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Abstract—A dynamical system w’ = S(w, z,¢), 2’ = z+ev(w, z,€) is considered. It is assumed
that slow motions are determined by the vector field v(w, z,¢) in the Euclidean space and
fast motions occur in a neighborhood of a topologically mixing hyperbolic attractor. For the
difference between the true and averaged slow motions, a limit theorem is proved and sharp
asymptotics for the probabilities of large deviations (that do not exceed £°) are calculated; the
exponent § depends on the smoothness of the system and approaches zero as the smoothness
increases.

We consider a cascade system with fast and slow motions in which the slow motions occur in the
Euclidean space and the fast motions occur in a neighborhood of a topologically mixing hyperbolic
attractor. We assume that the fast hyperbolic motions depend on a slow variable, while the slow
motions are determined by a vector field v depending on both fast and slow variables. For each value
of the slow variable z, an invariant probability measure p, on the attractor is constructed. It is used
to define an averaged vector field ©(z) = [vdu, on the space of slow motions. We prove that the
measure p, smoothly depends on z and that the field v is smooth as well. The dynamical system
determined by this field is said to be averaged. The averaging method consists in replacing the slow
motions by the trajectories of the averaged system. The method is substantiated by proving that
the difference between the true and averaged slow motions is small with overwhelming probability.

In the case when the fast motion does not depend on the slow motion, the following results have
been obtained [9, 7|. First, the difference mentioned above satisfies a central limit theorem with the
mean-square deviation of order v/ (where ¢ is a small parameter characterizing the speed of the slow
motion). Second, the probabilities of deviations of orders higher than /¢ are exponentially small.
Third, rough (up to logarithmic equivalence) probability estimates have been obtained for various
types of behavior of the slow components of trajectories deviating from the averaged trajectory by
a finite distance.

In this paper, we prove a central limit theorem in the case when the fast motions depend on the
slow motions. Moreover, we calculate sharp asymptotics for the probabilities of large deviations that
do not exceed €9, The exponent § depends on the smoothness of the system and approaches zero
as the smoothness increases. These asymptotics are similar to the classical Cramér asymptotics for
a sequence of independent identically distributed random variables. They can be obtained both for
the invariant measure p, and for noninvariant measures of the following form. Let I'" be a smooth
submanifold of the phase space that is contained in the layer z = const in a small neighborhood of
the attractor and has the dimension of the expanding foliation and a direction close to that of the
expanding foliation. Let u be a smooth compactly supported probability measure on I'. We denote
the slow component of the trajectory with initial condition z by z(¢) and the averaged trajectory
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with the same initial condition by Z(t). For the difference z(t/c) — Z(t/¢), the Cramér asymptotics
with respect to the measure p can be calculated. It turns out that, in the first approximation, they
do not depend on the pair (I', ) but depend only on the initial condition z. If the dynamical system
under consideration is generated by a mapping Y. and J is a smooth positive function on the phase
space, then similar results can be obtained for the measures of the form ux J x JoX. x...xJ oEé/ c

The proof uses two independent techniques. The first is the apparatus of foliated functions
developed in [1, 2, 5] (they were called regular functions in the first two papers). The second is the
method of asymptotic expansions for semigroups of operators of weighted conditional mathematical
expectation, which is described in [4] for the case of a cascade system with slow and fast Markov
motions.

This paper is organized as follows. In Section 1, the system under examination is specified,
nonformal definitions of foliated functions and averaged weighted shift operator are given (their
precise definitions, which are rather cumbersome, are given in [5]), the basic properties of these
functions and operators are described, and invariant measures on attractors are constructed. In
Section 2, we state a theorem on an asymptotic expansion of the semigroup of averaged weighted
shift operators (Theorem 2.6). It is proved in Section 3. Finally, in Section 4, we apply the
asymptotic theorem to derive Cramér asymptotics for the probabilities of large deviations from the
averaged motion. The main result about these asymptotics is Theorem 4.4.

1. FOLIATED FUNCTIONS

In what follows, we use the terminology and notation from [5]. Let M be a convex domain in
the standard Euclidean space and W be a Riemannian manifold. We consider a family of N times
continuously differentiable self-mappings of the direct product W x M of the form

w = 8S(w,z,¢e), (1)
2 =z+4ev(w,z,¢e),

where ¢ is a small positive parameter, w € W, and z € M. In abbreviated notation, this family
is written as (w', ') = 3. (w, z). We assume that X.(W x M) C W x M for all sufficiently small
values of . This can easily be achieved, e.g., by requiring that the vector field v be zero in a
neighborhood of the boundary of M. In this case, 3. generates a dynamical system with discrete
time (cascade) on W x M with fast motions on W and slow motions on M (at a velocity of order ¢).
We assume that the mapping S,(w) = S(w, z,0) has a mixing hyperbolic attractor for each z € M
which continuously depends on z (see the definition in [6, 8]). Suppose also that system (1) has
a uniformly hyperbolic mixing atlas (the definition is given in [5]). The last condition is lightly
restrictive because it holds locally (in a neighborhood of each point z € M) and can always be
satisfied by decreasing the domain M.

In [5], the notions of leaves, traces, foliated functions, and averaged weighted shift operators
on spaces of foliated functions were introduced for such systems. In short, each leaf I' is a smooth
submanifold in W x M that lies in a neighborhood of the attractor and has the dimension of the
expanding foliation and a direction close to that of the expanding foliation. A trace is a pair (I, ®)
consisting of a leaf I" and a smooth function ® on it, which is called a density. A standard trace is
a triple (I', o, @) consisting of a trace (I', ®) and a point « € I' belonging to the Ry-interior of T’
(where the positive number Ry does not depend on the trace). The point « is called the center
of the leaf I'. A foliated function is a function on the set of standard traces whose value linearly
depends on the density ® and smoothly changes under a smooth deformation of the trace. In [5],
various norms for foliated functions were defined (depending on their order of smoothness) and,
accordingly, Banach spaces FP? of foliated functions were introduced (here, p and ¢ are positive

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 244 2004



60 V.I. BAKHTIN

integers characterizing the smoothness of foliated functions and satisfying the conditions p > 1,
g>4,and p+ ¢ < N — 1, where N is the order of smoothness of system (1)).

The simplest example of a foliated function is given by g(I', a, ) = ®(«). A less trivial example
is a function of the form

4T, 0, @) = / (ol 3)(8) du(B), (2)
N

where p is the Riemannian volume on I', p(«, 3) is the distance between the points a, 3 € I', and &
is a smooth nonnegative function on the real axis supported in a small neighborhood of zero.

Let u be the dimension of the expanding foliation on the attractor. A weight function is an
arbitrary smooth function J defined on the manifold of u-dimensional subspaces tangent to W x M.
In particular, the canonical weight function is the reciprocal of the expansion coefficient of u-dimen-
sional volumes under the mapping >.. The weight functions have natural restrictions to each leaf.
It was proved in [5] that the foliated functions form a Banach module over the algebra of weight
functions with multiplication Jg(T', a, @) = g(I', a, JP).

The image of a trace (I, ®) under the mapping 3. is the trace (I, ®L) = X.(T', ®) such that
I =%.(T) and ® = ®. o X.. Take a family of weight functions J.. The corresponding averaged
weighted shift operator A, on the space of foliated functions is defined by the formula

(A ng] (T, B) = / ér(e B)g(TL, B, L) du(), (3)
J

in which (T, ®L) = (X.J.)"(T,®), g e, g =X%(B), the function &r(a, §) has the form

el
el B) = T (ol ) dala)

and & is a fixed smooth nonnegative function on the real axis supported in a small neighborhood
of zero. This definition implies the homological identity

Aa,n(fg) = f © E? : Aa,ng (5)

for all foliated functions g and smooth functions f: W x M — R.
In [5, Theorems 3.2 and 3.3|, the following assertion was proved.

