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Abstract—In order to study the perturbations of a family of mappings with a hyperbolic mixing
attractor, an apparatus of foliated functions is developed. Foliated functions are analogues of
distributions based on smooth measures on leaves (traces), which are embedded manifolds in
a neighborhood of the attractor. The dimension of such manifolds must coincide with the
dimension of the expanding foliation, and the values of a foliated function on a trace must vary
smoothly under smooth transverse deformations of the trace (which include deformations of the
measure itself).

In [1-3], the notion of regular functions was introduced to study the stochastic properties of
hyperbolic sequences of mappings. It was applied to prove that invariant measures on a hyperbolic
attractor depend smoothly on a parameter and to obtain limit theorems for random processes on
an attractor. In this paper, a similar apparatus is developed for a dynamical system that represents
a perturbation of a family of mappings with a hyperbolic mixing attractor. Here, we use the term
“foliated function” instead of “regular function” for two reasons: first, “foliated” better matches the
nature of the object, and second, ‘regular” has a too broad meaning.

Consider a dynamical system with discrete time generated by the mapping

{w’ = S(w, z,¢),

2=z +ev(w,z,¢).

We use the abbreviated notation (w',z’) = X.(w, z) for this mapping. Suppose that the mapping
w +— S(w, z,0) has a hyperbolic mixing attractor for every z. In this paper, we introduce a notion
of foliated functions for such systems, which is a remote analogue of distributions. Distributions are
defined as linear functionals on some space of base functions. The base for foliated functions are the
so-called traces rather than usual functions. A trace is a smooth measure on a leaf, and a leaf is a
submanifold in a neighborhood of a hyperbolic attractor with a distinguished point, which is called
a center. This submanifold must have the same dimension as the expanding foliation. We consider
only leaves whose directions little differ from the direction of expanding fibers. It is required that the
value of a foliated function on a trace should vary smoothly under smooth transverse deformations
of the trace (which include deformations of the measure itself).

If T is a leaf centered at o and ® is a measure on this leaf, then the product of the trace
(T, ®) and a function J = J(w, 2) is the trace (I', J®). The image of the trace (I, ®) is the trace
Y (I, ®) = (B.(T),® 0 X71). On the set of traces, an operator X.J is defined by the formula
Y. J(T,®) = X (T, JP). Consider an arbitrary foliated function g(I",«, ®). For this function, we
define a new foliated function A, ,g(T', o, ®) as follows. We set (I'V, ') = (X.J)"(T', ®), 5 = E2(f),
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30 V.I. BAKHTIN

and

Aeng(T,a,®) = / e, B)g(T, B, @) du().
F/

In this formula, p is the Riemannian volume on I'V and &r(a, ) is a standard nonnegative function
on I' x I'. We have thus defined an averaged weighted shift operator A.,, (with weight function J)
in the space of foliated functions. In this paper, we study its simplest properties.

The main results are as follows. When endowed with a suitable norm, the space of foliated
functions becomes a Banach module over the algebra of finitely smooth functions depending on the
variables w and z. If the weight function J is positive and bounded away from zero, then, for the
operator Ag, (with e = 0) and large n, there exist a smooth function A\, = A, (2) and a foliated
function h,, such that Ag,h, = e’ h,,. Moreover, the sequence of operators (e*)‘"A(),n)m converges
as m — oo to some projector that maps the entire module of foliated functions to a submodule
generated by h,, (over the algebra of functions depending only on z). For nonzero ¢, the dependence
of the family A, , on € is smooth in a certain sense (to be more precise, it is quasidifferentiable in
the terminology of [2]).

The paper is organized as follows. In Section 1, the system under examination is described in
detail, and a special hyperbolic atlas and the notion of a leaf are defined for this system. In Section 2,
a Y.-invariant class of leaves is constructed. In Section 3, spaces of foliated functions and averaged
weighted shift operators are rigorously defined, and the main results (Theorems 3.1-3.3) are stated.
The following six sections contain detailed proofs. Almost all of them are computational. They are
based on carefully differentiating implicit functions and estimating their derivatives. Unfortunately,
the geometrically evident ideas related to foliated functions have a rather cumbersome analytic
formalization. For this reason, the proofs are lengthy and contain many formulas but very few
nontrivial tricks.

1. A HYPERBOLIC ATLAS AND LEAVES

Let M be a convex domain in a standard Euclidean space, and let W be a Riemannian manifold.
Consider N times continuously differentiable family of self-mappings of the direct product W x M
of the form

{w’ = S(w, z,¢), (1)

2 =z+ev(w,z,¢),

where ¢ is a small positive parameter, w € W, and z € M. For such mappings, we use the
abbreviated notation (w',z") = X.(w, z). Suppose that (W x M) C W x M for all sufficiently
small values of €. Then, X, generates a dynamical system with discrete time (a cascade) on W x M
with fast motions on W and slow motions on M (at velocities of order €). Suppose also that, for
every z € M, the mapping S.(w) = S(w, z,0) has a mixing hyperbolic attractor that continuously
depends on z (see the definitions in [4, 5]). Below, we introduce a notion of a uniformly hyperbolic
atlas for such systems. It generalizes the notion of hyperbolic atlas given in [1] for an attractor that
is independent of a parameter.

Consider two Euclidean spaces R* and R*, where u + s = dim W. We denote an arbitrary
point in R* by = and an arbitrary point in R® by y. Let B} and B; denote open balls of radius r
centered at zero in R" and R?, respectively. Let 2 be a finite set of charts on W that have the form
w = x(z,y), where x: B¥ x Bf — IW. We do not require these charts to cover the entire W. The
part of W covered by the charts from 2f is denoted by Wg. As a representation of Y. in the charts
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FOLIATED FUNCTIONS AND AN AVERAGED WEIGHTED SHIFT OPERATOR 31

X, X € 2, we consider the mapping

CC/ = X(x7y7 275)7
Yy =Y(2,y,2¢), (2)
2 = Z(xaya 275) =z+ EZ/(.CU,y,Z,E),
where
(@, y) = (X(z,y,2,¢), Y(2,9,2,€)) = () 0 S(x(2,9), 2,¢), (3)
Z/:Z(‘T7y7z75) :Z—i—ev(x(:c,y),z,s), Z/(xayazae) :’U(X(CC,y),Z7E). (4)

Definition 1.1. We say that a finite set 2 of charts of the form x: By x B — W is a uniformly
hyperbolic atlas for system (1) if there exist positive numbers a, b, and 0 such that

(a) a+60~'b <1 and 0 is sufficiently small (namely, § < 1/10);
(b) Be(Wo x M) C U, eq x(BY x B) x M for small ¢;
(c) for any charts y, x’ € 2 and arbitrary z, y, 2z, and € from the domain of mapping (3),

&)

(d) all partial derivatives of X, Y, Z, and Z’ up to the order N are bounded.

oy

X

< a,

Hg_y <b (5)

A= [alss |

Definition 1.2. We say that an atlas 2 is mizing if there exists a set of charts B8 C 2 and a
positive integer ng such that, for all n > ng and z € M, the following conditions hold:

(a) for any charts y € 2 and X’ € B, the intersection ST (x(BY x Bf)) Nx/(BY x Bf) is nonempty;
(b) S2(Wa) © Uy es x(BY x B).

In [1], it is shown that, for a fixed zp € M, the mapping S,,(w) = S(w, 20,0) has a hyperbolic
mixing attractor if and only if it admits a hyperbolic mixing atlas. If we somewhat increase the
numbers a and b, then the same atlas will become hyperbolic and mixing for the mappings .S, with
any z close to zp. We make an even stronger assumption; namely, we assume that system (1) has
a uniformly hyperbolic mixing atlas 2 that serves all z € M. We fix this atlas for the rest of the
paper. Thus, for each z € M, the mapping S, has a hyperbolic attractor H, =, S7(Wy).

Suppose that numbers d and 1 and the parameter ¢ satisfy the conditions

sup

AX.,Y,Z,2")
a(x7 y7 z? 6)

b
‘ <d, n= le| < 6n2. (6)

Here, the supremum is taken over all charts x, x’ € 2 and all admissible values of the variables z,
Yy, z, and €.

Definition 1.3. A skew leaf (or simply leaf) is an arbitrary smooth submanifold I C Wy x M
of dimension u that is represented in some chart x € 2 by the graph {(z,y(z),2(z)) | z € U} C
BY x B x M of a pair of functions y(z) and z(z) of class CV(U) that satisfy the inequalities
|ldy(z)/dz|| < 6 and ||dz(z)/dz| < On. We identify the triple (y = y(z), z = z(x), x) with the leaf T’
and write I' ~ (y(x), z(x),x). We say that a leaf is straight if it is entirely contained in a layer
z = const.

