
Proceedings of the Steklov Institute of Mathematics, Vol. 244, 2004, pp. 58–79.
Translated from Trudy Matematicheskogo Instituta imeni V.A. Steklova, Vol. 244, 2004, pp. 65–86.
Original Russian Text Copyright c© 2004 by V.I. Bakhtin.
English Translation Copyright c© 2004 by MAIK “Nauka/Interperiodica” (Russia).

Cramér Asymptotics in the Averaging Method
for Systems with Fast Hyperbolic Motions

V. I. Bakhtin1

Received May 2002

Abstract—A dynamical system w′ = S(w, z, ε), z′ = z+εv(w, z, ε) is considered. It is assumed
that slow motions are determined by the vector field v(w, z, ε) in the Euclidean space and
fast motions occur in a neighborhood of a topologically mixing hyperbolic attractor. For the
difference between the true and averaged slow motions, a limit theorem is proved and sharp
asymptotics for the probabilities of large deviations (that do not exceed εδ) are calculated; the
exponent δ depends on the smoothness of the system and approaches zero as the smoothness
increases.

We consider a cascade system with fast and slow motions in which the slow motions occur in the
Euclidean space and the fast motions occur in a neighborhood of a topologically mixing hyperbolic
attractor. We assume that the fast hyperbolic motions depend on a slow variable, while the slow
motions are determined by a vector field v depending on both fast and slow variables. For each value
of the slow variable z, an invariant probability measure µz on the attractor is constructed. It is used
to define an averaged vector field v(z) =

∫
v dµz on the space of slow motions. We prove that the

measure µz smoothly depends on z and that the field v is smooth as well. The dynamical system
determined by this field is said to be averaged. The averaging method consists in replacing the slow
motions by the trajectories of the averaged system. The method is substantiated by proving that
the difference between the true and averaged slow motions is small with overwhelming probability.

In the case when the fast motion does not depend on the slow motion, the following results have
been obtained [9, 7]. First, the difference mentioned above satisfies a central limit theorem with the
mean-square deviation of order

√
ε (where ε is a small parameter characterizing the speed of the slow

motion). Second, the probabilities of deviations of orders higher than
√

ε are exponentially small.
Third, rough (up to logarithmic equivalence) probability estimates have been obtained for various
types of behavior of the slow components of trajectories deviating from the averaged trajectory by
a finite distance.

In this paper, we prove a central limit theorem in the case when the fast motions depend on the
slow motions. Moreover, we calculate sharp asymptotics for the probabilities of large deviations that
do not exceed εδ . The exponent δ depends on the smoothness of the system and approaches zero
as the smoothness increases. These asymptotics are similar to the classical Cramér asymptotics for
a sequence of independent identically distributed random variables. They can be obtained both for
the invariant measure µz and for noninvariant measures of the following form. Let Γ be a smooth
submanifold of the phase space that is contained in the layer z = const in a small neighborhood of
the attractor and has the dimension of the expanding foliation and a direction close to that of the
expanding foliation. Let µ be a smooth compactly supported probability measure on Γ. We denote
the slow component of the trajectory with initial condition z by z(t) and the averaged trajectory
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CRAMÉR ASYMPTOTICS IN THE AVERAGING METHOD 59

with the same initial condition by z(t). For the difference z(t/ε) − z(t/ε), the Cramér asymptotics
with respect to the measure µ can be calculated. It turns out that, in the first approximation, they
do not depend on the pair (Γ, µ) but depend only on the initial condition z. If the dynamical system
under consideration is generated by a mapping Σε and J is a smooth positive function on the phase
space, then similar results can be obtained for the measures of the form µ×J×J ◦Σε× . . .×J ◦Σt/ε

ε .
The proof uses two independent techniques. The first is the apparatus of foliated functions

developed in [1, 2, 5] (they were called regular functions in the first two papers). The second is the
method of asymptotic expansions for semigroups of operators of weighted conditional mathematical
expectation, which is described in [4] for the case of a cascade system with slow and fast Markov
motions.

This paper is organized as follows. In Section 1, the system under examination is specified,
nonformal definitions of foliated functions and averaged weighted shift operator are given (their
precise definitions, which are rather cumbersome, are given in [5]), the basic properties of these
functions and operators are described, and invariant measures on attractors are constructed. In
Section 2, we state a theorem on an asymptotic expansion of the semigroup of averaged weighted
shift operators (Theorem 2.6). It is proved in Section 3. Finally, in Section 4, we apply the
asymptotic theorem to derive Cramér asymptotics for the probabilities of large deviations from the
averaged motion. The main result about these asymptotics is Theorem 4.4.

1. FOLIATED FUNCTIONS

In what follows, we use the terminology and notation from [5]. Let M be a convex domain in
the standard Euclidean space and W be a Riemannian manifold. We consider a family of N times
continuously differentiable self-mappings of the direct product W × M of the form{

w′ = S(w, z, ε),
z′ = z + εv(w, z, ε),

(1)

where ε is a small positive parameter, w ∈ W , and z ∈ M . In abbreviated notation, this family
is written as (w′, z′) = Σε(w, z). We assume that Σε(W × M) ⊂ W × M for all sufficiently small
values of ε. This can easily be achieved, e.g., by requiring that the vector field v be zero in a
neighborhood of the boundary of M . In this case, Σε generates a dynamical system with discrete
time (cascade) on W ×M with fast motions on W and slow motions on M (at a velocity of order ε).
We assume that the mapping Sz(w) = S(w, z, 0) has a mixing hyperbolic attractor for each z ∈ M
which continuously depends on z (see the definition in [6, 8]). Suppose also that system (1) has
a uniformly hyperbolic mixing atlas (the definition is given in [5]). The last condition is lightly
restrictive because it holds locally (in a neighborhood of each point z ∈ M) and can always be
satisfied by decreasing the domain M .

In [5], the notions of leaves, traces, foliated functions, and averaged weighted shift operators
on spaces of foliated functions were introduced for such systems. In short, each leaf Γ is a smooth
submanifold in W × M that lies in a neighborhood of the attractor and has the dimension of the
expanding foliation and a direction close to that of the expanding foliation. A trace is a pair (Γ,Φ)
consisting of a leaf Γ and a smooth function Φ on it, which is called a density. A standard trace is
a triple (Γ, α,Φ) consisting of a trace (Γ,Φ) and a point α ∈ Γ belonging to the R0-interior of Γ
(where the positive number R0 does not depend on the trace). The point α is called the center
of the leaf Γ. A foliated function is a function on the set of standard traces whose value linearly
depends on the density Φ and smoothly changes under a smooth deformation of the trace. In [5],
various norms for foliated functions were defined (depending on their order of smoothness) and,
accordingly, Banach spaces Fpq of foliated functions were introduced (here, p and q are positive
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60 V.I. BAKHTIN

integers characterizing the smoothness of foliated functions and satisfying the conditions p ≥ 1,
q ≥ 4, and p + q ≤ N − 1, where N is the order of smoothness of system (1)).

The simplest example of a foliated function is given by g(Γ, α,Φ) = Φ(α). A less trivial example
is a function of the form

g(Γ, α,Φ) =
∫
Γ

ξ(ρ(α, β))Φ(β) dµ(β), (2)

where µ is the Riemannian volume on Γ, ρ(α, β) is the distance between the points α, β ∈ Γ, and ξ
is a smooth nonnegative function on the real axis supported in a small neighborhood of zero.

Let u be the dimension of the expanding foliation on the attractor. A weight function is an
arbitrary smooth function J defined on the manifold of u-dimensional subspaces tangent to W ×M .
In particular, the canonical weight function is the reciprocal of the expansion coefficient of u-dimen-
sional volumes under the mapping Σε. The weight functions have natural restrictions to each leaf.
It was proved in [5] that the foliated functions form a Banach module over the algebra of weight
functions with multiplication Jg(Γ, α,Φ) = g(Γ, α, JΦ).

The image of a trace (Γ,Φ) under the mapping Σε is the trace (Γ′
ε,Φ′

ε) = Σε(Γ,Φ) such that
Γ′

ε = Σε(Γ) and Φ = Φ′
ε ◦ Σε. Take a family of weight functions Jε. The corresponding averaged

weighted shift operator Aε,n on the space of foliated functions is defined by the formula

[Aε,ng](Γ, α,Φ) =
∫
Γ′
ε

ξΓ(α, β)g(Γ′
ε, β

′,Φ′
ε) dµ(β′), (3)

in which (Γ′
ε,Φ

′
ε) = (ΣεJε)n(Γ,Φ), β ∈ Γ, β′ = Σn

ε (β), the function ξΓ(α, β) has the form

ξΓ(α, β) =
ξ0(ρ(α, β))∫

Γ ξ0(ρ(α, β)) dµ(α)
, (4)

and ξ0 is a fixed smooth nonnegative function on the real axis supported in a small neighborhood
of zero. This definition implies the homological identity

Aε,n(fg) = f ◦ Σn
ε · Aε,ng (5)

for all foliated functions g and smooth functions f : W × M → R.
In [5, Theorems 3.2 and 3.3], the following assertion was proved.
Theorem 1.1. The operator A0,n continuously maps each space Fpq to itself. For every n,

there exists a small positive number ε0 such that, for any ε ∈ [−ε0, ε0] and l ≤ q − 8, the operator
dlAε,n/dεl continuously maps the space Fpq to Fp+1+l,q−4−l (and, hence, to Fp+2l,q−5l if l �= 0).

A foliated function is said to be positive if it takes nonnegative values on the standard traces
with nonnegative densities. A positive foliated function g is strongly positive if there exists c > 0
such that, for any standard leaf Γ centered at α, g(Γ, α, 1) ≥ c. A linear functional on the space of
foliated functions is positive if it takes nonnegative values on positive functions.