(4)

Theorem 1.1. The operator Ay, continuously maps each space FP? to itself. For every n,
there exists a small positive number €y such that, for any ¢ € [—eg, 0] and | < q — 8, the operator
d'Ac ,/det continuously maps the space FP4 to FPHIFLa=4=L (and, hence, to FPH2La=5L if | £ 0).

A foliated function is said to be positive if it takes nonnegative values on the standard traces
with nonnegative densities. A positive foliated function g is strongly positive if there exists ¢ > 0
such that, for any standard leaf T" centered at a, g(I', ;1) > ¢. A linear functional on the space of
foliated functions is positive if it takes nonnegative values on positive functions.

Now, suppose that the family J. of weight functions is positive and bounded away from zero.
For example, this is so for the canonical weight function. Then, the operator A, , maps positive and
strongly positive foliated functions to positive and strongly positive foliated functions, respectively.
Under these conditions, the following assertion is valid [5, Theorem 3.3].

Theorem 1.2. If N > 6, then, for any sufficiently large n € N, there exist a function \ =
An € CN=4(M), a strongly positive foliated function h = h, € FYN=2 and a positive C°°(M)-linear
functional v = vy: FN754 — C2(M) such that, whenever p > 1, ¢ > 4, and p+q < N — 1, the
following assertions hold:
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(a) the functional v continuously maps the space FP1 to C1=2(M);
(b) Agnh =e*h, vo Ay, =erv, and v(h) = 1;
(c) the sequence of operators [e=*Ag,|™: FP4 — FP9 converges to the projector Agng = v(g)h
in the uniform operator norm as m — oo.
Consider a C*°(M)-linear functional p,,: C®(W x M) — CN=4(M) defined by p,(f) = v(fh).
Theorem 1.2 implies that this functional is positive (i.e., it takes nonnegative functions to nonneg-
ative functions) and normalized (i.e., p,(1) = 1). In addition, it satisfies the identity

pn(f 0 X6) = pn(f). (6)
Indeed, by virtue of (5), we have

pn(foX8) =v(f oS- h) = v(f o B - €M Ao nh) = e v (Ao u(fh)) = v(fh) = palf).

Proposition 1.3. If two functions f, f' € C°(W x M) coincide at some z = zq, then the
values of the functions pun(f) and p,(f') at the point zy also coincide.

Proof. Suppose that z = (z1,...,2) and 29 = (201,...,20k). By the Hadamard lemma, the
difference f — f’ can be represented in the form

k
flz,w) — f(z,w) = Z(zl — 20i)pi(z, w), i € CP(W x M).

i=1
Therefore, the difference p,(f) — pn(f') = Zle(zi — 20i)pn(p;) vanishes at z = zp.
Let us define a family of linear functionals py, ,: C°(W x M) — R by the formula pu, .(f) =
[n(f)](2). Each of these functionals is positive and normalized. The Riesz theorem implies that

each of them can be identified with a Borel probability measure on W x M. According to Proposi-
tion 1.3, the measure p, . is concentrated on the fiber W x {z}. Finally, we set

pn=(f) = %Mn,z(f+fozo+...+fozg*1).

Then, p, is also a Borel probability measure on W x {z}. By virtue of (6), it satisfies the identity
wx(f) = po(f o Xg). Therefore, the measure ju, is Yo-invariant. If f € C*9(W x M), then, by
Theorem 1.2, p,(f) € C972(M). This means that the invariant measure p, smoothly depends on
the parameter z.

2. AN ASYMPTOTIC THEOREM

For our purposes, it is convenient to normalize the averaged weighted shift operator A, in such
a way that its maximum eigenvalue is 1 rather than e*». To this end, it suffices to replace the weight
function J; in the definition of the operator A, ,, by the normalized weight function j@ = J.e An/n,
We call the operator B, thus obtained a normalized averaged weighted shift operator. In Section 4,
we prove that the canonical weight function is normalized and B, = A., for this function. The
homological identity (5) implies that By = e *Ag,. Theorem 1.2 states that the sequence B’
converges to the projector B = v, ® h,, in the space of linear continuous operators on FP4. We refer
to this property as the ergodicity of the semigroup Bj'. It implies, in particular, the existence of a
large Cp and Ag € (0, 1) such that

1B5"9llpg < CoAG'[9llpq for ge FP Nkerv. (7)

For an arbitrary function F' € C*°(M), consider the family of operators B.[F| defined by the
equalities
B:[Flg=e "B(c""g),  Bo[Flg = lim B.[F]g. (8)
E—
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The homological identity (5) implies

BE(Fg) =Fo E? : Bsga BO(Fg) = FBO.gu (9)
FoXY!—F dF
Blrlg = e “E S Bg BilFlg = o5 ) B (10)
5 Up,
where
n—1 '
vp(w, 2) = Z vo o Xh(w, 2), vo(w, z) = v(w, z,0). (11)
=0

Equalities (9) and (10) imply the C°°(M)-linearity of the operator By[F], i.e., the equality
Byo[F|fg = fBo[F]g for all f € C*°(M) and g € FP?. It follows from [5, Theorem 3.1| that,
actually, this identity is valid for F' € CPT4TY(M) and f € CPT473(M). The operator By[F] with
this property will be called fibered. Theorem 1.1 and (10) imply that the family B.[F]| analytically
depends on F' and smoothly (in a certain weak sense) depends on e. A perturbation B. of the
operator By such that B.[F] analytically depends on F' and smoothly depends on ¢ is said to be
superregular.

In this section, we prove that, for a superregular perturbation B, of a fibered ergodic operator By,
the family of operators Bz/ eff/e admits an asymptotic expansion in powers of the small parameters
¢ and e. This expansion is similar to that obtained in [4] for a system with slow and Markov fast
motions.

Theorem 3.1 from [5] and (10) imply that the operator By[F]: FP? — FP9 analytically depends
on the function F' € CPTITL(M).

Proposition 2.1. An arbitrary sufficiently small function F € C*(M), where 6 < i < N,
uniquely determines the following objects that analytically depend on F: a function \p € C*=4(M),
a foliated function hp € F%=2 and a C®(M)-linear functional vg: Fi=5* — C%(M) continuously
mapping each space FP4 to C172(M) (for p > 1 and q > 4 with p + ¢ <i — 1) such that

)\0 = 0, ho = h, Vg =V, l/(hF) = Z/F(h) = 1,
Bo[Flhr = e hp,  vpo By[F] =eMup.

Here, h and v are the foliated function and the linear functional defined in Theorem 1.2.

Proof. The space F%~2 decomposes into the direct sum ker v @ C*=4(M)h. Let us apply the
implicit function theorem to the equation

Bo[F](h + Ah) — e*(h 4+ AR) =0 (12)

with respect to the function A € C*~4(M) and the foliated function Ah € FL=2 Nkerv. It follows
from (7) that the restriction of the operator I — By to F1~2 N ker v is invertible. Therefore, for
zero F'; A\, and Ah, the derivative of the left-hand side of equation (12) with respect to Ah is an
automorphism of F1*=2 N ker v, while the derivative of the left-hand side of (12) with respect to A
isomorphically maps C*~4(M) onto C*~#(M)h. Hence, the implicit function theorem applies to this
equation, and it uniquely determines A\p € C*~4(M) and Ahp € F“~2 Nker v, which analytically
depend on F'. We set hp = h + Ahp.
Consider the equation

((1/ + Av) o By[F] — eMv + Ay))

=0 (13)

ker v
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with respect to a C°°(M)-linear functional Av: Fi=54 — C?(M) such that Av(h) = 0. The
implicit function theorem applies to this equation as well because the operator By — I is invertible
on Fi=5* N kerv. It uniquely determines a family Avg that analytically depends on F.

