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Abstract—In order to study the perturbations of a family of mappings with a hyperbolic mixing
attractor, an apparatus of foliated functions is developed. Foliated functions are analogues of
distributions based on smooth measures on leaves (traces), which are embedded manifolds in
a neighborhood of the attractor. The dimension of such manifolds must coincide with the
dimension of the expanding foliation, and the values of a foliated function on a trace must vary
smoothly under smooth transverse deformations of the trace (which include deformations of the
measure itself).

In [1–3], the notion of regular functions was introduced to study the stochastic properties of
hyperbolic sequences of mappings. It was applied to prove that invariant measures on a hyperbolic
attractor depend smoothly on a parameter and to obtain limit theorems for random processes on
an attractor. In this paper, a similar apparatus is developed for a dynamical system that represents
a perturbation of a family of mappings with a hyperbolic mixing attractor. Here, we use the term
“foliated function” instead of “regular function” for two reasons: first, “foliated” better matches the
nature of the object, and second, “regular” has a too broad meaning.

Consider a dynamical system with discrete time generated by the mapping
{

w′ = S(w, z, ε),
z′ = z + εv(w, z, ε).

We use the abbreviated notation (w′, z′) = Σε(w, z) for this mapping. Suppose that the mapping
w �→ S(w, z, 0) has a hyperbolic mixing attractor for every z. In this paper, we introduce a notion
of foliated functions for such systems, which is a remote analogue of distributions. Distributions are
defined as linear functionals on some space of base functions. The base for foliated functions are the
so-called traces rather than usual functions. A trace is a smooth measure on a leaf, and a leaf is a
submanifold in a neighborhood of a hyperbolic attractor with a distinguished point, which is called
a center. This submanifold must have the same dimension as the expanding foliation. We consider
only leaves whose directions little differ from the direction of expanding fibers. It is required that the
value of a foliated function on a trace should vary smoothly under smooth transverse deformations
of the trace (which include deformations of the measure itself).

If Γ is a leaf centered at α and Φ is a measure on this leaf, then the product of the trace
(Γ,Φ) and a function J = J(w, z) is the trace (Γ, JΦ). The image of the trace (Γ,Φ) is the trace
Σε(Γ,Φ) = (Σε(Γ),Φ ◦ Σ−1

ε ). On the set of traces, an operator ΣεJ is defined by the formula
ΣεJ(Γ,Φ) = Σε(Γ, JΦ). Consider an arbitrary foliated function g(Γ, α,Φ). For this function, we
define a new foliated function Aε,ng(Γ, α,Φ) as follows. We set (Γ′,Φ′) = (ΣεJ)n(Γ,Φ), β′ = Σn

ε (β),
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30 V.I. BAKHTIN

and

Aε,ng(Γ, α,Φ) =
∫
Γ′

ξΓ(α, β)g(Γ′, β′,Φ′) dµ(β′).

In this formula, µ is the Riemannian volume on Γ′ and ξΓ(α, β) is a standard nonnegative function
on Γ × Γ. We have thus defined an averaged weighted shift operator Aε,n (with weight function J)
in the space of foliated functions. In this paper, we study its simplest properties.

The main results are as follows. When endowed with a suitable norm, the space of foliated
functions becomes a Banach module over the algebra of finitely smooth functions depending on the
variables w and z. If the weight function J is positive and bounded away from zero, then, for the
operator A0,n (with ε = 0) and large n, there exist a smooth function λn = λn(z) and a foliated
function hn such that A0,nhn = eλnhn. Moreover, the sequence of operators (e−λnA0,n)m converges
as m → ∞ to some projector that maps the entire module of foliated functions to a submodule
generated by hn (over the algebra of functions depending only on z). For nonzero ε, the dependence
of the family Aε,n on ε is smooth in a certain sense (to be more precise, it is quasidifferentiable in
the terminology of [2]).

The paper is organized as follows. In Section 1, the system under examination is described in
detail, and a special hyperbolic atlas and the notion of a leaf are defined for this system. In Section 2,
a Σε-invariant class of leaves is constructed. In Section 3, spaces of foliated functions and averaged
weighted shift operators are rigorously defined, and the main results (Theorems 3.1–3.3) are stated.
The following six sections contain detailed proofs. Almost all of them are computational. They are
based on carefully differentiating implicit functions and estimating their derivatives. Unfortunately,
the geometrically evident ideas related to foliated functions have a rather cumbersome analytic
formalization. For this reason, the proofs are lengthy and contain many formulas but very few
nontrivial tricks.

1. A HYPERBOLIC ATLAS AND LEAVES

Let M be a convex domain in a standard Euclidean space, and let W be a Riemannian manifold.
Consider N times continuously differentiable family of self-mappings of the direct product W × M
of the form {

w′ = S(w, z, ε),
z′ = z + εv(w, z, ε),

(1)

where ε is a small positive parameter, w ∈ W , and z ∈ M . For such mappings, we use the
abbreviated notation (w′, z′) = Σε(w, z). Suppose that Σε(W × M) ⊂ W × M for all sufficiently
small values of ε. Then, Σε generates a dynamical system with discrete time (a cascade) on W ×M
with fast motions on W and slow motions on M (at velocities of order ε). Suppose also that, for
every z ∈ M , the mapping Sz(w) = S(w, z, 0) has a mixing hyperbolic attractor that continuously
depends on z (see the definitions in [4, 5]). Below, we introduce a notion of a uniformly hyperbolic
atlas for such systems. It generalizes the notion of hyperbolic atlas given in [1] for an attractor that
is independent of a parameter.

Consider two Euclidean spaces R
u and R

s, where u + s = dim W . We denote an arbitrary
point in R

u by x and an arbitrary point in R
s by y. Let B

u
r and B

s
r denote open balls of radius r

centered at zero in R
u and R

s, respectively. Let A be a finite set of charts on W that have the form
w = χ(x, y), where χ : B

u
5 × B

s
5 → W . We do not require these charts to cover the entire W . The

part of W covered by the charts from A is denoted by WA. As a representation of Σε in the charts
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χ, χ′ ∈ A, we consider the mapping


x′ = X(x, y, z, ε),
y′ = Y (x, y, z, ε),
z′ = Z(x, y, z, ε) = z + εZ ′(x, y, z, ε),

(2)

where

(x′, y′) =
(
X(x, y, z, ε), Y (x, y, z, ε)

)
= (χ′)−1 ◦ S

(
χ(x, y), z, ε

)
, (3)

z′ = Z(x, y, z, ε) = z + εv
(
χ(x, y), z, ε

)
, Z ′(x, y, z, ε) = v

(
χ(x, y), z, ε

)
. (4)

Definition 1.1. We say that a finite set A of charts of the form χ : B
u
5×B

s
5 → W is a uniformly

hyperbolic atlas for system (1) if there exist positive numbers a, b, and θ such that

(a) a + θ−1b < 1 and θ is sufficiently small (namely, θ < 1/10);
(b) Σε(WA × M) ⊂

⋃
χ∈A χ(Bu

1 × B
s
1) × M for small ε;

(c) for any charts χ, χ′ ∈ A and arbitrary x, y, z, and ε from the domain of mapping (3),∥∥∥∥∥
(

∂X

∂x

)−1
∥∥∥∥∥ ≤ a,

∥∥∥∥∂Y

∂y

∥∥∥∥ ≤ a,

∥∥∥∥∂X

∂y

∥∥∥∥ ≤ b,

∥∥∥∥∂Y

∂x

∥∥∥∥ ≤ b; (5)

(d) all partial derivatives of X, Y , Z, and Z ′ up to the order N are bounded.

Definition 1.2. We say that an atlas A is mixing if there exists a set of charts B ⊂ A and a
positive integer n0 such that, for all n ≥ n0 and z ∈ M , the following conditions hold:

(a) for any charts χ ∈ A and χ′ ∈ B, the intersection Sn
z

(
χ(Bu

1 ×B
s
1)

)
∩χ′(Bu

1 ×B
s
1) is nonempty;

(b) Sn
z (WA) ⊂

⋃
χ∈Bχ(Bu

1 × B
s
1).

In [1], it is shown that, for a fixed z0 ∈ M , the mapping Sz0(w) = S(w, z0, 0) has a hyperbolic
mixing attractor if and only if it admits a hyperbolic mixing atlas. If we somewhat increase the
numbers a and b, then the same atlas will become hyperbolic and mixing for the mappings Sz with
any z close to z0. We make an even stronger assumption; namely, we assume that system (1) has
a uniformly hyperbolic mixing atlas A that serves all z ∈ M . We fix this atlas for the rest of the
paper. Thus, for each z ∈ M , the mapping Sz has a hyperbolic attractor Hz =

⋂
n Sn

z (WA).
Suppose that numbers d and η and the parameter ε satisfy the conditions

sup
∥∥∥∥∂(X,Y,Z,Z ′)

∂(x, y, z, ε)

∥∥∥∥ < d, η =
b

d
, |ε| < θη2. (6)

Here, the supremum is taken over all charts χ, χ′ ∈ A and all admissible values of the variables x,
y, z, and ε.

Definition 1.3. A skew leaf (or simply leaf) is an arbitrary smooth submanifold Γ ⊂ WA×M
of dimension u that is represented in some chart χ ∈ A by the graph {(x, y(x), z(x)) | x ∈ U} ⊂
B

u
5 × B

s
5 × M of a pair of functions y(x) and z(x) of class CN (U) that satisfy the inequalities

‖dy(x)/dx‖ ≤ θ and ‖dz(x)/dx‖ ≤ θη. We identify the triple (y = y(x), z = z(x), χ) with the leaf Γ
and write Γ ∼ (y(x), z(x), χ). We say that a leaf is straight if it is entirely contained in a layer
z = const.

It can be proved that the mapping Σε expands the skew leaves in the x-direction and does not
violate the conditions on the derivatives of y(x) and z(x). Below, we give appropriate statements.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 244 2004



32 V.I. BAKHTIN

Proposition 1.1. If V = (Vx, Vy, Vz) is a vector in the (x, y, z)-space, the vector V ′ =
(V ′

x, V ′
y , V ′

z ) is its image under mapping (2), and conditions (5) and (6) hold, then the inequalities
‖Vy‖ ≤ θ‖Vx‖ and ‖Vz‖ ≤ θη‖Vx‖ imply

‖V ′
y‖ ≤ θ‖V ′

x‖, ‖V ′
z‖ ≤ θη‖V ′

x‖, ‖V ′
x‖ ≥ (a + b)−1‖Vx‖.

Proof. By virtue of (5) and (6), we have

‖V ′
y‖

‖V ′
x‖

≤ b‖Vx‖ + a‖Vy‖ + d‖Vz‖
a−1‖Vx‖ − b‖Vy‖ − d‖Vz‖

≤ b + aθ + dθη

a−1 − bθ − dθη
≤ θ(a + θ−1b + b)

a−1 − 2θb
< θ,

‖V ′
z‖

‖V ′
x‖

≤ εd‖Vx‖ + εd‖Vy‖ + (1 + εd)‖Vz‖
a−1‖Vx‖ − b‖Vy‖ − d‖Vz‖

≤ εd(1 + θ) + (1 + εd)θη

a−1 − 2θb
< θη,

‖V ′
x‖

‖Vx‖
≥ a−1‖Vx‖ − b‖Vy‖ − d‖Vz‖

‖Vx‖
≥ a−1 − 2θb > (a + b)−1.

Let B(x, r) denote an open ball of radius r centered at x.
Proposition 1.2. Suppose that Γ ∼ (y(x), z(x), χ) is a leaf, x varies in the domain U =

B(x0, r), and the point Σn
ε

(
χ(x0, y(x0)), z(x0)

)
is represented in a chart χ′ ∈ A as (x′

0, y
′
0, z

′
0) ∈

B
u
4 × B

s
4 × M . Then, there is a unique leaf Γ′ ∼ (y′(x′), z′(x′), χ′) that is a subset of Σn

ε (Γ) such
that y′(x′

0) = y′0, z′(x′
0) = z′0, and x′ varies in the domain U ′ = B(x′

0, r/(a + b)n) ∩ B
u
5 .

Proof. Consider the case n = 1. By the preceding proposition, the mapping x′(x) =
X(x, y(x), z(x), ε) is locally diffeomorphic and expands all distances at least by a factor of (a+b)−1.
For every point x′ ∈ U ′, consider the path x′

t = x′
0 + t(x′ − x′

0), t ∈ [0, 1]. For small t, this path has
a unique preimage under the mapping x′(x), which is a smooth path xt starting at x0. Obviously,
‖xt − x0‖ ≤ (a + b)t‖x′ − x′

0‖. Therefore, xt can be reconstructed for all t ∈ [0, 1]. Let us define
functions y′(x′) and z′(x′) by

y′(x′) = Y
(
x1, y(x1), z(x1), ε

)
, z′(x′) = Z

(
x1, y(x1), z(x1), ε

)
.

By virtue of the preceding proposition, ‖dy′(x′)/dx′‖ ≤ θ and ‖dz′(x′)/dx′‖ ≤ θη. This proves the
required assertion for n = 1. For other values of n, the proof is similar.

In addition to separate leaves, we will consider their deformations Γt ∼ (yt(x), zt(x), χ) depending
on a finite-dimensional parameter t = (t1, . . . , tn) of arbitrary dimension n. We use the notation i
for an arbitrary nonnegative integer, j = (j1, . . . , jn) for an integer multiindex, v = (v1, . . . , vn)
for an n-vector with nonnegative components, and σ for a number in the interval [0, η]. To each
pair of nonnegative integers (i, k), we assign a positive number αik. In what follows, we use the
abbreviated notation vj = vj1

1 . . . vjn
n .