Now, suppose that the family Jε of weight functions is positive and bounded away from zero.
For example, this is so for the canonical weight function. Then, the operator Aε,n maps positive and
strongly positive foliated functions to positive and strongly positive foliated functions, respectively.
Under these conditions, the following assertion is valid [5, Theorem 3.3].

Theorem 1.2. If N ≥ 6, then, for any sufficiently large n ∈ N, there exist a function λ =
λn ∈ CN−4(M), a strongly positive foliated function h = hn ∈ F1,N−2, and a positive C∞(M)-linear
functional ν = νn : FN−5,4 → C2(M) such that, whenever p ≥ 1, q ≥ 4, and p + q ≤ N − 1, the
following assertions hold :
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(a) the functional ν continuously maps the space Fpq to Cq−2(M);
(b) A0,nh = eλh, ν ◦ A0,n = eλν, and ν(h) ≡ 1;
(c) the sequence of operators [e−λA0,n]m : Fpq → Fpq converges to the projector A0,ng = ν(g)h

in the uniform operator norm as m → ∞.

Consider a C∞(M)-linear functional µn : C∞(W ×M) → CN−4(M) defined by µn(f) = ν(fh).
Theorem 1.2 implies that this functional is positive (i.e., it takes nonnegative functions to nonneg-
ative functions) and normalized (i.e., µn(1) ≡ 1). In addition, it satisfies the identity

µn(f ◦ Σn
0 ) = µn(f). (6)

Indeed, by virtue of (5), we have

µn(f ◦ Σn
0 ) = ν(f ◦ Σn

0 · h) = ν(f ◦ Σn
0 · e−λA0,nh) = e−λν

(
A0,n(fh)

)
= ν(fh) = µn(f).

Proposition 1.3. If two functions f, f ′ ∈ C∞(W × M) coincide at some z = z0, then the
values of the functions µn(f) and µn(f ′) at the point z0 also coincide.

Proof. Suppose that z = (z1, . . . , zk) and z0 = (z01, . . . , z0k). By the Hadamard lemma, the
difference f − f ′ can be represented in the form

f(z,w) − f ′(z,w) =
k∑

i=1

(zi − z0i)ϕi(z,w), ϕi ∈ C∞(W × M).

Therefore, the difference µn(f) − µn(f ′) =
∑k

i=1(zi − z0i)µn(ϕi) vanishes at z = z0.
Let us define a family of linear functionals µn,z : C∞(W × M) → R by the formula µn,z(f) =

[µn(f)](z). Each of these functionals is positive and normalized. The Riesz theorem implies that
each of them can be identified with a Borel probability measure on W ×M . According to Proposi-
tion 1.3, the measure µn,z is concentrated on the fiber W × {z}. Finally, we set

µz(f) =
1
n

µn,z

(
f + f ◦ Σ0 + . . . + f ◦ Σn−1

0

)
.

Then, µz is also a Borel probability measure on W × {z}. By virtue of (6), it satisfies the identity
µz(f) = µz(f ◦ Σ0). Therefore, the measure µz is Σ0-invariant. If f ∈ C1+q(W × M), then, by
Theorem 1.2, µz(f) ∈ Cq−2(M). This means that the invariant measure µz smoothly depends on
the parameter z.

2. AN ASYMPTOTIC THEOREM

For our purposes, it is convenient to normalize the averaged weighted shift operator A0,n in such
a way that its maximum eigenvalue is 1 rather than eλn . To this end, it suffices to replace the weight
function Jε in the definition of the operator Aε,n by the normalized weight function Ĵε = Jεe

−λn/n.
We call the operator Bε thus obtained a normalized averaged weighted shift operator. In Section 4,
we prove that the canonical weight function is normalized and Bε = Aε,n for this function. The
homological identity (5) implies that B0 = e−λnA0,n. Theorem 1.2 states that the sequence Bm

0

converges to the projector B = νn ⊗hn in the space of linear continuous operators on Fpq. We refer
to this property as the ergodicity of the semigroup Bm

0 . It implies, in particular, the existence of a
large C0 and Λ0 ∈ (0, 1) such that

‖Bm
0 g‖pq ≤ C0Λm

0 ‖g‖pq for g ∈ Fpq ∩ ker ν. (7)

For an arbitrary function F ∈ C∞(M), consider the family of operators Bε[F ] defined by the
equalities

Bε[F ] g = e−F/εBε

(
eF/εg

)
, B0[F ] g = lim

ε→0
Bε[F ] g. (8)
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The homological identity (5) implies

Bε(Fg) = F ◦ Σn
ε · Bεg, B0(Fg) = FB0g, (9)

Bε[F ] g = exp
(

F ◦ Σn
ε − F

ε

)
Bεg, B0[F ] g = exp

(
dF

dvn

)
B0g, (10)

where

vn(w, z) =
n−1∑
i=0

v0 ◦ Σi
0(w, z), v0(w, z) = v(w, z, 0). (11)

Equalities (9) and (10) imply the C∞(M)-linearity of the operator B0[F ], i.e., the equality
B0[F ]fg = fB0[F ] g for all f ∈ C∞(M) and g ∈ Fpq. It follows from [5, Theorem 3.1] that,
actually, this identity is valid for F ∈ Cp+q+1(M) and f ∈ Cp+q−3(M). The operator B0[F ] with
this property will be called fibered. Theorem 1.1 and (10) imply that the family Bε[F ] analytically
depends on F and smoothly (in a certain weak sense) depends on ε. A perturbation Bε of the
operator B0 such that Bε[F ] analytically depends on F and smoothly depends on ε is said to be
superregular.

In this section, we prove that, for a superregular perturbation Bε of a fibered ergodic operator B0,
the family of operators B

t/ε
ε eξF/ε admits an asymptotic expansion in powers of the small parameters

ξ and ε. This expansion is similar to that obtained in [4] for a system with slow and Markov fast
motions.

Theorem 3.1 from [5] and (10) imply that the operator B0[F ] : Fpq → Fpq analytically depends
on the function F ∈ Cp+q+1(M).

Proposition 2.1. An arbitrary sufficiently small function F ∈ Ci(M), where 6 ≤ i ≤ N,
uniquely determines the following objects that analytically depend on F : a function λF ∈ Ci−4(M),
a foliated function hF ∈ F1,i−2, and a C∞(M)-linear functional νF : F i−5,4 → C2(M) continuously
mapping each space Fpq to Cq−2(M) (for p ≥ 1 and q ≥ 4 with p + q ≤ i − 1) such that

λ0 = 0, h0 = h, ν0 = ν, ν(hF ) = νF (h) = 1,

B0[F ]hF = eλF hF , νF ◦ B0[F ] = eλF νF .

Here, h and ν are the foliated function and the linear functional defined in Theorem 1.2.

Proof. The space F1,i−2 decomposes into the direct sum ker ν ⊕ Ci−4(M)h. Let us apply the
implicit function theorem to the equation

B0[F ](h + ∆h) − eλ(h + ∆h) = 0 (12)

with respect to the function λ ∈ Ci−4(M) and the foliated function ∆h ∈ F1,i−2 ∩ ker ν. It follows
from (7) that the restriction of the operator I − B0 to F1,i−2 ∩ ker ν is invertible. Therefore, for
zero F , λ, and ∆h, the derivative of the left-hand side of equation (12) with respect to ∆h is an
automorphism of F1,i−2 ∩ ker ν, while the derivative of the left-hand side of (12) with respect to λ
isomorphically maps Ci−4(M) onto Ci−4(M)h. Hence, the implicit function theorem applies to this
equation, and it uniquely determines λF ∈ Ci−4(M) and ∆hF ∈ F1,i−2 ∩ ker ν, which analytically
depend on F . We set hF = h + ∆hF .

Consider the equation (
(ν + ∆ν) ◦ B0[F ] − eλ(ν + ∆ν)

)∣∣∣
ker ν

= 0 (13)
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with respect to a C∞(M)-linear functional ∆ν : F i−5,4 → C2(M) such that ∆ν(h) = 0. The
implicit function theorem applies to this equation as well because the operator B0 − I is invertible
on F i−5,4 ∩ ker ν. It uniquely determines a family ∆νF that analytically depends on F .

The same argument applies to the cases when ∆ν : Fpq → Cq−2(M) and ∆ν : Fpq → C2(M).
Since the implicit function is unique, the restriction of the functional ∆νF to Fpq must be the same
in all the three cases. Therefore, ∆νF continuously maps each Fpq to Cq−2(M). To complete the
proof, it remains to set νF = ν + ∆νF .

Proposition 2.2. For small F ∈ C6(M), the function λF is convex with respect to F .
Proof. Since the operator B0 is ergodic, we have

λF = lim
m→∞

λm(F )
m

, where λm(F ) = ln ν
(
(B0[F ])mh

)
.

Thus, it is sufficient to show that the functions λm(F ) are convex. By virtue of (9)–(11),

(B0[F ])mh = exp
(

dF

dvn
+

dF

dvn
◦ Σn

0 + . . . +
dF

dvn
◦ Σn(m−1)

0

)
Bm

0 h = exp
(

dF

dvnm

)
h.

Therefore, λm(F ) = ln ν
(
edF/dvnmh

)
= ln µ

(
edF/dvnm

)
. We know that the functional µ(f) = ν(fh)

is positive and normalized. To prove the convexity of λm(F ), it suffices to show that the function
ϕ(t) = ln µ(eu+tv) has a nonnegative second derivative for any u, v ∈ C5(W ×M). Let us calculate
this derivative:

ϕ′(t) =
µ(eu+tvv)
µ(eu+tv)

, ϕ′′(t) =
µ(eu+tvv2)µ(eu+tv) − µ(eu+tvv)2

µ(eu+tv)2
.