The same argument applies to the cases when Av: FP4 — C972(M) and Av: FP4 — C?*(M).
Since the implicit function is unique, the restriction of the functional Avg to FP? must be the same
in all the three cases. Therefore, Avg continuously maps each FP4 to C9=2(M). To complete the
proof, it remains to set vp = v + Avp.

Proposition 2.2. For small F € C%(M), the function A is convex with respect to F.

Proof. Since the operator By is ergodic, we have

Ap = lim )\m(F), where A\, (F) = Inv((Bo[F])™h).

m— oo m

Thus, it is sufficient to show that the functions A, (F") are convex. By virtue of (9)-(11),

dF
) h
dvypm
Therefore, A\, (F) = In y(edF/d”"m h) = lnu(edF/d”"m). We know that the functional u(f) = v(fh)
is positive and normalized. To prove the convexity of \,,(F'), it suffices to show that the function

@(t) = In pu(e**™) has a nonnegative second derivative for any u,v € C3(W x M). Let us calculate
this derivative:

dF  dF AF  nime
(BO[F])mh:exp<—+—o g 4o U)B&” :exp<

dv, dv, E

'(t) = ple' ) "(t) = p(e ) (e ) — pu(e" )2
v t)= pevttv) = (T2 .

The numerator of the second fraction is nonnegative because
'u(equtvv)Q _ 'u(e(qutv)/Qv . e(u+tv)/2)2 < M(eu+tvv2)u(€u+tv)

by the Cauchy—Schwarz—Bunyakovsky inequality.

Proposition 2.3. If the first differentials of two functions F,F'" € CN (M) coincide at a point
20 € M, then A\p(z0) = Apr(20).

Proof. Suppose that a point z € M has coordinates z;. By the Hadamard lemma, all partial
derivatives O(F — F')/0zj, can be represented in the form

I(F —F")

02k (2) =Y (z—20)ful2),  fuecCVN (M)

l
Then, according to (10), the difference By[F] — By[F’] can be represented as

Bo[F] = Bo[F'] = (21 — z0)¢1 Bo, (14)
l

where ¢ are some functions from CN=2(W x M). By Proposition 2.1, there exist a vector hp €
FLN=2 and a C°°(M)-linear functional vg : FN=54 — C?(M) such that

By|Flhy = e hp, v 0 Bo[F'] = e vp. (15)

Let us normalize the functional vp: by vp/(hp) = 1. Then, relations (15) and (14) and the C°°-
linearity of vps imply the equalities

6>\F - €>\F/ = Z/F/(B()[F]hp) — VF/(Bo[F/]hF) = Z(Zl — zOl)VF’((PlBOhF)'
l

Therefore, Ap(z0) = Apr(20).
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Proposition 2.4. The function A\p = A\p(2) depends only on z and on the first partial deriva-
ties of the function F at the point z; i.e., Ap(z) = A(z,p), where p = dF(z)/dz. It is N —4 times
continuously differentiable with respect to z and analytically depends on p.

Proof. Proposition 2.3 implies that Ap(z) = A(z,dF/dz). If F(z) equals the inner product
(p, z), then, by Proposition 2.1, the function Ap(z) = A(z,p) has smoothness of order N — 4 with
respect to z and analytically depends on p.

Let us define a vector field v,, on M by
Up, = v(vph). (16)

Its order of smoothness is at least N — 4. The definition (11) of the field v, and the definition of
the family of invariant measures p, show that v,, = nv, where 7(2) is the mean value of the field
v(w, z,0) with respect to the measure y,

Proposition 2.5. For any function f € C%(M),

d d d
2 e = 2

|, v(B.fh — fB.h) =

e=0

(17)

—| Aep
0E| o

Proof. The first equality follows from (10). By (9), B.f — fB: = (f o X2 — f)B.. Obviously,
foXf—f=0and
d(f o X2 — f)
de

_ 4

e=0 dv”

This yields the second equality in (17). The third equality follows from
d

ver(B h
el el i el
£=0 S\ S £=0
We study the normalized Weighted shift operator B. obtained from A., by replacing the
weight J. with the normalized weight . J = J.e~*/" Let us define two more operators B and B
by the formulas Bg = v,(g)h, and B=1-8. Obviously, these are mutually complementary
projectors. We set

pj:1—|—2j, qij:N—7—6i—10j,

D' = {(i,j) € Z% | 6i + 105 < N — 21}.

Definition 2.1. A regular Newton diagram is an arbitrary bounded set ® C Z4 x Z, that
contains, together with its every point (i, 7), the entire rectangle II;; = {(¢', j') ! 0<i <, 0<
j' <j}. Apoint (i,5) € Z4 x Z is called a growth point of a regular Newton diagram D if it does
not belong to ® while all the other points of the rectangle II;; belong to ©.

Theorem 2.6. Suppose that N > 27 and a family of functions Fi(§) € CN=5(M) satisfies
the differential equation Fi(§) = Ap,(¢) with the initial condition Fy(§) = EF for all t € [0,to] and

all sufficiently small real €. Then, for any foliated function go € F“N72 and any reqular Newton
diagram © C D' with a set & of growth points, there exist families of foliated functions

Ui(&,e) = Z glel (Uijtth(f) + ﬁijt)p Vir(§,e) = Z gl (Vijer + ‘N/ijtf) (18)

(4,7)€D (4,7)€D
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such that, for all t € [0,t9] and T € Z, the identities

90 =Uo(&,€) + Voo(&,e) + Y O(&'e), (19)

(1,§)e®
BseFt(g)/e (Ut(éa 5) + ‘/tT(fu 5)) = 6Ft+€(§)/€ (Ut+6(§7 5) + ‘/tJrE,TJrl(fu 5) + Z O({ng)> (20)
(1,7)€®

hold, where the foliated functions £ te 1O (¢'ed) € FERN/EA gre uniformly bounded. The coefficients
of families (18) are such that the derivatives

d"U;; 3
T:Jt € Cguj?in(M% n S QZ] - 97
d"Vijtr  — d"Uije d"Vijer
I e Bt it I € BT gy~ 4,

are defined for all t € [0,t9] and T € Zy. All of them are uniformly bounded in the spaces specified
and linearly and continuously depend on go, and the norms of the derivatives d"VZ-jtT/dt" and
d"Vijir /dt™ exponentially decrease in T.

Discarding the remainder terms in identities (19) and (20), we obtain the asymptotic expansion

BYEetE/E gy~ eft()/e (Ui(&,) + Vi (€. €)), t € eZn|0,ty], €>0. (21)

~ Additi(ln 1. The initial coefficients of expansions (18) are expressed as ﬁOOt = Voorr = 0 and
Vootr = BiBgo, and Ugg; satisfies the differential equation
dUooe  dUqo

_ — d _
& - 4o +aUoot, Ugoo = v(g0), where o = e . v(B:h) € cN 9(M).

If the function Uggy is bounded from below by a positive constant on M, then the family Ugg; is
bounded from below by a positive constant on the interval [0, t¢].

We denote the Taylor polynomials of degree k in £ for the function F;(¢) and the families of
operators U(§,€) by JgFt(f) and JgUt(é’,s), respectively.

Addition 2. In Theorem 2.6, Fi(£) can be replaced by Jngt(f) and Uy(&,¢), by Jé“Ut(f,s);
moreover, k can be taken in the range from (N — 26)/6 to 3N/5 — 11. In particular, k = [N/5] is
fit.