Definition 1.4. We say that a vector v majorizes a deformation yt(x) of a function (and write
yt ≺ v) if, for all x and t, ∥∥∥∥∥∂i+|j|yt(x)

∂xi∂tj

∥∥∥∥∥ ≤ αi|j|v
j , 1 ≤ i + |j| ≤ N. (7)

We say that a pair (v, σ) majorizes a deformation (yt(x), zt(x)) of a pair of functions (and write
(yt, zt) ≺ (v, σ)) if, for all x and t, in addition to (7), the following inequalities hold:∥∥∥∥∥∂i+|j|zt(x)

∂xi∂tj

∥∥∥∥∥ ≤ αi|j|σvj , i > 0, i + |j| ≤ N ; (8)

∥∥∥∥∥∂|j|zt(x)
∂tj

∥∥∥∥∥ ≤ α0|j|ηvj , 1 ≤ |j| ≤ N. (9)
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Consider an arbitrary mapping of the form (2). Suppose that all partial derivatives up to the
order N of the functions X, Y , Z, and Z ′ are bounded, estimates (5) and (6) hold, a + θ−1b < 1,
and θ < 1/10. Take a deformation (yt, zt) of a pair of functions and construct a new deformation
(y′tε, z

′
tε) in such a way that, for any t and ε, the graph {(x′, y′tε(x

′), z′tε(x
′))} is the image of the

graph {(x, yt(x), zt(x))} under mapping (2).
Theorem 1.3. Under conditions (5) and (6), there exists a set of constants αik ≥ θ indepen-

dent of ε (α10 = θ) and a large number C such that
(a) if ε = 0, zt(x) = const, and yt ≺ v, then y′t0 ≺ (1 − b)1/Nv;
(b) if σ ∈ [0, η] and (yt, zt) ≺ (v, σ), then (y′tε, z

′
tε) ≺ (v′, σ′), where v′ = v + C(σ + ε)v and

σ′ = (1 − b)(σ + Cε).

The proof of Theorem 1.3 is given in the next section. Hereafter, we assume that the con-
stants αik are the same throughout the paper. If Γt ∼ (yt(x), zt(x), χ) and (yt, zt) ≺ (v, σ), we write
simply Γt ≺ (v, σ). If zt(x) = const and yt ≺ v, then we write Γt ≺ v. Certainly, Theorem 1.3 can
be directly applied to any deformation Γt of a leaf. We will write Γ′ ⊂ Σn

ε (Γ) only if there exists
an open domain G ⊂ Γ such that Σn

ε maps it homeomorphically onto Γ′. Repeatedly applying
assertion (b) of Theorem 1.3 to the leaf deformation Γt, we obtain the following corollary.

Corollary 1.3.1. If Γ′
t ⊂ Σn

0 (Γt) and Γt ≺ (v, σ), then Γ′
t ≺ (ecσv, (1− b)nσ), where c = C/b.

Take a number σ0 ∈ (0, η].
Definition 1.5. A skew leaf Γ ∼ (y(x), z(x), χ) is said to be flowing if∥∥∥∥diy(x)

dxi

∥∥∥∥ ≤ αi0,

∥∥∥∥diz(x)
dxi

∥∥∥∥ ≤ αi0σ0, i = 1, . . . , N. (10)

Since α10 = θ, these conditions include the constraints ‖dy/dx‖ ≤ θ and ‖dz/dx‖ ≤ θη on the
derivatives, which hold for any leaf by definition.

Corollary 1.3.2. If a leaf Γ is flowing and ε is small, then any leaf Γ′ ⊂ Σε(Γ) is flowing.
Proof. Let us identify Γ and Γ′ with trivial deformations that are absolutely independent of t.

Then, the leaf Γ is flowing if and only if Γ ≺ (0, σ0). According to assertion (b) of Theorem 1.3, we
have Γ′ ≺ (0, σ′), where σ′ = (1 − b)(σ0 + Cε) < σ0, which implies that Γ′ is flowing.

Corollary 1.3.3. If Γ′ ⊂ Σε(Γ) and Γ ≺ (0, Cε/b), then Γ′ ≺ (0, Cε/b) as well.
This corollary is proved by setting v = 0 and σ = Cε/b in assertion (b) of Theorem 1.3.
Hereafter, we use the term “leaf” only for flowing leaves.
Theorem 1.4. There exist large constants Cn such that if Γt ≺ (v, η) and Γ′

tε ⊂ Σn
ε (Γt), where

Γ′
tε ∼

(
y′tε(x′), z′tε(x′), χ′), then∥∥∥∥∥∂i+|j|+ly′tε(x′)

(∂x′)i∂tj∂εl

∥∥∥∥∥ ≤ Cnvj ,

∥∥∥∥∥∂i+|j|+lz′tε(x′)
(∂x′)i∂tj∂εl

∥∥∥∥∥ ≤ Cnvj , 1 ≤ i + |j| + l ≤ N. (11)

This theorem is also proved in the next section.

2. PROOFS OF THE THEOREMS ABOUT IMAGES OF LEAVES

Obviously, the functions y′tε and z′tε from Theorem 1.3 are specified by the parametric equations

x′ = X
(
x, yt(x), zt(x), ε

)
, (12)

y′tε(x
′) = Y

(
x, yt(x), zt(x), ε

)
, (13)

z′tε(x
′) = Z

(
x, yt(x), zt(x), ε

)
= zt(x) + εZ ′(x, yt(x), zt(x), ε

)
. (14)
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Proposition 1.1 implies that the derivative ∂x′/∂x expands vectors from R
u at least by a factor of

(a + b)−1. Therefore, equation (12) determines an implicit function x = x(x′, t, ε), and∥∥∥∥ ∂x

∂x′

∥∥∥∥ ≤ a + b. (15)

In what follows, we always assume that

X = X(x, y, z, ε), Y = Y (x, y, z, ε), Z = z + εZ ′(x, y, z, ε),

y = yt(x), z = zt(x), x = x(x′, t, ε),

but, for the sake of brevity, we do not explicitly indicate the arguments of these functions. We also
use the notation

dX

dx
=

∂X

∂x
+

∂X

∂y

∂y

∂x
+

∂X

∂z

∂z

∂x
,

dY

dx
=

∂Y

∂x
+

∂Y

∂y

∂y

∂x
+

∂Y

∂z

∂z

∂x
,

dZ

dx
=

∂z

∂x
+ ε

dZ ′

dx
=

∂z

∂x
+ ε

(
∂Z ′

∂x
+

∂Z ′

∂y

∂y

∂x
+

∂Z ′

∂z

∂z

∂x

)
.

Let us calculate the partial derivatives on the basis of (12)–(14):

∂x

∂x′ =
(

dX

dx

)−1

=
(

∂X(x, y, z, ε)
∂x

+
∂X(x, y, z, ε)

∂y

∂y

∂x
+

∂X(x, y, z, ε)
∂z

∂z

∂x

)−1

, (16)

∂x

∂t
= −

(
dX

dx

)−1 (
∂X

∂y

∂y

∂t
+

∂X

∂z

∂z

∂t

)
= − ∂x

∂x′

(
∂X

∂y

∂y

∂t
+

∂X

∂z

∂z

∂t

)
, (17)

∂x

∂ε
= −

(
dX

dx

)−1 ∂X

∂ε
= − ∂x

∂x′
∂X

∂ε
, (18)

∂y′tε(x
′)

∂x′ =
dY

dx

∂x

∂x′ =
(

∂Y

∂x
+

∂Y

∂y

∂y

∂x
+

∂Y

∂z

∂z

∂x

)(
∂X

∂x
+

∂X

∂y

∂y

∂x
+

∂X

∂z

∂z

∂x

)−1

, (19)

∂y′tε(x′)
∂t

=
dY

dx

∂x

∂t
+

∂Y

∂y

∂y

∂t
+

∂Y

∂z

∂z

∂t

=
(

∂Y

∂y
− dY

dx

∂x

∂x′
∂X

∂y

)
∂y

∂t
+

(
∂Y

∂z
− dY

dx

∂x

∂x′
∂X

∂z

)
∂z

∂t
, (20)

∂z′tε(x
′)

∂x′ =
dZ

dx

∂x

∂x′ =
(

∂z

∂x
+ ε

dZ ′

dx

)(
∂X

∂x
+

∂X

∂y

∂y

∂x
+

∂X

∂z

∂z

∂x

)−1

, (21)

∂z′tε(x
′)

∂t
=

∂Z

∂z

∂z

∂t
+

∂Z

∂y

∂y

∂t
+

dZ

dx

∂x

∂t

=
(

I + ε
∂Z ′

∂z
−

(
∂z

∂x
+ ε

dZ ′

dx

)
∂x

∂x′
∂X

∂z

)
∂z

∂t
+

(
ε
∂Z ′

∂y
−

(
∂z

∂x
+ ε

dZ ′

dx

)
∂x

∂x′
∂X

∂y

)
∂y

∂t
.

(22)

Equality (16) defines ∂x/∂x′ as a function of six variables x, y, z, ε, ∂y/∂x, and ∂z/∂x. Under
the conditions ‖∂y/∂x‖ ≤ θ and ‖∂z/∂x‖ ≤ θη, this function is N − 1 times continuously differen-
tiable with respect to the set of variables, and all of its partial derivatives are bounded. The same
is true for the derivatives on the left-hand sides of equalities (17)–(22).
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We say that an index pair (i, j), where j = (j1, . . . , jn), precedes a pair (i′, j′) if i+ |j| ≤ i′ + |j′|,
|j| ≤ |j′|, and (i, |j|) = (i′, |j′|). This partial ordering determines a priority of partial derivatives of
the form ∂i+|j|y/∂xi∂tj and ∂i+|j|z/∂xi∂tj.

Lemma 2.1. If i ≥ 2 or |j| ≥ 1, then, for any vector V ′ ∈ R
u,

∂i+|j|y′tε(x′)
(∂x′)i∂tj

(V ′)i =
(

∂Y

∂y
− dY

dx

∂x

∂x′
∂X

∂y

)
∂i+|j|yt(x)

∂xi∂tj

(
∂x

∂x′V
′
)i

+
(

∂Y

∂z
− dY

dx

∂x

∂x′
∂X

∂z

)
∂i+|j|zt(x)

∂xi∂tj

(
∂x

∂x′V
′
)i

+ Pij ,

∂i+|j|z′tε(x
′)

(∂x′)i∂tj
(V ′)i =

(
I + ε

∂Z ′

∂z
−

(
∂z

∂x
+ ε

dZ ′

dx

)
∂x

∂x′
∂X

∂z

)
∂i+|j|zt(x)

∂xi∂tj

(
∂x

∂x′V
′
)i

+
(

ε
∂Z ′

∂y
−

(
∂z

∂x
+ ε

dZ ′

dx

)
∂x

∂x′
∂X

∂y

)
∂i+|j|yt(x)

∂xi∂tj

(
∂x

∂x′V
′
)i

+ Qij.

Each coordinate of the vector Pij is a finite sum of products of the form p1p2p3, and each coordinate
of the vector Qij is a finite sum of products of the form q1q2q3, where

(a) p1 and q1 are smooth functions of variables x, y, z, ∂y/∂x, ∂z/∂x, and ε all of whose partial
derivatives are bounded ;

(b) p2 and q2 are products of some coordinates of the vector V ′ with i multipliers;
(c) p3 and q3 are finite products of some partial derivatives of y and z that precede (i, j), and,

for each of these products, the sum of all multiindices corresponding to differentiation with
respect to t equals j;

(d) each product q1q2q3 contains a factor that either coincides with ε or is a component of some
derivative of the form ∂i′+|j′|z/∂xi′∂tj

′
, where i′ > 0.

Proof. For i = 0 and |j| = 1, the assertion of the lemma immediately follows from equali-
ties (20) and (22) with zero Pij and Qij . For i = 2 and j = 0, the required equalities are obtained
by a direct differentiation of (19) and (21). For other pairs of indices, the assertion is proved by
induction based on the ordering introduced above. One should merely successively differentiate the
equalities and, at each step, represent the current derivatives of y′tε(x′) and z′tε(x′) as functions of
x, y, z, ∂y/∂x, ∂z/∂x, ε, V ′, and lower derivatives of y and z by using substitutions (16) and (17).
We leave the details to the reader.

Let us return to the proof of Theorem 1.3. Suppose that, for some σ ≤ η, we have ‖∂y/∂x‖ ≤ θ
and ‖∂z/∂x‖ ≤ θσ. Then, by Proposition 1.1, ‖∂y′tε/∂x′‖ ≤ θ and, by (15) and (21),∥∥∥∥∂z′tε

∂x′

∥∥∥∥ ≤ (θσ + εd)(a + b) ≤ θ

(
σ +

εd

θ

)
(1 − b) = θσ′,

where σ′ = (1 − b)(σ + εd/θ). Therefore, we can take α10 = θ in (7) and (8).
The remaining αik are determined by induction based on the ordering of indices introduced

above. Let us describe an induction step. Take a pair (I, J). Suppose that, for all pairs of indices
(i, j) that precede (I, J), some set of constants αi|j| has already been determined. Let us show
how to determine αI|J |. Suppose that inequalities (7)–(9) hold. Let us estimate the two derivatives
∂I+|J |y′tε(x

′)/(∂x′)I∂tJ and ∂I+|J |z′tε(x
′)/(∂x′)I∂tJ with the use of Lemma 2.1. By Lemma 2.1,

there exists a large constant C ′ (depending on αi|j| that have already been chosen but not on αI|J |)
such that the vectors PIJ and QIJ from this lemma obey the estimates

‖PIJ‖ ≤ C ′‖V ′‖IvJ , ‖QIJ‖ ≤ C ′‖V ′‖I(σ + ε)vJ . (23)
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By virtue of (19), ∥∥∥∥dY

dx

∂x

∂x′

∥∥∥∥ =
∥∥∥∥∂y′tε

∂x′

∥∥∥∥ ≤ θ. (24)

Substituting inequalities (5)–(9), (15), (23), and (24) into the equalities of Lemma 2.1, we obtain
the estimates∥∥∥∥∥∂I+|J |y′tε(x′)

(∂x′)I∂tJ

∥∥∥∥∥ ≤ (a + θb)αI|J |v
J(a + b)I + 2dαI|J |ηvJ(a + b)I + C ′vJ

≤ (a + 3b)αI|J |v
J + C ′vJ ≤ αI|J |(a + 3b + C ′/αI|J |)v

J ;∥∥∥∥∥∂|J |z′tε(x
′)

∂tJ

∥∥∥∥∥ ≤ (1 + θσd + 2εd2)α0|J |ηvJ + (θσb + 2εd)α0|J |v
J + C ′(σ + ε)vJ

≤ α0|J |η
(
1 + θσd + 2εd2 + θσb/η + 2εd/η + C ′(σ + ε)/(α0|J |η)

)
vJ

for J = 0; and∥∥∥∥∥∂I+|J |z′tε(x
′)

(∂x′)I∂tJ

∥∥∥∥∥ ≤ (1 + θσd + 2εd2)αI|J |σvJ(a + b)I + (θσb + 2εd)αI|J |v
J(a + b)I + C ′(σ + ε)vJ

≤ αI|J |
[
(1 + θσd + θb)(a + b)σ + 2εd2σ + 2εd + C ′(σ + ε)/αI|J |

]
vJ

≤ αI|J |
[
(1 − 2b + C ′/αI|J |)σ + (4d + C ′/αI|J |)ε

]
vJ

for I > 0.
If the numbers αI|J | and C are large in comparison with C ′, then these inequalities give the

estimates ∥∥∥∥∥∂I+|J |y′tε(x′)
(∂x′)I∂tJ

∥∥∥∥∥ ≤ αI|J |(1 − b)vJ ,

∥∥∥∥∥∂I+|J |z′tε(x′)
(∂x′)I∂tJ

∥∥∥∥∥ ≤ αI|J |(1 − b)(σ + Cε)vJ for I > 0,

∥∥∥∥∥∂|J |z′tε(x
′)

∂tJ

∥∥∥∥∥ ≤ α0|J |η(1 + C(σ + ε))vJ for J = 0.