The numerator of the second fraction is nonnegative because

µ(eu+tvv)2 = µ
(
e(u+tv)/2v · e(u+tv)/2

)2 ≤ µ(eu+tvv2)µ(eu+tv)

by the Cauchy–Schwarz–Bunyakovsky inequality.
Proposition 2.3. If the first differentials of two functions F,F ′ ∈ CN (M) coincide at a point

z0 ∈ M, then λF (z0) = λF ′(z0).
Proof. Suppose that a point z ∈ M has coordinates zk. By the Hadamard lemma, all partial

derivatives ∂(F − F ′)/∂zk can be represented in the form

∂(F − F ′)
∂zk

(z) =
∑

l

(zl − z0l)fkl(z), fkl ∈ CN−2(M).

Then, according to (10), the difference B0[F ] − B0[F ′] can be represented as

B0[F ] − B0[F ′] =
∑

l

(zl − z0l)ϕlB0, (14)

where ϕl are some functions from CN−2(W × M). By Proposition 2.1, there exist a vector hF ∈
F1,N−2 and a C∞(M)-linear functional νF ′ : FN−5,4 → C2(M) such that

B0[F ]hF = eλF hF , νF ′ ◦ B0[F ′] = eλF ′νF ′ . (15)

Let us normalize the functional νF ′ by νF ′(hF ) ≡ 1. Then, relations (15) and (14) and the C∞-
linearity of νF ′ imply the equalities

eλF − eλF ′ = νF ′(B0[F ]hF ) − νF ′(B0[F ′]hF ) =
∑

l

(zl − z0l)νF ′(ϕlB0hF ).

Therefore, λF (z0) = λF ′(z0).
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Proposition 2.4. The function λF = λF (z) depends only on z and on the first partial deriva-
tives of the function F at the point z; i.e., λF (z) = λ(z, p), where p = dF (z)/dz. It is N − 4 times
continuously differentiable with respect to z and analytically depends on p.

Proof. Proposition 2.3 implies that λF (z) = λ(z, dF/dz). If F (z) equals the inner product
(p, z), then, by Proposition 2.1, the function λF (z) = λ(z, p) has smoothness of order N − 4 with
respect to z and analytically depends on p.

Let us define a vector field vn on M by

vn = ν(vnh). (16)

Its order of smoothness is at least N − 4. The definition (11) of the field vn and the definition of
the family of invariant measures µz show that vn = nv, where v(z) is the mean value of the field
v(w, z, 0) with respect to the measure µz

Proposition 2.5. For any function f ∈ C6(M),

df

dvn
=

d

dξ

∣∣∣∣
ξ=0

ν(B0[ξf ]h) =
d

dε

∣∣∣∣
ε=0

ν(Bεfh − fBεh) =
d

dξ

∣∣∣∣
ξ=0

λξf . (17)

Proof. The first equality follows from (10). By (9), Bεf − fBε = (f ◦ Σn
ε − f)Bε. Obviously,

f ◦ Σn
0 − f = 0 and

d(f ◦ Σn
ε − f)

dε

∣∣∣∣
ε=0

=
df

dvn
.

This yields the second equality in (17). The third equality follows from

d

dξ

∣∣∣∣
ξ=0

λξf =
d

dξ

∣∣∣∣
ξ=0

νξf (B0[ξf ]hξf )
νξf (hξf )

=
d

dξ

∣∣∣∣
ξ=0

ν(B0[ξf ]h).

We study the normalized weighted shift operator Bε obtained from Aε,n by replacing the
weight Jε with the normalized weight Ĵε = Jεe

−λn/n. Let us define two more operators B and B̃
by the formulas Bg = νn(g)hn and B̃ = I − B. Obviously, these are mutually complementary
projectors. We set

pj = 1 + 2j, qij = N − 7 − 6i − 10j,

D′ =
{
(i, j) ∈ Z

2
+

∣∣ 6i + 10j ≤ N − 21
}
.

Definition 2.1. A regular Newton diagram is an arbitrary bounded set D ⊂ Z+ × Z+ that
contains, together with its every point (i, j), the entire rectangle Πij =

{
(i′, j′)

∣∣ 0 ≤ i′ ≤ i, 0 ≤
j′ ≤ j

}
. A point (i, j) ∈ Z+ ×Z+ is called a growth point of a regular Newton diagram D if it does

not belong to D while all the other points of the rectangle Πij belong to D.

Theorem 2.6. Suppose that N ≥ 27 and a family of functions Ft(ξ) ∈ CN−5(M) satisfies
the differential equation Ḟt(ξ) = λFt(ξ) with the initial condition F0(ξ) = ξF for all t ∈ [0, t0] and
all sufficiently small real ξ. Then, for any foliated function g0 ∈ F1,N−2 and any regular Newton
diagram D ⊂ D′ with a set G of growth points, there exist families of foliated functions

Ut(ξ, ε) =
∑

(i,j)∈D

ξiεj
(
U ijthFt(ξ) + Ũijt

)
, Vtτ (ξ, ε) =

∑
(i,j)∈D

ξiεj
(
V ijtτ + Ṽijtτ

)
(18)
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such that, for all t ∈ [0, t0] and τ ∈ Z+, the identities

g0 = U0(ξ, ε) + V00(ξ, ε) +
∑

(i,j)∈G

O(ξiεj), (19)

Bεe
Ft(ξ)/ε

(
Ut(ξ, ε) + Vtτ (ξ, ε)

)
= eFt+ε(ξ)/ε

(
Ut+ε(ξ, ε) + Vt+ε,τ+1(ξ, ε) +

∑
(i,j)∈G

O(ξiεj)

)
(20)

hold, where the foliated functions ξ−iε−jO(ξiεj) ∈ F [2N/5],4 are uniformly bounded. The coefficients
of families (18) are such that the derivatives

dnU ijt

dtn
∈ Cqij−7−n(M), n ≤ qij − 9,

dnV ijtτ

dtn
∈ BFpj ,qij−n,

dnŨijt

dtn
,
dnṼijtτ

dtn
∈ B̃Fpj ,qij−n, n ≤ qij − 4,

are defined for all t ∈ [0, t0] and τ ∈ Z+. All of them are uniformly bounded in the spaces specified
and linearly and continuously depend on g0, and the norms of the derivatives dnV ijtτ/dtn and
dnṼijtτ/dtn exponentially decrease in τ .

Discarding the remainder terms in identities (19) and (20), we obtain the asymptotic expansion

Bt/ε
ε eξF/εg0 ∼ eFt(ξ)/ε

(
Ut(ξ, ε) + Vt,t/ε(ξ, ε)

)
, t ∈ εZ ∩ [0, t0], ε > 0. (21)

Addition 1. The initial coefficients of expansions (18) are expressed as Ũ00t = V 00tτ = 0 and
Ṽ00tτ = Bτ

0 B̃g0, and U00t satisfies the differential equation

dU00t

dt
=

dU00t

dv
+ αU 00t, U000 = ν(g0), where α =

d

dε

∣∣∣∣
ε=0

ν(Bεh) ∈ CN−9(M).

If the function U000 is bounded from below by a positive constant on M , then the family U00t is
bounded from below by a positive constant on the interval [0, t0].

We denote the Taylor polynomials of degree k in ξ for the function Ft(ξ) and the families of
operators Ut(ξ, ε) by Jk

ξ Ft(ξ) and Jk
ξ Ut(ξ, ε), respectively.

Addition 2. In Theorem 2.6, Ft(ξ) can be replaced by Jk
ξ Ft(ξ) and Ut(ξ, ε), by Jk

ξ Ut(ξ, ε);
moreover, k can be taken in the range from (N − 26)/6 to 3N/5 − 11. In particular, k = [N/5] is
fit.

Addition 3. If a foliated function g0 is strongly positive, then, for any standard trace (Γ, α,Φ)
with flowing density Φ (in the sense of Definition 5.1 from [5]) and any positive integer k between
(N − 26)/6 and 3N/5 − 8, the equality

eJk
ξ Fiε(ξ)/ε(Jk

ξ Uiε(ξ, ε) + Vt,t/ε(ξ, ε)
)
(Γ, α,Φ)

eJk
ξ Fiε(ξ)/ε(Jk

ξ Uiε(ξ, ε) + Vt,t/ε(ξ, ε) +
∑

(i,j)∈GO(ξiεj)
)
(Γ, α,Φ)

=
∑

(i,j)∈G

O(ξiεj)

holds uniformly with respect to (Γ, α,Φ) and t ∈ [0, t0].

3. PROOF OF THE ASYMPTOTIC THEOREM 2.6

Recall that, for some C0 and Λ0 ∈ (0, 1), the normalized averaged weighted shift operator
B0 = e−λnA0,n satisfies estimate (7), i.e.,

‖Bm
0 g‖pq ≤ C0Λm

0 ‖g‖pq, g ∈ Fpq ∩ ker B, (22)
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where p ≥ 1, q ≥ 4, and p + q ≤ N − 1. Relations (10) imply the equality

e−Ft+ε(ξ)/εBεe
Ft(ξ)/εg = eΦt(ξ,ε)Bεg, (23)

where

Φt(ξ, ε) = Φt(ξ, ε, w, z) =
Ft(ξ,Σn

ε (w, z)) − Ft+ε(ξ, z)
ε

.

