorem about the Frobenius normal
form is proved: there exist T-invariant bands £ = B, 2 B,_1 2 ... 2 By = {0} such that if
r(Pp,TPp,) = r(T), where D; = B; N Bid_l, then an operator Pp, T Pp, on D; is band irreducible.
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1 Introduction.
This note is a continuation of research which was begun by the author in the note [4] and is
devoted to special subsets of the spectrum of a positive operator 7' on some Banach lattice F.

Let Z be a Banach space, T be an (linear, bounded) operator on Z. As usual, the spectrum
of an operator 7" will be denoted by o (7). Recall that the Fredholm essential spectrum of an
operator 7' is the set

0et(T) = {X € C: X\ — T is not a Fredholm operator},

and the Weyl essential spectrum is the set

oew(T) = {A€C:indA=T)#0} = (] oT+K)= () o(T+K),
KeK(Z) KeF(Z)

where KC(Z) and F(Z) are sets of all compact operators and of all finite-rank operators on Z,
respectively.
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In the case, when F is a Banach lattice, 7" is an operator on £, we define [4]

o™ = (] oT+K),
0<KeK(E)

o) = [ oT-K), cal)= () oT-Q).
0<KeK(E)<T oL

It will be show below that the equality o (T') = ey (1) always holds hence, if the spectral
radius 7(7) & o.(T), then there exists a compact operator X > 0 such that 7(T") & o(T + K).
The question about the concrete operators K satisfying the last relation, will be considered. The
discussion of the question when r(T") € o¢(T) implies 7(T) & o, (1), will be continued. The
conditions such that the inclusion ooy (7') C 04 (T) is true, will be given. Two auxiliary results
which are of independent interest, will be proved. Namely, an analog for the case of a Banach
lattice of the classical Nikol’sky’s theorem and a theorem about the Frobenius normal form of
a positive operator.

For terminology, notions, and properties on the theory of Banach lattices and operators on
them not explained or proved in this note, we refer to [2, 5]; see also [9, 11]. Throughout the
note, unless otherwise stated, a Banach lattice £ will be assumed to be complex and infinite
dimensional and an operator 7" on £ will be assumed linear and bounded.

2 Auxiliary results.

2.1 Nikol’sky’s theorem for the case of a Banach lattice.

Nikol’sky’s theorem [10] asserts that an operator 7" on a Banach space Z is a Fredholm operator
of index zero iff T' = R + K, where the operator R is invertible and /K is a finite-rank operator.
For an operators on a Banach lattice this result can be made more precisely (Theorem 3 below).
We need the next lemma.

Lemma 1. Let R be an invertible operator on a Banach space Z, K € K(Z), A € C. Then
there exists an invertible operator R, and a number a > 0 such that R + \K = R, + aK.

Proof. The operator R~ K is compact therefore, ﬁ ¢ o(R'K) for some a > 0. Then
R+AK=R—(a— MK +aK =R(I — (a — AR 'K) + aK.

It remains to notice that Ry = R(I — (a — \)R™'K) is invertible. O

Recall that if K is a finite-rank operator between two Banach lattices £/ and F', then the
modulus of K exists and is a compact operator. Moreover, | K| can be approximated in L(E, ')
by a finite-rank positive operators ([11], p. 253-254, Theorem IV.4.6). The next lemma im-
proves this result. The proof of it is analogous, but for the sake of completeness we include the
proof.

Lemma 2. Let E and F be Banach lattices, an operator K € F(E, F). Then the operators
K™ and K~ can be approximated in L(E, F) by a finite-rank positive operators.
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Proof. 1t suffices to consider K. There exists z € F't such that |[Kz| < z forall x € U,
where U is the closed unit ball of £. The ideal F, is an AM-space with the unit z. Clearly,
K(FE) C F,. The restriction of K to F, is denoted by K,. Then K exists and is compact.
For every € > 0 there exist y; € F and y; € (F7)* such that ||y — > (yy)yill < € for all

=1

y € K1 (U). Putting 27 = (K)*y;, we obtain || KTz — > (zix)y:|| < €l|z]|||x||, as desired.C]

=1

Theorem 3. An operator T' on a Banach lattice F is a Fredholm operator of index zero iff
T = R+ K, where R is invertible and K is a positive finite-rank operator.

Proof. Only the necessity needs to be proved. By Nikol’sky’s theorem there exist an invertible
operator [? and a finite-rank operator K such that 7' = R + K. The operator K is presented in
the form K = K; 4 1K5, where K; and K are a real finite-rank operators thus,

T=(K)"+R— (K +i(Ky)" —i(Ky)~.
Lemma 1 guarantees the existence of a number a; > 0 and an invertible operator R; with
T=(K)"+a(K)™ + R +i(Ky)t —i(Ky)™.
Using Lemma 1 again, we find numbers a, > 0, a3 > 0 and an invertible operator R3 such that
T = (K)"+a(K)” +ay(Ky)" +a3(Ky)~ + Rs.

It remains to use of Lemma 2 for the completion of the proof. UJ

2.2 The Frobenius normal form of a positive operator.

A classical result about the Frobenius normal form is next; a simultaneous permutation of rows
and columns can convert a nonnegative matrix to lower block triangular form

An 0 ... 0
A21 A22 e 0
Ami Am2 o A

where the matrices A;;, ¢ = 1, m, are irreducible. The main purpose of this section is a proof
of an analog of this result for the case of a positive operator on a Banach lattice (Theorem 13
below).