Addition 3. If a foliated function gg is strongly positive, then, for any standard trace (I, a, P)

with flowing density ® (in the sense of Definition 5.1 from [5]) and any positive integer k between
(N —26)/6 and 3N/5 — 8, the equality

k.
6‘]& Fie(€)/e (JgkUzs(& 5) + Vt,t/s(& 5)) (F, «, Q)) . Z 0(5163)
e’e Fie )/ (Jkaie(gv &)+ Vise(€8) + X(ij)es OEeN) (T, ®) (i jee

holds uniformly with respect to (I', o, ®) and t € [0, ).

3. PROOF OF THE ASYMPTOTIC THEOREM 2.6

Recall that, for some Cy and Ay € (0,1), the normalized averaged weighted shift operator
By = e~* Ay, satisfies estimate (7), i.e.,

”B(T)ng”pq < COABnH“J”pqv geFrn ker B, (22)
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where p > 1, ¢ > 4, and p+ ¢ < N — 1. Relations (10) imply the equality

e_FHE(g)/ngeFt(g)/ag _ e(Dt(g’a)ng, (23)

where

@t(§,€) = @t(f’g’wVZ) — E(g’ E?(wvzi) - E+€(§, Z) ‘

By the conditions of Theorem 2.6, the family of functions Fy(&, =) satisfies the differential equation
F = \p with the initial condition Fy(&,2) = £F(2) and has smoothness N —5. The equality A\g = 0
implies F;(0, z) = 0 and, accordingly, ®:(0,e) = 0.

Lemma 3.1. Under the conditions of Theorem 2.6, the function ®(§,e,w,z) is N — 6 times
continuously differentiable with respect to all variables and the family of foliated functions h,¢) has
the property

oitn h c fl,N77*i*" tn<N-—11
oEiotn Fi(8) ) tTn> :

Proof. The first assertion is obvious. The second assertion holds because, by Proposition 2.1,
the function hp, ) € FULN=T=i=n analytically depends on F;(¢) € CN==="(M), and this family
is ¢ + n times differentiable with respect to ¢ and £ in the space specified.

Lemma 3.2. Let p+q < N — 6. Suppose that a family of functions U; € C172(M) and
families of foliated functions Uy, Vir € FP9 satisfy the estimates

dnU,
dtn

d"U,
dtm

d"Vir
dtm

< M,

qg—2—n

S MAT: n S q— 47
p,g—n

|

where M > 0 and A € (Ao, 1) are constants independent of t € [0,to] and T € Zy. Then, the
foliated functions

th(é-y 5) = €(I’t(£’8)Bg (Utth(g)) - Ut+5hpt+5(£), WtQ(f, E) = 6¢t(£,s)B€ﬁt — ﬁtJrg,
ng(& 5) = €¢t(§7€)BthT - ‘/t+E,T+17 W4(€) = UOhEF + ﬁO + Voo

can be expanded in Taylor polynomials in & and € up to an arbitrary degree v < (¢ —4)/5:

WihEe)= > erewi,+ Y Fewge),

>0 >0
k+l<v k+l=v

W2(&e)= Y Wi, + > Fwié o),
k+l<v k+l=v

Wi(&e)= Y Wi, + > Wi (o),
k+l<v k+l=v

W) =)y

k>0

There exist large constants Cy; independent of M and A such that the coefficients of these expansions
obey the estimates

IWh(E )| samgsw < CuiMy [WRLE D o5y < CutM,
HngltT(57 E)HpJFQV’qiLL-)V < CklMAT
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and
A" Wk d"W?
‘ Wklt < CuM, ' Wklt < CuM,
14-2l,g—k—5l—n p+2l,q—k—5l—n
w3
| e < CuMA” W2 < ChoM
p+2l,g—k—5l—n

formn<q—k—>50—4.
In the formulation of Lemma 3.2, an estimate for a norm ||g|| s implies that the corresponding

function g is defined and belongs to F3,
Proof. Proposition 2.1 and Theorem 3.1 from [5] yield Ushp, ) € F4?. According to Theo-

rem 1.1 and Lemma 3.1, for [ > 1, we have
81 th (57 5)
O€l

81 WtQ (57 5)
Oel

athi(gv 5)

1+21,q—51
eF a0, 5l

c f-p+2l,q—5l7 c ﬂ+217q_5l'

Further differentiation with respect to £ and ¢ with regard to Lemma 3.1 and Theorem 3.1 from [5]

shows that

ak+l+nWt1 (57 €) e f-1+21,q—k:—5l—n ak+l+nWt2 (57 5)
DER el ot ’ DER el otn

ak+l+n Wt%' (57 5)
OEk Il otn

e f-p+2l,q—k—5l—n’

c ﬂ+2l,q—k—5l—n

For € = 0, the operator By continuously maps the space FP? to itself. Therefore, these inclusions
are also valid for zero [ and €. They give the Taylor expansions for W/ (&, e) with i = 1,2,3 and the
estimates for the norms of the coefficients in these expansions. The existence of an expansion and
the estimates for W4(¢) follow simply from the analytic dependence of the function hep € F LN=7
on £.

Equality (23) and Proposition 2.1 give the identities

P COBy = e FHOBI[F(€)],  BolF(&)] hiye) = e O by g).

These identities and the assumption that By[F;(€)] is fibered imply that W/ (£,0) = 0. Therefore,
Wkl()t =0.

Under the conditions of Theorem 2.6, consider the discrepancies
Pi(&e) = e @B MO (€ €) — Uppe(€,€) = €*CIBUE €) — Upse (&0, (24)
Qur(€,e) = e OEBIOIY, (6 6) = Vige (€ 6) = € OI BV (€ ) = Viseri(66), (25)
R(&,e) = go — Uo(§,¢) — Voo(&, €).- (26)

Obviously, the sum of “O” terms in (19) equals R(,¢), and the sum of such terms in (20) equals
Pi(&,e) + Q¢ (€, €). Suppose that

pj:1—|—2j, qij:N—7—6i—10j,
pgj = max{pj; | (¢,j') € D N1L;}, q;j = min{gy;y — 51 (¢,7') € D N1L;}.

We will prove Theorem 2.6 by extending the diagram ® by induction.
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Induction hypothesis. Suppose that a regular Newton diagram © is contained in the set ®’ =
{(i,4) € Z*% | 6i + 105 < N — 21}. We denote the set of growth points of ® by & and the set of
growth points of ©’ by &’. Under the conditions of Theorem 2.6, suppose the following:

(a) Families of operators

Ui(&e)= Y, €Uy,  Ule)= Y, €Uy,  Ui&e) =T e)hn e + Uil 2);

(1,§)€D (4,§)eD
VtT(§7€) = Z gigjvijt'ra ‘71‘7'(575) = Z gigjf}ijt'ra ‘/157'(575) = VtT(f,E) + ‘27(575)
(4,§)€D (4,§)€D

are constructed.
(b) For all ¢t € [0,t0] and T € Z, the derivatives

4T,
dt”m € Cu~T (M), n <gj;—9,
d"Vijer  — d"Uije d"Vijir _
I € BT, Sl T € BFPIT < g — 4,

are defined; these derivatives are uniformly bounded in the spaces specified and linearly and con-
tinuously depend on gg; moreover, the norms of the derivatives d"Vj;-/dt" and d"V;j;/dt" expo-
nentially decrease in .