By the conditions of Theorem 2.6, the family of functions Ft(ξ, z) satisfies the differential equation
Ḟ = λF with the initial condition F0(ξ, z) = ξF (z) and has smoothness N − 5. The equality λ0 = 0
implies Ft(0, z) ≡ 0 and, accordingly, Φt(0, ε) ≡ 0.

Lemma 3.1. Under the conditions of Theorem 2.6, the function Φt(ξ, ε, w, z) is N − 6 times
continuously differentiable with respect to all variables and the family of foliated functions hFt(ξ) has
the property

∂i+n

∂ξi∂tn
hFt(ξ) ∈ F1,N−7−i−n, i + n ≤ N − 11.

Proof. The first assertion is obvious. The second assertion holds because, by Proposition 2.1,
the function hFt(ξ) ∈ F1,N−7−i−n analytically depends on Ft(ξ) ∈ CN−5−i−n(M), and this family
is i + n times differentiable with respect to t and ξ in the space specified.

Lemma 3.2. Let p + q ≤ N − 6. Suppose that a family of functions U t ∈ Cq−2(M) and
families of foliated functions Ũt, Vtτ ∈ Fpq satisfy the estimates∥∥∥∥dnU t

dtn

∥∥∥∥
q−2−n

≤ M,

∥∥∥∥∥dnŨt

dtn

∥∥∥∥∥
p,q−n

≤ M,

∥∥∥∥dnVtτ

dtn

∥∥∥∥
p,q−n

≤ MΛτ , n ≤ q − 4,

where M > 0 and Λ ∈ (Λ0, 1) are constants independent of t ∈ [0, t0] and τ ∈ Z+. Then, the
foliated functions

W 1
t (ξ, ε) = eΦt(ξ,ε)Bε

(
U thFt(ξ)

)
− U t+εhFt+ε(ξ), W 2

t (ξ, ε) = eΦt(ξ,ε)BεŨt − Ũt+ε,

W 3
tτ (ξ, ε) = eΦt(ξ,ε)BεVtτ − Vt+ε,τ+1, W 4(ξ) = U0hξF + Ũ0 + V00

can be expanded in Taylor polynomials in ξ and ε up to an arbitrary degree ν ≤ (q − 4)/5:

W 1
t (ξ, ε) =

∑
l>0

k+l<ν

ξkεlW 1
klt +

∑
l>0

k+l=ν

ξkεlW 1
klt(ξ, ε),

W 2
t (ξ, ε) =

∑
k+l<ν

ξkεlW 2
klt +

∑
k+l=ν

ξkεlW 2
klt(ξ, ε),

W 3
tτ (ξ, ε) =

∑
k+l<ν

ξkεlW 3
kltτ +

∑
k+l=ν

ξkεlW 3
kltτ (ξ, ε),

W 4(ξ) =
∑
k≥0

ξkW 4
k .

There exist large constants Ckl independent of M and Λ such that the coefficients of these expansions
obey the estimates∥∥W 1

klt(ξ, ε)
∥∥

1+2ν,q−5ν
≤ CklM,

∥∥W 2
klt(ξ, ε)

∥∥
p+2ν,q−5ν

≤ CklM,∥∥W 3
kltτ (ξ, ε)

∥∥
p+2ν,q−5ν

≤ CklMΛτ
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and ∥∥∥∥dnW 1
klt

dtn

∥∥∥∥
1+2l,q−k−5l−n

≤ CklM,

∥∥∥∥dnW 2
klt

dtn

∥∥∥∥
p+2l,q−k−5l−n

≤ CklM,

∥∥∥∥dnW 3
kltτ

dtn

∥∥∥∥
p+2l,q−k−5l−n

≤ CklMΛτ , ‖W 4
k ‖p,q ≤ Ck0M

for n ≤ q − k − 5l − 4.
In the formulation of Lemma 3.2, an estimate for a norm ‖g‖α,β implies that the corresponding

function g is defined and belongs to Fαβ .
Proof. Proposition 2.1 and Theorem 3.1 from [5] yield U thFt(ξ) ∈ F1,q. According to Theo-

rem 1.1 and Lemma 3.1, for l ≥ 1, we have

∂lW 1
t (ξ, ε)
∂εl

∈ F1+2l,q−5l,
∂lW 2

t (ξ, ε)
∂εl

∈ Fp+2l,q−5l,
∂lW 3

tτ (ξ, ε)
∂εl

∈ Fp+2l,q−5l.

Further differentiation with respect to ξ and t with regard to Lemma 3.1 and Theorem 3.1 from [5]
shows that

∂k+l+nW 1
t (ξ, ε)

∂ξk∂εl∂tn
∈ F1+2l,q−k−5l−n,

∂k+l+nW 2
t (ξ, ε)

∂ξk∂εl∂tn
∈ Fp+2l,q−k−5l−n,

∂k+l+nW 3
tτ (ξ, ε)

∂ξk∂εl∂tn
∈ Fp+2l,q−k−5l−n.

For ε = 0, the operator B0 continuously maps the space Fpq to itself. Therefore, these inclusions
are also valid for zero l and ε. They give the Taylor expansions for W i

t (ξ, ε) with i = 1, 2, 3 and the
estimates for the norms of the coefficients in these expansions. The existence of an expansion and
the estimates for W 4(ξ) follow simply from the analytic dependence of the function hξF ∈ F1,N−7

on ξ.
Equality (23) and Proposition 2.1 give the identities

eΦt(ξ,0)B0 = e−Ḟt(ξ)B0[Ft(ξ)], B0[Ft(ξ)]hFt(ξ) = eḞt(ξ)hFt(ξ).

These identities and the assumption that B0[Ft(ξ)] is fibered imply that W 1
t (ξ, 0) ≡ 0. Therefore,

W 1
k0t = 0.

Under the conditions of Theorem 2.6, consider the discrepancies

Pt(ξ, ε) = e−Ft+ε(ξ)/εBεe
Ft(ξ)/εUt(ξ, ε) − Ut+ε(ξ, ε) = eΦt(ξ,ε)BεUt(ξ, ε) − Ut+ε(ξ, ε), (24)

Qtτ (ξ, ε) = e−Ft+ε(ξ)/εBεe
Ft(ξ)/εVtτ (ξ, ε) − Vt+ε,τ+1(ξ, ε) = eΦt(ξ,ε)BεVtτ (ξ, ε) − Vt+ε,τ+1(ξ, ε), (25)

R(ξ, ε) = g0 − U0(ξ, ε) − V00(ξ, ε). (26)

Obviously, the sum of “O” terms in (19) equals R(ξ, ε), and the sum of such terms in (20) equals
Pt(ξ, ε) + Qtτ (ξ, ε). Suppose that

pj = 1 + 2j, qij = N − 7 − 6i − 10j,

p′ij = max{pj′ | (i′, j′) ∈ D ∩ Πij}, q′ij = min{qi′j′ − 5 | (i′, j′) ∈ D ∩ Πij}.

We will prove Theorem 2.6 by extending the diagram D by induction.
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Induction hypothesis. Suppose that a regular Newton diagram D is contained in the set D′ =
{(i, j) ∈ Z

2
+ | 6i + 10j ≤ N − 21}. We denote the set of growth points of D by G and the set of

growth points of D′ by G′. Under the conditions of Theorem 2.6, suppose the following:
(a) Families of operators

U t(ξ, ε) =
∑

(i,j)∈D

ξiεjU ijt, Ũt(ξ, ε) =
∑

(i,j)∈D

ξiεjŨijt, Ut(ξ, ε) = U t(ξ, ε)hFt(ξ) + Ũt(ξ, ε);

V tτ (ξ, ε) =
∑

(i,j)∈D

ξiεjV ijtτ , Ṽtτ (ξ, ε) =
∑

(i,j)∈D

ξiεj Ṽijtτ , Vtτ (ξ, ε) = V tτ (ξ, ε) + Ṽtτ (ξ, ε)

are constructed.
(b) For all t ∈ [0, t0] and τ ∈ Z+, the derivatives

dnU ijt

dtn
∈ Cqij−7−n(M), n ≤ qij − 9,

dnV ijtτ

dtn
∈ BFpj ,qij−n,

dnŨijt

dtn
,
dnṼijtτ

dtn
∈ B̃Fpj ,qij−n, n ≤ qij − 4,

are defined; these derivatives are uniformly bounded in the spaces specified and linearly and con-
tinuously depend on g0; moreover, the norms of the derivatives dnV ijtτ/dtn and dnṼijtτ/dtn expo-
nentially decrease in τ .

(c) The initial condition

R(ξ, ε) = g0 − U0(ξ, ε) − V00(ξ, ε) =
∑

(i,j)∈Z
2
+\D

ξiεjRij , Rij ∈ Fp′ij ,q′ij ,

holds.
(d) The following equalities hold:

Pt(ξ, ε) =
∑

(i,j)∈D′\D
ξiεjPijt +

∑
(i,j)∈G′

ξiεjPijt(ξ, ε), (27)

BPijt = 0 for (i, j − 1) ∈ D and (i, j) ∈ D
′ \ D, (28)

Qtτ (ξ, ε) =
∑

(i,j)∈D′\D
ξiεjQijtτ +

∑
(i,j)∈G′

ξiεjQijtτ (ξ, ε). (29)

(e) There exist constants Cij and Λ ∈ (Λ0, 1) independent of g0 such that, for all t ∈ [0, t0] and
τ ∈ Z+, the following estimates are valid:

‖Pijt(ξ, ε)‖[2N/5],4 ≤ Cij‖g0‖1,N−2, ‖Qijtτ (ξ, ε)‖[2N/5],4 ≤ Cij‖g0‖1,N−2,∥∥∥∥dnPijt

dtn

∥∥∥∥
pj ,qij−n

≤ Cij‖g0‖1,N−2,

∥∥∥∥dnQijtτ

dtn

∥∥∥∥
pj ,qij−n

≤ CijΛτ‖g0‖1,N−2, (30)

where n ≤ qij − 4, and ∥∥∥∥dnPijt

dtn

∥∥∥∥
pj ,qij+5−n

≤ Cij‖g0‖1,N−2, n ≤ qij + 1, (31)

if (i, j − 1) /∈ D (it is assumed that all the derivatives specified above exist and belong to the
corresponding spaces).