These estimates prove Theorem 1.3.

Suppose that the deformations of the functions yt(x) and zt(x) in (12)–(14) depend not only on
the parameter t but also on ε. Let us denote them by ytε(x) and ztε(x), respectively.

Lemma 2.2. If conditions (12)–(14) hold and 1 ≤ i + |j| + l ≤ N, then

∂i+|j|+ly′tε(x′)
(∂x′)i∂tj∂εl

(V ′)i = Pijl,
∂i+|j|+lz′tε(x′)
(∂x′)i∂tj∂εl

(V ′)i = Qijl;

every coordinate of the vector Pijl is a finite sum of products of the form p1p2p3, and every coordinate
of the vector Qijl is a finite sum of products of the form q1q2q3, where

(a) p1 and q1 are smooth functions of the variables x, y, z, ∂y/∂x, ∂z/∂x, and ε all of whose
partial derivatives are bounded ;
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(b) p2 and q2 are products of i coordinates of the vector V ′;

(c) p3 and q3 are finite products of some partial derivatives of ytε(x) and ztε(x) with respect
to x, t, and ε of orders not exceeding i + |j| + l; for each of these products, the sum of all
multiindices corresponding to differentiation with respect to t equals j.

Proof. For i ≥ 2 or |j| ≥ 1, this assertion is proved by a straightforward differentiation with
respect to ε of the equalities from Lemma 2.1; for j = 0 and i = 1, it is proved by differentiating
equalities (19) and (21); finally, for j = 0 and i = 0, it is proved by differentiating equalities (13)
and (14). All differentiations should be performed with the use of substitution (18).

Theorem 1.4 is proved with the use of Lemma 2.2 by induction on n. At every induction step,
estimates (11) obtained at the preceding step should be substituted into the equalities of Lemma 2.2.
For n = 1, (7)–(9) should be taken as such estimates.

3. TRACES AND FOLIATED FUNCTIONS

We consider a dynamical system of the form (1) for which a uniformly hyperbolic mixing atlas A

is fixed and the notions of flowing skew leaves and majorized deformations of leaves are defined.

Definition 3.1. A skew trace (or simply trace) is a pair (Γ,Φ) consisting of a flowing skew
leaf Γ and a smooth real-valued function Φ on it (the latter is called a density). We say that a trace
is straight if the corresponding leaf Γ is straight. A trace (Γ′,Φ′) is called a restriction of a trace
(Γ,Φ) if Γ′ ⊂ Γ and the density Φ′ coincides with Φ on Γ′. The image of a trace (Γ,Φ) is the trace
(Γ′,Φ′) = Σε(Γ,Φ) such that Γ′ = Σε(Γ) and Φ = Φ′ ◦ Σε.

Definition 3.2. A weight function (weight) is an arbitrary smooth function J defined on the
manifold of u-dimensional subspaces tangent to WA × M .

In the representation in hyperbolic charts, a weight J is a function of the variables x, y, z,
p = dy/dx, and q = dz/dx. Let us point out at once that we are interested in the behavior of this
function only in the domain where ‖p‖ ≤ θ and ‖q‖ ≤ θη.

A canonical weight function is the reciprocal of the expansion coefficient of u-dimensional vol-
umes under the mapping Σε. Obviously, it depends on ε; thus, it is more appropriate to say that
this is a family of weight functions Jε.

For a weight Jε and a skew leaf Γ, the restriction of Jε to Γ is defined in a natural way;
we denote it by the same symbol. A self-mapping ΣεJε of the set of skew traces is defined by
ΣεJε(Γ,Φ) = Σε(Γ, JεΦ). If the weight Jε is canonical and Φ is the density of some measure with
respect to the Riemannian volume on Γ, then the density of the trace ΣεJε(Γ,Φ) is automatically
the density of the corresponding measure on Σε(Γ) induced by the mapping Σε.

A leaf Γ ∼ (y(x), z(x), χ) is said to be standard if the domains of the functions y(x) and z(x)
coincide with an open unit ball B(x0, 1) ⊂ B

u
5 . For standard leaves, we use the notation Γ ∼

(y(x), z(x), χ, x0); we assume that x ∈ B(x0, 1). The point α =
(
χ(x0, y(x0)), z(x0)

)
is called the

center of the standard leaf. When it is necessary to emphasize that a standard leaf Γ is centered
at α, we denote this leaf by Γ(α). We say that a trace (Γ,Φ) is standard if the corresponding
leaf Γ is standard. For any standard trace (Γ,Φ), we can assume that, in a chart representation,
the domain of the density Φ = Φ(x) is the same ball B(x0, 1). We say that two standard traces
(Γ1,Φ1) and (Γ2,Φ2) are equivalent if their centers coincide, the intersection Γ1 ∩ Γ2 is open in Γ1

and in Γ2, and the densities Φ1 and Φ2 coincide on this intersection. A standard deformation of a
leaf is a deformation Γt ∼ (yt(x), zt(x), χ, x0) such that all functions yt(x) and zt(x) have the same
domain B(x0, 1) ⊂ B

u
5 . A trace deformation (Γt,Φt) is standard if the corresponding deformation

of the leaf Γt is standard.
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We call a deformation (Γt,Φt) of standard traces sliding if all traces in this deformation are
restrictions of the same trace (Γ,Φ). Under a sliding deformation, the leaf Γt and its center move
along Γ.

Definition 3.3. A foliated function (on skew traces) of type (p, q), where p ≥ 1, q ≥ 4, and
p+q ≤ N −1, is an arbitrary real-valued function g(Γ,Φ) defined on the set of standard skew traces
(with flowing leaves) and possessing the following properties:

(a) it linearly depends of Φ;
(b) its values at equivalent traces coincide;
(c) there exists a number c ≥ 0 such that, for any standard deformation Γtz ∼ (yt(x), z, χ, x0) of

flowing straight leaves and any density Φ = Φ(x), the relation yt ≺ v implies the estimates∣∣∣∣∣∂
|j|+|k|g(Γtz ,Φ)

∂tj∂zk

∣∣∣∣∣ ≤ cvj‖Φ‖p+|j|+|k|, |j| + |k| ≤ q, |k| ≤ q − 2; (25)

(d) there exists a c ≥ 0 such that if a standard deformation Γt ∼ (yt(x), zt(x), χ, x0) of flowing
skew leaves is majorized by a pair (v, σ), where σ ∈ [0, σ0], and a family of straight leaves Γt

has the form Γt ∼ (yt(x), zt(x0), χ, x0), then, for any density Φ = Φ(x), the following esti-
mates hold: ∣∣∣∣∣∂

|j|g(Γt,Φ)
∂tj

− ∂|j|g(Γt,Φ)
∂tj

∣∣∣∣∣ ≤ cσvj‖Φ‖p+1+|j|, |j| ≤ q − 4; (26)

(e) all the derivatives in (25) and (26) are continuous in t and z and vary continuously under
sliding deformations of traces.

The exact value of the small positive number σ0 ∈ (0, η] in the definition of flowing leaves is
chosen below, in Theorems 3.2 and 3.3. We denote the minimum c for which inequalities (25)
and (26) hold by ‖g‖pq. Obviously, ‖g‖pq is a norm. The set of all foliated functions of type (p, q)
endowed with this norm forms a Banach space; we denote it by Fpq. Estimates (25) and (26)
imply that Fpq ⊂ Fp′q′ and ‖g‖pq ≥ ‖g‖p′q′ for p′ ≥ p and q′ ≤ q. Foliated functions can be
multiplied by ordinary functions according to the following rule: if f ∈ C∞(W×M), then fg(Γ,Φ) =
g(Γ, fΦ). Formally, a foliated function g ∈ Fpq is defined on the set of standard traces with infinitely
differentiable densities. However, it can be extended by continuity to the traces with densities of
smoothness p + q.

Consider simple examples of foliated functions. For any standard trace (Γ(α),Φ) centered at α,
we set g0(Γ(α),Φ) = Φ(α). Let ξ0(t) be an infinitely differentiable function on the real axis with
support in a sufficiently small neighborhood of zero. We set

g1(Γ(α),Φ) =
∫
Γ

ξ0

(
ρ(α, β)

)
Φ(β) dµ(β),

where ρ(α, β) is the distance between α and a point β ∈ Γ and µ is the Riemannian volume on Γ.
It is easy to see that g0 and g1 are foliated functions of type (0, N − 1).

Theorem 3.1. The space Fpq is a Banach module over the algebra of weight functions of
smoothness p + q, over Cp+q(W × M), and over Cp+q−3(M).

This theorem is proved in the next section.
Without loss of generality, we can assume that the Riemannian metric on W is equivalent to

the Euclidean metric on hyperbolic charts. This means that the length of a tangent vector to W
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and the length of its image in a chart may differ by at most a finite factor that is independent of
the vector and the chart.

Take a small positive number r0 such that the restriction Γ∗ ∼ (y(x), z(x), χ) of any standard
leaf Γ ∼ (y(x), z(x), χ, x0), where x ∈ B(x0, 1 − a − b), contains the intersection of Γ with the
2r0-neighborhood of its center α = (χ(x0, y(x0)), z(x0)). Take an infinitely differentiable nonneg-
ative function ξ0(t) on the real axis that takes value 1 for |t| ≤ r0 and vanishes for |t| ≥ 2r0. On
each leaf Γ contained in the Riemannian manifold W × M , the Riemannian volume µ is induced.
Let us define a function of two variables on Γ by

ξΓ(α, β) =
ξ0(ρ(α, β))∫

Γ ξ0(ρ(α, β)) dµ(α)
,

where ρ(α, β) is the distance between α and β. This function vanishes if ρ(α, β) ≥ 2r0 and is strictly
positive if ρ(α, β) ≤ r0, and ∫

Γ

ξΓ(α, β) dµ(α) ≡ 1. (27)

To obviate the necessity of handling the boundary of Γ, it is convenient to assume that this function
is defined on the 2r0-interior of Γ (i.e., on the set of pairs of points in Γ lying at a distance greater
than 2r0 from the boundary of Γ).

Take a family of weight functions Jε. Let (Γ,Φ) be an arbitrary standard trace centered at α,
and let (Γ′

ε,Φ
′
ε) = (ΣεJε)n(Γ,Φ). By Proposition 1.2, for any point β ∈ Γ in the 2r0-neighborhood

of α, there exists a standard trace (Γ′
ε(β

′),Φ′
ε) ⊂ (Γ′

ε,Φ
′
ε) centered at β′ = Σn

ε (β).
Definition 3.4. We define the averaged weighted shift operator Aε,n on the space Fpq of foliated

functions by (
Aε,ng

)
(Γ(α),Φ) =

∫
Γ′
ε

ξΓ(α, β)g(Γ′
ε(β

′),Φ′
ε) dµ(β′). (28)

Obviously, for all g ∈ Fpq and f ∈ Cp+q(W × M), the following homological identity holds:

Aε,n(fg) = f ◦ Σn
ε · Aε,ng. (29)

Theorem 3.2. For every n, there exist small positive numbers σ0 ∈ (0, η] and ε0 = ε0(σ0)
such that, for all ε ∈ [−ε0, ε0] and l ≤ q−8, the operator dlAε,n/dεl maps continuously the space Fpq

to Fp+1+l,q−4−l (and, hence, to Fp+2l,q−5l provided that l = 0).
This theorem is proved in Section 6.
We say that a foliated function is positive if it takes nonnegative values on traces with nonnega-

tive densities. We call a positive foliated function g strongly positive if there exists c > 0 such that
g(Γ, 1) ≥ c for any standard leaf Γ. A linear functional on the space of foliated functions is said to
be positive if it takes nonnegative values on positive functions.

Now, suppose that a family Jε of weight functions is positive and bounded away from zero in
the domain ‖dy/dx‖ ≤ θ, ‖dz/dx‖ ≤ θη, where x, y, z, dy/dx, and dz/dx are the coordinates
corresponding to an arbitrary hyperbolic chart. Then, the operator Aε,n maps positive (strongly
positive) foliated functions to positive (respectively, strongly positive) foliated functions. Under
these conditions, the following theorem is valid.

Theorem 3.3. For any sufficiently large n ∈ N, there exist a small number σ0 ∈ (0,η], a
function λ = λn ∈ CN−4(M), a strongly positive foliated function h = hn ∈ F1,N−2, and a positive
C∞(M)-linear functional ν = νn : FN−5,4 → C2(M) such that
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(a) the functional ν maps continuously every space Fpq to the space Cq−2(M);

(b) the operator A0,n maps continuously every space Fpq to itself ;
(c) A0,nh = eλh, ν ◦ A0,n = eλν, and ν(h) ≡ 1;

(d) the sequence of operators [e−λA0,n]m : Fpq → Fpq converges in the uniform operator norm
to the projector A0,ng = ν(g)h as m → ∞.

This is the main theorem of the paper. It is proved in Section 9.