(c) The initial condition

R(¢,) = go —Up(&.¢) = Voo(€.e) = Y &'e/Ry.  Rye FPig s,

(6,4)€ZI\D

holds.
(d) The following equalities hold:
P(&e)= > Pyt Y P& e), (27)
(1,7)€ED'"\D (i,5)e®
BP;;=0 for (i,j—1)€® and (i,j) €D \D, (28)
Qur(&e)= Y €Quur+ Y. E9Qun(&,e). (29)
(1,5)€ED'"\D (1,5)€®’

(e) There exist constants C;; and A € (Ag, 1) independent of gg such that, for all ¢ € [0,tg] and
T € Z4, the following estimates are valid:

I1P3je&,2)lanzsia < Cisllolln—2: - 1Qijer (&) liawyata < Cisllgol -,
d"P;; drQ
H dt;]t < CinQOHl,Nf% H dt:ftT < CZ'J'ATHQOHLN—Q, (30)
Pj,qiz—n Djgij—"
where n < ¢;; — 4, and
d"P;;
H dt;]t < Cij”QO”l,N—% n < qij + 1, (31)
Dj,qij+5—n

if (7,7 —1) ¢ © (it is assumed that all the derivatives specified above exist and belong to the
corresponding spaces).
(f) For £ = 0, the identity Uy(¢,0) = 0 holds.
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Obviously, if we prove this hypothesis for any regular diagram © C ®’, we will thereby prove
Theorem 2.6.

Basis of induction. The induction hypothesis holds if the diagram ® is empty, the functions
Ui(§,e) and Vi (€, ¢) and the discrepancies P, (&,¢) and Q- (&,¢) are identically zero, and R(§ ,E) =
Roo = go. Formally, for ® = &, the numbers pgj and qz’j are not defined, but we can take p” 1
and ¢;; = N — 2.

Induction step. Consider an arbitrary growth point (4,j) € & of the diagram © belonging to D’.
We set

Pijy = BPyjq, Piji = BPy,, Qijtr = BQijir, Qijtr = BQyjir-

A. Calculation of ﬁijt. First, note that ?ijt = 0. For j > 0, this follows from (28), and for
7 =0, from the equality

Pi(£,0) = e FOBF(ONT(€,0)hpy ) — Ue(€,0)hpye) = 0, (32)

which results from condition (f) of the induction hypothesis and from the fact that Bo[F;(€)] is
fibered. Therefore, to “kill” the term &g/ P in (27), it is sufficient to add a monomial £'e/U;j; to
the foliated function U;(§,¢) in (24) such that

Boﬁijt - ﬁz‘jt = —PF;j.
This equation has a unique solution
Uiji = (1— By) "' Pyjs. (33)

By virtue of (22) and (30), we have d"UZ]t/dt" € FPi%ii~" for n < g;; — 4. Note that, for j = 0,
identity (32) implies Pjo; = 0, whence UZOt = (. Therefore, the addition of &% Umt to U(&, ) does
not violate condition (f) of the induction hypothesis.

B. Calculation of 17@”. To “kill” the term §i€j@ijt7 in (29), we must add a monomial fisj%j”
to the function Vi-(§,¢) in (25) for which

BO‘N/ijtT - Nijt,TJrl = _éijtT-
This equality implies
‘Z’jtf = @z’jt,ffl + BO‘N/ijt,Tfl = @z’jt,fﬂ + Bo@ijt,fﬁ + BS‘N/z'jt,772 =...
= Qijtr1 + BoQijtra+ - .. + By 'Qujro + BjVijto- (34)

The function ‘N/Z-jto should be chosen so that, after the completion of the induction step, the initial
condition (c) is satisfied by the new diagram ® to which the point (7, j) € &ND’ under consideration
is added. This can be done only if Vjjo0 = R ij — Uijo. We still have to choose Vjji0 for t > 0. The

simplest choice is Vmo = Vmoo Obviously, p” < pj; and, if (i,7) ¢ D, qu > @;5. By the induction

hypothebls Rij € FP %5 ¢ FPidi and me € FPi%i; by construction, UUO € FPidii, Therefore,
Vz]tT € FPidis,
C. Calculation of Vjir. To “kill” the term fiej@ij” in (29), it is necessary and sufficient to add

a monomial £'e7V ¢, to the function Vi, (€, €) in (25) such that
V’ijtT - Vijt,TJrl = _Qijtﬂ"
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We should find a solution Vl-jt.r to this equation that tends to zero as 7 — oo. The equation gives
Vijtr = —@im + Vijtr1 = _@ijtT - @z‘jt,rﬂ + Vijtrr2 = ...
= _@ijtT - @ijt,TJrl - @ijt,TJrQ IERRE (35)
and (30) implies
-

A
< Cij7— l9olln—2-

Pj,qij—n

d"Vijir
dtn

D. Calculation of U;j. Let us replace the foliated function U(¢,¢) by Uy(€,e) + fisjﬁijt and
calculate the corresponding discrepancy (24) again. It takes the form

Pt,(§7 8) = Pt(§7 8) + gigjwf(g’ 5)7 where Wt2(§a 5) = €q>t(§7€)BE(7ijt - ﬁij,t—i—e-

Applying Lemma 3.2, we construct the Taylor expansion of W2(¢, ) with respect to & and ¢ up to
the degree v = [¢;j/5] — 1. As a result, we obtain the Taylor expansion for P/(§,e). In this new
expansion, the coefficient P; j11+ (of ¢'elt1) is different from that in the old expansion; it equals

d N N
Liaie = Pojret | (BeUie = Uyjige) = Pijine + Woye (36)
e=0

Lemma 3.2 and (31) yield

n 2 np. .
d WOlt c f‘pi+2’qi1_5_”, d ‘P'L7]+17t c ﬂj+1,qi’j+1+5—n’
dtn dtn
whence
d" P!
ij+Lt 42, qi;—5—
TEFPJJF 4ij n’ ngqij—g. (37)

It remains to “kill” the term fiejHEPi’JH,t in (27), or, equivalently, to find a monomial £'e7U e, ©)
such that, after adding it to the function U;(&, ) in (24), equality (28) is satisfied. To do this, it is
necessary and sufficient to solve the equation

d

de B(B:(Uijth) = Uijt+eh) = =BP/ ;1.

e=0

It is equivalent to

d

i V(Be(Uijth) —U;jtBeh + U;jyBch — Uyje Boh + Ujjeh — Uij,t+5h) = —v(Pj114)-

e=0

By Proposition 2.5, this last equation is equivalent to

dUije = — dU iju d N-9
er + alUyj — dt] = —v(Pji14), where « = o v(B:h) € CT7(M). (38)

e=0

This is an inhomogeneous linear partial differential equation of the first order. It has a unique
solution for any initial condition Uz-jo. For condition (c) in the induction hypothesis to be satisfied,
we should take Uj;jo = v(R;; — Vijoo). We have R;; € FPi%i C FPiti and Vijoo € FPidis,
Therefore, U;jo € C%~2(M). On the other hand, (37) implies d"v(P]j41,)/dt" € C%=T=n(M).
Hence, the solution U;j; to equation (38) satisfies d"U,ji/dt™ € C%i=T="(M).
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E. Construction of new discrepancies. First, let us prove the estimates

AU - AU :
27t 17t
’ < Cllgoll1,n-2, . < Cllgoll1,n—2,
||, . dt"
dig " Pj,qij—n
Vij v,
19t 19t
! < CA|lgoll1,n-2, ’ < CA|lgoll1, N2,
dtn o dtn
Py @ig—n Pjsqij—m

where C'is a constant independent of gg. The first three estimates follow from the definitions of the
functions Uyj¢, Usji, and Vyjir and from the corresponding estimates (e) in the induction hypothesis.
Estimate (22), the definition of Vjj;-, and the estimates for d"Q;j:-/dt"™ imply

d"Vijer = -1 -2 -1 - d"Vijeo
—n < || BIICij (A 4+ CoMoA™ 2+ ... +CoAg ™) llgol1,n—2 + CoAf —n
Pj:qij—n Pj,qij—n
> A7 d"Vijuo
< |\|B||C;.Cp——— _ ChAT || —2
< Bl Cy OA_AOHQOHI,N 2+ Co e
Pjqiz—n

It is easy to see that the right-hand side of this inequality is of the order no higher than A7 ||go||1, n—2.
Let us replace the functions Uy(&, €) and Vi (€, €) in the definitions of discrepancies (24)—(26) by