(f) For ε = 0, the identity Ũt(ξ, 0) ≡ 0 holds.
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Obviously, if we prove this hypothesis for any regular diagram D ⊂ D′, we will thereby prove
Theorem 2.6.

Basis of induction. The induction hypothesis holds if the diagram D is empty, the functions
Ut(ξ, ε) and Vtτ (ξ, ε) and the discrepancies Pt(ξ, ε) and Qtτ (ξ, ε) are identically zero, and R(ξ, ε) =
R00 = g0. Formally, for D = ∅, the numbers p′ij and q′ij are not defined, but we can take p′ij = 1
and q′ij = N − 2.

Induction step. Consider an arbitrary growth point (i, j) ∈ G of the diagram D belonging to D′.
We set

P ijt = BPijt, P̃ijt = B̃Pijt, Qijtτ = BQijtτ , Q̃ijtτ = B̃Qijtτ .

A. Calculation of Ũijt. First, note that P ijt ≡ 0. For j > 0, this follows from (28), and for
j = 0, from the equality

Pt(ξ, 0) = e−Ḟt(ξ)B0[Ft(ξ)]
(
U t(ξ, 0)hFt(ξ)

)
− U t(ξ, 0)hFt(ξ) ≡ 0, (32)

which results from condition (f) of the induction hypothesis and from the fact that B0[Ft(ξ)] is
fibered. Therefore, to “kill” the term ξiεjPijt in (27), it is sufficient to add a monomial ξiεjŨijt to
the foliated function Ut(ξ, ε) in (24) such that

B0Ũijt − Ũijt = −P̃ijt.

This equation has a unique solution

Ũijt = (I − B0)−1P̃ijt. (33)

By virtue of (22) and (30), we have dnŨijt/dtn ∈ Fpj ,qij−n for n ≤ qij − 4. Note that, for j = 0,
identity (32) implies Pi0t ≡ 0, whence Ũi0t ≡ 0. Therefore, the addition of ξiεjŨijt to Ut(ξ, ε) does
not violate condition (f) of the induction hypothesis.

B. Calculation of Ṽijtτ . To “kill” the term ξiεjQ̃ijtτ in (29), we must add a monomial ξiεj Ṽijtτ

to the function Vtτ (ξ, ε) in (25) for which

B0Ṽijtτ − Ṽijt,τ+1 = −Q̃ijtτ .

This equality implies

Ṽijtτ = Q̃ijt,τ−1 + B0Ṽijt,τ−1 = Q̃ijt,τ−1 + B0Q̃ijt,τ−2 + B2
0 Ṽijt,τ−2 = . . .

= Q̃ijt,τ−1 + B0Q̃ijt,τ−2 + . . . + Bτ−1
0 Q̃ijt0 + Bτ

0 Ṽijt0. (34)

The function Ṽijt0 should be chosen so that, after the completion of the induction step, the initial
condition (c) is satisfied by the new diagram D to which the point (i, j) ∈ G∩D′ under consideration
is added. This can be done only if Ṽij00 = R̃ij − Ũij0. We still have to choose Ṽijt0 for t > 0. The
simplest choice is Ṽijt0 = Ṽij00. Obviously, p′ij ≤ pj and, if (i, j) /∈ D, q′ij ≥ qij. By the induction
hypothesis, Rij ∈ Fp′ij ,q′ij ⊂ Fpj ,qij and Q̃ijtτ ∈ Fpj ,qij ; by construction, Ũij0 ∈ Fpj ,qij . Therefore,
Ṽijtτ ∈ Fpj ,qij .

C. Calculation of V ijtτ . To “kill” the term ξiεjQijtτ in (29), it is necessary and sufficient to add
a monomial ξiεjV ijtτ to the function Vtτ (ξ, ε) in (25) such that

V ijtτ − V ijt,τ+1 = −Qijtτ .
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We should find a solution V ijtτ to this equation that tends to zero as τ → ∞. The equation gives

V ijtτ = −Qijtτ + V ijt,τ+1 = −Qijtτ − Qijt,τ+1 + V ijt,τ+2 = . . .

= −Qijtτ − Qijt,τ+1 − Qijt,τ+2 − . . . , (35)

and (30) implies ∥∥∥∥dnV ijtτ

dtn

∥∥∥∥
pj ,qij−n

≤ Cij
Λτ

1 − Λ
‖g0‖1,N−2.

D. Calculation of U ijt. Let us replace the foliated function Ut(ξ, ε) by Ut(ξ, ε) + ξiεjŨijt and
calculate the corresponding discrepancy (24) again. It takes the form

P ′
t(ξ, ε) = Pt(ξ, ε) + ξiεjW 2

t (ξ, ε), where W 2
t (ξ, ε) = eΦt(ξ,ε)BεŨijt − Ũij,t+ε.

Applying Lemma 3.2, we construct the Taylor expansion of W 2
t (ξ, ε) with respect to ξ and ε up to

the degree ν = [qij/5] − 1. As a result, we obtain the Taylor expansion for P ′
t(ξ, ε). In this new

expansion, the coefficient Pi,j+1,t (of ξiεj+1) is different from that in the old expansion; it equals

P ′
i,j+1,t = Pi,j+1,t +

d

dε

∣∣∣∣
ε=0

(
BεŨijt − Ũij,t+ε

)
= Pi,j+1,t + W 2

01t. (36)

Lemma 3.2 and (31) yield

dnW 2
01t

dtn
∈ Fpj+2,qij−5−n,

dnPi,j+1,t

dtn
∈ Fpj+1,qi,j+1+5−n,

whence
dnP ′

i,j+1,t

dtn
∈ F pj+2, qij−5−n, n ≤ qij − 9. (37)

It remains to “kill” the term ξiεj+1BP ′
i,j+1,t in (27), or, equivalently, to find a monomial ξiεjU ijteFt(ξ)

such that, after adding it to the function Ut(ξ, ε) in (24), equality (28) is satisfied. To do this, it is
necessary and sufficient to solve the equation

d

dε

∣∣∣∣
ε=0

B
(
Bε(U ijth) − U ij,t+εh

)
= −BP ′

i,j+1,t.

It is equivalent to

d

dε

∣∣∣∣
ε=0

ν
(
Bε(U ijth) − U ijtBεh + U ijtBεh − U ijtB0h + U ijth − U ij,t+εh

)
= −ν(P ′

i,j+1,t).

By Proposition 2.5, this last equation is equivalent to

dU ijt

dvn
+ αU ijt −

dU ijt

dt
= −ν(P ′

i,j+1,t), where α =
d

dε

∣∣∣∣
ε=0

ν(Bεh) ∈ CN−9(M). (38)

This is an inhomogeneous linear partial differential equation of the first order. It has a unique
solution for any initial condition U ij0. For condition (c) in the induction hypothesis to be satisfied,
we should take U ij0 = ν(Rij − V ij00). We have Rij ∈ Fp′ij ,q′ij ⊂ Fpj ,qij and V ij00 ∈ Fpj ,qij .
Therefore, U ij0 ∈ Cqij−2(M). On the other hand, (37) implies dnν(P ′

i,j+1,t)/dtn ∈ Cqij−7−n(M).
Hence, the solution U ijt to equation (38) satisfies dnU ijt/dtn ∈ Cqij−7−n(M).
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E. Construction of new discrepancies. First, let us prove the estimates∥∥∥∥dnU ijt

dtn

∥∥∥∥
qij−7−n

≤ C‖g0‖1,N−2,

∥∥∥∥∥dnŨijt

dtn

∥∥∥∥∥
pj ,qij−n

≤ C‖g0‖1,N−2,

∥∥∥∥V ijtτ

dtn

∥∥∥∥
pj ,qij−n

≤ CΛτ‖g0‖1,N−2,

∥∥∥∥∥dnṼijtτ

dtn

∥∥∥∥∥
pj ,qij−n

≤ CΛτ‖g0‖1,N−2,

where C is a constant independent of g0. The first three estimates follow from the definitions of the
functions U ijt, Ũijt, and V ijtτ and from the corresponding estimates (e) in the induction hypothesis.
Estimate (22), the definition of Ṽijtτ , and the estimates for dnQijtτ/dtn imply∥∥∥∥∥dnṼijtτ

dtn

∥∥∥∥∥
pj ,qij−n

≤ ‖B̃‖Cij

(
Λτ−1 +C0Λ0Λτ−2 + . . . +C0Λτ−1

0

)
‖g0‖1,N−2 +C0Λτ

0

∥∥∥∥∥dnṼijt0

dtn

∥∥∥∥∥
pj ,qij−n

≤ ‖B̃‖CijC0
Λτ

Λ − Λ0
‖g0‖1,N−2 + C0Λτ

∥∥∥∥∥dnṼijt0

dtn

∥∥∥∥∥
pj ,qij−n

.