4. PROOF OF THEOREM 3.1

Consider a foliated function g ∈ Fpq and a weight function J of smoothness p+q. To prove that
the product Jg also belongs to Fpq and continuously depends on the factors, one should directly
estimate all the derivatives in the definition of foliated function. This involves no ideas and only
requires that the derivatives should be carefully calculated and written out.

Consider a standard deformation Γt ∼ (yt(x), zt(x), χ, x0). Take the corresponding deformation
Γt ∼ (yt(x), zt(x0), χ, x0) of straight leaves. We connect them by the homotopy

Γtτ ∼
(
yt(x), τzt(x) + (1 − τ)zt(x0), χ, x0

)
, τ ∈ [0, 1].

We can assume that Γtτ is a standard deformation of skew leaves that depends on the composite
parameter (t, τ). It may be majorized by pairs of the form ((v, vτ ), σ), where (v, vτ ) is a composite
vector of the same structure as the composite parameter (t, τ). Definition 1.4 of majorizing pairs
directly implies the following assertion.

Lemma 4.1. If Γt ≺ (v, σ), where σ ∈ [0, η], then Γtτ ≺ ((v,B1σ), η), where B1 =
maxi,k αik/θη.

Lemma 4.2. There exists a large B2 such that, for any foliated function g ∈ Fpq and any
standard deformation (Γt,Φ) of straight traces, the relation Γt ≺ (v, 0) implies the estimates∣∣∣∣∣∂

|j|g(Γt,Φ)
∂tj

∣∣∣∣∣ ≤ B2‖g‖pqv
j‖Φ‖p+|j|, |j| ≤ q − 2.

Proof. Let Γt ∼ (yt(x), zt, χ, x0). Consider Γtz ∼ (yt(x), z, χ, x0). We have

∂|j|g(Γt,Φ)
∂tj

=
∑
k≤j

Ck
j

∂|j|g(Γt,zT
,Φ)

∂tj−k∂T k

∣∣∣∣∣
T=t

and

∥∥∥∥∥∂|k|zT

∂T k

∥∥∥∥∥ ≤ α0|k|ηvk.

These formulas and the definition of ‖g‖pq imply the required estimates.

Let J be a weight function. In the coordinates corresponding to an arbitrary hyperbolic chart χ,
it is represented as a function J = J(x, y, z, dy/dx, dz/dx) of five variables. Let ‖J‖χ

q denote its
Cq-norm with respect to these variables, and let ‖J‖q = maxχ∈A‖J‖χ

q . Consider the family of
straight leaves Γtz ∼ (yt(x), z, χ). The restriction of the weight J to the leaf Γtz is represented as
a function Ψtz(x) = J(x, yt(x), z, dyt(x)/dx, 0). Differentiating Ψtz(x) as a composite function and
substituting estimates (7), we obtain the following assertion.

Lemma 4.3. There exists a constant B3 such that the relation yt ≺ v implies the estimates∥∥∥∥∥∂i+|j|+|k|Ψtz(x)
∂xi∂tj∂zk

∥∥∥∥∥ ≤ B3v
j‖J‖i+|j|+|k|, i + |j| + |k| ≤ N − 1.
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Consider a deformation of skew leaves Γt ∼ (yt, zt, χ). The restriction of the weight J to the
leaf Γt is represented as a function

Ψt(x) = J
(
x, yt(x), zt(x), dyt(x)/dx, dzt(x)/dx

)
.

Differentiating it and substituting estimates (7)–(9), we obtain the following lemma.
Lemma 4.4. There exists a large B4 such that the relation Γt ≺ (v, η) implies the estimates∥∥∥∥∥∂i+|j|Ψt(x)

∂xi∂tj

∥∥∥∥∥ ≤ B4v
j‖J‖i+|j|, i + |j| ≤ N − 1.

Lemma 4.5. There exists a large B5 such that, for any standard deformation of straight leaves
Γtz ∼ (yt(x), z, χ, x0) and any family of densities Φtz(x), the relation yt ≺ v and the estimates∥∥∥∥∥∂i+|j′|+|k′|Φtz(x)

∂xi∂tj′∂zk′

∥∥∥∥∥ ≤ βvj′ , i + |j′| + |k′| ≤ p + |j| + |k|,

which hold for some β ≥ 0 and fixed multiindices j and k, imply∣∣∣∣∣∂
|j|+|k|g(Γtz ,Φtz)

∂tj∂zk

∣∣∣∣∣ ≤ B5‖g‖pqβvj , |j| + |k| ≤ q, |k| ≤ q − 2.

Proof. Differentiation by the Leibniz formula yields

∂|j|+|k|g(Γtz ,Φtz)
∂tj∂zk

=
∑
j′≤j

∑
k′≤k

Cj′

j Ck′
k

∂|j−j′|+|k−k′|

∂tj−j′∂zk−k′ g(Γtz ,Φ
j′k′

TZ )

∣∣∣∣∣
T=t
Z=z

, (30)

where

Φj′k′

tz (x) =
∂|j′|+|k′|Φtz(x)

∂tj′∂zk′ .

If Φj′k′

tz is treated as a function of x, then the hypothesis of the lemma implies the estimates
‖Φj′k′

tz ‖p+|j−j′|+|k−k′| ≤ βvj′ . From (30) and the definition of ‖g‖pq, we obtain∣∣∣∣∣∂
|j|+|k|g(Γtz ,Φtz)

∂tj∂zk

∣∣∣∣∣ ≤
∑
j′≤j

∑
k′≤k

Cj′

j Ck′
k ‖g‖pqv

j−j′βvj′ .

Lemma 4.6. There exists a large B6 such that, for any standard deformation of skew leaves
Γt ∼ (yt(x), zt(x), χ, x0), any deformation of straight leaves Γt ∼ (yt(x), zt(x0), χ, x0), and any family
of densities Φt(x), the relation Γt ≺ (v, σ) and the estimates∥∥∥∥∥∂i+|j′|Φt(x)

∂xi∂tj′

∥∥∥∥∥ ≤ βvj′ , i + |j′| ≤ p + 1 + |j|, (31)

which hold for some β ≥ 0 and a fixed multiindex j, imply the estimates∣∣∣∣∣∂
|j|g(Γt,Φt)

∂tj
− ∂|j|g(Γt,Φt)

∂tj

∣∣∣∣∣ ≤ B6‖g‖pqβσvj , |j| ≤ q − 4. (32)
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If estimates (31) hold for all indices such that i + |j′| ≤ p + |j|, then∣∣∣∣∣∂
|j|g(Γt,Φt)

∂tj

∣∣∣∣∣ ≤ B6‖g‖pqβvj , |j| ≤ q − 2. (33)

Therefore, under conditions (31),∣∣∣∣∣∂
|j|g(Γt,Φt)

∂tj

∣∣∣∣∣ ≤ B6(1 + σ)‖g‖pqβvj , |j| ≤ q − 4. (34)

Proof. By the Leibniz formula,

∂|j|g(Γt,Φt)
∂tj

− ∂|j|g(Γt,Φt)
∂tj

=
∑
j′≤j

Cj′

j

(
∂|j−j′|g(Γt,Φ

j′

T )
∂tj−j′

− ∂|j−j′|g(Γt,Φ
j′

T )
∂tj−j′

)∣∣∣∣∣
T=t

, (35)

∂|j|g(Γt,Φt)
∂tj

=
∑
j′≤j

Cj′

j

∂|j−j′|g(Γt,Φ
j′

T )
∂tj−j′

∣∣∣∣∣
T=t

, (36)

where

Φj′

t (x) =
∂|j′|Φt(x)

∂tj′
.

Let us consider Φj′

t as a function of x. Then, by the condition of the lemma, ‖Φj′

t ‖p+1+|j−j′| ≤ βvj′.
It is easy to see that the definition of ‖g‖pq and (35) imply (32). The relation Γt ≺ (v, σ) implies
Γt ≺ (v, 0). If estimates (31) hold for i+ |j′| ≤ p + |j|, then ‖Φj′

t ‖p+|j−j′| ≤ βvj′ . Hence, Lemma 4.2
and (36) imply (33).

Now, we can prove Theorem 3.1.
Choose a constant B0 such that, for any functions Φ,Ψ ∈ Cq(Bu

5), where q ≤ N , we have
‖ΦΨ‖q ≤ B0‖Φ‖q‖Ψ‖q. Suppose that g ∈ Fpq and J is an infinitely differentiable weight function.
Obviously, the product Jg satisfies conditions (a) and (b) of Definition 3.3.

Let us verify that the function Jg satisfies condition (c) of Definition 3.3. Consider a standard
deformation of straight leaves Γtz ∼ (yt(x), z, χ, x0), where y ≺ v, and a density Φ(x). Let Ψtz(x) be
the restriction of J to Γtz. The function Ψtz satisfies the hypothesis of Lemma 4.3. Therefore, the
product ΨtzΦ satisfies the hypothesis of Lemma 4.5, where we can take β = B0B3‖J‖p+q‖Φ‖p+|j|+|k|.
By this lemma, we have∣∣∣∣∣∂

|j|+|k|Jg(Γtz ,Φ)
∂tj∂zk

∣∣∣∣∣ =

∣∣∣∣∣∂
|j|+|k|g(Γtz ,ΨtzΦ)

∂tj∂zk

∣∣∣∣∣ ≤ B5‖g‖pqB0B3‖J‖p+q‖Φ‖p+|j|+|k|.

This inequality is quite similar to estimate (25) in which the foliated function g is replaced by Jg
and the number c, by B0B3B5‖g‖pq‖J‖p+q.

Let us verify that Jg satisfies condition (d) of Definition 3.3. Consider a standard de-
formation of skew leaves Γt ∼ (yt(x), zt(x), χ, x0) majorized by a pair (v, σ), a deformation
Γt ∼ (yt(x), zt(x0), χ, x0), and a rectilinear homotopy Γtτ ∼

(
yt(x), τzt(x)+(1−τ)zt(x0), χ, x0

)
that

connects them. Let Ψtτ (x) be the restriction of the weight J to Γtτ . Then, Jg(Γt,Φ) = g(Γt1,Ψt1Φ)
and Jg(Γt,Φ) = g(Γt0,Ψt0Φ). Obviously,

Jg(Γt,Φ) − Jg(Γt,Φ) =
[
g(Γt1,Ψt1Φ) − g(Γt0,Ψt1Φ)

]
+ g(Γt0,Ψt1Φ − Ψt0Φ). (37)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 244 2004



FOLIATED FUNCTIONS AND AN AVERAGED WEIGHTED SHIFT OPERATOR 43

By Lemma 4.1, Γtτ ≺ ((v,B1σ), η). Applying Lemma 4.4 to the deformation Γtτ , we obtain∥∥∥∥∥∂i+|j|+lΨtτ (x)
∂xi∂tj∂τ l

∥∥∥∥∥ ≤ B4v
j(B1σ)l‖J‖i+|j|+l, i + |j| + l ≤ N − 1.

Therefore,∥∥∥∥∥∂i+|j′|(Ψt1(x)Φ(x))
∂xi∂tj′

∥∥∥∥∥ ≤ B0B4v
j′‖J‖p+1+|j|‖Φ‖p+1+|j|, i + |j′| ≤ p + 1 + |j|,

and ∥∥∥∥∥ ∂i+|j′|

∂xi∂tj′
(
Ψt1(x)Φ(x) − Ψt0(x)Φ(x)

)∥∥∥∥∥ =

∥∥∥∥∥∥
1∫

0

∂i+|j′|+1(Ψtτ (x)Φ(x))
∂xi∂tj′∂τ

dτ

∥∥∥∥∥∥
≤ B0B4v

j′B1σ‖J‖p+1+|j|‖Φ‖p+|j|

for i+ |j′| ≤ p+ |j|. These inequalities coincide with conditions (31) of Lemma 4.6 for the functions
Ψt1Φ and Ψt1Φ − Ψt0Φ. According to this lemma,∣∣∣∣∣∂

|j|g(Γt1,Ψt1Φ)
∂tj

− ∂|j|g(Γt1,Ψt1Φ)
∂tj

∣∣∣∣∣ ≤ B6‖g‖pqB0B4‖J‖p+1+|j|‖Φ‖p+1+|j|σvj ,

∣∣∣∣∣∂
|j|

∂tj
g(Γt0,Ψt1Φ − Ψt0Φ)

∣∣∣∣∣ ≤ B6‖g‖pqB0B1B4σ‖J‖p+1+|j|‖Φ‖p+|j|v
j .

Combining these inequalities with (37), we obtain estimates (26) for the function Jg with a con-
stant c of order ‖g‖pq‖J‖p+q−3.

If the weight function J is infinitely differentiable, then, obviously, Jg satisfies the last con-
dition (e) in Definition 3.3 as well. Therefore, Jg ∈ Fpq, and the norm ‖Jg‖pq is bounded by
a quantity of order ‖g‖pq‖J‖p+q. These results can be transferred to the weight functions of
smoothness p + q by continuity. This proves the theorem for weight functions J of smoothness
p + q and for J ∈ Cp+q(W × M). In the case of J ∈ Cp+q−3(M), all conditions of Definition 3.3
for Jg are verified in precisely the same way, with the only exception that, to verify (c), we can
write at once∣∣∣∣∣∂

|j|+|k|J(z)g(Γtz ,Φ)
∂tj∂zk

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
k′≤k

Ck′
k

∂|k−k′|J(z)
∂zk−k′

∂|j|+|k′|g(Γtz ,Φ)
∂tj∂zk′

∣∣∣∣∣∣ ≤
∑
k′≤k

Ck′
k ‖J‖q−2‖g‖pqv

j‖Φ‖p+|j|+|k|.

Therefore, we can take a constant c of order ‖J‖q−2‖g‖pq ≤ ‖J‖p+q−3‖g‖pq in estimate (25) for the
function Jg. This completes the proof of Theorem 3.1.

5. PROPERTIES OF IMAGES OF TRACES

As above, we consider a dynamical system of the form (1) for which a uniformly hyperbolic
mixing atlas A is fixed and the notions of weight functions, flowing skew leaves, and majorized
deformations of leaves are defined.