It can be proved that the mapping Y. expands the skew leaves in the z-direction and does not
violate the conditions on the derivatives of y(x) and z(z). Below, we give appropriate statements.
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32 V.I. BAKHTIN

Proposition 1.1. If V = (V,,V,,V.) is a vector in the (x,y,z)-space, the vector V' =
(V, Vi, V) s its image under mapping (2), and conditions (5) and (6) hold, then the inequalities

z

IVyll < 0[[Vall and [[V2|| < Onl[Val| imply
IVl <olvzll, Vi< onivall,  IVZI = (a+ b)) Vall.
Proof. By virtue of (5) and (6), we have

VIl _ blIVell +allVyll +dllVall _ b+ab+doy _ 6(at0'b+D)
VI~ a=H IVl = bIVyll = dllVe]l = a7t — b0 —don = a=! —20b

<40,

IV _ edl[Vall +ed|[Vyll + (1 + ed)[[Val| _ ed(1 +6) + (1 +ed)fn
VI~ o Vel =0Vl —dilVall - a1 — 26b

< O,

IVall o a” Vel = bl Vyll — dIV:|
Vel — IVall

Let B(xz,r) denote an open ball of radius r centered at x.

>a b —20b> (a+b)"t.

Proposition 1.2. Suppose that T' ~ (y(x),z(x),x) is a leaf, x varies in the domain U =
B(zo,7), and the point X7 (x(zo,y(x0)), 2(z0)) is represented in a chart X' € A as (x(,y), 2) €
BY x B x M. Then, there is a unique leaf T" ~ (y'(2'), 2/ (2"),X') that is a subset of X2(T') such
that y'(xf) =y, 2/ (x) = 2, and 2’ varies in the domain U = B(xp, r/(a + b)™) N BY.

Proof. Consider the case n = 1. By the preceding proposition, the mapping z/(z) =
X (z,y(z), z(z), ) is locally diffeomorphic and expands all distances at least by a factor of (a+b)~!.
For every point 2’ € U’, consider the path x} = z{, + t(a’ — z{), ¢t € [0,1]. For small ¢, this path has
a unique preimage under the mapping z’(x), which is a smooth path z; starting at zy. Obviously,
|lze — 20| < (a+ b)t||z" — xf||. Therefore, z; can be reconstructed for all ¢ € [0,1]. Let us define
functions y'(2’) and 2'(2') by

y'(2') =Y (21, y(21), 2(21), €), 22" = Z(x1,y(x1), 2(21), ).

By virtue of the preceding proposition, ||dy’(z’)/dz’|| < 6 and ||dz'(2")/d2’|| < 6n. This proves the
required assertion for n = 1. For other values of n, the proof is similar.

In addition to separate leaves, we will consider their deformations Iy ~ (y¢(z), z¢(x), x) depending
on a finite-dimensional parameter ¢ = (¢1,...,t,) of arbitrary dimension n. We use the notation 4
for an arbitrary nonnegative integer, j = (j1,...,Jn) for an integer multiindex, v = (v1,...,vy)
for an n-vector with nonnegative components, and o for a number in the interval [0,7]. To each
pair of nonnegative integers (i,k), we assign a positive number a;;. In what follows, we use the

abbreviated notation v/ = v{' ... v}

Definition 1.4. We say that a vector v majorizes a deformation y;(z) of a function (and write
yr < v) if, for all x and ¢,

3”“'%(33)

arion || = a’,  1<i+|jl <N (7)

We say that a pair (v,0) majorizes a deformation (y.(z),z:(z)) of a pair of functions (and write
(ye, 2¢) < (v,0)) if, for all z and ¢, in addition to (7), the following inequalities hold:

ai+|j\zt(x) , . . .

T oron < 4007, i>0, i+|j]<N; (8)
Al 2 (2 . ,

HT;() < 040|j\777)]a L<[j| < N. 9)
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Consider an arbitrary mapping of the form (2). Suppose that all partial derivatives up to the
order N of the functions X, Y, Z, and Z' are bounded, estimates (5) and (6) hold, a + 6~'b < 1,
and 6 < 1/10. Take a deformation (y,2;) of a pair of functions and construct a new deformation
(Y}, 212) in such a way that, for any ¢ and e, the graph {(2,y,.(2), zj.(2"))} is the image of the
graph {(x,y:(x), z;(z))} under mapping (2).

Theorem 1.3. Under conditions (5) and (6), there exists a set of constants o, > 6 indepen-
dent of € (a10 = 0) and a large number C' such that

(a) if € =0, z(x) = const, and y; < v, then yly < (1 — b)Y/No;
(b) if o € [0,n] and (ys, zt) < (v,0), then (Y., z.) < (V',0"), where v/ = v+ C(o + €)v and
o' =(1-0b)(o+ Ce).

The proof of Theorem 1.3 is given in the next section. Hereafter, we assume that the con-
stants oy, are the same throughout the paper. If I} ~ (yi(x), z¢:(x), x) and (y4, z:) < (v, 0), we write
simply I} < (v,0). If z(z) = const and y; < v, then we write I} < v. Certainly, Theorem 1.3 can
be directly applied to any deformation I} of a leaf. We will write IV € X2(T") only if there exists

an open domain G C T' such that X7 maps it homeomorphically onto I'. Repeatedly applying
assertion (b) of Theorem 1.3 to the leaf deformation I}, we obtain the following corollary.

Corollary 1.3.1. If I/ C X3(I}) and T} < (v,0), then I} < (e“v, (1 —b)"0), where ¢ = C/b.
Take a number o € (0, 7).
Definition 1.5. A skew leaf I' ~ (y(z), z(x), x) is said to be flowing if

‘ diy(z) diz(z)

dzt dzt

Since a9 = 0, these conditions include the constraints ||dy/dz|| < 6 and ||dz/dz| < 6n on the
derivatives, which hold for any leaf by definition.

Corollary 1.3.2. If a leaf T is flowing and € is small, then any leaf T' C X (T') is flowing.

Proof. Let us identify I" and IV with trivial deformations that are absolutely independent of ¢.
Then, the leaf T' is flowing if and only if T < (0, 0¢). According to assertion (b) of Theorem 1.3, we
have I < (0,0”), where o/ = (1 — b)(0p + Ce) < 0p, which implies that I is flowing.

Corollary 1.3.3. If I" C (') and T < (0,Ce/b), then T' < (0,Ce/b) as well.

This corollary is proved by setting v = 0 and 0 = Ce/b in assertion (b) of Theorem 1.3.

< o, ' ‘ < @000, i=1,...,N. (10)

Hereafter, we use the term “leaf” only for flowing leaves.
Theorem 1.4. There exist large constants Cy, such that if Ty < (v,n) and T}, C X2(T}), where
Ftls ~ (yés(x/)a ng(x,% X/)a then

gty (a)
(0x')1 0t D€l

gl (2)
(0x")10t Del

<an, |

|§Cnvj, 1<i+|j|+I<N. (11)

This theorem is also proved in the next section.

2. PROOFS OF THE THEOREMS ABOUT IMAGES OF LEAVES

Obviously, the functions ;. and z;. from Theorem 1.3 are specified by the parametric equations

' =X (2, y(2), z(2), €), (12)
y;E(CU/) = Y(x7yt(x)7zt(x)75)7 (13)
2. (2) = Z(x,yt(x), zt(x),s) = z(x) + EZ’(x,yt(x), zt(x),z-:). (14)
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34 V.I. BAKHTIN

Proposition 1.1 implies that the derivative d2'/0x expands vectors from R" at least by a factor of
(a +b)~t. Therefore, equation (12) determines an implicit function = = x(2/,t,¢), and

|

X = X(x,y,z,¢), Y =Y(x,y,z,¢), Z=z+eZ (1,y,2,¢),

ox

o7 <a+b. (15)

In what follows, we always assume that

y:yt(x)v < :Zt(x), T :x(x’,t,g),
but, for the sake of brevity, we do not explicitly indicate the arguments of these functions. We also
use the notation
X _0X 0X0y 0X0: Y _ 0¥ 0vdy 0vo
de  dx Oy dx 0z Ox’ de  O0xr Oy odx 0z 0z’
dz 0z dz' 0z 0z 0Z'9y 07 9z
—— =gt &5 =~ + — + — .
dx  Ox der Oz ox Oy O0x 0z Ox

Let us calculate the partial derivatives on the basis of (12)—(14):

8_&0_ ax 71_ 8X(x,y,z,5)+8X(:c,y,z,5)@ 8X(:c,y,z,5)% -1 (16)
AN N Ox Ay Ox 0z Ox ’
v __(dX\7(0Xdy 0X0=\ _ Oz (0Xdy  0X0: an
ot dz oy ot 0z ot)  ox' \ Oy ot 0z Ot )’
00 __(ax\ox _ orox )
Oe dx de  Ox! O’
1ol -1
Q) Y 0r _(0V [ 0Y0y OV 0:) (0X  0X0y 0X0:\T )
oz’ dx Oz’ dr Oy Ox 0z Ox ox Oy Ox 0z Ox
Q') _dYox 0¥y oY oz
ot dxr ot Oy Ot 0z Ot
_(9Y _dY 9z 90X\ Oy (OY dY Or 0X\ 0z (20)
~\ 9y dx 0z Oy ) Ot 0z  dx 0x' 0z ) Ot’
0z.(z')  dZOx [0z dZ'\ (0X 90Xy OX dz\'
o ~drow \ow ' dw )\oxr T oyor T 0z 00) ()
0(a!) _020: 020y | dZ0
ot 0z 0t 0Oy ot dx ot
— I_|_ 82,_ %+d_Z/ 8_:68_X %4_ 82,_ %+d_Z/ 8_:68_X @
N “ 0z or " “dr ) 0x' 92 ) ot c oy or " “dz ) o oy ) ot
(22)