It is easy to see that the right-hand side of this inequality is of the order no higher than Λτ‖g0‖1,N−2.
Let us replace the functions Ut(ξ, ε) and Vtτ (ξ, ε) in the definitions of discrepancies (24)–(26) by

U ′
t(ξ, ε) = Ut(ξ, ε) + ξiεj

(
U ijthFt(ξ) + Ũijt

)
, V ′

tτ (ξ, ε) = Vtτ (ξ, ε) + ξiεj
(
V ijtτ + Ṽijtτ

)
,

respectively. Then, the new discrepancies are rewritten as

P ′
t (ξ, ε) = Pt(ξ, ε) + ξiεj

(
W 1

t (ξ, ε) + W 2
t (ξ, ε)

)
, (39)

Q′
tτ (ξ, ε) = Qtτ (ξ, ε) + ξiεjW 3

tτ (ξ, ε), (40)

R′(ξ, ε) = R(ξ, ε) + ξiεjW 4(ξ), (41)

where
W 1

t (ξ, ε) = eΦt(ξ,ε)Bε

(
U ijthFt(ξ)

)
− U ij,t+εhFt+ε(ξ),

W 2
t (ξ, ε) = eΦt(ξ,ε)BεŨijt − Ũij,t+ε,

W 3
tτ (ξ, ε) = eΦt(ξ,ε)Bε

(
V ijtτ + Ṽijtτ

)
−

(
V ij,t+ε,τ+1 + Ṽij,t+ε,τ+1

)
,

W 4(ξ) = U ij0hξF + Ũij0 + V ij00 + Ṽij00.

Applying Lemma 3.2, we expand the additional functions W 1
t (ξ, ε), W 2

t (ξ, ε), and W 3
tτ (ξ, ε) in Taylor

polynomials with respect to ξ and ε up to the degree ν = [qij/5] − 2 and W 4(ξ) in a power series
about ξ. It remains to verify that what we obtain is expansions for discrepancies (39)–(41) satisfying
requirements (c) and (e) of the induction hypothesis for the diagram D ∪ {(i, j)}.

F. Verification of conditions (c) and (e). Conditions (c) and (e) are verified similarly for all the
three discrepancies. For this reason, we consider only discrepancy (39), for which the verification
is most complicated. In the expansion of P ′

t(ξ, ε) in powers of ξ and ε, we denote the coefficient of
ξi′εj′ by P ′

i′j′t. If i′ < i or j′ < j, then P ′
i′j′t = Pi′j′t, and estimates (30) and (31) hold for Pi′j′t.

Suppose that i′ ≥ i and j′ ≥ j. Then i′ = i + k and j′ = j + l.
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First, consider the case k + l < ν. We have P ′
i′j′t = Pi′j′t + W 1

klt + W 2
klt (the coefficients W 1

klt

and W 2
klt are taken from Lemma 3.2). By Lemma 3.2, we have

dnW 1
klt

dtn
∈ F1+2l,qij−5−k−5l−n,

dnW 2
klt

dtn
∈ Fpj+2l,qij−k−5l−n, (42)

and W 1
k0t = 0. It is easy to see that 1+2l ≤ pj +2l = pj′ and qij−k−5l ≥ qi′j′ +5(k+ l). Therefore,

derivatives (42) belong to the space Fpj′ ,qi′j′−n and, if (k, l) �= (0, 1), to the space Fpj′ ,qi′j′+5−n, to
which they should belong according to (e).

Consider the case k + l = ν. We have ν = [qij/5] − 2. Therefore,

6i′ + 10j′ > 6i + 10j + 5ν ≥ 6i + 10j + qij − 14 = N − 21,

and the point (i′, j′) lies outside D′. Hence, it suffices to verify that W 1
klt(ξ, ε),W

2
klt(ξ, ε) ∈ F [2N/5],4.

This is so because, by Lemma 3.2, the functions W 1
klt(ξ, ε) and W 2

klt(ξ, ε) belong to Fpj+2ν,qij−5−5ν ,
where

pj + 2ν ≤ 1 + 2j + 2qij/5 − 4 = −3 + 2j + 2(N − 7 − 6i − 10j)/5 < 2N/5,

qij − 5 − 5ν ≥ qij − 5 − qij + 10 = 5.

Lemma 3.2 also implies that the norms of the derivatives dnW 1
klt/dtn and dnW 2

klt/dtn in the
corresponding spaces are estimated in terms of ‖g0‖1,N−2. Therefore, dnP ′

i′j′t/dtn are also estimated
in terms of ‖g0‖1,N−2. This completes the proof of Theorem 2.6.

To prove Addition 1, it is sufficient to perform only one induction step at i = j = 0. Since
P00t = Q00tτ = P01t = 0 and R00 = g0, formulas (33)–(35) give

Ũ00t = 0, Ṽ00tτ = Bτ
0 Ṽ00t0 = Bτ

0 R̃00 = Bτ
0 B̃g0, V 00tτ = 0.

Thus, (36) yields P ′
01t = 0, and equation (38) for finding U00t takes the form

dU00t

dt
=

dU00t

dvn
+ αU 00t, where U000 = ν(R00) = ν(g0).

Let gt be the phase flow of the vector field −vn on M . Then, the function ut = U00t ◦ gt satisfies
the linear ordinary differential equation u̇t = α ◦ gtut. It is seen from the definition (38) of the
function α that this function is bounded on M . If infM u0 = m > 0, then ut ≥ met inf α.

To prove Addition 2, it is sufficient to verify that equalities (19) and (20) remain valid when Ft(ξ)
is replaced by F ′

t(ξ) = Jk
ξ Ft(ξ) and Ut(ξ, ε) by U ′

t(ξ, ε) = Jk
ξ Ut(ξ, ε) in these equalities. This imposes

natural constraints on k. On the one hand, k must be so large that the additional discrepancies
arising after such a replacement in (19), (20) have the form

∑
(i,j)∈G O(ξiεj). Actually, they have

the form O(ξk+1), whereby this requirement is satisfied if the point (k + 1, 0) lies outside D′, or,
equivalently, if k ≥ (N − 26)/6. On the other hand, k must not be too large in order that the
additional discrepancies have the necessary smoothness and belong to the space F [2N/5],4. This
requirement is met if the four functions(

Jk
ξ U0(ξ, ε) − U0(ξ, ε)

)/
ξk+1,

(
Jk

ξ Ut+ε(ξ, ε) − Ut+ε(ξ, ε)
)/

ξk+1,(
eJk

ξ Φt(ξ,ε)BεJ
k
ξ Ut(ξ, ε) − eΦt(ξ,ε)BεUt(ξ, ε)

)/
ξk+1,(

eJk
ξ Φt(ξ,ε)BεVtτ (ξ, ε) − eΦt(ξ,ε)BεVtτ (ξ, ε)

)/
ξk+1

(43)
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belong to F [2N/5],4. By Lemma 3.1, the smoothness of the function (Jk
ξ Φt(ξ, ε)−Φt(ξ, ε))/ξk+1 is no

lower than N − 7− k with respect to all variables and the foliated function (Jk
ξ hFt(ξ) −hFt(ξ))/ξ

k+1

belongs to the space F1,N−8−k. It is easy to derive from the definition of Ut(ξ, ε) and Vtτ (ξ, ε) that
the inclusion of foliated functions (43) in the space F [2N/5],4 can be ensured if this space is a module
over CN−7−k(W ×M). This is so if N − 7− k ≥ [2N/5]+ 4; thus, it suffices to take k ≤ 3N/5− 11.
We omit the elementary proof of this assertion.

Let us prove Addition 3. First, note that the definitions of a flowing density and of the norm
of a foliated function (Definitions 5.1 and 3.3 in [5]) imply the existence of a large C such that any
standard trace (Γ, α,Φ) with flowing density and any function g ∈ Fpq satisfy the estimate

|g(Γ,Φ)| ≤ C‖g‖pq inf Φ. (44)

By assumption, the functions g0 and h0 are strongly positive, which means that they are positive
and there exists c > 0 such that g0(Γ, α, 1) ≥ c and h0(Γ, α, 1) ≥ c for all standard leaves (Γ, α).
We call a foliated function weakly positive if it takes nonnegative values on standard traces with
flowing densities. Since the image of a trace with flowing density also has flowing density (see
Corollary 5.1.1 in [5]), the operator B0 preserves both strong and weak positivity.

Take a standard trace (Γ, α,Φ) with flowing density. The strong positivity of g0 and esti-
mate (44) for the function h0 imply that, for some δ > 0, the function g0 − δh0 is weakly positive.
The function Bk

0 (g0 − δh0) = Bk
0g0 − δh0 is weakly positive as well. Therefore,

Bk
0g0(Γ,Φ) ≥ δh0(Γ,Φ) ≥ δc inf Φ.

Identities (19) and (20) with ξ = ε = 0 give U0(0, 0) + V0,k(0, 0) = Bk
0g0. By continuity, for any

positive integer m, there exists a small domain of variation of the parameters ξ and ε in which[
Ukε(ξ, ε) + Vkε,k(ξ, ε)

]
(Γ, α,Φ) ≥ δc

2
inf Φ, k = 0, . . . ,m. (45)

It is easy to derive from Addition 1 that there exists c0 > 0 such that

Ut(ξ, ε)(Γ, α,Φ) ≥ c0 inf Φ (46)

for all sufficiently small ξ and ε and for any t ∈ [0, t0]. Since Vtτ exponentially decreases in τ , (45)
and (46) guarantee the existence of c1 > 0 such that[

Ut(ξ, ε) + Vt,t/ε(ξ, ε)
]
(Γ, α,Φ) ≥ c1 inf Φ.

On the other hand, by (44),[ ∑
(i,j)∈G

O(ξiεj)

]
(Γ, α,Φ) =

∑
(i,j)∈G

O(ξiεj) · inf Φ

uniformly with respect to (Γ, α,Φ) and t ∈ [0, t0]. These two estimates prove Addition 3.