Lemma 4. Let E be a Riesz space, P, be a net of a band projections on E such that P,z | 0
for all x > 0 and for some x, > 0 P,r, = x, Then the linear span of {x,} is infinite
dimensional.

Proof. Fix a;. Then for some index cs > «; the inequality x,, — P,,Z,, > 0 holds. Next,
some index as > «y satisfies z,, — FP,,2,, > 0. Continuing the construction inductively in
the obvious manner, we build the sequence «; with the next properties: z,, — Pa,,,Ta, > 0
and a1 > «; for all . The proof would be finished if we show that elements z,,, ..., z,, are



linearly independent for an arbitrary n. Let » _ b;z,, = 0 be an equality which holds for some
i=1
scalars b;. We have

0= Z bi(Poy — Pay)Ta; = b1(Pay — Poy)Tay = b1(Tay — PayTay),
1=1

whence b; = 0. Applying the operator P,, — P,, to the equality > b;z,, = 0, we get by = 0.
i=2
As aresult b; = 0, 7 = 1, n, and the proof is finished. O

Lemma 5. Let Z be a Banach space and T' € L(Z) such that r(T) belongs to the point
spectrum o,(T). If Zy is a closed T*-invariant subspace of Z* which separates the points of Z,
then r(T*|z,) = r(T'), where T*| 4, is a restriction of T* to Z,.
Proof. Put T" = T*|4,. The inequality (7") < r(T') is obvious. There exists a non-zero x such
that Tx = r(7T')x. For an arbitrary functional x* € Z, we have

0=z*(r(T)x —Tx) = ((r(T) —T)x*)x

so r(T) — T" is not invertible, i.e., r(1") > r(T). d

Recall that if )\ is an isolated point of the spectrum o (7") of an operator 7" on a Banach
+oo .

space Z, then the resolvent R(.,T") of T has the Laurent expansion R(\, 7)) = > (A—X)'T;

around \g. This expansion holds also when )y belongs to the resolvent set p(7'). In this case,
of course, 7; = 0, ¢ < 0, moreover the converse is valid. There exists a path lying outside of
oot (T') and joining Ay with a point in p(T') (of course, it is true for \g = r(T'), when T is a
positive operator on a Banach lattice E and r(T') ¢ o(T')) iff ([2], p. 300-302) ), is a pole
of R(.,T) and the residue 7", is a finite-rank operator. If 7" > 0 and 7(7") & oet(T), then the
operators 7T; are real, T_,,, > 0, where m is the order of the pole of R(.,T) at r(T'), and T; are
of finite rank for ¢ < 0. Remark that 7} is not of finite rank.

Lemma 6. Let Y be a Banach lattice and T' > 0 an operator on E. Assume \g belongs to the
boundary of the unbounded component in C of p(T), i.e., \g € Opso(T), and is an isolated point
of o(T). The residue T_1 of R(.,T) at g fails to be an order continuous operator if there exists
a net of T-invariant projection bands B, such that Pg_ x 1 x for all x > 0 and Ny & o(T|p,)
for all a.

Proof. Assume by way of contradiction that 7"; is order continuous. Then the set po.(7)
contains a deleted neighbourhood of A\ so ([2], p. 256) B,, are T;-invariant for all ¢, where 7;
are coefficients of the Laurent series expansion of R(.,7T) around \,. The equality ([2], p. 256)
R(\,T)|g, = R(\, T|p,) for A sufficiently close to \y implies

+00 oo
> A= X) T, = (A= X) (T]5.):
i=—00 =0

therefore, 1|, = (T|p,)-1 = 0, hence T_1 P, = 0 for all a so T"_; = 0, a contradiction.[]

The next lemma gives the conditions under which the residue 7"_; is order continuous. When
T 1s Riesz operator, this result was established in [8] (Propositions 4, 5). In our case the proof
of it is analogous and will be omitted.



Lemma 7. Let I be a Banach lattice separated by E;” and T’ > 0 an order continuous operator
on E such that r(T) € o¢¢(T'). Then the residue T_1 of R(.,T) at r(T) is order continuous.
Recall the next important result [6] which repeatedly will be used in the future.
Lemma 8. Ler S and T be an operators on a Banach lattice E such that 0 < S < T. Then
r(T) & oot (T) implies r(T) & oct(S).
If B is a projection band in F, Pp is the band projection on B, then put T = PgT' Py and
denote the restriction 7z to B by T’s.
Lemma 9. If a projection band B is invariant under an operator T' > 0 on a Banach lattice E,
then r(Tg) = r(T|p). N
In particular, for every projection band B r(Tg) = r(Tp).
Proof. The equalities (T")p = (T5)" and (T'|g)" = T"|p hold. Consequently, by Gelfand
formula ([2], p. 243), it suffices to establish the equality ||Tz|| = ||T|z||- For arbitrary x € E
and y € B we have

I Tp|| = |[PpT Ppz|| = T s Ppe| < [[T]sllll=l,
1718yl = Tyl = Tyl < T3]yl a

A similar result holds if in place of B an arbitrary closed complemented 7-invariant sub-
space of a Banach space 7 is considered.