Equality (16) defines dz/dz" as a function of six variables x, y, z, €, dy/0x, and dz/0x. Under
the conditions ||0y/0z|| < 6 and ||0z/0z|| < On, this function is N — 1 times continuously differen-
tiable with respect to the set of variables, and all of its partial derivatives are bounded. The same
is true for the derivatives on the left-hand sides of equalities (17)—-(22).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 244 2004



FOLIATED FUNCTIONS AND AN AVERAGED WEIGHTED SHIFT OPERATOR 35

We say that an index pair (7, j), where j = (j1,...,Jn), precedes a pair (¢/,7") if i+ |j] < i+,
l7] < 17'], and (i, |4]) # (', ]5'|). This partial ordering determines a priority of partial derivatives of
the form &"tlily/0z' 0t and 9"+l 2 /9ot

Lemma 2.1. If i > 2 or |j| > 1, then, for any vector V' € RY,

O tlly, (2 Vi = (8Y dY Oz 8X> o tlily, (z) (8x V’)i

(81Dt oy dx 8z’ oy ) Oxidoti  \ o'
oY  dY 8z 80X\ 9'tlilz(z) [0z )\
(5 wawos) ae (or") * P
Il (') . oz’ 0z dZ'\ Oz 0X\ &Hlz(x) [0z
% v = I — PR - - - 7 = /
@yor V) ( e (8x iz ) 0z 0z > Dot (ava)

0z (82  dZ'\ 8z 98X\ 0ty () [0z _,\'
* ( oy (a—x“%) a—a—y>W (a—V> Qi

Each coordinate of the vector P;j is a finite sum of products of the form p1pap3, and each coordinate
of the vector Q;; is a finite sum of products of the form q1q2q3, where

(a) p1 and q1 are smooth functions of variables x, y, z, 0y/dx, 0z/0x, and £ all of whose partial
derivatives are bounded;

(b) po and qo are products of some coordinates of the vector V' with i multipliers;

(¢c) p3 and g3 are finite products of some partial derivatives of y and z that precede (i,j), and,
for each of these products, the sum of all multiindices corresponding to differentiation with
respect to t equals 7j;

(d) each product q1q2q3 contains a factor that either coincides with € or is a component of some
derivative of the form 8il+‘j/‘z/8xi/8tj/, where i’ > 0.

Proof. For i = 0 and |j| = 1, the assertion of the lemma immediately follows from equali-
ties (20) and (22) with zero P;; and @Q;;. For i = 2 and j = 0, the required equalities are obtained
by a direct differentiation of (19) and (21). For other pairs of indices, the assertion is proved by
induction based on the ordering introduced above. One should merely successively differentiate the
equalities and, at each step, represent the current derivatives of y.(z') and zj.(2’) as functions of
x,y, z, Oy/0x, 0z/0x, e, V', and lower derivatives of y and z by using substitutions (16) and (17).
We leave the details to the reader.

Let us return to the proof of Theorem 1.3. Suppose that, for some o < 7, we have ||0y/dz| < 0
and ||0z/0z|| < fo. Then, by Proposition 1.1, ||dy;./02'|| < 6 and, by (15) and (21),

0z, ed ,
< < — —b) =
H 9 _(90+5d)(a—|—b)_¢9<0—|— 9)(1 b) = 0o,

where 0/ = (1 — b)(0 + ed/f). Therefore, we can take a9 = 6 in (7) and (8).

The remaining «;; are determined by induction based on the ordering of indices introduced
above. Let us describe an induction step. Take a pair (I,.J). Suppose that, for all pairs of indices
(4,7) that precede (I,.J), some set of constants «|; has already been determined. Let us show
how to determine oy 7. Suppose that inequalities (7)-(9) hold. Let us estimate the two derivatives
ATVt (/) /(02") ot! and o'+ (2')/(02") 0t with the use of Lemma 2.1. By Lemma 2.1,
there exists a large constant C’ (depending on ;);| that have already been chosen but not on ay J‘)
such that the vectors Pry and Q1 from this lemma obey the estimates

1Pl < VIR Qe < CIV! I (o + e)v”. (23)
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|

Substituting inequalities (5)—(9), (15), (23), and (24) into the equalities of Lemma 2.1, we obtain
the estimates
Oty (o)
(Ox")1ot!

By virtue of (19),
av o

R < 0. 24
dr 0x' - (24)

ox’

:H%

< (a+ Hb)afmv‘](a +0) + 2da1mm}](a +b)f + C'v!

S (CL + Sb)Oq‘JlUJ + C/UJ S a]u‘(a + 3b + C//Oq‘ﬂ)v];

Oz (2')

517 < (14 6od + 2€d2)a0u|nv‘] + (6ob + 25d)a0u|v‘] +C'(o +e)v’

< O‘O\Jln(l + Ood 4 2ed* + ob/n + 2ed/n + C' (o + 5)/(a0|Jm))vJ
for J # 0; and

UMY

@ ot < (14 0od+ 2€d2)a1u|av‘](a +0) + (Bob + 25d)a1|J‘v‘](a + b))+ C' (o + e)v’

< agy [(1 +0od + 0b)(a + b)o + 2ed’c + 2ed + O’ (0 + f-:)/oqm]v‘]

S Oé[‘(]| [(1 —2b+ C//Oé[‘(]|)0' + (4d+ C,/Oé[‘(”)é' ’UJ

for I > 0.

If the numbers ay|; and C are large in comparison with C’, then these inequalities give the
estimates

oy (o)
@y | < =D
Oz ()

(&C/)]atj < aI\J|(1 —b)(o + CE)UJ for I >0,

M1z, (a')

567 < agn(l +Clo + £))v’ for J #0.

These estimates prove Theorem 1.3.

Suppose that the deformations of the functions y;(z) and z;(z) in (12)—(14) depend not only on
the parameter ¢ but also on . Let us denote them by y;.(x) and zi (x), respectively.
Lemma 2.2. If conditions (12)—(14) hold and 1 <i+ |j| +1 < N, then
6i+\j|+1y/ 2 Ot (! )
)y~ py, T i g
(0z)0ti De (0x'): 0t Oe
every coordinate of the vector P is a finite sum of products of the form p1paps, and every coordinate
of the vector Q;; is a finite sum of products of the form qi1q2q3, where

(a) p1 and q1 are smooth functions of the variables x, y, z, Oy/dx, 0z/0x, and ¢ all of whose
partial derivatives are bounded;
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(b) p2 and g2 are products of i coordinates of the vector V',

(c) p3 and g3 are finite products of some partial derivatives of y(x) and z(x) with respect
to z, t, and ¢ of orders not exceeding i + |j| + l; for each of these products, the sum of all
multiindices corresponding to differentiation with respect to t equals j.

Proof. For ¢ > 2 or |j| > 1, this assertion is proved by a straightforward differentiation with
respect to € of the equalities from Lemma 2.1; for j = 0 and ¢ = 1, it is proved by differentiating
equalities (19) and (21); finally, for j = 0 and ¢ = 0, it is proved by differentiating equalities (13)
and (14). All differentiations should be performed with the use of substitution (18).

Theorem 1.4 is proved with the use of Lemma 2.2 by induction on n. At every induction step,
estimates (11) obtained at the preceding step should be substituted into the equalities of Lemma 2.2.
For n =1, (7)-(9) should be taken as such estimates.

3. TRACES AND FOLIATED FUNCTIONS

We consider a dynamical system of the form (1) for which a uniformly hyperbolic mixing atlas 2
is fixed and the notions of flowing skew leaves and majorized deformations of leaves are defined.

Definition 3.1. A skew trace (or simply trace) is a pair (I', ®) consisting of a flowing skew
leaf I and a smooth real-valued function ® on it (the latter is called a density). We say that a trace
is straight if the corresponding leaf T" is straight. A trace (IV, ®') is called a restriction of a trace
(I, @) if I'" C T and the density ® coincides with ® on I''. The image of a trace (', @) is the trace
(I, ®") = 3,(I, @) such that I = ¥.(T") and & = &’ o X..

Definition 3.2. A weight function (weight) is an arbitrary smooth function J defined on the
manifold of u-dimensional subspaces tangent to Wy x M.

In the representation in hyperbolic charts, a weight J is a function of the variables z, y, z,
p = dy/dx, and ¢ = dz/dz. Let us point out at once that we are interested in the behavior of this
function only in the domain where ||p|| < 6 and ||¢|| < 6n.