4. CRAMÉR ASYMPTOTICS

Consider an arbitrary probability space (Ω,A,P). We say that another probability space
(Ω′,A′,P′) is its extension if there is a measurable projection π : (Ω′,A′,P′) → (Ω,A,P) that is
measure-preserving (i.e., P(M) = P′(π−1(M)) for all M ∈ A). Any random variable χ on Ω induces
a random variable χ′ = χ◦π on Ω′. The distribution functions of χ and χ′ coincide. Below, we pass
from a probability space Ω to its extension Ω′ to calculate the distribution of a random variable χ.
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Recall that the averaged weighted shift operator Aε,n is defined by

Aε,ng(Γ, α,Φ) =
∫
Γ′
ε

ξΓ(α, β)g(Γ′
ε, β

′,Φ′
ε) dµ(β′). (47)

In this formula, (Γ, α,Φ) is an arbitrary standard trace centered at α, the point β belongs to Γ,
β′ = Σn

ε (β), the trace (Γ′
ε,Φ

′
ε) coincides with (ΣεJε)n(Γ,Φ), and µ is the Riemannian volume on Γ′

ε.
A standard nonnegative function ξΓ(α, β) on Γ×Γ is defined in such a way that it is strictly positive
if the distance between α and β is smaller than some sufficiently small fixed number r0 > 0, vanishes
if the distance between α and β is greater than 2r0, and satisfies the identity∫

Γ

ξΓ(α, β) dµ(α) ≡ 1. (48)

As above, we assume that the weight function Jε is bounded from below by a positive constant.
Then, the normalized averaged weighted shift operator Bε is obtained from Aε,n by replacing the
weight Jε by the normalized weight Ĵε = e−λn/nJε in the definition of Aε,n (eλn is the maximum
eigenvalue of A0,n). If the initial weight is normalized in advance, then Aε,n coincides with Bε.

Let (G0,Φ0) be a trace with sufficiently large linear dimensions and positive density Φ0. Suppose
that the set Γ0 is a compact subset of G0 and, for any point α ∈ Γ0, there exists a standard leaf
(Γ, α) centered at α and lying entirely in G0. Take a foliated function g0 defined so that its value on
any standard trace (Γ, α,Φ) equals Φ(α). Consider the linear functionals νk : C∞(G0) → R defined
by

νk(f) =
∫
Γ0

Ak
ε,ng0(Γ, α, fΦ0) dµ(α). (49)

Using definition (47), we can represent these functionals as multiple integrals. For this purpose,
we construct sequences of traces (Gi,Φi) = (ΣεJε)ni(G0,Φ0) and (Gi, fi) = Σni

ε (G0, f). Obviously,

Φi

(
Σni

ε (α)
)

=
(
Φ × Jε × Jε ◦ Σε × . . . × Jε ◦ Σni−1

ε

)
(α),

fi

(
Σni

ε (α)
)

= f(α), (Gi, fiΦi) = (ΣεJε)ni(G0, fΦ0).

Consider sequences of pairs of points (αi, βi) ∈ Gi, where i = 0, . . . , k, such that αi+1 = Σn
ε (βi) for

all i = 0, . . . , k − 1. Formulas (47) and (49) yield

νk(f) =
∫
Gk

fk(αk)Φk(αk) dµ(αk)
∫

Gk−1

ξGk−1
(αk−1, βk−1) dµ(αk−1) . . .

. . .

∫
G1

ξG1(α1, β1) dµ(α1)
∫
Γ0

ξG0(α0, β0) dµ(α0) (50)

=
∫
Γ0

dµ(α0)
∫
G1

ξG0(α0, β0) dµ(α1) . . .

∫
Gk

ξGk−1
(αk−1, βk−1)fk(αk)Φk(αk) dµ(αk). (51)

For an arbitrary R > 0, let Γ+R
0 denote the set of points in the leaf G0 that lie at distances

smaller than R from Γ0, and let Γ−R
0 be the set of points in Γ0 that lie at distances greater than R

from G0 \ Γ0. Without loss of generality, we can assume that the mapping Σε expands all leaves
with the expansion coefficient no smaller than Λ−1, where the number Λ ∈ (0, 1) does not depend
on the leaf.
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Proposition 4.1. For any ε and k, there exists a nonnegative smooth function ζ : G0 → [0, 1]
that takes value 1 on Γ−R

0 , vanishes on G0 \ Γ+R
0 , where R = 2r0(1 − Λ)−1, and satisfies

νk(f) =
∫
G0

ζfΦ0 × Jε × Jε ◦ Σε × . . . × Jε ◦ Σnk−1
ε dµ ◦ Σnk

ε (52)

(where µ is the Riemannian volume on Σnk
ε (G0)). In particular, for the canonical weight Jε,

νk(Φ) =
∫
G0

ζΦ dµ,

where µ is the Riemannian volume on G0.
Proof. Let

ζ(α) =
∫

Gk−1

ξGk−1
(αk−1, βk−1) dµ(αk−1) . . .

∫
Γ0

ξG0(α0, β0) dµ(α0), (53)

where βk−1 = Σn(k−1)
ε (α). Then, (52) follows from (50). We set

Γ−
0 = Γ−2r0

0 , Γ−
1 =

(
Σn

ε (Γ−
0 )

)−2r0 , . . . , Γ−
k =

(
Σn

ε (Γ−
k−1)

)−2r0.

Since the mapping Σε expands all leaves with the expansion coefficient no smaller than Λ−1, we
have Σni

ε (Γ−R
0 ) ⊂ Γ−

i for all i. Successively calculating the integrals in (53) from right to left and
taking into account (48), we obtain∫

Gi

ξGi(αi, βi) dµ(αi) . . .

∫
G1

ξG1(α1, β1) dµ(α1)
∫
Γ0

ξG(α0, β0) dµ(α0) = 1

for βi ∈ Γ−
i . This equality (with i = k − 1) and the inclusion Σn(k−1)

ε (Γ−R
0 ) ⊂ Γ−

k−1 imply ζ(α) = 1
for α ∈ Γ−R

0 . Similarly, ζ(α) = 0 for α ∈ G0 \ Γ+R
0 . Finally, it is seen from (48) and (53) that

ζ(α) ∈ [0, 1] for α ∈ G0. This completes the proof of Proposition 4.1.

We study a trace (G0,Φ0) with positive density Φ0 and a leaf Γ0 ⊂ G0 such that, for each point
α ∈ Γ0, there exists a standard leaf (Γ, α) lying entirely in G0. Let us define linear functionals Pk

on C∞(G0) by the formula

Pk(f) =
νk(f)
νk(1)

. (54)

By (52), the functional Pk is positive (i.e., it takes nonnegative values on nonnegative functions).
In addition, it is normalized (i.e., Pk(1) = 1). According to the Riesz theorem, Pk determines a
Borel probability measure on G0.

Consider the probability space (G0,B,Pk), where B is the Borel σ-algebra on G0. We define a
probability space Ωk as the set of sequences of pairs of points (αi, βi) ∈ Gi, i = 0, . . . , k − 1, where
the distance between αi and βi does not exceed 2r0 and αi+1 = Σn

ε (βi) for all i. Obviously, in
every such sequence, the points βi are uniquely determined by αi. Therefore, any function f on Ωk

can be represented as f = f(α0, . . . , αk). We define a probability measure P′
k on Ωk as the linear

functional P′
k(f) = ν ′

k(f)/ν ′
k(1), where

ν ′
k(f) =

∫
Γ0

dµ(α0)
∫
G1

ξG0(α0, β0) dµ(α1) . . .

∫
Gk

ξGk−1
(αk−1, βk−1)f(α0, . . . , αk)Φk(αk) dµ(αk). (55)
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If f(α0, . . . , αk) = fk(αk), then (55) coincides with (51). Therefore, (Ωk,B,P′
k) is an extension of

(G0,B,Pk). The corresponding projection π : Ωk → G0 maps a sequence (α0, . . . , αk) to a point
α ∈ G0 such that Σnk

ε (α) = αk. Consider the random variable f(α) = F ◦Σnk
ε (α) on G0. It induces

a random variable f ◦ π(α0, . . . , αk) = F (αk) on Ωk. Therefore, the distribution of F ◦ Σnk
ε with

respect to the measure Pk coincides with the distribution of F (αk) with respect to the measure P′
k.