The second statement of the previous lemma can be made more precise.
Lemma 10. Let B be a projection band in a Banach lattice ¥ and T' > 0 an operator on E.
Then o(Tg) C o(Ts) C o(Tg) U {0}.
Proof. Assume that B is non-trivial. Show the first inclusion. Let A &€ o(T) so A # 0. If
fo = Az, then x € B therefore, Tzx = Ax hence x = 0. Fix z € B. There exists y satisfying
Ay — Ty = z. The element y € B, it follows that (A — TB)y = 2. Asaresult \ ¢ U(fB).

For a proof of the second inclusion we consider a non-zero A ¢ O'(TB). If Tpr = Az

so z € B, hence x = 0. Fix z € E. There exists y € B such that (A — Tg)y = Ppz or
(A—Tg)y = Ppz. Then (A — Tp)(y + s Ppaz) = Ppz + Pgaz = zand we get A € o(1). 0]

A simply ordered set of projection bands {B,,..., B} is called a T-invariant chain if
B, 2 ... D B and all B; are T-invariant. Notice that {E, {0}} is, of course, a T-invariant
chain for every T, but the set {{0}, £'} is not a T-invariant chain.

Lemma 11. Assume that {E = B,,B,_1,...,B1,By = {0}} is a T-invariant chain for a

positive operator T on a Banach lattice E. Then we have the inclusion o(T)) C |J o(T5,npa 1).
i=1 -

Proof. We can suppose that inclusions B, O B, 1 2 ... D By are proper and n > 1 so
0 € Jo(Tp,), where D; = B; N B ;. We will show thatif A & |J o(Tp,), then A\ & o(T).
i=1 ,

=1

The equality ) 5 Pp, = I implies
j=1

AT = )\zn: Pp, — En: zn: Pp,TPp, = zn: <)\PD]. - f: PD].TPDZ.)
j=1

j=1 i=1 j=1 i=j



so the existence and the uniqueness of a solution of the equation Ax — T'x = z are equivalent to
the existence and the uniqueness of a solution of the system

)\mn — PDnTPanI}n = PDnZ
/\In—l — (PDn,lTxn + PanlTPDn,1xn—1) = Panlz

)\.1'1 — (PDlTiEn + PDlT:En—l + ...+ PDITPDle) = PD1Z-

The first equation of the given system has the unique solution. Therefore, also the second

equation has unique solution. Next, with the help of the elementary induction, we easy obtain

the desired solubility of the system. U
Now we are ready to prove the main lemma.

Lemma 12. Let E be a Dedekind complete Banach lattice such that the order continuous dual
L7 separates the points of E. Let T' be a positive order continuous operator on £ such that
r(T) & oet(T). If { B2, B1} is a T-invariant chain, v(Tg,npa) = r(T'), then either

(a) there exists a T-invariant chain {By, B", B', B1} with the properties: the operator
T Brn(Br)d is band irreducible,

T(TB”Q(B’)d) = T(T), T(TBQO(B”)d) < T(T), T(TB’QB?) < T(T),

or
(b) there exists a T-invariant chain { By, B"', B1} with the properties:
prop

T(TBQH(B’”)d> = T(TB’”QB?) = T(T)

Proof. Introduce the set
& ={B:Bisaband, By C B, B L By, T(B) C B, r(Tpnps) <r(T)}.

We have & # () as By € &;. Let & be ordered by inclusion. We will show that £; has a maximal
element. Let {B,} be a chain in £;. The corresponding real projections Pg_ T Py. Then P, is
a band projection. Indeed, fix an index ay. For o > a we have PBOL0 = Pp, PBQ0 T POPB%
hence Pp, = FyPp,, therefore, Pg, = FyPp, | P so P = Py. Put By = By(E). Clearly,
By is a band. Moreover By is T-invariant. In fact, if x € By, then TP,x T TFPyx = Tx
and TP,x € By, C Byso Tz € By. Show that r(T5,npa) < 7(T). Assume by way of
contradiction. By Lemma 8 the relation 7(7") & oes(T5,n Bld) is satisfied. The equality ([2], p.
256) R(A, Tgynpa)| gonps = R(A, TBOQB?) holds for A sufficiently close to r(7'), it follows that
r(T) ¢ O'ef(TBom pa). Bands BN B¢ are subsets of ByN B and are T, Bonpd-invariant. Actually,

if an element z € B, N B, then TBOmB(lix = PpnpgTe € Bi. Moreover, Tx € B, hence
PBQOB'?T:E € Ba. NeXt,

TBome‘BaﬁB?$ = Tynpe® = Ppyrpalc = Py npaTe =T npat = Tp ~pa.
Then according to Lemma 9 we have
r(Tynpalpanss) = 7(T,npa) = r(Tp,aps) < 7(T).
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In view of the obvious relation Py pq T Pgn pd and Lemma 7 this contradicts Lemma 6.
Thus, 7(T'g,npa) < 7(T') so By € &. By Zorn’s lemma &; has a maximal element, say B,y,,.
Introduce the set

& ={B:Bisaband, B C B, B L B,,,, T(BY) C BY, v(Tpng,) < r(T)}.