A canonical weight function is the reciprocal of the expansion coefficient of u-dimensional vol-
umes under the mapping ¥.. Obviously, it depends on ¢; thus, it is more appropriate to say that
this is a family of weight functions J;.

For a weight J. and a skew leaf I', the restriction of J. to I' is defined in a natural way;
we denote it by the same symbol. A self-mapping ¥.J. of the set of skew traces is defined by
Y J (D, @) = 3 (T, J.P). If the weight J. is canonical and ® is the density of some measure with
respect to the Riemannian volume on I', then the density of the trace X.J.(I", @) is automatically
the density of the corresponding measure on 3. (I") induced by the mapping ..

A leaf T' ~ (y(x), z(x), x) is said to be standard if the domains of the functions y(x) and z(z)
coincide with an open unit ball B(zg,1) C Bf. For standard leaves, we use the notation I' ~
(y(z), z(z), x, z0); we assume that & € B(zo,1). The point o = (x (o, y(w0)), 2(20)) is called the
center of the standard leaf. When it is necessary to emphasize that a standard leaf I' is centered
at «, we denote this leaf by I'(«r). We say that a trace (I',®) is standard if the corresponding
leaf T' is standard. For any standard trace (I', ®), we can assume that, in a chart representation,
the domain of the density ® = ®(z) is the same ball B(xg,1). We say that two standard traces
(I, ®1) and (I'y, P2) are equivalent if their centers coincide, the intersection I'y N T is open in I}
and in Iy, and the densities ®; and ®5 coincide on this intersection. A standard deformation of a
leaf is a deformation I} ~ (yi(z), z¢(x), x, o) such that all functions y;(x) and z;(z) have the same
domain B(xzp,1) C BY. A trace deformation (I}, ®¢) is standard if the corresponding deformation
of the leaf I} is standard.
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We call a deformation (I}, ®;) of standard traces sliding if all traces in this deformation are
restrictions of the same trace (I', ®). Under a sliding deformation, the leaf I} and its center move
along I.

Definition 3.3. A foliated function (on skew traces) of type (p,q), where p > 1, ¢ > 4, and
p+q < N —1, is an arbitrary real-valued function g(I', ®) defined on the set of standard skew traces
(with flowing leaves) and possessing the following properties:

(a) it linearly depends of ®;

(b) its values at equivalent traces coincide;

(c) there exists a number ¢ > 0 such that, for any standard deformation I}, ~ (y:(z), 2, x, xo) of
flowing straight leaves and any density ® = ®(z), the relation y; < v implies the estimates

a\jlﬂklg(nz’ D)

S < el @l R Sa, K Sa-2% (29)

(d) there exists a ¢ > 0 such that if a standard deformation I} ~ (y:(x), z:(z), x, o) of flowing
skew leaves is majorized by a pair (v, o), where o € [0, 0¢], and a family of straight leaves T}
has the form Ty ~ (y:(z), 2¢:(x0), X, o), then, for any density ® = ®(z), the following esti-
mates hold:

<cov? | @ prapyy, il <a—4 (26)

ot ot

(e) all the derivatives in (25) and (26) are continuous in ¢ and z and vary continuously under
sliding deformations of traces.

The exact value of the small positive number og € (0,7] in the definition of flowing leaves is
chosen below, in Theorems 3.2 and 3.3. We denote the minimum ¢ for which inequalities (25)
and (26) hold by ||g||pq- Obviously, ||g|lpq is @ norm. The set of all foliated functions of type (p, q)
endowed with this norm forms a Banach space; we denote it by FP4. Estimates (25) and (26)
imply that FP4 € FP7 and ||g|lp; > ||gllyyq for o > p and ¢’ < ¢. Foliated functions can be
multiplied by ordinary functions according to the following rule: if f € C°°(W x M), then fg(I', @) =
g(T, f®). Formally, a foliated function g € FP? is defined on the set of standard traces with infinitely
differentiable densities. However, it can be extended by continuity to the traces with densities of
smoothness p + ¢.

Consider simple examples of foliated functions. For any standard trace (I'(«), @) centered at «,
we set go(I'(a), ®) = (). Let &H(¢) be an infinitely differentiable function on the real axis with
support in a sufficiently small neighborhood of zero. We set

01 (T(a), ) = / &o(p(c, B)) ®(8) dpu(3),
T

where p(a, 3) is the distance between « and a point 8 € T' and p is the Riemannian volume on T'.
It is easy to see that gg and g; are foliated functions of type (0, N — 1).

Theorem 3.1. The space FP? is a Banach module over the algebra of weight functions of
smoothness p + q, over CPT4(W x M), and over CP*4=3(M).

This theorem is proved in the next section.
Without loss of generality, we can assume that the Riemannian metric on W is equivalent to
the Euclidean metric on hyperbolic charts. This means that the length of a tangent vector to W
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and the length of its image in a chart may differ by at most a finite factor that is independent of
the vector and the chart.

Take a small positive number ry such that the restriction I'* ~ (y(x), z(x), x) of any standard
leaf ' ~ (y(x), z(x),x,x0), where x € B(zg,1 — a — b), contains the intersection of I" with the
2rp-neighborhood of its center o« = (x(zo,y(x0)), 2(xg)). Take an infinitely differentiable nonneg-
ative function &y(t) on the real axis that takes value 1 for |t| < rg and vanishes for |[t| > 2r5. On
each leaf I' contained in the Riemannian manifold W x M, the Riemannian volume y is induced.
Let us define a function of two variables on I' by

_ olp(e,B))
Jr€olp(er, B)) dp(e)’

where p(a, ) is the distance between v and 3. This function vanishes if p(«, 5) > 2ro and is strictly
positive if p(«a, #) < 79, and

51*(06, ﬁ)

/ (0, B) dp(a) = 1. (27)
T

To obviate the necessity of handling the boundary of I, it is convenient to assume that this function
is defined on the 2rp-interior of I (i.e., on the set of pairs of points in I" lying at a distance greater
than 2rg from the boundary of T).

Take a family of weight functions J.. Let (I', ®) be an arbitrary standard trace centered at «,
and let (T, @) = (X.J.)™(T', ®). By Proposition 1.2, for any point 8 € I' in the 2r¢-neighborhood
of a, there exists a standard trace (TL(5'), ®.) C (I, ®L) centered at 5/ = X2(5).

Definition 3.4. We define the averaged weighted shift operator A, , on the space FP4 of foliated
functions by

(Acng) (T(a), ®) = / r(o B)g(TL(8), @) dyu( ). (25)
4

Obviously, for all g € FP? and f € CPT4(W x M), the following homological identity holds:
Ae,n(fg) = f © Z? : Aa,ng' (29)

Theorem 3.2. For every n, there exist small positive numbers oy € (0,n] and g9 = €o(00)
such that, for all € € [—eq, 0] and | < q—8, the operator dlAevn/dz-:l maps continuously the space FP4
to FPH+La=4=l (gnd, hence, to FPT2L975 provided that 1 # 0).

This theorem is proved in Section 6.

We say that a foliated function is positive if it takes nonnegative values on traces with nonnega-
tive densities. We call a positive foliated function g strongly positive if there exists ¢ > 0 such that
g(I', 1) > ¢ for any standard leaf I". A linear functional on the space of foliated functions is said to
be positive if it takes nonnegative values on positive functions.

Now, suppose that a family J. of weight functions is positive and bounded away from zero in
the domain ||dy/dz| < 0, ||dz/dz| < On, where x, y, z, dy/dz, and dz/dx are the coordinates
corresponding to an arbitrary hyperbolic chart. Then, the operator A, , maps positive (strongly
positive) foliated functions to positive (respectively, strongly positive) foliated functions. Under
these conditions, the following theorem is valid.

Theorem 3.3. For any sufficiently large n € N, there exist a small number oy € (0,1], a
function X = N\, € CN=4(M), a strongly positive foliated function h = h,, € F*"N=2 and a positive
C>®(M)-linear functional v = v, : FN=54 — C2(M) such that
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(a) the functional v maps continuously every space FP4 to the space C9=2(M);
(

)
b)
)
)

the operator Ag, maps continuously every space FP? to itself;
(c) Agnh =€ h, vo Ay, =e*v, and v(h) = 1;

(d) the sequence of operators [e *)‘onn]m: FP4 — FP1 converges in the uniform operator norm
to the projector Agng = v(g)h as m — oc.

This is the main theorem of the paper. It is proved in Section 9.

4. PROOF OF THEOREM 3.1

Consider a foliated function g € FP? and a weight function J of smoothness p+¢. To prove that
the product Jg also belongs to FP? and continuously depends on the factors, one should directly
estimate all the derivatives in the definition of foliated function. This involves no ideas and only
requires that the derivatives should be carefully calculated and written out.

Consider a standard deformation I} ~ (y:(x), z¢(x), x, o). Take the corresponding deformation
Ty ~ (yi(x), 2 (z0), X, o) of straight leaves. We connect them by the homotopy

Ly ~ (ye(x), 72¢(2) + (1 — 7)2e(20), X, 20), T € [0,1].