Theorem 4.2. Suppose that Jε is a normalized weight, Φ0 is a flowing density on the leaf G0,
and g0 is a foliated function taking the value Φ(α) on each standard trace (Γ, α,Φ). Then, under
the conditions of Theorem 2.6, there exists a family of continuous functions Gk(ξ, ε) : Ωk → C that
analytically depends on ξ, is real for ξ ∈ R, and satisfies the equalities

P′
t/ε

(
exp(ξF (αt/ε)/ε + Gt/ε(ξ, ε))

)
=

eF ∗
t (ξ)/ε

∫
Γ0

(
U∗

t (ξ, ε) + Vt,t/ε(ξ, ε)
)
(Γ, α,Φ0) dµ(α)∫

Γ0

(
U∗

t (0, ε) + Vt,t/ε(0, ε)
)
(Γ, α,Φ0) dµ(α)

(56)

for all sufficiently small ξ, ε and t ∈ εZ ∩ [0, t0]; here, F ∗
t (ξ) = J

[N/5]
ξ Ft(ξ) and U∗

t (ξ, ε) =

J
[N/5]
ξ U t(ξ, ε) + Ũt(ξ, ε) are Taylor polynomials of degree [N/5] with respect to the variable ξ and

Gt/ε(ξ, ε) = ε−1
∑

(i,j)∈G

O(ξiεj). (57)

Proof. For convenience, we set k = t/ε and rewrite identities (19) and (20) from Theorem 2.6
with regard to its Addition 2, with k = [N/5]:

g0 = U∗
0 (ξ, ε) + V00(ξ, ε) +

∑
(i,j)∈G

O(ξiεj), (58)

Bεe
F ∗

t (ξ)/ε
(
U∗

t (ξ, ε) + Vtτ (ξ, ε)
)

= eF ∗
t+ε(ξ)/ε

(
U∗

t+ε(ξ, ε) + Vt+ε,τ+1(ξ, ε) +
∑

(i,j)∈G

O(ξiεj)

)
. (59)

Let (Γi, αi) be a standard leaf in Gi. Consider the functions

ψk−i(ξ, ε)(αk−i) =
eF ∗

iε(ξ)/ε
(
U∗

iε(ξ, ε) + Vt,t/ε(ξ, ε)
)
(Γk−i, αk−i,Φk−i)

eF ∗
iε(ξ)/ε

(
U∗

iε(ξ, ε) + Vt,t/ε(ξ, ε) +
∑

(i,j)∈GO(ξiεj)
)
(Γk−i, αk−i,Φk−i)

,

ψk(ξ, ε)(αk) =
g0(Γk, αk,Φk)(

U∗
0 (ξ, ε) + V00(ξ, ε) +

∑
(i,j)∈GO(ξiεj)

)
(Γk, αk,Φk)

,

where the numerators and denominators are taken from (58) and (59), and

Ψk(ξ, ε)(α0, . . . , αk) =
k∏

i=0

ψk−i(ξ, ε)(αk−i).

Take the function f = Ψk(ξ, ε)eξF (αk)/ε in (55). Let us successively calculate all integrals in (55)
by using the definition of the operator Bε and equalities (58) and (59) at each step. We obtain

ν ′
k

(
Ψk(ξ, ε)eξF (αk)/ε

)
=

∫
Γ0

eF ∗
t (ξ)/ε

(
U∗

t (ξ, ε) + Vt,t/ε(ξ, ε)
)
(Γ, α,Φ0) dµ(α), (60)

ν ′
k(Ψk(0, ε)) =

∫
Γ0

(
U∗

t (0, ε) + Vt,t/ε(0, ε)
)
(Γ, α,Φ0) dµ(α). (61)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 244 2004
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Let

Gk(ξ, ε) =
k∑

i=0

ln ψi(ξ, ε)(αi) − ln
ν ′

k(Ψk(0, ε))
ν ′

k(1)
.

The division of (60) by (61) yields (56). Addition 3 implies that ψi(ξ, ε)(αi)− 1 =
∑

(i,j)∈GO(ξiεj)
uniformly with respect to i = 1, . . . , k. This gives estimates (57) and proves the theorem.

Below, we state a theorem that allows one to derive from (56) exact asymptotics of large deviation
probabilities for the random variable F ◦Σt/ε

ε with respect to the probability measure Pt/ε. Suppose
that some real random variable S has a distribution function Ψ and Φd is the Gaussian distribution
with mathematical expectation zero and variance d.

Theorem 4.3 [3]. Suppose that E eξS+G(ξ) = eϕ(ξ) for |ξ| ≤ R, where G(ξ) is a random
variable that analytically depends on a complex parameter ξ and is real for real ξ, and ϕ is an
analytic function satisfying the conditions ϕ(0) = ϕ′(0) = 0 and ϕ′′(0) = d > 0. If a positive
constant Γ and a function γ(r) nondecreasing for r > 0 are such that sup|ξ|<R |ϕ(ξ)| ≤ Γ and
sup|ξ|<r ess sup |G(ξ)| ≤ γ(r), then

1 − Ψ(ϕ′(α))
1 − Φd(ϕ′(α))

= eϕ(α)−αϕ′(α)+ϕ′(α)2/2d

[
1 + O

(
inf

0<r<dR3/Γ

(
1

r
√

d
+ γ(r)

) (
α
√

d + 1
))]

(62)

for all α > 0.
In this formula, the symbol O(ζ) denotes a function such that |O(ζ)| ≤ ∆|ζ| for all |ζ| ≤ δ,

where ∆ and δ are universal positive constants.
Let us apply this theorem to the random variable F ◦Σt/ε

ε . Under the conditions of Theorems 2.6
and 4.2, introduce the notation

ft(ξ, ε) =
F ∗

t (ξ)
ε

+ ln

∫
Γ0

(U∗
t (ξ, ε) + Vt,t/ε(ξ, ε))(Γ, α,Φ0) dµ(α)∫

Γ0
(U∗

t (0, ε) + Vt,t/ε(0, ε))(Γ, α,Φ0) dµ(α)
, (63)

a =
∂ft(ξ, ε)

∂ξ

∣∣∣∣
ξ=0

, S =
F ◦ Σt/ε

ε

ε
− a, ϕ(ξ) = ft(ξ, ε) − aξ. (64)

Let Ψ be the distribution function of the random variable S with respect to the measure Pt/ε, and
let Φd be the Gaussian distribution with mathematical expectation zero and variance d = ϕ′′(0).

Theorem 4.4. If the conditions of Theorem 4.2 hold, the derivative ∂2Ft(0)/∂ξ2 is positive,
a diagram D coincides with the set D′ = {(i, j) ∈ Z

2
+

∣∣ 6i + 10j ≤ N − 21}, and N > 32, then

1 − Ψ(ϕ′(α))
1 − Φd(ϕ′(α))

= eϕ′(α)−αϕ′(α)+ϕ′(α)2/2d
[
1 + O

(
ε−9/(N−14)(α +

√
ε )

)]
(65)

for any δ > 9/(N − 14) and all α ∈ (0, εδ), where the notation (63) and (64) is used.
This is a Cramér asymptotics for the random variable S and, thereby, for the random variable

F ◦ Σt/ε
ε /ε because the latter differs from S only by the nonrandom term a. It holds in the domain

where α < εδ. In this domain, the order of ϕ′(α) does not exceed εδ−1 and, accordingly, the order
of the difference F ◦ Σt/ε

ε − εa does not exceed εδ.
Proof of Theorem 4.4. Theorem 4.2 implies the identity E eξS+Gt(ξ,ε) = eϕ(ξ). Therefore,

it is sufficient to refer to Theorem 4.3. We only need to estimate the discrepancy in equality (62).
In the situation under consideration, the variance d = ϕ′′(0) = ε−1F ′′

t (0) + O(1) is on the order
of ε−1. It is easy to see that we can take R of order 1 and Γ of the order ε−1 in (62). Choose a
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function γ(r, ε) such that sup|ξ|<r ess sup |Gt(ξ, ε)| ≤ γ(r, ε). Let us apply the well-known inequality
apbq ≤ a + b, where p + q = 1. If (i, j) ∈ G, then 6i + 10j ≥ N − 20 and

|ξiεj | ≤ |ξ|(6i+10j)/6 + ε(6i+10j)/10 ≤ |ξ|(N−20)/6 + ε(N−20)/10.

Therefore, for small ξ and ε and a sufficiently large C, we have

|Gt(ξ, ε)| = ε−1
∑

(i,j)∈G

O(|ξ|iεj) ≤ Cε−1
(
|ξ|(N−20)/6 + ε(N−20)/10

)
.

Hence, we can take γ(r, ε) = Cε−1
(
r(N−20)/6 + ε(N−20)/10

)
. An elementary calculation shows that,

in this situation, we have

inf
0<r<dR3/Γ

(
1

r
√

d
+ γ(r, ε)

)
∼ ε(N−32)/(2N−28)

(the infimum is attained at r ∼ ε9/(N−14)). This estimate and (62) imply (65).

To conclude, we add a few words about the mathematical expectation and variance of the random
variable F ◦ Σt/ε

ε . Let us expand the function Ft(ξ) in powers of ξ: Ft(ξ) = ξF1t + ξ2F2t + . . . .
It follows from (56) that the mathematical expectation of F ◦ Σt/ε

ε is equal to F1t + O(ε), and the
variance is equal to 2εF2t+O(ε2). By construction, the function Ft(ξ) is a solution to the differential
equation Ḟ = λF with the initial condition F0(ξ) = ξF . By Proposition 2.5, dλξf/dξ

∣∣
ξ=0

= df/dvn,
where vn = nv. Therefore, the coefficients F1t and F2t satisfy the differential equations

dF1t

dt
= n

dF1t

dv
,

dF2t

dt
= n

dF2t

dv
+

1
2

d2λξF1t

dξ2

∣∣∣∣
ξ=0

with the initial conditions F10 = F and F20 = 0. Let gt be the phase flow of the vector field v
on M . Then, F1t(z) = F ◦ gnt(z). By Proposition 2.2, the second derivative d2λξf/dξ2 is always
nonnegative. Therefore, the function F2t is also nonnegative (in the case of general position, it is
strictly positive). These facts should be interpreted as follows. If {(wi, zi)}∞i=0 is a trajectory of
initial cascade (1) with the initial condition (w0, z0) ∈ G0, then the point zt/ε has asymptotically
normal distribution whose mathematical expectation in the first approximation equals gt(z0) and
variance is of order no higher than ε. Formula (65) allows one to calculate asymptotic expansions
in powers of ε for the mathematical expectation, variance, and higher-order semi-invariants of
the random variable F (zt/ε); in addition, it gives sharp asymptotics for the probabilities of large
deviations of F (zt/ε) from F ◦ gt(z0) by distances of order no higher than εδ.
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