We have & # ) as B € &,. Show that & has a maximal (by inclusion) element. Again, let
{B,} be a chain in &. The projections Pp_ order converges to the band projection Pg, for
some band By. Clearly, BY C By and By | B,,,. Next, if # € B, then z € B so Tx € BY,
hence Tx = (I — Pg,)Tx | (I — Pg,)Tz or Tx € BY. Show that r(Tg,np,) < r(T). Assume
by way of contradiction. Using Lemma 8 once more, we have (1) & o¢(Tp,np,).- Then
r(Tpang,) = r(T) for all a.. Indeed, { By, BS, By} is a Tpp,np,-invariant chain. By Lemma 11
the inclusion
o(Tpons,) € 0(Tpynp.) YU o(Trang,) U {0}

is valid. It follows that the inequality r(Tganp,) < r(T) implies 7(T,np,) < r(T), which is a
contradiction. Thus, 7(T") & 0et(Tpanp,). In particular, 7(7") is an eigenvalue of the operators
Tganp,y» 1-€., Tpanp,Ta = 1(T)1, for some x, > 0. The equality By = B, + B3 N B, implies

ByN By =B,NBy+BiNByN By =B, N By + BN By,
hence, using the inclusion 7'z, € Bg, we have
PBOOBgTPBODnga = (PBOOBQ — PBgﬁBg)Tma + T(T).Z'a = PBaﬂB2T:Ua + T'(T)l'a = T(T).Ta.

So z,, are eigenvectors of the operator T’z,np,. Notice that Pganp, = Pp, — Pp,Pp, | 0.
According to Lemma 4 we have dim N (r(T') — T,np,) = +0o, which is a contradiction.
Thus, r(Tpynp,) < 7(T) so By € &. By Zorn’s lemma &, has a maximal element, say B,,,.

Put B' = By, N By,,. The set { By, By, B, , B1} is a T, pa-invariant chain. By Lemma
11, it follows that

0(Tpynpg) € {0} U0 (TBynp,,) Ua(Tp) Ua(Tp, apg),

hence r(T;z') = r(T) (in particular, B’ # {0}). If Tp is band irreducible, then the T-invariant
chain { By, B, By, , B1} of (a) is obtained.

C0n~sider the situation when the operator fB/ is not band irreducible, i.e., there exists a non-
trivial Tg/-invariant band B” C B’. The band B” = B” & B,,, is T-invariant. In fact, let

x € B", y€ B,,,. ThenTy € B,,, and

Ter =TPgx=Tpx+ PBm1 TPgx + PBmQTPB/x € B"”
as Pg,, TPga = 0. The last equality is valid a via of Pg:a € By, hence TPy« € B,,. Thus,
we obtain the T-invariant chain { By, B", B1 } satisfying r(Tp,nmya) = r(Tpmnps) = 7(T).

Actually, if r(Tgmnpa) < r(T), then the band B” = B" & B, € &, which is impossible in
view of the maximality of B,,,. Let us verify the equality r(Tz,n(pya) = 7(T'). The relations

(B, © (B'0(B")")* = By, N (B' N (B")*)* =



d d ! d d d !
= B!, n((B) & B") = (B}, N (B)) @ (B, N B") =
= (BY, N (B, N BA)) © B = (B, 0 (B, + By,) @ B = B”

hold. Therefore, if r(Tp,ngmya) < r(T') then the band B,,, & (B’ N (B")?) € &, which is
impossible in view of the maximality of B,,,,.
Finally, { By, B" @ By,,,, B1} is the desired T-invariant chain of (b). O

Notice that in the case of (a) the situation when B" = By, B" = By, is possible. It is
equivalent to the band irreducibility of the operator Tz, pa.

Further, throughout this section, we will assume that the assumptions of Lemma 12 hold.

A pair of T-invariant projection bands (Bs, B1), By 2 By, is called irreducible, if either
me pa is band irreducible or 7(Tg,pa) < (7). The pair (B, B1) which is not irreducible, is
called (a)-reducible if for the T-invariant chain { By, B, } the condition (a) of Lemma 12 holds,
and is called (b)-reducible if it is not (a)-reducible.

Let 7 = {B,,..., By} be a T-invariant chain. Define a new 7T-invariant chain 7; by a next
rule. Consider the pair (By, By). If this pair is (a)-reducible, then there exist bands B”, B’
such that { By, B”, B’, By} is a T-invariant chain, moreover TBHQ( pya is band irreducible and
the inequalities r(T,n(prya) < r(T), r(Tpnps) < r(T') hold. Consequently, the T-invariant
chain 7y = {B,, ..., By, B1,B", B’, By} which is different from 7, is defined. Remark that
pairs (By, B"), (B", B'), (B’, By) are irreducible. If (By, By) is (b)-reducible, then there exists
B" such that { By, B", By} is a T-invariant chain, r(Tg,(giya) = 1(Tgmnps) = r(T) (we call
this procedure by a (b)-decomposition of the pair (B, By) into pairs (By, B”), (B", By)). In
this case, we define 7, = {B,,..., B2, By, B”, By}. Clearly, 7; # 7. If the pair (B, By)
is irreducible, then letting 7; = 7. So, 7; is obtained. Consider 7; and the pair (Bs, B;)
corresponding to 7;. Performing with ( By, By) actions which are described above, we obtain a
T-invariant chain 75. Remark that if the pair (B, By) is irreducible, then put 75 = 7;. Consider
7, and the pair (Bs, Bs) corresponding to 75. We continue this process and obtain, as a result,
a T-invariant chain 7,, which is called generated by 7 and will be denoted by [7]. Notice that
[7] is not unique determinate.