Suppose that a family of weight functions Jε is strictly positive and bounded away from zero
in the domain ‖dy/dx‖ ≤ θ, ‖dz/dx‖ ≤ θη, where x, y, z, dy/dx, and dz/dx are the coordinates
corresponding to an arbitrary hyperbolic chart. Denote by ν = (ν1, . . . , νn) an arbitrary vector with
nonnegative components and by βik, where i, k ∈ Z+, a set of positive constants.
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Theorem 5.1. Suppose that a family of weights Jε is bounded away from zero. Then, there
exists a set of constants βik ≥ 2 such that if the trace deformations (Γ′

tε,Φ
′
tε) = ΣεJε(Γt,Φt), where

Γt ∼ (yt(x), zt(x), χ) and Γ′
tε ∼ (y′tε(x

′), z′tε(x
′), χ′), satisfy the conditions

Γt ≺ (v, η),

∥∥∥∥∥∂i+|j|Φt(x)
∂xi∂tj

∥∥∥∥∥ ≤ βi|j|ν
j |Φt(x)|, i + |j| ≤ q, q ≤ N − 1, (38)

for some x and t, then, for the corresponding x′ and t,∥∥∥∥∥∂i+|j|Φ′
tε(x′)

(∂x′)i∂tj

∥∥∥∥∥ ≤ (1 − b)βi|j|(ν + v)j |Φ′
tε(x

′)|, 1 ≤ i ≤ q − |j|, (39)

∥∥∥∥∥∂|j|Φ′
tε(x

′)
∂tj

∥∥∥∥∥ ≤ β0|j|(ν + v)j |Φ′
tε(x

′)|, |j| ≤ q. (40)

This theorem is proved later on in this section.
Definition 5.1. A density Φ = Φ(x) of smoothness q ≤ N − 1 is said to be flowing if it is

nonnegative and satisfies the inequalities ‖diΦ(x)/dxi‖ ≤ βi0Φ(x) for all x and i = 1, . . . , q.
Corollary 5.1.1. If (Γ′

ε,Φ′
ε) = ΣεJε(Γ,Φ) and the density Φ of smoothness q is flowing, then

the density Φ′
ε is also flowing.

Proof. Consider the trace (Γ,Φ) as a deformation that does not depend on the parameter t. For
such a deformation, we can set v = ν = 0 in (38). Therefore, by (39), we have ‖diΦ′

ε(x′)/(dx′)i‖ ≤
(1 − b)βi0Φ′

ε(x′); thus, the density Φ′
ε is flowing.

Repeatedly applying Theorem 5.1 with ε = 0 and Corollary 1.3.1, we obtain the following
assertion.

Corollary 5.1.2. Suppose that Cn = necη, and let (Γ′
t ,Φ′

t) ⊂ (Σ0J0)n(Γt,Φt), where Γt ∼
(yt(x), zt(x), χ) and Γ′

t ∼ (y′t(x
′), z′t (x

′), χ′). Then, the conditions

Γt ≺ (v, η),

∥∥∥∥∥∂i+|j|Φt(x)
∂xi∂tj

∥∥∥∥∥ ≤ βi|j|ν
j|Φt(x)|, i + |j| ≤ q,

imply the estimates ∥∥∥∥∥∂i+|j|Φ′
t(x

′)
(∂x′)i∂tj

∥∥∥∥∥ ≤ βi|j|(ν + Cnv)j |Φ′
t(x

′)|, i + |j| ≤ q.

Theorem 5.2. For any family of weights Jε, there exist large constants Cn such that if some
leaf deformation Γt ∼ (yt(x), zt(x), χ) is majorized by a pair (v, η), and a family of densities Φt(x)
satisfies the estimates ∥∥∥∥∥∂i+|j|Φt(x)

∂xi∂tj

∥∥∥∥∥ ≤ βvj , i + |j| ≤ q, q ≤ N − 1,

for some β ≥ 0, then any family of traces (Γ′
tε,Φ′

tε) ⊂ (ΣεJε)n(Γt,Φt) obeys the estimates∥∥∥∥∥∂i+|j|+lΦ′
tε(x

′)
(∂x′)i∂tj∂εl

∥∥∥∥∥ ≤ Cnβvj , i + |j| + l ≤ q. (41)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 244 2004



FOLIATED FUNCTIONS AND AN AVERAGED WEIGHTED SHIFT OPERATOR 45

To prove Theorems 5.1 and 5.2, we need two lemmas.
Lemma 5.3. If (Γ′

tε,Φ
′
tε) = ΣεJε(Γt,Φt), then

∂i+|j|Φ′
tε(x′)

(∂x′)i∂tj
(V ′)i = Jε

(
x, y, z,

∂y

∂x
,
∂z

∂x

)
∂i+|j|Φt(x)

∂xi∂tj

(
∂x

∂x′V
′
)i

+ Pij .

Here, the function Pij is a finite sum of products of the form p1p2p3p4, where

(a) p1 is a smooth function of the variables x, y, z, ∂y/∂x, ∂z/∂x, and ε all of whose partial
derivatives are bounded ;

(b) p2 is a product of i coordinates of the vector V ′;
(c) p3 is a partial derivative of Φt(x) preceding the index pair (i, j) in the ordering introduced

in Section 2;
(d) p4 is a product of several partial derivatives of yt(x) and zt(x) of order at most i + 1 + |j|.

The sum of all multiindices in the product p3p4 that correspond to the differentiations with respect
to t equals j.

Proof. The lemma is proved by successively differentiating the identity Φ′
tε(x

′) = Jε(x, y, z,
∂y/∂x, ∂z/∂x)Φt(x), where x = x(x′, t, ε), y = yt(x), and z = zt(x). After every differentiation, we
have to represent the result as a function of x, y, z, ∂y/∂x, ∂z/∂x, ε, V ′, and the partial derivatives
of y, z, and Φt with the use of substitutions (16) and (17).

Lemma 5.4. Suppose that (Γ′
tε,Φ′

tε) ⊂ ΣεJε(Γtε,Φtε), where Γtε ∼ (ytε(x), ztε(x), χ) and Γ′
tε ∼

(y′tε(x′), z′tε(x′), χ′). Then,
∂i+|j|+lΦ′

tε(x
′)

(∂x′)i∂tj∂εl
(V ′)i = Pijl;

here, Pijl is a finite sum of products of the form p1p2p3p4, where

(a) p1 is a smooth function of the variables x, y, z, ∂y/∂x, ∂z/∂x, and ε all of whose partial
derivatives are bounded ;

(b) p2 is a product of i coordinates of the vector V ′;
(c) p3 is a partial derivative of Φtε(x) of order no higher than i + |j| + l;
(d) p4 is a product of several partial derivatives of ytε(x) and ztε(x) of order no higher than

i + |j| + l + 1.

The sum of all multiindices in the product p3p4 that correspond to the differentiations with respect
to t equals j.

Proof. The lemma is proved by successively differentiating the identity Φ′
tε(x′) = Jε(x, y, z,

∂y/∂x, ∂z/∂x), where x = x(x′, t, ε), y = ytε(x), and z = ztε(x). After every differentiation, we
have to represent the result as a function of x, y, z, ∂y/∂x, ∂z/∂x, ε, V ′, and the partial derivatives
of ytε(x), ztε(x), and Φtε(x) with the use of substitutions (16)–(18).

Proof of Theorem 5.1. We will determine the constants βik by induction based on the
ordering of indices introduced in Section 2. Suppose that, for a pair of indices (I, J), we have
already determined a set of numbers βi|j| that does not contain βI|J | but contains all numbers
corresponding to the pairs of indices (i, j) preceding (I, J). Let us show how to find βI|J |. We
denote by D the set of pairs (i, j) preceding (I, J) and such that j ≤ J . By Lemma 5.3 and
conditions (38), there exists a large constant C (independent of βi|j|) such that∥∥∥∥∥∂I+|J |Φ′

tε(x
′)

(∂x′)I∂tJ

∥∥∥∥∥ ≤ Jε

(
x, y, z,

∂y

∂x
,
∂z

∂x

)∥∥∥∥∥∂I+|J |Φt(x)
∂xI∂tJ

∥∥∥∥∥ (a + b)I + C
∑

(i,j)∈D

βi|j|ν
j|Φt(x)|vJ−j .
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This inequality and the identity Φ′
tε(x

′) = JεΦt(x) give the implication∥∥∥∥∥∂I+|J |Φt(x)
∂xI∂tJ

∥∥∥∥∥ ≤ βI|J |ν
J |Φt(x)| =⇒

∥∥∥∥∥∂I+|J |Φ′
tε(x

′)
(∂x′)I∂tJ

∥∥∥∥∥ ≤ ∆|Φ′
tε(x

′)|,

where

∆ = βI|J |ν
J(a + b)I +

C

Jε

∑
(i,j)∈D

βi|j|ν
jvJ−j.

Obviously, ∑
(i,j)∈D

νjvJ−j ≤ N
∑
j≤J

νjvJ−j ≤ N(ν + v)J .

If I > 0, then, choosing βI|J | large enough in comparison with C, N , and βi|j|, we can ensure
that the inequality ∆ ≤ (1− b)βI|J |(ν +v)J holds for all ν and v. If I = 0, then the definition of the
ordering of indices implies that j cannot coincide with J . In this case, taking β0|J | ≥ supCJ−1

ε βi|j|N ,
we obtain ∆ ≤ β0|J |(ν + v)J . In any case, we have secured estimate (39) if I > 0 and (40) if I = 0.
The fulfillment of these estimates for all pairs of indices (I, J) is precisely what Theorem 5.1 asserts.
This completes the induction step.

Proof of Theorem 5.2. Theorem 5.2 is proved by induction on n with the use of Lemma 5.4
and Theorem 1.4. At each induction step, one should substitute the estimates from Theorem 1.4
and inequalities of the form (41) obtained at the preceding step into the equality of Lemma 5.4.

6. PROOF OF THEOREM 3.2

First, we represent the value of the foliated function Aε,ng on an arbitrary standard trace (Γ,Φ)
in a form convenient for calculations. Recall that

(Aε,ng)(Γ(α),Φ) =
∫
Γ′
ε

ξΓ(α, β)g(Γ′
ε(β

′),Φ′
ε) dµ(β′). (42)

Here, Γ ∼ (y(x), z(x), χ, x0) is a standard leaf; the point α = (χ(x0, y(x0)), z(x0)) is its center; β is
an arbitrary point of Γ; the standard trace (Γ′

ε, β
′,Φ′

ε) is determined by its center β′ = Σn
ε (β) and

by the inclusion (Γ′
ε,Φ

′
ε) ⊂ (ΣεJε)n(Γ,Φ); and µ is the Riemannian volume on the leaf Γ′

ε = Σn
ε (Γ).

The function ξΓ(α, β) is defined by

ξΓ(α, β) =
ξ0(d(α, β))∫

Γ ξ0(d(α, β)) dµ(α)
, (43)

where d is the distance in W × M and ξ0(t) is a fixed smooth nonnegative function taking value 1
for |t| ≤ r0 and vanishing for |t| ≥ 2r0. Here, r0 is a sufficiently small positive number.

Now, we will modify (42) so that it admits differentiation with respect to the parameter under
a transverse deformation of the standard skew trace Γ ∼ (y(x), z(x), χ, x0). Obviously, the variable
x ∈ B(x0, 1) is a coordinate on Γ. The function ξΓ(α, β) depends only on the point β(x) =
(χ(x, y(x)), z(x)) because the point α (the center of Γ) is fixed. We set ξΓ(x) = ξΓ(α, β(x)) and
write the Riemannian volume on Γ in the form dµ = ρ(x) dx.

Let Γ∗ = {β ∈ Γ | d(α, β) ≤ 2r0}. Then, supp ξΓ ⊂ Γ∗. By the definition of a hyperbolic atlas,
for any point β ∈ Γ∗, there exists a chart χ′ ∈ A such that Σn

ε (β) ∈ χ′(Bu
1 × B

s
1) × M . By Propo-

sition 1.2, the point β′ = Σn
ε (β) belongs to a leaf Γ′

ε ⊂ Σn
ε (Γ) of the form Γ′

ε ∼ (y′ε(x
′), z′ε(x

′), χ′),
where x′ ∈ B

u
5 ; moreover, β′ has a coordinate x′ ∈ B

u
1 . We construct such a leaf for every point
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β ∈ Γ∗. Since the linear dimensions of the set Σn
ε (Γ∗) are bounded, the number of such leaves must

be finite and bounded irrespective of the choice of the standard leaf Γ. We denote these leaves by
Γ′

lε ∼ (y′lε(x
′), z′lε(x

′), χ′
l), where x′ ∈ B

u
5 and l = 1, . . . ,m. Let ρlε(x′) dx′ denote the Riemannian

volume on Γ′
lε. For every point x′

0 ∈ B
u
4 , consider the standard leaf Γ′

lε(x
′
0) ∼ (y′lε(x

′), z′lε(x
′), χ′

l, x
′
0)

centered at (χ′
l(x

′
0, y

′
lε(x

′
0)), z′lε(x

′
0)).

Let us fix an infinitely differentiable nonnegative function ζ on R
u that takes value 1 on B

u
2 and

vanishes outside B
u
3 . On each leaf Γ′

lε, we define a function ζl = ζl(x′), where x′ is the coordinate
on Γ′

lε. Since Γ′
lε ⊂ Σn

ε (Γ), this function can be extended by zero to Σn
ε (Γ) \ Γ′

lε. Consider the
function ζε =

∑m
l=1 ζl on Σn

ε (Γ). We denote its restriction to the leaf Γ′
lε by ζlε = ζ lε(x′). By

construction, Σn
ε (Γ∗) ⊂

⋃
l supp ζl. Therefore, the functions ζl/ζ lε form a smooth partition of unity

on the set Σn
ε (Γ∗).