We can assume that I}, is a standard deformation of skew leaves that depends on the composite
parameter (¢,7). It may be majorized by pairs of the form ((v,v;), o), where (v,v;) is a composite
vector of the same structure as the composite parameter (¢,7). Definition 1.4 of majorizing pairs
directly implies the following assertion.

Lemma 4.1. If I} < (v,0), where ¢ € [0,n], then T}y < ((v,By10),n), where By =
max; j, o/ 0n.

Lemma 4.2. There exists a large By such that, for any foliated function g € FP1 and any
standard deformation (I, ®) of straight traces, the relation Iy < (v,0) implies the estimates

< Ballgllpg” @]l 4151 | <q—2.

ots

Proof. Let It ~ (y:(), z¢, x, x0). Consider I}, ~ (y:(x), 2, X, o). We have

okl 2y

gL, ®) = e 09g(Ter, ) g_cr
T

ot T LT pti—kaTk
k<j

k
< Qo nU”

and H

T=t

These formulas and the definition of ||g,, imply the required estimates.

Let J be a weight function. In the coordinates corresponding to an arbitrary hyperbolic chart x,
it is represented as a function J = J(z,vy, z,dy/dx,dz/dx) of five variables. Let ||J||5 denote its
C%-norm with respect to these variables, and let ||J||;, = max,eq||J|5. Consider the family of
straight leaves I, ~ (y:(x),z,x). The restriction of the weight J to the leaf I}, is represented as
a function Uy, (z) = J(x, ye(z), 2, dyi (x) /dz,0). Differentiating W, (x) as a composite function and
substituting estimates (7), we obtain the following assertion.

Lemma 4.3. There exists a constant B3 such that the relation y; < v implies the estimates

otk ()
0xtOt1 02k

< B! || |li 11410 i+ i+ k[ <N -1
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Consider a deformation of skew leaves I} ~ (v, 2¢, x). The restriction of the weight J to the
leaf T} is represented as a function

Uy(z) = J (2, p(), 2 (2), dys (2) /d, dze () [ da) .

Differentiating it and substituting estimates (7)—(9), we obtain the following lemma.

Lemma 4.4. There exists a large By such that the relation Ty < (v,n) implies the estimates

Lemma 4.5. There exists a large Bs such that, for any standard deformation of straight leaves
i ~ (y(x), 2, x,x0) and any family of densities @y, (x), the relation yy < v and the estimates

oW, (z)

Oriot < B4’Uj”‘]”i+|j\7 i+ ‘J’ <N-L1

3i+|j’\+|k’|q>tz(x)
Oxtots’ 92+

‘§5w2 i+ 15|+ K| <p+ i+ |kl

which hold for some B > 0 and fixed multiindices j and k, imply

8|j‘+|k‘g(rtza q)tz)
oti9zk

< BslgllpgB, il 1Kl <q, [k <q-2.

Proof. Differentiation by the Leibniz formula yields

k/8|3 31+ k=]

a\JIHkIg (T, @) o
Oti0zk Z Z C DT kK 9Tz, @7y ) ) (30)
J<ik'<k gz

t
z
where

'K D, (x)

KN
(I>tz (CC) - atjlazk/

If @j/ M is treated as a function of x, then the hypothesis of the lemma implies the estimates
lk/
197" Nlpt-j—i7 |+ 1k—kr| < Bv?". From (30) and the definition of ||g||,q, We obtain

<3N T CFlgllpgv? B

J<j K<k

aIJHIk\g (T, @)
Oti 02k

Lemma 4.6. There exists a large Bg such that, for any standard deformation of skew leaves
Ty ~ (yi(), z(2), X, 20), any deformation of straight leaves Ty ~ (yi(), 2¢(x0), X, To), and any family
of densities ®(x), the relation Iy < (v,0) and the estimates

It ®, (x)
Oxt oty

‘ <B, it <pH1+1], (31)

which hold for some B > 0 and a fixred multiindex j, imply the estimates

a‘ﬂg(rta (I)t) o a‘ﬂg(fta (I)t)
ot ot

< BgllgllpgBov?, 1] <q—4 (32)
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If estimates (31) hold for all indices such that i+ |j'| < p+ |j|, then

dlilg(T,, @ , .
PEICE2| < Bellglp?, il <a—2. (33)
Therefore, under conditions (31),
olilg(Ty, @ ; .
P02 < By 4 o)lglhat?, 1l <-4, (3)

Proof. By the Leibniz formula,

oVlg(Ly, @)  OVlg(Ty, @) g (09771g(0, )) 98T lg(T, @)
o = 2Y A e - (3)

J'<3 T=t

8”‘9(?1&,@%) v a‘jfj/‘g(fta@]f,)

—a 2 | (%)
J'<j =t

where

y o' ®,(z)
P (2) = ————.
t(x) at]/

Let us consider <I>{/ as a function of z. Then, by the condition of the lemma, H<I>{l\|p+1+‘j_j/| < Bl
It is easy to see that the definition of ||g||,q and (35) imply (32). The relation I} < (v,o) implies
I} < (v,0). If estimates (31) hold for i +|j'| < p+|j], then ||q){,||p+|j,j/‘ < Bv?". Hence, Lemma, 4.2
and (36) imply (33).

Now, we can prove Theorem 3.1.

Choose a constant By such that, for any functions ®, ¥ € C9(BY¥), where ¢ < N, we have
|@W|l; < Bo||®||q|l¥]lq- Suppose that g € FP? and J is an infinitely differentiable weight function.
Obviously, the product Jg satisfies conditions (a) and (b) of Definition 3.3.

Let us verify that the function Jg satisfies condition (c) of Definition 3.3. Consider a standard
deformation of straight leaves It, ~ (y:(z), 2, x, %0), where y < v, and a density ®(x). Let Wy, (x) be
the restriction of J to I;,. The function W;, satisfies the hypothesis of Lemma 4.3. Therefore, the
product W, ® satisfies the hypothesis of Lemma 4.5, where we can take 3 = BoB3||J || p+[| @[ 4|+ k|-
By this lemma, we have

QVIHIk (L., ®)
Oti9zk

aIJHIk\g(rtz’ ;. D)
OtiDzF

< Bs||9llpa BoBsl| T llp+q /| @l p+ 1+ 1k

This inequality is quite similar to estimate (25) in which the foliated function g is replaced by Jg
and the number ¢, by BoB3Bs| gl pql| /|| p+¢-

Let us verify that Jg satisfies condition (d) of Definition 3.3. Consider a standard de-
formation of skew leaves I} ~ (yi(z),z(x),x,zo) majorized by a pair (v,0), a deformation
T ~ (ye(2), z¢(20), X, %0), and a rectilinear homotopy It ~ (y¢(z), 72¢(z) + (1—7)2¢(20), X, z0) that
connects them. Let W, (x) be the restriction of the weight J to I-. Then, Jg(I3, @) = g(I1, Y @)
and Jg(Ty, ®) = g(Tyo, Yo ®). Obviously,

Jg(rt, ‘I’) - Jg(ftv ‘I’) = [g(rtla ‘I’th’) - g(rt07 ‘I’th’)] + g(rt07 Uy ® — ‘I/toq’)- (37)
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By Lemma 4.1, I}, < ((v, B1o),n). Applying Lemma 4.4 to the deformation I';;, we obtain

oI, () : . L
“ariovard || S By (Bro ) || [l 5141 i+ljl+I<N-1L
Therefore,
N (W (2)@(x)) % _y ,
8331875], S B0B4Uj H‘]Hp—f—l—f—‘ﬂH®||p+1+|j‘7 1+ |j,| S b + 1 + |j|7
and
Sy r .,
oitli’l Hitli '“(\Pw(m)‘I’(x))

W(%("’”)@("’“)“PW)@(@)H:/ g or O
0

-
< BoByv? Bio||J || p 141 1@ lp+ 51

for i+ |5’ < p+]j|. These inequalities coincide with conditions (31) of Lemma 4.6 for the functions
VP and Uy @ — UyqP. According to this lemma,

lg(Ty, ¥ ®)  9llg(Ty, Uy @) ,
‘ - - : < Bslgllpg BoBall Il p 41415 1@ lps- 14151007

ots ot
9l

7900, Tn® — Wy ®)| < Bo|\9llpg BoB1Bao || | g 141 1@]l 1510

Combining these inequalities with (37), we obtain estimates (26) for the function Jg with a con-
stant ¢ of order ||g|lpq ||/ |lp+q—3-

If the weight function J is infinitely differentiable, then, obviously, Jg satisfies the last con-
dition (e) in Definition 3.3 as well. Therefore, Jg € FP?, and the norm |[Jgl[p, is bounded by
a quantity of order ||g|pql|J|p+q. These results can be transferred to the weight functions of
smoothness p + ¢ by continuity. This proves the theorem for weight functions J of smoothness
p+q and for J € CPT4(W x M). In the case of J € CPT4=3(M), all conditions of Definition 3.3
for Jg are verified in precisely the same way, with the only exception that, to verify (c), we can
write at once

OlIIHIF J(2)g(Ly., ®)
Oti0zk

A=K J(2) 9+l g(T,,, @) , :
> O gma | < 22 OF I lla=2l9llpgo’ 12151411
k' <k k' <k

Therefore, we can take a constant ¢ of order ||J||4—2(/9|lpg < ||]|p+q—3]19]lpq in estimate (25) for the
function Jg. This completes the proof of Theorem 3.1.