Theorem 13. Let the assumptions of Lemma 12 be satisfied. There exists a T'-invariant chain
{E = By, Bu-1,...,B1, By = {0}} such that if the equality r(T'g,~ga ) = r(T) holds for

some i = 1,n, then the operator Tig npa  is band irreducible.

Proof. Consider the T-invariant chain 7 = {B{, B}, where B = E, B} = {0}. We
generate by 7 a T-invariant chain [7|. If [7] = 7, then the theorem is proved, otherwise we
consider [[7]]. Again, if [[7]] = [7], then the proof is finished, otherwise we will continue
this process further. Show that we stop on some step, i.e., we obtain 7" such that [77] = 7.
It will be the desired 7T-invariant chain. Assume by way of contradiction. The pair (B}, B})
is (b)so-reducible that is, after the (b)-decomposition of it at least one from two new pairs also
will be (b)-reducible, and after the (b)-decomposition of this new pair, we obtain at least one
(b)-reducible pair again, moreover continuing this process further, we will be obtain at least
one (b)-reducible pair every time. Thus, if B; is a band such that { By, By, B} } is a T-invariant
chain satisfying 7(Tzrnpa) = r(Tp,ns;)a) = r(T), then one of pairs (BY, Bs) or (Bs, By) is
(b)oo-reducible again. Denote it by (B, Bj) and the second pair by ("B,,'Bs). Remark that
BY N (BY)Y L ("By) N ('By)Y. There exists a band Bs such that { By, B3, B}} is a T-invariant



chain satisfying r(T'gynpg) = r(Tpsn(sy)a) = (1), moreover
(B3N B5)U(Bs N (By)Y) € By N (By)Y, By N By L Byn (By)~.

One of (BY, Bs) or (B3, B}) is (b).-reducible again. Denote it by (B, B), the second one by
("Bs,'Bs). Continuing this process further, as a result, we obtain a sequence of pairs of bands
("By,'B,,) which have the next properties:

T(T(”Bn)ﬂ(’Bn)d) = T’(T), (HBZ') N (/Bi)d 1 (”Bj) N (/Bj)d7 ) 7& j, Z,] > 1.

Put D,, = ("Bn:1) N (Buy1)?. Then ([5], p. 76) Tp, L Tp,, © # j, and there exists the
operator Ty, such that > Tp, 1 Tw. Clearly, 7(T) = r(T) &€ 0et(T). On the other hand,

=1
r(Tp,) = r(T) ¢ o«(Tp,), moreover the equality T, x = r(T)z implies Tz = r(7T)x.
Whence dim N (r(T') — Ty,) = +o0, which is a contradiction. O
When T is Riesz operator (that is, o.f(7') = {0}) the theorem about the Frobenius normal
form, in some other view, was proved in [8].

Remark that the assumption r(7T") & o.¢(T') is essential for the conclusion of the previous
t

theorem. For example, if 7' : L, — L,, 1 < p < oo, is Cesaro operator T'v = % f x(s) ds, then
0

it is easy to see that the assertion of theorem does not hold for 7" (of course, r(T") € o¢(T)). In
fact ([7], p. 99),

) q, _4q _ i q q
Uef(T) = {)\ . |)‘_ §| - 5}7 UeW<T) - {)\ ’)‘_ §| < 5}7

where%—i—%:1f0r1<p<ooandq:1forp:oo.

In the next lemmas the connection between the residue 7°_; of R(.,T") at r(7") and residues
at r(T") of resolvents of a “diagonal” operators in the Frobenius normal form of 7', is shown.

Lemma 14. Let E be a Banach lattice and T > 0 an operator on E such that r(T) & o(T).
Let B be a T-invariant projection band. Then (T_1)p = (Tg)-1, (T-1)ga = (Tga)_1, where
residues of resolvents of the corresponding operators at r(T') are considered.
Proof. Assume B is non-trivial. According to Lemma 8 in a sufficiently small deleted neigh-
bourhood U of r(T") the operator A — T’z is invertible. Moreover we can suppose that for A € U
the band B is R(\, T')- and R(\, Tg)-invariant. Then, it is easily to verify for A € U the equality
R\, T)glp = R(\,Tg)|p holds, hence (T"_1)g|g = (Tg)_1|p. This with help of the equality
R(X, Tp)Ppa = 5 Ppa and so the equality (T)_y Pga = 0, gives (T_1)p = (Tp)-1.

The band B°, where the polar is taken in the dual system (F, E*), is T*-invariant. As
showed above, (T*) g = ((1T™*)po)—_1. So from the equality Pgo = (Ppga)* we have

((T1)pa)" = (Ppa)"T71(Ppa)" = (PpeT" Ppe) 1 = ((Tppa)") -1 = (Tga) 1),

it follows that (7_1)ga = (Tga)_;. d

Lemma 15. Let E be a Banach lattice and T > 0 an operator on E such that r(T) & oee(T).
Let { By, B, } be a T-invariant chain. Then for B = By N B{ the equalities (T_1)p = (Tg)_1,



(T)_1|p = (Ts)_1 hold, where residues of resolvents of the corresponding operators at r(T)
are considered.
In particular, r(Tg) < r(T) iff (T_1)p = 0.