Let us define a function ξlε = ξlε(x′) on Γ′
lε in such a way that (Γ′

lε, ξlε) ⊂ Σn
ε (Γ, ξΓ). Then,

formula (42) can be reduced to the form

(Aε,ng)(Γ,Φ) =
m∑

l=1

∫
B

u
5

ξlε(x′)
ζl(x′)
ζlε(x′)

g(Γ′
lε(x

′),Φ′
ε)ρlε(x′) dx′. (44)

Now, suppose that, instead of a fixed leaf Γ, a standard deformation Γt ∼ (yt(x), zt(x), χ, x0) is
given. If the range of the parameter t is small, then, for Γt, we can construct standard deformations
Γ′

ltε ∼ (y′ltε(x
′), z′ltε(x

′), χ′
l) and deformations of the functions ξΓt , ρt, ξltε, ζltε, ρltε, and Φ′

tε in
precisely the same way as the leaves Γ′

lε and the functions ξΓ, ρ, ξlε, ζ lε, ρlε, and Φ′
ε were constructed

above (but the function ζl remains independent of t and ε). Accordingly, formula (44) takes the
form

(Aε,ng)(Γt,Φ) =
m∑

l=1

∫
B

u
5

ξltε(x′)
ζl(x′)

ζ ltε(x′)
g(Γ′

ltε(x
′),Φ′

tε)ρltε(x′) dx′. (45)

To differentiate (45) with respect to t and ε, we need three lemmas.
Lemma 6.1. There exists a large B7 such that if a standard deformation of leaves Γt is ma-

jorized by a pair (v, η) and has the form Γt ∼ (yt(x), zt(x), χ, x0), then∥∥∥∥∥∂i+|j|ρt(x)
∂xi∂tj

∥∥∥∥∥ ≤ B7v
j ,

∥∥∥∥∥∂i+|j|ξΓt(x)
∂xi∂tj

∥∥∥∥∥ ≤ B7v
j , i + |j| ≤ N − 1.

Proof. Recall that ρt(x) dx is the Riemannian volume on Γt and ξΓt(x) = ξΓt(αt, βt(x)), where
αt = (χ(x0, yt(x0)), zt(x0)) and βt(x) = (χ(x, yt(x)), zt(x)). The density ρt(x) is a smooth function
of the variables x, yt(x), zt(x), dyt(x)/dx, and dzt(x)/dx. This readily implies bounds for its
derivatives. The bounds for the derivatives of ξΓt(x) are obtained by substituting the expressions
for αt, βt(x), and the measure ρt(x) dx into equality (43) and differentiating the result.

Lemma 6.2. There exists a large B8 independent of the choice of the deformations Γt and Γ′
ltε

such that the relation Γt ≺ (v, η) implies the estimates∥∥∥∥∥ ∂i+|j|+k

(∂x′)i∂tj∂εk

(
ξltε(x′)

ζl(x′)
ζ ltε(x′)

ρltε(x′)
)∥∥∥∥∥ ≤ B8v

j , i + |j| + k ≤ N − 1.

Proof. By Lemma 6.1 and Theorem 5.2, we have∥∥∥∥∥∂i+|j|+kξltε(x′)
(∂x′)i∂tj∂εk

∥∥∥∥∥ ≤ CnB7v
j , i + |j| + k ≤ N − 1. (46)
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By Theorem 1.4, the deformation Γ′
ltε ∼ (y′ltε(x

′), z′ltε(x
′), χ′

l) obeys the estimates∥∥∥∥∥∂i+|j|+ky′ltε(x
′)

(∂x′)i∂tj∂εk

∥∥∥∥∥ ≤ Cnvj ,

∥∥∥∥∥∂i+|j|+kz′ltε(x
′)

(∂x′)i∂tj∂εk

∥∥∥∥∥ ≤ Cnvj , 1 ≤ i + |j| + k ≤ N.

Therefore, the function

ρltε(x′) = ρl

(
x′, y′ltε(x

′), z′ltε(x
′),

dy′ltε(x
′)

dx′ ,
dz′ltε(x

′)
dx′

)

is estimated as ∥∥∥∥∥∂i+|j|+kρltε(x′)
(∂x′)i∂tj∂εk

∥∥∥∥∥ ≤ Cvj , i + |j| + k ≤ N − 1. (47)

The function ζltε has the form ζltε(x′) =
∑m

k=1 ζ ◦ (χ′
k)

−1 ◦ χ′
l(x

′, y′ltε(x
′)). By construction, all

derivatives of the functions (χ′
k)

−1 ◦ χ′
l are bounded. Therefore, the derivatives of ζltε obey the

estimates of the form∥∥∥∥∥ ∂i+|j|+k

(∂x′)i∂tj∂εk

(
ζl(x′)

ζ ltε(x′)

)∥∥∥∥∥ ≤ Cvj, i + |j| + k ≤ N − 1. (48)

Inequalities (46)–(48) imply the assertion of the lemma.

Suppose that a standard deformation Γt ∼ (yt(x), zt(x), χ, x0) of skew leaves is majorized by
a pair (v, σ), where σ ∈ [0, σ0]. Consider the standard deformation Γt ∼ (yt(x), zt(x0), χ, x0) of
straight leaves and the homotopy Γtτ ∼ (yt(x), τzt(x) + (1 − τ)zt(x0), χ, x0). If the number σ0 is
sufficiently small, then we can replace the index t in (45) by the pair (t, τ). We obtain

(Aε,ng)(Γtτ ,Φ) =
m∑

l=1

∫
B

u
5

ξltτε(x′)
ζl(x′)

ζ ltτε(x′)
g(Γ′

ltτε(x
′),Φ′

tτε)ρltτε(x′) dx′. (49)

For short, we set

Ψltτε(x′) = ξltτε(x′)
ζl(x′)

ζ ltτε(x′)
ρltτε(x′). (50)

Lemma 6.3. There exists a large B9 independent of the deformations Γt and Γ′
ltτε such that

the relation Γt ≺ (v, σ) implies the estimates∥∥∥∥∥∂i+|j|+k+mΨltτε(x′)
(∂x′)i∂tj∂τk∂εm

∥∥∥∥∥ ≤ B9v
jσk, i + |j| + k + m ≤ N − 1. (51)

Proof. By Lemma 4.1, Γt ≺ (v, σ) implies the relation Γtτ ≺ ((v,B1σ), η). Therefore, esti-
mates (51) follow from Lemma 6.2.

Now, we can proceed to the proof of Theorem 3.2. We have to show that the function
dmAε,ng/dεm belongs to Fp+1+m,q−4−m for any foliated function g ∈ Fpq. Let us verify that
this function satisfies all conditions of Definition 3.3 of the space Fp+1+m,q−4−m.

A. It follows directly from the definition of the operator Aε,n that Aε,ng(Γ,Φ) linearly depends
on Φ, and the values of Aε,ng on equivalent traces coincide. The same is true for the derivatives
dmAε,ng(Γ,Φ)/dεm (if they exist). Thus, conditions (a) and (b) of Definition 3.3 hold.
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B. Let us verify point (c). Suppose that Γtz ∼ (yt(x), z, χ, x0) and yt ≺ v. We will calculate
Aε,ng(Γtz ,Φ) by (45), replacing the index t in this formula with the pair (t, z). We obtain

(Aε,ng)(Γtz ,Φ) =
m∑

l=1

∫
B

u
5

ξltzε(x′)
ζl(x′)

ζ ltzε(x′)
g(Γ′

ltzε(x
′),Φ′

tzε)ρltzε(x′) dx′. (52)

We assume that Γtz depends on the composite parameter (t, z). Definition 1.4 of majorizing pairs
implies that Γtz ≺ ((v, (θη)−1e), 0), where the vector e = (1, . . . , 1) has the same dimension as z.
Theorem 1.4 implies a relation of the form Γ′

ltzε(x
′) ≺ ((Cv,Ce,C), η) with respect to the composite

parameter (t, z, ε), where the constant C does not depend on the choice of the deformations Γtz and
Γ′

ltzε(x
′). Applying Theorem 5.2 with β = ‖Φ‖q, we obtain the estimates∥∥∥∥∥∂i+|j|+|k|+mΦ′

tzε(x′)
(∂x′)i∂tj∂zk∂εm

∥∥∥∥∥ ≤ Cn‖Φ‖qv
j(θη)−|k|, i + |j| + |k| + m ≤ q.

By Lemma 4.6, for all |j| + |k| + m ≤ q − 4, we have∣∣∣∣∣ ∂|j|+|k|+m

∂tj∂zk∂εm
g(Γ′

ltzε(x
′),Φ′

tzε)

∣∣∣∣∣ ≤ B6(1 + η)‖g‖pqCn‖Φ‖p+1+|j|+|k|+m(Cv)jC |k|+m. (53)

Applying Lemma 6.2 with t replaced by (t, z), we obtain∣∣∣∣∣ ∂i+|j|+|k|+m

(∂x′)i∂tj∂zk∂εm

(
ξltzε(x′)

ζl(x′)
ζ ltzε(x′)

ρltzε(x′)
)∣∣∣∣∣ ≤ B8v

j(θη)−|k| (54)

for all i + |j| + |k| + m ≤ N − 1. Finally, the differentiation of (52) with regard to (53) and (54)
yields an estimate of the form∣∣∣∣∣ ∂|j|+|k|+m

∂tj∂zk∂εm
Aε,ng(Γtz ,Φ)

∣∣∣∣∣ ≤ C‖g‖pqv
j‖Φ‖p+1+|j|+|k|+m, |j| + |k| + m ≤ q − 4.

It is an analogue of estimate (25) for the function dmAε,ng/dεm as an element of the space
Fp+1+m,q−4−m.

C. Let us verify that the function dmAε,ng/dεm satisfies condition (d) of Definition 3.3. Consider
a standard deformation Γt ∼ (yt(x), zt(x), χ, x0) of skew leaves, the corresponding deformation Γt ∼
(yt(x), zt(x0), χ, x0) of straight leaves, and the homotopy Γtτ ∼ (yt(x), τzt(x)+(1−τ)zt(x0), χ, x0).
Suppose that Γt ≺ (v, σ). Then, by Lemma 4.1, Γtτ ≺ ((v,B1σ), η). Theorem 1.4 implies a relation
of the form Γ′

ltτε(x
′) ≺ ((Cv,Cσ,C), η) with respect to the composite parameter (t, τ, ε), where the

constant C does not depend on the choice of the deformations Γt and Γ′
ltτε(x

′). By Theorem 5.2, we
have ∥∥∥∥∥∂i+|j|+k+mΦ′

tτε(x′)
(∂x′)i∂tj∂τk∂εm

∥∥∥∥∥ ≤ Cn‖Φ‖qv
j(B1σ)k, i + |j| + k + m ≤ q.

By Lemma 4.6,∣∣∣∣∣ ∂|j|+k+m

∂tj∂τk∂εm
g(Γ′

ltτε(x
′),Φ′

tτε)

∣∣∣∣∣ ≤ B6(1 + η)‖g‖pqCn‖Φ‖p+1+|j|+k+m(Cv)j(Cσ)kCm (55)

for all |j|+k+m ≤ q−4. The differentiation of (49) with regard to (51) and (55) yields an estimate
of the form∣∣∣∣∣ ∂|j|+m

∂tj∂εm

(
Aε,ng(Γt,Φ) − Aε,ng(Γt,Φ)

)∣∣∣∣∣ =

∣∣∣∣∣∣
1∫

0

∂|j|+m+1

∂tj∂τ∂εm
Aε,n(Γtτ ,Φ)

∣∣∣∣∣∣ ≤ C‖g‖pqσvj‖Φ‖p+2+|j|+m
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for |j| + m ≤ −5. It is an analogue of estimate (26) for the function dmAε,ng/dεm as an element of
the space Fp+1+m,q−4−m.

D. The continuity of the derivatives of the function dmAε,ng/dεm ∈ Fp+1+m,q−4−m, which is
required by condition (e) of Definition 3.3, follows from the method for evaluating these derivatives
described above. This completes the proof of Theorem 3.2.

7. FOLIATED FUNCTIONS ON STRAIGHT TRACES

Any foliated function can be restricted to (a) the set of straight standard traces and (b) the set
of straight standard traces contained in a layer z = const. For these restrictions, we use the same
term “foliated functions.” For ε = 0, the averaged weighted shift operator A0,n is well defined in
the spaces of such functions. Below, we give the corresponding formal definitions.

Definition 7.1. A foliated function of type (p, q) (where p ≥ 1, q ≥ 1, and p + q ≤ N − 1) on
a layer z = const is an arbitrary real-valued function gz(Γ,Φ) that is defined on the set of straight
standard traces contained in the layer z = const and has the following properties:

(a) it linearly depends on the density Φ;
(b) its values on equivalent traces coincide;
(c) there exists a positive number c such that if a straight standard deformation Γtz ∼

(yt(x), z, χ, x0) obeys the estimate yt ≺ v, then, for any density Φ = Φ(x),∣∣∣∣∣∂
|j|gz(Γtz ,Φ)

∂tj

∣∣∣∣∣ ≤ cvj‖Φ‖p+|j|, |j| ≤ q; (56)

(d) all partial derivatives in (56) are continuous with respect to t and vary continuously under
a sliding deformation of the trace (Γtz ,Φ).

We denote the minimum c for which estimates (56) hold by ‖gz‖pq and the space of all functions
satisfying the conditions of Definition 7.1 by Fpq

z . Let Az,n be the restriction of the operator A0,n

to Fpq
z . The properties of the operator Az,n were thoroughly studied in [2] in a more general situation

when the mapping Sz varies with time. In the case under consideration, Sz does not depend on
time, and all the results obtained in [2] become substantially simpler. In particular, Theorem 6.3
and Propositions 2.4 and 3.1 from [2] readily imply the following theorem.

Theorem 7.1. The operator Az,n maps continuously every space Fpq
z to itself. If the weight

function J is positive and bounded away from zero and a positive integer n is sufficiently large,
then, for any z ∈ M, there exist a positive function hz ∈ F1,N−2

z , a positive linear functional
νz : FN−2,1

z → R, and a number λz such that
(a) Az,nhz = eλzhz, νz ◦ Az,n = eλzνz, and νz(hz) = 1;
(b) the sequence of operators [e−λzAz,n]m in the space Fpq

z converges to the projector Az,ng =
νz(g)hz in the uniform operator norm as m → ∞;

(c) there exists a large C0 independent of z such that hz(Γz1, 1) ≤ C0hz(Γz2, 1) for any two
leaves Γz1 and Γz2.