Ul e) = U e) + &'/ (Uijihp,e) + ﬁijt)a Vi (€ e) = Vir(&e) + & (Vijir + ‘Z‘jt’r)a

respectively. Then, the new discrepancies are rewritten as

P/(&e) = Pi(&,e) + €7 (W&, ) + WE(E, ), (39)
Q:,‘T (fa 5) = QtT (57 5) + éiEth?:r (57 5)7 (40)
R'(&€) = R(&,e) + ETWH(€), (41)

where

Wi (& e) = e CIB (Tijehr,e) — Uijerehr ()

W& e) = 6q>t(§7€)Bsﬁijt - ﬁij,tJrsy

W (€,e) = e DB, (Vijir + Vigir) — (Vijarert1 + Vijirert1)s
W4(€) = Uijoher + Usjo + Vijoo + Vijoo-

Applying Lemma 3.2, we expand the additional functions Wl (¢, ), W2(€, ), and W2.(€, €) in Taylor
polynomials with respect to £ and € up to the degree v = [g;;/5] — 2 and W*(£) in a power series
about £. It remains to verify that what we obtain is expansions for discrepancies (39)—(41) satisfying
requirements (c¢) and (e) of the induction hypothesis for the diagram ® U {(4, j)}.

F. Verification of conditions (c) and (e). Conditions (c) and (e) are verified similarly for all the
three discrepancies. For this reason, we consider only discrepancy (39), for which the verification
is most complicated. In the expansion of P/(£,¢) in powers of £ and e, we denote the coefficient of
¢'ed" by Pz-l/j/t. If i/ <iorj <7, then Pz-’,j,t = Pyji, and estimates (30) and (31) hold for Py .
Suppose that ¢/ > ¢ and 5/ > j. Then ¢/ =i+ k and 7/ = j + L.
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First, consider the case k + 1 < v. We have Pi’,j,t = Pyjn + W,{}lt + Wk?lt (the coefficients Wkllt
and W2, are taken from Lemma 3.2). By Lemma 3.2, we have

A ra mA 2
d Wk‘lt c f1+21,qi]-—5—k—5l—n d Wk‘lt c f‘pj+2l,qij—k‘—5l—n

42
T : s : (42)

and W}, = 0. It is easy to see that 1+21 < p;+2l = pjs and ¢;; —k—5l > gy +5(k+1). Therefore,
derivatives (42) belong to the space FPi %'~ and, if (k,1) # (0,1), to the space FPi"9i' 57" to
which they should belong according to (e).

Consider the case k + 1 = v. We have v = [g;;/5] — 2. Therefore,

61 + 105" > 6i + 105 + 5v > 6i + 105 + ¢;; — 14 = N — 21,

and the point (i, j') lies outside D’. Hence, it suffices to verify that W}, (¢,¢), W2, (&, e) € F [2N/5].4,
This is so because, by Lemma 3.2, the functions I/Vkllt(f7 e) and W,?lt(f, €) belong to JFPit2vdij=5=5v
where

pj+20 <142+ 2q;/5—4=—3+2j+2(N —7—6i—105)/5 < 2N/5,

gij —5—5v >¢qi; —5—q;; +10 =5.
Lemma 3.2 also implies that the norms of the derivatives d"W},,/dt" and d"W}p,/dt" in the

corresponding spaces are estimated in terms of [|go|l1,n—2. Therefore, d" P}, /dt" are also estimated
in terms of ||go||1,y—2. This completes the proof of Theorem 2.6.

To prove Addition 1, it is sufficient to perform only one induction step at ¢ = j = 0. Since
Poor = Qootr = Po1r = 0 and Ry = go, formulas (33)—(35) give

Uoor = 0, Voorr = B3 Voowo = B Roo = B Byo, Vootr = 0.
Thus, (36) yields P};, = 0, and equation (38) for finding Ugo; takes the form

dU dU — =
dgm — d@OOt + aUgot, where  Uggo = v(Roo) = v(go)-

Let ¢' be the phase flow of the vector field —v,, on M. Then, the function u; = Ugy; o g* satisfies
the linear ordinary differential equation u; = « o glus. It is seen from the definition (38) of the
function « that this function is bounded on M. If infy; ug = m > 0, then u; > met™ e,

To prove Addition 2, it is sufficient to verify that equalities (19) and (20) remain valid when F;(§)
is replaced by F}(§) = Jngt(f) and Uy(&,¢) by U/(&,¢) = JfUt(& e) in these equalities. This imposes
natural constraints on k. On the one hand, k£ must be so large that the additional discrepancies
arising after such a replacement in (19), (20) have the form 3 (; ;e O(&%e7). Actually, they have
the form O(&F+1), whereby this requirement is satisfied if the point (k 4 1,0) lies outside ®’, or,
equivalently, if £ > (N — 26)/6. On the other hand, & must not be too large in order that the
additional discrepancies have the necessary smoothness and belong to the space F2N/5l4 This
requirement is met if the four functions

(JEUS(E.€) — Un(€,€)) /€Y, (JEUe(€,€) — Unpe(,€)) 41,
(ngq)t(g’a)BngUt(f, 8) o €¢t(£,s)BEUt(§’ 8))/fk+1, (43)
(eJ§¢t(§,E)BEWT(§’ 8) _ €¢t(§’€)35%r(§7 €))/£k+1
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belong to FN/54, By Lemma 3.1, the smoothness of the function (Jé“@t(f, £)—®4(&,¢)) /€M is no
lower than N — 7 — k with respect to all variables and the foliated function (Jfkhpt(g) —hp, (5))/51€Jr1

belongs to the space FLN=87F Tt is easy to derive from the definition of U;(€, ) and Vi, (€, ) that
the inclusion of foliated functions (43) in the space F [2N/51:4 can be ensured if this space is a module
over CN=7=k(W x M). This is so if N — 7 —k > [2N/5] + 4; thus, it suffices to take k < 3N/5—11.
We omit the elementary proof of this assertion.

Let us prove Addition 3. First, note that the definitions of a flowing density and of the norm
of a foliated function (Definitions 5.1 and 3.3 in [5]) imply the existence of a large C such that any
standard trace (I', o, @) with flowing density and any function g € FP? satisfy the estimate

l9(I', ®)[ < C|gl[pq inf P. (44)

By assumption, the functions gy and hg are strongly positive, which means that they are positive
and there exists ¢ > 0 such that go(I',a,1) > ¢ and ho(I',a, 1) > ¢ for all standard leaves (I, @).
We call a foliated function weakly positive if it takes nonnegative values on standard traces with
flowing densities. Since the image of a trace with flowing density also has flowing density (see
Corollary 5.1.1 in [5]), the operator By preserves both strong and weak positivity.

Take a standard trace (I',a,®) with flowing density. The strong positivity of gy and esti-
mate (44) for the function hg imply that, for some ¢ > 0, the function gy — dhg is weakly positive.
The function BE(go — 0ho) = BEgo — 6ho is weakly positive as well. Therefore,

BEgo(T, ®) > 6ho(T', @) > dcinf @.
Identities (19) and (20) with & = e = 0 give Up(0,0) + V£(0,0) = Bfgo. By continuity, for any
positive integer m, there exists a small domain of variation of the parameters ¢ and ¢ in which
[Ue(€&,€) 4 Vie o (&, 0)] (T, o, @) > %mf@, k=0,...,m. (45)
It is easy to derive from Addition 1 that there exists ¢y > 0 such that
Ue(€,e)(T, o, @) > coinf @ (46)

for all sufficiently small £ and € and for any ¢ € [0,%]. Since Vi, exponentially decreases in 7, (45)
and (46) guarantee the existence of ¢; > 0 such that

[Ui(&,6) + Vigse(€,6)] (T, 0, ®) > ¢y inf D,
On the other hand, by (44),
[ > O(fiej)] [, @)= )  O(¢e) infd
(4,5)€® (i,j) €

uniformly with respect to (', a, @) and ¢ € [0,¢p]. These two estimates prove Addition 3.