Proof. By Lemma 14 we have

(T—l)BmBg = PBmBgT—lmeBg = PBl(TBg)—1PB1 = (TBmBg)—l-

For the verification of the second equality it suffices to observe that by A from a sufficiently
small deleted neighbourhood of 7(7") we have R(\, Tg)|g = R(\, Tg). O

3 Weyl spectrum o, (1") for operators on Banach lattices.

We begin with the simply corollaries of Theorem 3.
Theorem 16. Let E be a Banach lattice and 'I' a bounded linear operator on E. Then

o(T) =0l (T)= () oT+K)= () oT-K)= (] oT-K).
0<KEeF(E) 0<KEeK(E) 0<KeF(E)

Corollary 17. Let E be a Banach lattice and T € L(E). Then each of the following conditions
ensures that \o & o(T + K) for some positive operator K € F(E):
(@) \o € o(T) and there is path lying outside of o.t(T') and joining Ao with a point in p(T);
(b) \g € 00 (T"), range of \g—1T  is closed and either nul(A\g—T") < oo or def(\g—T") < 0.

Proof. Both conditions (a) ([2], p. 300) and (b) ([7], p. 76) are equivalent to the fact that
the point )\ is an isolated point of o(7") and Ay & 0e¢(1). Whence Ay & 0ew (7). Indeed, if
T, is a residue of R(.,T) at A, then by spectral mapping theorem ([2], p. 260) the equality
o(T + aT—1) = (o(T) \ {Mo}) U{ Ao + a} holds for all a. Now the desired assertion follows
from Theorem 16. U

A glance at the proof of Theorem 3 guarantees that if \g € o(T + K; + iK>), where the
real operators K; € K(E), thenas K, 0 < K € K(F), satisfies \g € o(T + K), we can take
an operator of a form K| + a; K; + axK, + a3K; for some a; > 0, i = 1,3. A question
arises naturally, namely, what are concrete /K (depending upon )\, and T") satisfying the relation
Ao &€ o(T + K)? The next theorem gives an answer to this question for the case Ay = (7).

Theorem 18. Let T' be a positive operator on a Banach lattice E such that r(T) ¢ oet(T) and
+oo .
RNT)= > (A=r(T))"T; for X close to r(T). Then:

(a) T(T)_g o(T + a|T_41]) for an arbitrary non-zero number a;

(b) if 7(T') is a simply eigenvalue of the operator T, i.e., dim N (r(T) — T) = 1, then the
relation r(T) & o(T + z* ® z) holds for an arbitrary functional z* > 0 and element z > 0 such
that z*(T_,,z) > 0, where m is the order of a pole of R(.,T) at r(T);

(c) if E is either AM - or AL-space, the point r(T) is a pole of R(.,T) the order two, then
foreverya >0 r(T) & o(T + (aT-1 + nT_5)") for sufficiently large n (depending upon a).
Proof. (a) Fix a number a # 0. With help of a passage to the dual space we can assume that
all conditions of Lemma 12 are satisfied. Let {E' = B,,, B,,_1, ..., By = {0}} be a T-invariant
chain from Theorem 13. Put D; = B; N B¢ |, i = 1,n. If for some i r(Tp,) < r(T), then
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by Lemma 15 |T_4|p, = |(T-1)p,| = 0so r(T) € o(Tp, + a|T-1|p,). Let r(Tp,) = r(T') for
some index ¢ thus, T, is band irreducible hence [3] (Tp,)-1 > 0. Again according to Lemma

15 we have (Tp,)_1|p, = (Tp,)_1 and

(Tp;)-1 = (Ip,)-1Pp, + (Tfl)DiPD? = (Ip,)-1Pp, 2 0
therefore,
(T + a|T_1|)Di = TDi + a|T—1|D1: = TDi + a‘(TDi)_1| = TDq', + a(TDi>_1’

The relation (see the proof of Corollary 17) (7)) ¢ U(Tpi + a(fpi)_l) and Lemma 10 imply

r(T) & o(Tp, + a(Tp,)-1). Thus, r(T) ¢ U o((T + a|T-1|)p,). By Lemma 11 we have
i=1
r(T) & o(T + a|T_4)).
The assertions (b) and (c) are proved in [4] (Theorem 4, proofs of (b), (c)). O

4 Some properties of o__ (7).

As the following example shows, in general the equality o, (T') = 0cw(T") does not hold.

Example 19 (an operator T' > 0 such that o(T) C 0ew(T) C 0,,(T) C o(T), where all
inclusions are proper). Consider the Banach lattice &/ = (5@ (5D {5. Let T} be the forward shift
operator on /5, T5 be the backward shift operator on /5, define the operator 75 by 13 = %Tl, and
let K} be an arbitrary compact positive operator on /5 satisfies 7(/K;) > 1. Recall that ([7], p.
72-73) 0et(Th) = 0et(To) = {X : || = 1} and 0y (T1) = Oew(T2) = {X : |A| < 1}, moreover
ind(A — 7;) = —1 and ind(A — Ty) = 1 for |[\| < 1. Consider the operator " : £ — E
defined by T' = (T} + K;) @ Ty & T5. The operator A\ — T is a Fredholm operator, i.e., it
belongs to F,.q(E), iff the operators A — (T} + K1), A — T; € Freq(f2), where i = 2, 3, by this
A= (T1+ K1) € Frea(le) iff A\ =T, € Frea(la), hence oo(T) = {N: [N\ = 1JU{A: || = %}
Next, for A & o (T') the equalities

ind(A — T) = ind(A — (1 + K1) + 23: ind(\ — T3), ind(A — (T} + K1)) = ind(A — T})
i=2
hold $0 0w (T) = {X : [A| < 2} U{A: |A] = 1}. The inclusion
Oe(T) € 0 (1 & T & T) ()
is valid. Indeed, if for some K € K(E),0 < K <T\1 & T, & T3,
ANoTholhoTl;—K)=0T - (K+ K, ®050)),
then A\ Z o, (T)as0 < K + K; ®0& 0 <7 From (*) we have
0(T) Co (1T dTs) Co(TidTydTs) ={X: |\ <1} (**)