5. PROPERTIES OF IMAGES OF TRACES

As above, we consider a dynamical system of the form (1) for which a uniformly hyperbolic
mixing atlas 2 is fixed and the notions of weight functions, flowing skew leaves, and majorized
deformations of leaves are defined.

Suppose that a family of weight functions J. is strictly positive and bounded away from zero
in the domain ||dy/dz| < 0, ||dz/dx| < 6n, where z, y, z, dy/dz, and dz/dz are the coordinates
corresponding to an arbitrary hyperbolic chart. Denote by v = (v4,...,1,,) an arbitrary vector with
nonnegative components and by B;x, where i,k € Z,, a set of positive constants.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 244 2004



44 V.I. BAKHTIN

Theorem 5.1. Suppose that a family of weights J. is bounded away from zero. Then, there
exists a set of constants By > 2 such that if the trace deformations (I}, ®}.) = XeJ (I}, @), where
i ~ (ye(x), ze(x), x) and T ~ (y;.(2), z1.(2), X'), satisfy the conditions

oHil®, ()

EIETY < By’ |@e()], i+ljl<g¢ ¢<N-1, (38)

Ft = (Uﬂ?), ‘

for some x and t, then, for the corresponding x' and t,

i+l ®)_ (o) N ‘ .

‘W < (1= )y (v +oy |2, 1<i<q-lil, (39)
ol ®!_(2/ ; .
P2 < v+ up o), il <a (40)

This theorem is proved later on in this section.

Definition 5.1. A density ® = ®(z) of smoothness ¢ < N — 1 is said to be flowing if it is
nonnegative and satisfies the inequalities ||d"®(x)/dx’|| < Bio®(z) for all x and i =1,...,q.

Corollary 5.1.1. If (I, ®.) = X.J.(T',®) and the density ® of smoothness q is flowing, then
the density ®. is also flowing.

Proof. Consider the trace (I', ®) as a deformation that does not depend on the parameter ¢. For
such a deformation, we can set v = v = 0 in (38). Therefore, by (39), we have ||d'®”(z")/(dx")!|| <
(1 = b)Bip®PL(a'); thus, the density ®L is flowing.

Repeatedly applying Theorem 5.1 with ¢ = 0 and Corollary 1.3.1, we obtain the following
assertion.

Corollary 5.1.2. Suppose that C,, = ne“, and let (I}, ®}) C (XoJo)" (L}, Pt), where Ty ~
(ye(x), 2e(x), x) and T ~ (y,(x'), 2 (x'),x’). Then, the conditions

otlile, (x , .
L, | Tt < g el il <
imply the estimates
SR ACD : .
G| < B+ G il <a

Theorem 5.2. For any family of weights J., there exist large constants C, such that if some
leaf deformation Ty ~ (yi(z), z¢(x), x) is majorized by a pair (v,n), and a family of densities P;(x)
satisfies the estimates

6”U|<I>t(g:)

smon || S0V itlil<e ¢<N-

for some B > 0, then any family of traces (T, ®}.) C (L) (I}, ;) obeys the estimates

oD, ()
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To prove Theorems 5.1 and 5.2, we need two lemmas.
Lemma 5.3. If (I/,,®;.) = . J.(I}, &), then

oHil®! (2') oy 0z\ 0tild, () [ Oz
@yos V) _J€<x’y’z’a_x’a_x> Dot (%

Here, the function P;j is a finite sum of products of the form pipapsps, where

V/) —|—fjij.

(a) p1 is a smooth function of the variables x, y, z, Oy/0x, 0z/0x, and e all of whose partial

derivatives are bounded;

(b) po is a product of i coordinates of the vector V';

(¢c) ps is a partial derivative of ®y(x) preceding the index pair (i,7) in the ordering introduced

i Section 2;

(d) p4 is a product of several partial derivatives of yi(x) and z(x) of order at most i + 1+ |j|.
The sum of all multiindices in the product psps that correspond to the differentiations with respect
to t equals j.

Proof. The lemma is proved by successively differentiating the identity @, (2') = J.(x,v, 2,
0y/0x,0z/0x)P;(x), where x = z(2',t,¢), y = y(x), and z = z(x). After every differentiation, we
have to represent the result as a function of x, y, z, dy/dx, 0z/0x, e, V', and the partial derivatives
of y, z, and ®; with the use of substitutions (16) and (17).

Lemma 5.4. Suppose that (T[,, ®}.) C X.Jo(Tie, Pre), where Tye ~ (ye(x), 21e (), x) and T}, ~
(Wte (), 21 (), X'). Then,

oIt (a')

. ' = Pyi;
(92')! 0t Oe! V"= P

here, P;j; is a finite sum of products of the form pipap3pa, where

(a) p1 is a smooth function of the variables x, y, z, Oy/0x, 0z/0x, and ¢ all of whose partial

derivatives are bounded;

(b) po is a product of i coordinates of the vector V';

(c) ps is a partial derivative of ®u.(x) of order no higher than i + |j| + ;

(d) ps is a product of several partial derivatives of yi-(x) and zi(x) of order no higher than

i+ g +14+ 1.

The sum of all multiindices in the product pspy that correspond to the differentiations with respect
to t equals j.

Proof. The lemma is proved by successively differentiating the identity @} (2') = J.(z,y, 2,
0y/0x,0z/0x), where x = z(2',t,¢), y = ye(x), and z = z(z). After every differentiation, we
have to represent the result as a function of z, y, z, dy/dx, 0z/0x, e, V', and the partial derivatives
of yie (), zte(z), and Py (x) with the use of substitutions (16)—(18).

Proof of Theorem 5.1. We will determine the constants (;; by induction based on the
ordering of indices introduced in Section 2. Suppose that, for a pair of indices (I,.J), we have
already determined a set of numbers [;; that does not contain [z but contains all numbers
corresponding to the pairs of indices (7,j) preceding (I,J). Let us show how to find g ;. We
denote by © the set of pairs (i,7) preceding (I,J) and such that j < J. By Lemma 5.3 and
conditions (38), there exists a large constant C' (independent of f;;|) such that

0y 0z
< [
‘_JE(CL‘?y)Z) ax78x)‘
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This inequality and the identity @} (z') = J.®;(z) give the implication

% <Byg’|®(@)| = % < A9 (2],
where
A= ﬁlmu (a+b)! Z ﬁzml/j =7,
(i,5)€D
Obviously,

Z vy < NZVjvJ_j < N(V+U)J.

(i,))€D isJ

If I > 0, then, choosing S large enough in comparison with C, N, and f;;;, we can ensure
that the inequality A < (1-1b)8y5(v +v)7 holds for all ¥ and v. If I = 0, then the definition of the
ordering of indices implies that j cannot coincide with J. In this case, taking By > sup C'J; 1 Bi; 1IN,
we obtain A < By s(v +v)”7. In any case, we have secured estimate (39) if I > 0 and (40) if I = 0.
The fulfillment of these estimates for all pairs of indices (I, J) is precisely what Theorem 5.1 asserts.
This completes the induction step.

Proof of Theorem 5.2. Theorem 5.2 is proved by induction on n with the use of Lemma 5.4
and Theorem 1.4. At each induction step, one should substitute the estimates from Theorem 1.4
and inequalities of the form (41) obtained at the preceding step into the equality of Lemma 5.4.

6. PROOF OF THEOREM 3.2

First, we represent the value of the foliated function A, ,g on an arbitrary standard trace (I", ®)
in a form convenient for calculations. Recall that

(Acng)( / ér(, )g(T(8'), &L) du(B'). (42)

Here, ' ~ (y(x), z(x), x, o) is a standard leaf; the point o = (x (o, y(z0)), 2(x0)) is its center; 3 is
an arbitrary point of T'; the standard trace (I, 3, ®.) is determined by its center 8’ = X2(/3) and
by the inclusion (I, ®L) C (X.J:)™(T, ®); and p is the Riemannian volume on the leaf IV = X7(T").
The function &r(«, §) is defined by

£O(d(a7 ﬁ))
Jréo(d(e, B)) dp(cr)’

where d is the distance in W x M and &y(¢) is a fixed smooth nonnegative function taking value 1
for |t| < rp and vanishing for |t| > 2ry. Here, r¢ is a sufficiently small positive number.