4. CRAMER ASYMPTOTICS

Consider an arbitrary probability space (£2,.4,P). We say that another probability space
(Q, A", P’) is its extension if there is a measurable projection 7: (', A, P’) — (Q, A, P) that is
measure-preserving (i.e., P(M) = P/(7~1(M)) for all M € A). Any random variable x on € induces
a random variable x/ = yom on €. The distribution functions of x and Y’ coincide. Below, we pass
from a probability space Q to its extension €’ to calculate the distribution of a random variable .
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Recall that the averaged weighted shift operator A, , is defined by

Acng(T, 0, @) = / e, (I, 8, 3L) du(B). (47)
F/

In this formula, (', «, ®) is an arbitrary standard trace centered at «, the point 5 belongs to T,
B = X(B), the trace (T, ®L) coincides with (3.J.)"(T', @), and p is the Riemannian volume on I,
A standard nonnegative function & (v, 3) on I' x T is defined in such a way that it is strictly positive
if the distance between « and ( is smaller than some sufficiently small fixed number r¢ > 0, vanishes
if the distance between « and 3 is greater than 2rg, and satisfies the identity

/ (0, B) dp(a) = 1. (48)
T

As above, we assume that the weight function J. is bounded from below by a positive constant.
Then, the normalized averaged weighted shift operator B, is obtained from A. , by replacing the
weight J. by the normalized weight j; = e/ "J. in the definition of A., (e>‘" is the maximum
eigenvalue of Ay ,). If the initial weight is normalized in advance, then A, ,, coincides with B;.

Let (Gp, ®g) be a trace with sufficiently large linear dimensions and positive density ®¢. Suppose
that the set Iy is a compact subset of Gy and, for any point a € I}y, there exists a standard leaf
(T', ) centered at v and lying entirely in Gy. Take a foliated function g defined so that its value on
any standard trace (I, a, @) equals ®(a). Consider the linear functionals vy : C*°(Gy) — R defined
by

wlf) = / A%, g0(T, a, f0) dya(a). (19)
To

Using definition (47), we can represent these functionals as multiple integrals. For this purpose,
we construct sequences of traces (G, ®;) = (3 J:)"(Go, ®o) and (G, f;) = X2(Go, f). Obviously,

P (S0 () = (D x Jo x JeoBe X ... x Joo B (),
fi(Z2(a)) = f(a), (Gs, [i®;) = (22J2)"(Go, fPo).

Consider sequences of pairs of points (a;, 3;) € G;, where i = 0,. .., k, such that o; 1 = X2(5;) for
alli=0,...,k— 1. Formulas (47) and (49) yield

we(f) = / Filon)®i () dia(any) / €6 (ot Bet) disfan_1) ...
Gy,

Gr—1

/ 62 (0ns Br) du(an) / 6o (00, o) dp(o) (50)
G1 o

—/dﬂ(ao)/&}o(ao’ﬁo)dﬂ(al)~~-/§Gk_1(04k175191)fk(04k)q)k(04k)d,u(ak)- (51)

Io G G k

For an arbitrary R > 0, let 1“0+ R denote the set of points in the leaf Gy that lie at distances
smaller than R from I}, and let I}y R be the set of points in Iy that lie at distances greater than R
from Gg \ Iy. Without loss of generality, we can assume that the mapping Y. expands all leaves
with the expansion coefficient no smaller than A~!, where the number A € (0,1) does not depend
on the leaf.
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Proposition 4.1. For any € and k, there exists a nonnegative smooth function (: Go — [0, 1]
that takes value 1 on FO_R, vanishes on G \I‘JR, where R = 2rg(1 — A)~!, and satisfies

yk(f):/gféoxjstsoEg X ... X Joo S gy ok (52)
Go

(where p is the Riemannian volume on X7%(Gy)). In particular, for the canonical weight J.,

vi(®) = [ (P dp,
/

where p is the Riemannian volume on Gy.
Proof. Let

(@)= [ o s(anmr o) dutan) .. [ ool fo) dufao) (53)

Gr_1 To
where [ = E?(kfl)(a). Then, (52) follows from (50). We set
— —2r — n/m—y\ —27 — n/m— —2r
Iy =070, Iy = (30Iy)) 7" ..., Iy=(EMT ) "

Since the mapping . expands all leaves with the expansion coefficient no smaller than A™!, we
have X7(Ty R) C I, for all i. Successively calculating the integrals in (53) from right to left and
taking into account (48), we obtain

/gGi(aivﬁi)d:u(ai)"'/501(041751)d:u(al)/gG(OCOaﬁO)dﬂ(ao) =1
G G it

for g; € I;”. This equality (with i = k — 1) and the inclusion Z?(k_l)(I‘O_R) C I, imply ((a) =1
for o € Ty . Similarly, () = 0 for a € Go \ T;®. Finally, it is seen from (48) and (53) that
((a) € ]0,1] for @ € Gp. This completes the proof of Proposition 4.1.

We study a trace (G, ®o) with positive density ®¢ and a leaf Iy C G such that, for each point
a € I, there exists a standard leaf (I', ) lying entirely in Gy. Let us define linear functionals Py
on C*(Gy) by the formula

(54)

By (52), the functional Py is positive (i.e., it takes nonnegative values on nonnegative functions).
In addition, it is normalized (i.e., Px(1) = 1). According to the Riesz theorem, Pj determines a
Borel probability measure on Gg.

Consider the probability space (Go, B, Py), where B is the Borel o-algebra on Gy. We define a
probability space € as the set of sequences of pairs of points («;, ;) € Gi, i =0,...,k — 1, where
the distance between «; and [; does not exceed 2rgp and a;+1 = X7(f5;) for all i. Obviously, in
every such sequence, the points 3; are uniquely determined by «;. Therefore, any function f on
can be represented as f = f(ap,...,a;). We define a probability measure P; on € as the linear
functional P, (f) = v;.(f)/v,(1), where

ve(f) = /du(ao)/ﬁco(ao,ﬁo)du(m)---/§Gk_1(04khﬁk1)f(ao,---,ak)q’k(ak)du(%)- (55)
Gy Gy

To
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If f(ao,..., o) = fr(ag), then (55) coincides with (51). Therefore, (€, B,P}) is an extension of

(Go, B,Py). The corresponding projection 7: Q) — Gy maps a sequence (ap, ..., ) to a point
a € Gy such that ¥ (a) = ay. Consider the random variable f(a) = F o X (a) on Gy. It induces
a random variable f o m(ag,...,ax) = F(ax) on Q. Therefore, the distribution of F o X% with

respect to the measure Py, coincides with the distribution of F'(cy,) with respect to the measure Py.