Next,
Oew(T2) € 0cy,(T). (™)
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Actually, let A € o(T — K), where K € K(F) and 0 < K < T. Then the restriction of K
to the band 0 & /5 & 0 defines the compact operator K5 > 0 on /5 satisfying 0 < Ky < Ts.
Clearly, A & o(Ty — K3) and (***) is proved. From inclusions oey(7%) C o, (T%), (**), (**)
and the equality oy (T2) = {A : |A| < 1} we have o (7)) = {A : |A\] < 1}. Remain to observe
that the inclusion o (7') C o(T") is proper as r(K7) > 1. O

How it has shown in the previous section if 7(T") & oe(T), then r(T) & 0ew(T). The
following theorem gives the conditions under which r(T') & o_, (7).

Theorem 20. Let T be a positive operator on a Banach lattice on E such that r(T) & oc(T)
and there exists a net of a compact operators K, satisfying

0< Kyx1TTx (A)

forall x > 0. Then each of the following conditions ensures that r(T — K,) < r(T) for some
asor(T) & o, (T):

(@) the point r(T) is a simply pole of the resolvent R(.,T'), moreover the residue at this point
is a strictly positive operator,

(b) the order continuous dual E;, separates the points of I/, 'I'is order continuous.

Proof. Under the assumptions of (a) the desired assertion is proved in [4] (Theorem 5, (a)).
Suppose (b) is true. First of all we consider the case when £ is Dedekind complete. Let
{E =B,,B,_1,...,By = {0}} be a T-invariant chain from Theorem 13. Put D; = B;N B{ ,,
i = 1,n. If for some index ¢ r(Tp,) < r(T), then, obviously, r((T" — K,)p,) < r(T).
If »(Tp,) = r(T), then a glance at the part (a) guarantees that the band irreducibility of the
operator Tp, and the relation (K,)p, T Tp, imply r(Tp, — (K.)p,) < r(T) for some a (all
conditions of (a) for the operator T p, are valid [3]). According to Lemmas 9 and 11 we get the
desired conclusion.

In the general case, the band £ is T™- and K} -invariant. Restrictions of these operators to
E~ we denote by 7" and K, respectively. By this K/, T T7". Let (T — K,) = r(T) for all
«. From Lemma 5 we know that (T — K,) = r(T" — K)) and r(T") = r(T), but, as showed
above, r(1" — K|, /) < r(1") for some ay, a contradiction. O

It is easy to see from the proof, the condition K, € KC(E) is only playing the role for the
conclusion 7(T") & o, (T). In others words, under the assumptions of Theorem 20 for every
net of an operators T, 0 < T,x T T for all © > 0, the inequality r(T — T,,) < r(T') holds for
some «. It suffices to observe that by Lemma 8 the assertion of the part (a) of Theorem 5 from
[4] is true without the assumption K, € K(FE).

Corollary 21. Let E be a Banach lattice and T' > 0 an operator on E such that r(T') & oee(T)
and there exists an increasing net K, € KC(E) satisfying

0< K,x—Tx (Ag)

for all x > 0, where the convergence is in the norm. Then r(T — K,) < r(T) for some « so
r(T) & 05 (T).
Proof. The desired assertion follows from the part (b) of the previous theorem as K} T 7™. [

For a validity of the inequality r(7" — K,) < r(T") in Theorem 20 the assumption about the
order continuity of the operator 7" is essential. Actually, consider the space /., the sequence
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zn = (1,...,1,0,0,...) € { and a functional z* € ¢*_ such that z* is positive, z* L ¢; and

|z*|| = 1. Then K,, = 2* ® 2, | * ® e = T, where the element ¢ = (1,1,...). By this
r(T — K,) = r(T) = 1 for all n. Nevertheless, remark that 7(T") & o (T) = {0}.

5 When is the inclusion 0., (7") C 0,(T) true?

The fact that r(7') € o (T) implies 7(T") € oa(T") for an operator 77 > 0 on a Banach
lattice F/, was shown in [4] (Theorem 7). In fact (as can easily be seen from the proof) it is
true with . (7) instead of o.s(7"). Below the conditions when the more general inclusion
Oew(T) C 00 (T) is true, will be given.

First of all, note that in next cases the relations 0 < Q < K, K € K(FE), imply Q € K(E)
and so o (T) = 0a(T), hence oy (T) C o (T):

(a) £/ and E* have order continuous norms ([5], p. 279);

(b) either E or E* is atomic with an order continuous norm [12].