Definition 7.2. The space Fpq
M , where p ≥ 1, q ≥ 2, and p+ q ≤ N − 1, consists of all possible

parametric families {gz ∈ Fpq
z | z ∈ M} for each of which there exists a number c ≥ 0 such that, for

any standard deformation Γtz ∼ (yt(x), z, χ, x0) of straight leaves and any density Φ = Φ(x), the
estimate yt ≺ v implies the inequalities∣∣∣∣∣∂

|j|+|k|gz(Γtz ,Φ)
∂tj∂zk

∣∣∣∣∣ ≤ cvj‖Φ‖p+|j|+|k|, |j| + |k| ≤ q, |k| ≤ q − 2, (57)

and all derivatives in these inequalities exist and are continuous with respect to t and z.
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If g = {gz} ∈ Fpq
M , then we denote by ‖g‖pq the minimum c for which inequalities (57) hold.

Obviously, the space Fpq
M with this norm is a Banach space. It is a module over Cq−2(M) and over

Cp+q(W × M).
The spaces Fpq

z with different z ∈ M are naturally identified with each other. Therefore, we
can assume that all of them coincide with some fixed space Fpq

0 . Then, any function g ∈ Fpq
M is

identified with the parametric family {gz ∈ Fpq
0 | z ∈ M}. It is seen from Definitions 7.1 and 7.2

that a family g = {gz} belongs to Fpq
M if and only if ∂|k|gz/∂zk ∈ Fp+|k|,q−|k|

0 for all |k| ≤ q − 2, and

‖g‖pq = sup
z∈M

sup
|k|≤q−2

∥∥∥∥∥∂|k|gz

∂zk

∥∥∥∥∥
p+|k|,q−|k|

. (58)

In [2], such parametric families were called quasidifferentiable. It was shown in [2] that the
parametric family of operators Az,n : Fpq

0 → Fp+l,q−l
0 is l − 1 times continuously differentiable with

respect to z, and the operators ∂|k|Az,n/∂zk map continuously Fpq
0 to Fp+|k|,q−|k|

0 . Obviously, the
operator A0,n acts fiberwise in Fpq

M ; namely, if g = {gz} and h = {hz}, then h = A0,ng if and only
if hz = Az,ngz for all z ∈ M . Proposition 4.2 from [2] implies that A0,n maps continuously Fpq

M

to itself. Let us define an operator Lz,n : Fpq → Fpq by the formula Lz,n = Az,n − eλzAz,n, where
Az,ng = νz(g)hz is the projector mentioned in Theorem 7.1. Then, Lemma 4.6 from [2] takes the
following form in the situation under consideration.

Theorem 7.2. Under the conditions of Theorem 7.1, the families h = {hz} and ν = {νz} can
be chosen so that h ∈ F1,N−2

M and ν determines a C(M)-linear functional ν : FN−3,2
M → C(M) that

maps continuously each space Fpq
M to Cq−2(M). There exist numbers C and Λ ∈ (0, 1) such that,

for any |k| ≤ q − 1 and any positive integer m, the norm of the operator ∂|k|[Lz,n]m/∂zk : Fpq
0 →

Fp+|k|,q−|k|
0 does not exceed CΛmemλz .

Corollary 7.2.1. The family λ = {λz}, where λz = ln νz(Az,nhz) are as in Theorem 7.1,
belongs to the space CN−4(M).

Indeed, the families h = {hz} and A0,nh = {Az,nhz} belong to F1,N−2
M . Therefore, eλ =

ν(A0,nh) ∈ CN−4(M).

Corollary 7.2.2. If p ≥ 1, q ≥ 2, and p + q ≤ N − 1, then the operator e−λA0,n maps
continuously the space Fpq

M to itself. The sequence [e−λA0,n]m converges to the projector A0,n

defined by the formula A0,ng = ν(g)h.

Proof. As mentioned, Fpq
M is a module over Cq−2(M), and A0,n maps continuously this module

to itself. Obviously, q ≤ N − 1 − p ≤ N − 2. Since e−λ ∈ CN−4(M) and the functional ν : Fpq
M →

Cq−2(M) is continuous, the operators e−λA0,n and A0,n are continuous on Fpq
M . By construction,

these operators leave the function h fixed. Therefore, it is sufficient to show that the norm of the
operator [e−λA0,n − A0,n]m tends to zero as m → ∞. Let Ln denote the operator that maps each
foliated function g = {gz} ∈ Fpq

M to f = {fz}, where fz = Lz,ngz. Then, e−λA0,n − A0,n = e−λLn.
Now, suppose that f = [e−λLn]mg, where f = {fz} and g = {gz}. Differentiating by the Leibniz
formula, we obtain

∂|k|fz

∂zk
=

∑
k1+k2+k3=k

k!
k1! k2! k3!

∂|k1|e−mλz

∂zk1

∂|k2|[Lz,n]m

∂zk2

∂|k3|gz

∂zk3
.

This equality, identity (58), and the estimates of Theorem 7.2 imply that ‖f‖pq is bounded by a
quantity of order mqΛm‖g‖pq. This proves the corollary.
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8. SEMINORMS ON THE SPACES Fpq

Consider a foliated function h ∈ F1,N−2
M , the C(M)-linear functional ν : FN−3,2

M → C(M) from
Theorem 7.2, and the function λ ∈ CN−4(M) from Corollary 7.2.1. Take a family of straight
standard leaves Γz ∼ (y(x), z, χ, x0). We normalize the function h by the condition h(Γz , 1) ≡ 1
and the functional ν by the condition ν(h) ≡ 1. Instead of the linear operator A0,n, we consider
the operator e−λA0,n. Obviously, this is equivalent to the replacement of the weight function J0 by
J0e

−λ/n. This operator satisfies the equalities e−λA0,nh = h and ν ◦ (e−λA0,n) = ν.
There exists a natural restriction operator π : Fpq → Fpq

M that maps every foliated function
g ∈ Fpq to its restriction πg to the set of straight standard traces. It is seen from the definitions of
the spaces Fpq and Fpq

M that ‖πg‖pq ≤ ‖g‖pq. Therefore, the functional ν ◦ π induced by ν on Fpq

is continuous.
Recall that a density Φ = Φ(x) of smoothness q ≤ N − 1 is said to be flowing if ‖diΦ(x)/dxi‖ ≤

βi0Φ(x) for all x and i = 1, . . . , q. Hence, there exists C such that all flowing densities satisfy the
inequality ‖Φ‖q ≤ C inf Φ. Recall also that the constants βik in Theorem 5.1 were chosen in such a
way that βik ≥ 2.

Lemma 8.1. There exists a large B10 such that, for any standard straight trace (Γ,Φ) with
flowing density Φ = Φ(x) of smoothness q ∈ [1, N − 1], the following inequalities hold :

B−1
10 ‖Φ‖q ≤ h(Γ,Φ) ≤ B10 inf Φ. (59)

Proof. The normalization condition h(Γz, 1) ≡ 1 and assertion (c) of Theorem 7.1 imply that
C−1

0 ≤ h(Γ, 1) ≤ C0. Since h is positive, we have C−1
0 inf Φ ≤ h(Γ,Φ) ≤ C0 supΦ. These inequalities

and supΦ ≤ ‖Φ‖q ≤ C inf Φ imply (59).

Definition 8.1. For any foliated function g ∈ Fpq, we define a seminorm |g|hpq as the minimum
number satisfying the following condition: if a standard deformation Γt ∼ (yt(x), zt(x), χ, x0) of skew
leaves is majorized by a pair (v, σ), where σ ∈ [0, σ0], and the deformation Γt of straight leaves has
the form Γt ∼ (yt(x), zt(x0), χ, x0), then, for any flowing density Φ = Φ(x) of smoothness p+1+ |j|,

∣∣∣∣∣∂
|j|g(Γt,Φ)

∂tj
− ∂|j|g(Γt,Φ)

∂tj

∣∣∣∣∣ ≤ |g|hpqσvjh(Γt,Φ), |j| ≤ q − 4. (60)

Obviously, if p′ ≥ p and q′ ≤ q, then |g|hp′q′ ≤ |g|hpq.

Lemma 8.2. Any foliated function g ∈ Fpq obeys the estimates

B−1
10 |g|hpq ≤ ‖g‖pq ≤ 5B10|g|hpq + ‖πg‖pq.

Proof. The definition of the norm ‖g‖pq (to be more precise, estimate (26)) and Lemma 8.1
imply |g|hpq ≤ B10‖g‖pq. On the other hand, any density Φ(x) of smoothness p + 1 + |j| can
be represented as a difference of two flowing densities, i.e., as Φ = Φ1 − Φ2, where Φ1(x) =
Φ(x) + 2‖Φ‖p+1+|j| and Φ2 = 2‖Φ‖p+1+|j|. Therefore, (59) and (60) imply

∣∣∣∣∣∂
|j|g(Γt,Φ)

∂tj
− ∂|j|g(Γt,Φ)

∂tj

∣∣∣∣∣ ≤ |g|hpqσvj
(
h(Γt,Φ1) + h(Γt,Φ2)

)
≤ |g|hpqσvj · 5B10‖Φ‖p+1+|j|. (61)

Comparing this estimate with (26) and definition (57) of the norm ‖πg‖pq with (25), we obtain
‖g‖pq ≤ 5B1|g|hpq + ‖πg‖pq.
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Lemma 8.3. There exists a large B11 such that, for any deformation Γt ∼ (yt(x), zt, χ, x0) of
standard straight leaves and any family of densities Φt(x), the relation Γt ≺ (v, 0) and the estimates∥∥∥∥∥∂i+|k|Φt(x)

∂xi∂tk

∥∥∥∥∥ ≤ βi|k|v
kΦt(x), i + |k| ≤ p + |j|,

which hold for some fixed multiindex j, imply the inequalities∣∣∣∣∣∂
|j|g(Γt,Φt)

∂tj

∣∣∣∣∣ ≤ B11‖πg‖pqv
jh(Γt,Φt), |j| ≤ q − 2.

Proof. Obviously, under the conditions of the lemma, the density Φt is flowing. By Lemma 8.1,
we have ‖Φt‖p+|j| ≤ B10h(Γt,Φt). In estimates (37) in Lemma 4.6, we can replace ‖g‖pq by ‖πg‖pq .
Setting β = supβi|k|‖Φt‖p+|j| in these estimates and replacing ‖Φt‖p+|j| by B10h(Γt,Φt), we obtain
the assertion of Lemma 8.3.

As above, suppose that the weight function J0 is bounded from below by a positive constant.
Then, the following theorem is valid.

Theorem 8.4. There exist a large integer n ∈ N, a small number σ0 ∈ (0, η], and a
large constant C such that, for any standard leaf deformations Γt ∼ (yt(x), zt(x), χ, x0) and
Γt ∼ (yt(x), zt(x0), χ, x0), the following assertion holds. If standard trace deformations (Γ′

t ,Φ
′
t) ⊂

(Σ0J0e
−λ/n)n(Γt,Φ) and (Γ′

t ,Φ′
t) ⊂ (Σ0J0e

−λ/n)n(Γt,Φ) have the forms Γ′
t ∼ (y′t(x′), z′t(x′), χ′, x′

0)
and Γ′

t ∼ (y′t(x′), zt(x0), χ′, x′
0) and the density Φ = Φ(x) of smoothness p + 1+ |j| is flowing, then,

for any foliated function g ∈ Fpq, the relation Γt ≺ (v, σ), where σ ∈ [0, σ0], implies the estimates∣∣∣∣∣∂
|j|g(Γ′

t ,Φ′
t)

∂tj
− ∂|j|g(Γ′

t ,Φ′
t)

∂tj

∣∣∣∣∣ ≤
(

1
4
|g|hpq + C|g|hp,q−1 + C‖πg‖pq

)
σvjh(Γ′

t ,Φ
′
t)

for all |j| ≤ q − 4. If q = 4, it is assumed that |g|hp,q−1 = 0 in this inequality.
Proof. As n, we can take any positive integer satisfying the inequality

(1 − b)necNη < 1/16 (62)

with c defined in Corollary 1.3.1. Consider the homotopy Γtτ ∼ (yt(x), τzt(x)+ (1− τ)zt(x0), χ, x0),
where τ ∈ [0, 1], as a deformation depending on the composite parameter (t, τ). By Lemma 4.1, the
relation Γt ≺ (v, σ) implies

Γtτ ≺
(
(v,B1σ), η

)
. (63)

Suppose that Γ′
tτ ∼ (y′tτ (x

′), z′tτ (x′), χ′, x′
0) is a deformation of standard leaves such that Γ′

tτ ⊂
Σn

0 (Γtτ ). For this deformation, consider the standard deformation Γ′
tτ ∼ (y′tτ (x′), z′tτ (x′

0), χ
′, x′

0) of
straight leaves and the trace deformation (Γ′

tτ ,Φ′
tτ ) ⊂ (Σ0J0e

−λ/n)n(Γtτ ,Φ). By Corollary 1.3.1,

Γ′
t1 ≺

(
ecσv, (1 − b)nσ

)
, (64)

Γ′
tτ ≺

(
(ecηv, ecηB1σ), (1 − b)nη

)
, (65)

whence
Γ′

tτ ≺
(
(ecηv, ecηB1σ), 0

)
. (66)

Applying Corollary 5.1.2 (with ν = 0), we obtain∥∥∥∥∥∂i+|k|+lΦ′
tτ (x′)

(∂x′)i∂tk∂τ l

∥∥∥∥∥ ≤ βi,|k|+l(Cnv)k(CnB1σ)lΦ′
tτ (x

′), i + |k| + l ≤ p + 1 + |j|. (67)
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These inequalities with i = 0, k = 0, and l = 1 yield Φ′
tτ ≤ eβ01CnB1σΦ′

t0 for all τ ∈ [0, 1]. Take σ0

so small that eβ01CnB1σ ≤ 2 for all σ ∈ [0, σ0]. Then, Φ′
tτ ≤ 2Φ′

t0 and, since the foliated function h
is positive, we have h(Γ′

tτ ,Φ
′
tτ ) ≤ 2h(Γ′

tτ ,Φ′
t0). Estimate (66) and Lemmas 4.2 and 8.1 imply∣∣∣∣∂h(Γ′

tτ ,Φ′
t0)

∂τ

∣∣∣∣ ≤ B2‖h‖1,N−2e
cηB1σ‖Φ′

t0‖2 ≤ ‖h‖1,N−2e
cηB1B2σB10h(Γ′

tτ ,Φ
′
t0),

whence
h(Γ′

tτ ,Φ′
tτ ) ≤ 2h(Γ′

tτ ,Φ′
t0) ≤ 2 exp

(
‖h‖1,N−2e

cηB1B2B10σ
)
h(Γ′

t0,Φ
′
t0).