Now, we will modify (42) so that it admits differentiation with respect to the parameter under
a transverse deformation of the standard skew trace I' ~ (y(x), z(x), x, o). Obviously, the variable
x € B(wp,1) is a coordinate on I'. The function &{r(«, 5) depends only on the point G(x) =
(x(z,y(x)), z(x)) because the point « (the center of I') is fixed. We set &r(z) = &r(a, B(z)) and
write the Riemannian volume on I' in the form du = p(x) dz.

Let I ={p € T'| d(a, ) < 2r¢}. Then, suppér C I'*. By the definition of a hyperbolic atlas,
for any point 3 € T'*, there exists a chart x’ € 2 such that X7(3) € x/(B} x Bf) x M. By Propo-
sition 1.2, the point §' = ¥7(3) belongs to a leaf I? C X2(T') of the form I/ ~ (yL(z'), zL(2), X').
where 2/ € BY; moreover, ' has a coordinate =’ € BY. We construct such a leaf for every point

ér(e, B) =

(43)
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B € I'*. Since the linear dimensions of the set X7 (I'*) are bounded, the number of such leaves must
be finite and bounded irrespective of the choice of the standard leaf I". We denote these leaves by
I ~ (y.(2'), z.(z'), x;), where 2’ € BY and | = 1,...,m. Let p;.(2')dz’ denote the Riemannian
Volume on I'_. For every point z(, € BY, consider the standard leaf I'/_(x) ~ (y,.(2'), 2. ('), X}, ()
centered at (}(zhs . (), 2L (xh).

Let us fix an infinitely differentiable nonnegative function ¢ on R* that takes value 1 on BY and
vanishes outside BY. On each leaf I}, we define a function {; = (;(z'), where 2’ is the coordinate
on I7.. Since I, € ¥2(T), this function can be extended by zero to ¥2(T") \ I.. Consider the
function ¢, = Y%, ¢ on ¥7(T). We denote its restriction to the leaf I}, by (;. = (;.(2/). By
construction, X7(I'*) C |J; supp ;. Therefore, the functions ¢;/(;. form a smooth partition of unity
on the set X7 (I"™).

Let us define a function &, = §.(2’) on I, in such a way that (I}, &.) C X2(I',&r). Then,
formula (42) can be reduced to the form

(Aesg)0.) =3 [ 6l S ) # el (44

Now, suppose that, instead of a fixed leaf I', a standard deformation I} ~ (y(x), z¢(x), x, o) is
given. If the range of the parameter ¢ is small, then, for I}, we can construct standard deformations
I, ~ (y(2'), 2,.(2"), x;) and deformations of the functions &r, Pty Sites Ciies Pite, and @}, in
precisely the same way as the leaves I} and the functions &r, p, &e, (e, pie, and ®L were constructed
above (but the function (; remains independent of ¢ and ¢). Accordingly, formula (44) takes the
form

S Cl( ) / / / /
A g) (T}, @) = o I}, (2), ®)pue () da’. 4
(Aeng) (L, @) = ZEIB[& ( )Clta( Y 9T (2), @4 ) pree (2) (45)

5

To differentiate (45) with respect to ¢ and e, we need three lemmas.

Lemma 6.1. There exists a large By such that if a standard deformation of leaves 1} is ma-
jorized by a pair (v,n) and has the form Ty ~ (y(x), z¢(x), x, xo), then

‘ o+l p, ()

Oxtots
Proof. Recall that p;(x)dz is the Riemannian volume on I} and &, (x) = &, (o, B (x)), where
ar = (x(xo,y1(x0)), 2¢e(0)) and Bi(x) = (x(z,y:(x)), z¢(x)). The density p;(x) is a smooth function
of the variables z, y(z), z¢(z), dyi(z)/dz, and dz;(x)/dx. This readily implies bounds for its
derivatives. The bounds for the derivatives of {1, (x) are obtained by substituting the expressions
for ay, B¢(x), and the measure p;(z) dx into equality (43) and differentiating the result.

ai+lﬂgn (x)

< By, 2
=7 Ori Oty

<Bpnd, i+ |jl < N1

Lemma 6.2. There exists a large By independent of the choice of the deformations Iy, and T,
such that the relation Ty < (v,n) implies the estimates

gitlil+k Cl( )
Hi . (w ) et ))

< Bgv’ i+ j+ k<N -1
ey \=0g = rrllEEs

Proof. By Lemma 6.1 and Theorem 5.2, we have

O RG, (a)

“@ryowoek | = CnBr’ it il RSN L (46)
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By Theorem 1.4, the deformation Ij,. ~ (y;,.(2'), 2,.(2), x]) obeys the estimates

az’+\j|+kyl/t€(x/)
(Ox')i0tI Ok

aiJrU\JrkZl/ta (x/)

it < Cpd, 1<i+|jl+k<N.
@ yiotioer || = OnY sitlil+ks

‘ < Cp?,

Therefore, the function

du! N dz! /
Plte(x’)—pz(x’,yz'tg(x'),zag(x’), Viee ') Z“E(x)>

de! ' dz’

is estimated as
O gy (2)

(@) 000 Cv7, i+ i+ k< (47)

The function (. has the form (. (z') = >pe, ¢ o (x4) "' o xj(2',y5,.(2)). By construction, all
derivatives of the functions (x},)~' o x} are bounded. Therefore, the derivatives of (. obey the

estimates of the form
Hitlil+k < G(a) )
(02")i0t1 0k \ (. (')

Inequalities (46)—(48) imply the assertion of the lemma.

< Cv, i+jl+k<N-1. (48)

Suppose that a standard deformation I} ~ (y¢(x),z(x), x,x0) of skew leaves is majorized by
a pair (v,0), where o € [0,00]. Consider the standard deformation T} ~ (y:(), 2(w0), X, T0) of
straight leaves and the homotopy I ~ (yi(x), 72z¢(x) + (1 — 7)2z¢(x0), X, x0). If the number oy is
sufficiently small, then we can replace the index ¢ in (45) by the pair (¢,7). We obtain

(Aé ng FtT? Z /gltTE f)) g(rl/trs (.’/U,), @;Té)pltTE (.’/U,) d.it‘/. (49)

llBu

For short, we set
Q")
CltTe(x/)

Lemma 6.3. There exists a large By independent of the deformations Ty and T}, _ such that
the relation Iy < (v, o) implies the estimates

Uitre (CU/) = &itre (CU/) Pltre (CU/) (50)

gl kMg, ()
(0x)10tI Tk D™

< Byvio®,  i+|jl+k4+m<N -1 (51)

Proof. By Lemma 4.1, I, < (v,0) implies the relation I}, < ((v, B1o),n). Therefore, esti-
mates (51) follow from Lemma 6.2.

Now, we can proceed to the proof of Theorem 3.2. We have to show that the function
d™Ac g/de™ belongs to FPTIFma—4=m for any foliated function g € FP4. Let us verify that
this function satisfies all conditions of Definition 3.3 of the space FPHitm.a—4=m

A. Tt follows directly from the definition of the operator A, that A, ,g(I', ®) linearly depends

on ®, and the values of A, ,g on equivalent traces coincide. The same is true for the derivatives
d"A; ng(T', ®)/de™ (if they exist). Thus, conditions (a) and (b) of Definition 3.3 hold.
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B. Let us verify point (c). Suppose that I}, ~ (y:(x), 2z, x,x0) and y; < v. We will calculate
Ac ng(Tiz, @) by (45), replacing the index ¢ in this formula with the pair (¢, z). We obtain

(Aéng th’ Z/&ltze f)) (Fl/tzs(x,)7(I)gza)pltzs(x,)dx/' (52)

= 1]Bu

We assume that I}, depends on the composite parameter (¢, z). Definition 1.4 of majorizing pairs
implies that Ty, < ((v, (1) 'e),0), where the vector e = (1,...,1) has the same dimension as z.
Theorem 1.4 implies a relation of the form I}, _(z") < ((Cv, Ce, C),n) with respect to the composite
parameter (t, z,¢), where the constant C' does not depend on the choice of the deformations I}, and
I},,.(«"). Applying Theorem 5.2 with 8 = ||®||,, we obtain the estimates

az+|]\+|k\+m¢,2z€( )
(020t 0k Dem

< Cnl|®]|gv” (0n) 7L i |j] + k| +m < g

By Lemma 4.6, for all |j| + |k| +m < ¢ — 4, we have
Hlil+Ikl+m

DOk Dem 9Ty (27), < Bg(1 + 77)”ngan”(I"‘p+1+\j|+\k|+m(cv)j0‘k|+m' (53)

)

Applying Lemma 6.2 with ¢ replaced by (¢, z), we obtain
gitlil+|kl+m . Cl(x/) )
' (0x')i0t1 02k dem™ (gltzg(x )thze(x/) Plize (2 ))

for all i + |j| 4+ |k| + m < N — 1. Finally, the differentiation of (52) with regard to (53) and (54)
yields an estimate of the form

< Bgv? ()~ ¥ (54)

Blil+El+m

AT,
0 rgem Aend(liz: @)

< Cllgllpg? 1@ llp 1t ipiams 131+ 1kl +m < g -4

It is an analogue of estimate (25) for the function d™A.,g/de™ as an element of the space
‘7:'p+1+m,q74fm.