Below for a regular operator 7" on E through o,(T") will be denoted the order spectrum of
T,1i.e., ([9], §4.5; see also [2], §7.4) the set

0o(T) = {A : A = T does not have a regular inverse on E};

by this r,(7T) = max |A|. Recall that the pure order spectrum of an operator T is the set
Xeoo(T)

0po(T) = 0o(T) \ o(T') (the inclusion o(T") C o,(T") always holds). A positive operator 7" is
said to be an operator with an almost d-empty pure spectrum, if at least for one natural n, the
set 7,0(S) = 0 for all 0 < S < T*(™ (where T*(™ denotes the n'" adjoint to 7).

Recall also ([11], p. 244) that an operator T on E is called cone absolutely summing if
for every an unconditionally convergent series Z Tn, Tn > 0, the series Z T'x,, is absolutely

n=1 n=1

convergent, and is called majorizing if for every x,, — 0, the sequence 7'x,, is order bounded. If
E is an AL-space, then every T € L(E) is cone absolutely summing, and if F is an AM -space,
then every 7' € L(FE) is majorizing ([11], p. 248).

Example 22 (the examples of an operators with an almost d-empty pure spectrum):

(a) A positive cone absolutely summing operator 7". Indeed, £* has ([11], p. 299) the
property (P) (i.e., there exists a positive, contractive projection £*** — E*), and every operator
S > 0 which is dominated by 7*, is ([11], p. 249) majorizing so ([9], p. 303) 0,,,(S) = 0.

(b) A positive majorizing operator. Arguments are similar to given in the part (a).

(¢) A positive operator 7' on a Dedekind complete Banach lattice £ having the next prop-
erties: for all x > 0 there exists z > x such that T'(E,) C E, and the restriction 7’|, of T" to
an AM-space E, with an unit z is weakly compact. Indeed, if 0 < S < T, then by Wickstead
theorem ([5], p. 289) the operator S|z, is also weakly compact so ([9], p. 303) 0,,,(S) = 0.

(d) A positive orthomorphism 7". If 0 < S < T, then S is also orthomorphism and ([9], p.
309) 0p,0(S) = 0.

(e) Let Z be an (not necessarily closed) algebraic ideal in £(E) such that Z C £, (FE) and
the relations 0 < S < T, T € Z, imply S € 7 (for example, the ideal of the Hilbert-Schmidt
operators on a Hilbert lattice). Then every positive operator from Z has an almost d-empty
pure spectrum. Indeed, if £,(E) = L(F), then [1] E is order isomorphic either to an AL- or
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AM -space so from parts (a) and (b) the desired assertion follows. Let £, (E) # L(F). For an
arbitrary positive operator I’ € Z and A € p(T') we have R(\,T) = +1 + sTR(\,T) € L.(E)
as A # 0and TR(\,T) € L,(E), therefore o,,(T") = (). O

Theorem 23. Let T" be a positive operator with an almost d-empty pure spectrum on a Banach
lattice E. Then 0oy (T) C oa(T).

Proof. Let A € 0. (T), that is, the operator R = A\ — (T — @) is invertible, where 0 < Q < T,
Q < K € K(E). Then for some n sets 0,,(S) = 0if 0 < S < T*™. Therefore, we have
A g oo (T — Q*™) = o (T — Q*™), i.e., the operator (R*(™)~! is presented in the form
(R*("))‘1 = R;+1R,, where the real operators R; and R are regular. So the operators RlQ*(”)
and R,Q*™ are dominated by a compact operators. By Aliprantis-Burkinshaw theorem ([2], p.
90) ((R*™)~1Q*™)? is compact. Finally, the operator

is a Fredholm operator of index zero, hence A & 0oy (7). O
Thus, it follows from previous results that for all classical Banach lattices the inclusion
Oew(T) C 04(T) holds. In particular, o4 (T') # (). Nevertheless, it is not known if the inclusion
Oew(T") C 0a(T) is true for an arbitrary Banach lattice E and a positive operator T .
It turns out, however that a similar inclusion holds for a Lozanovsky’s order essential spec-
trum of a positive operator 7' on a Banach lattice E:

Toel(T) = | | oo(T — Q).
0<Q<T
Q<KEK(E)

Theorem 24. Let E be a Banach lattice and T' > 0 an operator on E. Then:

(@) the inclusion oey(T) C 000 (T) holds, in particular, oo (T) # 0,

() if r(T) € 0oa(T), then r(T) € oa(T).
Proof. The part (a) can be check analogously to Theorem 23. Show the validity of (b). For @),
0<Q<T,Q <K € K(F) the inclusion r(T") € 0,(T — Q) holds. So

ro(T'= Q) 2 r(T) =ro(T) 2 1o(T = Q) = (T = Q),

hence 7(T') € o(T — Q). O
Importantly to observe that by analogy of o, (T) “order” spectra e (1) and o= (T') can
be considered.

Under the assumptions of Theorem 20 7(1") & oe¢(1") implies 7(1") & o (1) as the inclusion
oa(T) C o, (T) is true. It remains valid after the replacement of (A) by the weaker condition:
there exist nets of a positive operators (), and a compact operators K, such that

0< Qa1 Tz, Qo< K, (A1)

for every x > 0 (see the remarks after the proof of Theorem 20). By Lozanovsky’s theorem
([2], p- 199) the condition (A,) holds for every positive integral operator on a Banach function
space.
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