Theorem 4.2. Suppose that J. is a normalized weight, ®g is a flowing density on the leaf Gy,
and go is a foliated function taking the value ®(«) on each standard trace (T'ya, ®). Then, under
the conditions of Theorem 2.6, there exists a family of continuous functions Gi(&,€): Qi — C that
analytically depends on &, is real for £ € R, and satisfies the equalities

©/e fro (UF(&,e) + Ve (&) (T, a, @) dpu(cv)
fro (Ut*(O, €) + Vi1/e(0, 5)) (T, o, @g) dp(@)

Pt,/a (exp(fF(O‘t/a)/E + G’t/a (fa 5))) = (56)

for all sufficiently small &, ¢ and t € €Z N [0,ty]; here, FF (&) = Jf[N/E)}Ft({) and Uf(&,e) =
Jg[N/aUt({,s) + (7,5(5,5) are Taylor polynomials of degree [N/5] with respect to the variable & and

Gye(&e) =71 ) O(e). (57)

(4,7)€®

Proof. For convenience, we set k = t/c and rewrite identities (19) and (20) from Theorem 2.6
with regard to its Addition 2, with k = [N/5]:

g0 =U5(&,€) + Vao(&e) + Y O(¢led), (58)
(4,7)€6

B € Fee)e (Ut (57 ) + %7(575)) = eFt*‘FE(E)/E <Ut*+s(§7€) + %+€7T+1(£’€) +

> 0(51'&4)). (59)
i)

(i)e®
Let (I}, ;) be a standard leaf in G;. Consider the functions

eFe@/F (UL (€, €) + Vigse(€,€)) (Domiy s, Pry)
6 ZE Qe (U* (57 ) + ‘/t,t/e(ga 5) + Z(i,j)e@ O(&Z&'])) (F]g,i, Of—q, (I)kfz) ’

) = 9o(Iy, ag, D)
(Us(&2) + Voo(&, €) + X5 yew O(E7€9)) (T, g, i)

where the numerators and denominators are taken from (58) and (59), and

Yr—i(§,e) (i) =

wk (57 5) (ak

V(& e)(ao, ..., aE) = H¢k—i(§75)(ak—i)-

Take the function f = W (£, e)etF(@r)/e in (55). Let us successively calculate all integrals in (55)
by using the definition of the operator B. and equalities (58) and (59) at each step. We obtain

Vi (T(€, )etFOr)/e) = / O (UF(E,€) + Vigse(€,6)) (T, a, Bo) dpa(cv), (60)
To

vp(T5(0,)) = / (UF(0,8) + Vi4/:(0,€)) (I, v, @) dpa(cx). (61)
To
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Let
k /
v \I/k 0,5)
Gr(&e) =) (€ e) (o) —In #1)
i=0 v, (1)
The division of (60) by (61) yields (56). Addition 3 implies that (¢, ¢)(cw) —1 = 3 jyee O(E')
uniformly with respect to i = 1,...,k. This gives estimates (57) and proves the theorem.

Below, we state a theorem that allows one to derive from (56) exact asymptotics of large deviation
probabilities for the random variable F'o ZE/ © with respect to the probability measure P, /e Suppose
that some real random variable S has a distribution function ¥ and ®, is the Gaussian distribution
with mathematical expectation zero and variance d.

Theorem 4.3 [3]. Suppose that Eef5TCE) = 2 for || < R, where G(€) is a random
variable that analytically depends on a complex parameter & and is real for real &, and ¢ is an
analytic function satisfying the conditions p(0) = ¢'(0) = 0 and ¢"(0) = d > 0. If a positive
constant I and a function ~(r) nondecreasing for r > 0 are such that supje<g|p(§)] < T' and
Supj¢|<y esssup |G(§)| < y(r), then

% _ ppla)—ay (a)+¢ (0)?/2d {1 L0 (Oq inf o (ﬁ + ’y(r)) (aVd+ 1))] (62)

for all a > 0.
In this formula, the symbol O(¢) denotes a function such that |O(¢)| < Al(] for all || < 6,

where A and  are universal positive constants.

Let us apply this theorem to the random variable ¥ 022/ °. Under the conditions of Theorems 2.6
and 4.2, introduce the notation

. ﬂ* (f) fr‘o (Ut* (57 5) + V;t,t/s(gv 5))(F7 Q, (I)O) d:u(a)

fge)=——"+n Jr, U 0,2) + Vg (0,6)) (T, Do) dpa(cr)” (63)
_ 8ft(f,€) . Fozg/s B
T o ¢=0 S_f_‘“ o(§) = fe(&,€) — al. (64)

Let W be the distribution function of the random variable S with respect to the measure P/, and
let @, be the Gaussian distribution with mathematical expectation zero and variance d = ¢”(0).

Theorem 4.4. If the conditions of Theorem 4.2 hold, the derivative 9%F;(0)/0¢2 is positive,
a diagram D coincides with the set ®' = {(i,j) € Z% | 6i + 10j < N — 21}, and N > 32, then

1- \Il((p’(a)) _ €<,a’(o¢)—ozc,a’(()4)—}—4,0’((3¢)2/2cl 5—9/(N—14) a =
= E) O et v )

for any § > 9/(N — 14) and all € (0,€°), where the notation (63) and (64) is used.

This is a Cramér asymptotics for the random variable S and, thereby, for the random variable
Fo Eé/ “/e because the latter differs from S only by the nonrandom term a. It holds in the domain
where o < €. In this domain, the order of ¢/(a) does not exceed £°~! and, accordingly, the order
of the difference F' o ZZ/ ® — ea does not exceed 9.

Proof of Theorem 4.4. Theorem 4.2 implies the identity E e$57Gt(&e) = (&) Therefore,
it is sufficient to refer to Theorem 4.3. We only need to estimate the discrepancy in equality (62).
In the situation under consideration, the variance d = ¢”(0) = ¢~ *F/'(0) + O(1) is on the order

of e71. It is easy to see that we can take R of order 1 and I' of the order ! in (62). Choose a
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function ~(r, €) such that supj¢ ., esssup |G¢(§,€)| < (r,€). Let us apply the well-known inequality
aPb? < a+ b, where p+ ¢ = 1. If (4,5) € &, then 6i + 105 > N — 20 and

€ied| < |§|(6i+10j)/6 4 £(6i4107)/10 |§|(N—20)/6 1 £(N=20)/10,

Therefore, for small ¢ and ¢ and a sufficiently large C, we have

Guée)l =" D O(El'e) < e (g V7206 4 (N=20/10),
(1,§)e®

Hence, we can take y(r,e) = Ce™! (’I”(N_20)/6 + E(N_QO)/IO). An elementary calculation shows that,
in this situation, we have

inf (L + 'y(r7 5)> ~ 5(N_32)/(2N—28)
0<r<dR3/T' \ rv/d

(the infimum is attained at 7 ~ %/ (N=1%)) This estimate and (62) imply (65).

To conclude, we add a few words about the mathematical expectation and variance of the random
variable F o 27, Let us expand the function F(¢) in powers of & Fy(&) = &Fyy + E2Fy + ... .
It follows from (56) that the mathematical expectation of F' o Eé/ © is equal to Fi; + O(e), and the
variance is equal to 2¢ Fy; +O(e?). By construction, the function F;(€) is a solution to the differential
equation F' = \p with the initial condition Fy(¢) = £F. By Proposition 2.5, d)\ff/dé‘gzo = df /dvy,
where v,, = nv. Therefore, the coefficients Fi; and Fy; satisfy the differential equations

dFy _ APy dFy _ dFy 1 d*Xep,
dt dv ' dt  dv 2 de2

£=0

with the initial conditions Fig = F and Fby = 0. Let g’ be the phase flow of the vector field T
on M. Then, Fy;(z) = F o g"'(z). By Proposition 2.2, the second derivative d2)\§f/d§2 is always
nonnegative. Therefore, the function Fy; is also nonnegative (in the case of general position, it is
strictly positive). These facts should be interpreted as follows. If {(w;,2)}5°, is a trajectory of
initial cascade (1) with the initial condition (wp,z20) € Go, then the point 2. has asymptotically
normal distribution whose mathematical expectation in the first approximation equals g*(zg) and
variance is of order no higher than . Formula (65) allows one to calculate asymptotic expansions
in powers of € for the mathematical expectation, variance, and higher-order semi-invariants of
the random variable F'(z /E); in addition, it gives sharp asymptotics for the probabilities of large
deviations of F'(z/.) from F'o g*(z0) by distances of order no higher than &°.
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