Take σ0 so small that, for all σ ∈ [0, σ0], this inequality implies

h(Γ′
tτ ,Φ′

tτ ) ≤ 4h(Γ′
t0,Φ

′
t0). (68)

Consider the difference g(Γ′
t ,Φ

′
t) − g(Γ′

t ,Φ
′
t) = D1(t) + D2(t), where D1(t) = g(Γ′

t1,Φ
′
t1) −

g(Γ′
t1,Φ

′
t1) and D2(t) = g(Γ′

t1,Φ
′
t1)− g(Γ′

t0,Φ
′
t0). Let us calculate separately the derivatives of Di(t).

Differentiating by the Leibniz formula, we obtain

∂|j|D1(t)
∂tj

=
∂|j|

∂tj
(
g(Γ′

t1,Φ
′
T1)− g(Γ′

t1,Φ
′
T1)

)∣∣∣∣∣
T=t

+
∑

0�=k≤j

Ck
j

∂|j|

∂tj−k∂T k

(
g(Γ′

t1,Φ
′
T1)− g(Γ′

t1,Φ
′
T1)

)∣∣∣∣∣
T=t

.

The application of estimates (64), (60), and (61) to this equality yields∣∣∣∣∣∂
|j|D1(t)
∂tj

∣∣∣∣∣ ≤ |g|hpq(1 − b)nσ(ecσv)jh(Γ′
t1,Φ

′
t1)

+
∑

0�=k≤j

Ck
j |g|hp,q−|k|(1 − b)nσ(ecσv)j−k · 5B10

∥∥∥∥∥∂|k|Φ′
t1

∂tk

∥∥∥∥∥
p+1+|j−k|

.

Substituting (62), (67), and (59) into this inequality, we obtain∣∣∣∣∣∂
|j|D1(t)
∂tj

∣∣∣∣∣ ≤
(

1
16

|g|hpq + C ′|g|hp,q−1

)
σvjh(Γ′

t1,Φ
′
t1), (69)

where C ′ is a constant independent of the traces under consideration and the foliated function g.
Similarly, applying Lemma 8.3 and estimates (66) and (67), we derive an estimate of the form∣∣∣∣∣∂

|j|D2(t)
∂tj

∣∣∣∣∣ ≤
1∫

0

∣∣∣∣∣∂
|j|+1g(Γ′

tτ ,Φ′
tτ )

∂tj∂τ

∣∣∣∣∣ dτ ≤ C ′‖πg‖pqσvjh(Γ′
tτ ,Φ′

tτ ). (70)

The substitution of (68) into (69) and (70) gives∣∣∣∣∣∂
|j|

∂tj
(
D1(t) + D2(t)

)∣∣∣∣∣ ≤
(

1
4
|g|hpq + 4C ′|g|hp,q−1 + 4C ′‖πg‖pq

)
σvjh(Γ′

t0,Φ
′
t0),

as required.

9. PROOF OF THEOREM 3.3

Theorem 9.1. Under the conditions of Theorem 7.2, there exist a large n ∈ N, a small σ0 ∈
(0, η], and a large C such that, for any foliated function g ∈ Fpq,

|e−λA0,ng|hpq ≤ 1
2
|g|hpq + C|g|hp,q−1 + C‖πg‖pq.

For q = 4, it is assumed that |g|hp,q−1 = 0 in this inequality.
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First, we derive Theorem 3.3 from this theorem.
A. Let π be the natural projector from Fpq to Fpq

M , and let ν : Fpq
M → Cq−2(M) be the functional

specified in Theorem 7.2. Then, the composition ν ◦ π maps continuously every space Fpq to
Cq−2(M). This proves assertion (a) of Theorem 3.3.

B. There exist a norm ‖ · ‖δ
pq on Fpq equivalent to ‖ · ‖pq and a number Λ ∈ (0, 1) such that

‖e−λA0,ng‖δ
pq ≤ Λ‖g‖δ

pq for all foliated functions g ∈ Fpq ∩ ker ν ◦ π.
By virtue of Corollary 7.2.2, the sequence of restrictions of the operators (e−λA0,n)m to Fpq

M ∩
ker ν converges to the zero operator in the uniform norm. Hence, there exist a norm ‖ · ‖′pq on Fpq

M

equivalent to ‖·‖pq and a number Λ′ ∈ (0, 1) such that ‖e−λA0,ng‖′pq ≤ Λ′‖g‖′pq for all g ∈ Fpq
M ∩ker ν.

Consider the following norm on Fpq:

‖g‖δ
pq =

q∑
k=4

δk|g|hpk + ‖πg‖′pq.

By Lemma 8.2, this norm is equivalent to ‖ · ‖pq. By Theorem 9.1, for all g ∈ Fpq ∩ ker ν ◦ π, we
have

‖e−λA0,ng‖δ
pq ≤

q∑
k=4

δk

(
1
2
|g|hpk + C|g|hp,k−1 + C‖πg‖pk

)
+ Λ′‖πg‖′pq

≤
q∑

k=4

δk

(
1
2

+ Cδ

)
|g|hpk + Cqδ4‖πg‖pq + Λ′‖πg‖′pq.

Now, it suffices to take an arbitrary Λ ∈ (Λ′, 1) and δ so small that 1
2 +Cδ ≤ Λ and, simultaneously,

Cqδ4‖ · ‖pq ≤ (Λ − Λ′)‖ · ‖′pq.
C. There exists a foliated function h ∈ F1,N−2 such that e−λA0,nh = h and ν ◦ π(h) ≡ 1.
Take an arbitrary foliated function g ∈ F1,N−2 for which the function ν ◦ π(g) ∈ CN−4(M) is

bounded from below by a positive number. The foliated function h0 = (ν ◦ π(g))−1g belongs to
F1,N−2, and ν ◦ π(h0) ≡ 1. Consider the sequence hm = (e−λA0,n)mh0. By construction, we have
ν ◦ π ◦ e−λA0,n = ν ◦ π. Therefore, ν ◦ π(hm) ≡ 1 and, hence, hm+1 − hm ∈ ker ν ◦ π. According
to assertion B, the sequence hm converges at an exponential rate to a certain foliated function
h ∈ F1,N−2. This function is the required one.

D. The sequence of operators (e−λA0,n)m on Fpq converges to the projector (ν ◦ π) ⊗ h in the
uniform operator norm.

This is so because any foliated function g ∈ Fpq decomposes into a sum as g = ν ◦ π(g)h +
(g − ν ◦ π(g)h), where the second term belongs to Fpq ∩ ker ν ◦ π. This completes the proof of
Theorem 3.3.

We proceed to prove Theorem 9.1. Suppose that a standard deformation Γt ∼ (yt(x), zt(x), χ, x0)
of skew leaves is majorized by a pair (v, σ), where σ ∈ [0, σ0], and Φ = Φ(x) is a flowing density
of smoothness p + 1 + |j|. Consider the standard deformation Γt ∼ (yt(x), zt(x0), χ, x0) of straight
leaves and the homotopy Γtτ ∼ (yt(x), τzt(x) + (1 − τ)zt(x0), χ, x0). We will calculate the value
(e−λA0,ng)(Γtτ ,Φ) by the same method as in Section 6. By (49), we have

(e−λA0,ng)(Γtτ ,Φ) =
m∑

l=1

∫
B

u
5

Ψltτ (x′)g(Γ′
ltτ (x′),Φ′

tτ ) dx′, (71)

where

Ψltτ (x′) = ξltτ (x′)
ζl(x′)

ζ ltτ (x′)
ρltτ (x′), (Γ′

ltτ (x′),Φ′
tτ ) ⊂ (Σ0J0e

−λ/n)n(Γtτ ,Φ).
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Lemma 9.2. There exists a large B12 independent of Γt and Γ′
ltτ (x

′) such that, for any foliated
function g ∈ Fpq and any flowing density Φ of smoothness p+1+|j|, the relation Γt ≺ (v, σ) implies
the estimate ∣∣∣∣∣∂

|j|

∂tj
g(Γ′

lt0(x
′),Φ′

t0)

∣∣∣∣∣ ≤ B12‖πg‖pqv
jh(Γ′

lt0(x
′),Φ′

t0), |j| ≤ q − 2.

Proof. Obviously, Γt ≺ (v, 0). Hence, Γ′
lt0(x

′) ≺ (v, 0) by Corollary 1.3.1. According to
Corollary 5.1.2, we have∥∥∥∥∥∂i+|k|Φ′

t0(x
′)

(∂x′)i∂tk

∥∥∥∥∥ ≤ βi|k|(Cnv)kΦ′
t(x

′), i + |k| ≤ p + 1 + |j|.

Thus, Lemma 9.2 follows from Lemma 8.3.

Let us represent the difference

dl(t, x′) = Ψlt1(x′)g(Γ′
lt1(x

′),Φ′
t1) − Ψlt0(x′)g(Γ′

lt0(x
′),Φ′

t0) (72)

as a sum of three terms: dl(t, x′) = dl1(t, x′) + dl2(t, x′) + dl3(t, x′), where

dl1(t, x′) = Ψlt0(x′)
(
g(Γ′

lt1(x
′),Φ′

t1) − g(Γ′
lt0(x

′),Φ′
t0)

)
,

dl2(t, x′) =
(
Ψlt1(x′) − Ψlt0(x′)

)(
g(Γ′

lt1(x
′),Φ′

t1) − g(Γ′
lt0(x

′),Φ′
t0)

)
,

dl3(t, x′) =
(
Ψlt1(x′) − Ψlt0(x′)

)
g(Γ′

lt0(x
′),Φ′

t0).

By construction, di(t, x′) = 0 for x′ /∈ B
u
3 . Let us differentiate the terms separately:

∂|j|dl1(t, x′)
∂tj

= Ψlt0(x′)
∂|j|

∂tj
(
g(Γ′

lt1(x
′),Φ′

t1) − g(Γ′
lt0(x

′),Φ′
t0)

)

+
∑

0�=k≤j

Ck
j

∂|k|Ψlt0(x′)
∂tk

∂|j−k|

∂tj−k

(
g(Γ′

lt1(x
′),Φ′

t1) − g(Γ′
lt0(x

′),Φ′
t0)

)
,

∂|j|dl2(t, x′)
∂tj

=
∑
k≤j

Ck
j

∂|k|

∂tk
(
Ψlt1(x′) − Ψlt0(x′)

)∂|j−k|

∂tj−k

(
g(Γ′

lt1(x
′),Φ′

t1) − g(Γ′
lt0(x

′),Φ′
t0)

)
,

∂|j|dl3(t, x′)
∂tj

=
∑
k≤j

Ck
j

∂|k|

∂tk
(
Ψlt1(x′) − Ψlt0(x′)

)∂|j−k|

∂tj−k
g(Γ′

lt0(x
′),Φ′

t0)
)
.

Recall that |g|hpq ≥ |g|hpq′ for q ≥ q′. Applying Theorem 8.4, Lemma 6.3 (with m = 0), and
Lemma 9.2 to these three equalities, we obtain estimates of the form∣∣∣∣∣∂

|j|dl1(t, x′)
∂tj

∣∣∣∣∣ ≤ Ψlt0(x′)
(

1
4
|g|hpq + C|g|hp,q−1 + C‖πg‖pq

)
σvjh(Γ′

lt0(x
′),Φ′

t0)

+
∑

0�=k≤j

Ck
j B9v

k(C + 1)
(
|g|hp,q−|k| + ‖πg‖p,q−|k|

)
σvj−kh(Γ′

lt0(x
′),Φ′

t0),

∣∣∣∣∣∂
|j|dl2(t, x′)

∂tj

∣∣∣∣∣ ≤
∑
k≤j

Ck
j B9v

jσ(C + 1)
(
|g|hp,q−|k| + ‖πg‖p,q−|k|

)
σvj−kh(Γ′

lt0(x
′),Φ′

t0),

∣∣∣∣∣∂
|j|dl3(t, x′)

∂tj

∣∣∣∣∣ ≤
∑
k≤j

Ck
j B9v

kσB12‖πg‖p,q−|k|v
j−kh(Γ′

lt0(x
′),Φ′

t0).
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Summing them, we obtain∣∣∣∣∣∂
|j|dl(t, x′)

∂tj

∣∣∣∣∣ ≤ Ψlt0(x′)
(

1
4
|g|hpq + C‖πg‖pq

)
σvjh(Γ′

lt0(x
′),Φ′

t0)

+ C ′
(
|g|hp,q−1 + σ|g|hpq + ‖πg‖pq

)
σvjh(Γ′

lt0(x
′),Φ′

t0) (73)

for a sufficiently large C ′.
Formula (71) implies that

m∑
l=1

∫
B

u
5

Ψlt0(x′)h(Γ′
lt0(x

′),Φ′
t0) dx′ = (e−λA0,nh)(Γt,Φ) = h(Γt,Φ).

The functions Ψlt0(x′) are nonnegative; for some l and x′, they are positive and bounded away from
zero. Hence, there exists a constant C ′′ independent of the choice of the leaves Γt and Γ′

ltτ (x′) and
of the flowing density Φ, such that

m∑
l=1

∫
B

u
3

h(Γ′
lt0(x

′),Φ′
t0) dx′ ≤ C ′′

m∑
l=1

∫
B

u
5

Ψlt0(x′)h(Γ′
lt0(x

′),Φ′
t0) dx′ = C ′′h(Γt,Φ).

Finally, (71)–(73) imply the estimate∣∣∣∣∣∂
|j|

∂tj
(e−λA0,ng)(Γt,Φ) − ∂|j|

∂tj
(e−λA0,ng)(Γt,Φ)

∣∣∣∣∣ ≤
m∑

l=1

∫
B

u
5

∣∣∣∣∣∂
|j|dl(t, x′)

∂tj

∣∣∣∣∣ dx′

≤
(

1
4
|g|hpq + C‖πg‖pq

)
σvjh(Γt,Φ) + C ′C ′′(|g|hp,q−1 + σ|g|hpq + ‖πg‖pq

)
σvjh(Γt,Φ).

Taking σ ∈ [0, σ0] with a sufficiently small σ0, we obtain the assertion of Theorem 9.1.
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