C. Let us verify that the function d™A; ,g/de™ satisfies condition (d) of Definition 3.3. Consider
a standard deformation Iy ~ (y;(), z:(2), X, zo) of skew leaves, the corresponding deformation T} ~
(ye(x), ze(0), X, o) of straight leaves, and the homotopy Ity ~ (y(z), 72¢(x)+ (1 —7)z(z0), X, Zo)-
Suppose that I} < (v,0). Then, by Lemma 4.1, I}- < ((v, Bio),n). Theorem 1.4 implies a relation
of the form I, _(z’) < ((Cv,Co,C),n) with respect to the composite parameter (¢,7,¢), where the
constant C' does not depend on the choice of the deformations I}y and IY, _(z'). By Theorem 5.2, we
have

Hlil+k+m /
m!] (Fme( )

8Z+ o |+k+m(1>t7'5 ( )
(02')i 0t DTk O™

‘ < Cull®@llgv? (Bio)*, i+ il +k+m<q.
By Lemma 4.6,

®,0)| < Bo(L+1)9llpgCrll @llpt14151451m(Cv) (Co)*C™  (55)

for all |j|+k+m < g—4. The differentiation of (49) with regard to (51) and (55) yields an estimate
of the form

1 Hlil+m+1
ot O de™
0

Hlil+m

o (A g1, @) — A (T, ®))| =

Ae,n(FtTa Q)) S C”ngqJUj H‘I’”p+2+|j\+m
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for |j] +m < —5. It is an analogue of estimate (26) for the function d™A. ,,g/de™ as an element of
the space FpHitma—i—m

D. The continuity of the derivatives of the function d™A. ,g/de™ € FPH+ma=4=m which is
required by condition (e) of Definition 3.3, follows from the method for evaluating these derivatives
described above. This completes the proof of Theorem 3.2.

7. FOLIATED FUNCTIONS ON STRAIGHT TRACES

Any foliated function can be restricted to (a) the set of straight standard traces and (b) the set
of straight standard traces contained in a layer z = const. For these restrictions, we use the same
term “foliated functions.” For ¢ = 0, the averaged weighted shift operator Ay, is well defined in
the spaces of such functions. Below, we give the corresponding formal definitions.

Definition 7.1. A foliated function of type (p,q) (wherep >1,¢>1,and p+¢g< N —1) on
a layer z = const is an arbitrary real-valued function g,(I', ®) that is defined on the set of straight
standard traces contained in the layer z = const and has the following properties:

(a) it linearly depends on the density ®;

(b) its values on equivalent traces coincide;

(c) there exists a positive number ¢ such that if a straight standard deformation I}, ~

(ye(x), 2, X, o) obeys the estimate y; < v, then, for any density ® = ®(z),

8|j‘gz(rtza Q))

22 < e[ Bllpyy, Ll < (56)

(d) all partial derivatives in (56) are continuous with respect to ¢ and vary continuously under
a sliding deformation of the trace (I}, ®).

We denote the minimum ¢ for which estimates (56) hold by ||g.||,q and the space of all functions
satisfying the conditions of Definition 7.1 by F£. Let A, , be the restriction of the operator Ay,
to F21. The properties of the operator A, ,, were thoroughly studied in [2] in a more general situation
when the mapping S, varies with time. In the case under consideration, S, does not depend on
time, and all the results obtained in [2] become substantially simpler. In particular, Theorem 6.3
and Propositions 2.4 and 3.1 from [2] readily imply the following theorem.

Theorem 7.1. The operator A,, maps continuously every space FE? to itself. If the weight
function J is positive and bounded away from zero and a positive integer n is sufficiently large,
then, for any z € M, there exist a positive function h, € le,N—2’ a positive linear functional
v, .7-"?[_2’1 — R, and a number A, such that

(a) AZ,"hZ = ekzhm vy, o Az,n = €>‘Zl/z, and Vz(hz) =1;
(b) the sequence of operators [e™** A, ]™ in the space FL? converges to the projector A g =
v,(g)h, in the uniform operator norm as m — oo;

(c) there exists a large Cy independent of z such that h,(I,1,1) < Coh,(T2,1) for any two
leaves T,1 and Tyo.

Definition 7.2. The space F47, where p > 1, ¢ > 2, and p+ ¢ < N — 1, consists of all possible
parametric families {g, € FL? | z € M} for each of which there exists a number ¢ > 0 such that, for
any standard deformation Iy, ~ (y(x), z,x, o) of straight leaves and any density ® = ®(x), the
estimate y; < v implies the inequalities

a\jlﬂklgz(ptz’ P)
Oti0zF

<@y, IR <q |k <q-2 (57)

and all derivatives in these inequalities exist and are continuous with respect to ¢t and z.
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If g = {g.} € Fi}, then we denote by |g||pq the minimum ¢ for which inequalities (57) hold.
Obviously, the space .7:]1\’} with this norm is a Banach space. It is a module over C9~2(M) and over
CPTI(W x M).

The spaces FL? with different z € M are naturally identified with each other. Therefore, we
can assume that all of them coincide with some fixed space F}?. Then, any function g € Fpf is
identified with the parametric family {g, € F§? | z € M}. It is seen from Definitions 7.1 and 7.2
that a family g = {g.} belongs to F}7 if and only if oklg, 102k € .7:p+|k‘ =I5l for all |k| < q—2, and

alk\gz

9llpg = sup sup (58)

z€M |k|<q—2

p+|kl,q—|k|

In [2], such parametric families were called quasidifferentiable. It was shown in [2] that the

— Fy 14715 1 — 1 times continuously differentiable with

parametric family of operators A4, ,,: F3¢ —
respect to z, and the operators /¥4, ,,/02* map continuously F5? to }-g+\k|,q—\k|. Obviously, the
operator Ay, acts fiberwise in Fh7; namely, if g = {g,} and h = {h,}, then h = Ay ,g if and only
if h, = A, g, for all z € M. Proposition 4.2 from [2| implies that Ay, maps contmuously Fri
to itself. Let us define an operator L, : FP? — FP4 by the formula L., = A, , — et Azn, where
A, g = v.(g)h, is the projector mentioned in Theorem 7.1. Then, Lemma 4.6 from [2] takes the

following form in the situation under consideration.

Theorem 7.2. Under the conditions of Theorem 7.1, the families h = {h.} and v = {v,} can
be chosen so that h € .7-"1 N2 and v determines a C(M)-linear functional v: .7-"N 32, (M) that
maps continuously each space FY1 to CI2(M). There exist numbers C and A € (0,1) such that,
for any |k| < g — 1 and any positive integer m, the norm of the operator OWI[L, ,Jm/02F: FH? —
fgﬂk"q_‘k' does not exceed CA™e™=.

Corollary 7.2.1. The family A = {)\.}, where A\, = Inv,(A,,h;) are as in Theorem 7.1,
belongs to the space CN=4(M).

Indeed, the families h = {h,} and Ap,h = {A.,h.} belong to }'j/’[Nﬁ. Therefore, ¢* =
v(Aognh) € CN=4(M).

Corollary 7.2.2. If p > 1, q > 2, and p+ q < N — 1, then the operator e )\AOn maps
continuously the space Fi] to itself. The sequence [e A ,n]m converges to the projector Ao,n

defined by the formula Ag g = v(g)h.

Proof. As mentioned, 717 is a module over C972(M), and Ay, maps continuously this module
to itself. Obviously, ¢ < N —1—p < N — 2. Since e~ € CN~4(M) and the functional v: Fri—
C972(M) is continuous, the operators e_’\Ao,n and Zo,n are continuous on Fi7. By construction,
these operators leave the function h fixed. Therefore, it is sufficient to show that the norm of the
operator [e_’\Ao,n — Zo,n]m tends to zero as m — oo. Let L,, denote the operator that maps each
foliated function g = {g.} € F47 to f = {f.}, where f, = L, ,g,. Then, e*)‘Aom —Agn = e Ly,
Now, suppose that f = [e”*L,|™g, where f = {f.} and g = {g.}. Differentiating by the Leibniz
formula, we obtain

alk\fz Z A Hlkilp—mAz 8‘k2|[LZ n™ a\kslgz

Ozk ki'kolks!  0zkr Ozk2 Ozks
ki+ko+ks=k

This equality, identity (58), and the estimates of Theorem 7.2 imply that | f||,, is bounded by a
quantity of order m9A™||g||,q. This proves the corollary.
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8. SEMINORMS ON THE SPACES F?4

Consider a foliated function h € F]{;[NQ, the C(M)-linear functional v: fﬁ_w — C(M) from
Theorem 7.2, and the function A € CN=4(M) from Corollary 7.2.1. Take a family of straight
standard leaves I'; ~ (y(z),z,x,%0). We normalize the function h by the condition hA(I;,1) =1
and the functional v by the condition v(h) = 1. Instead of the linear operator Ag,,, we consider
the operator e*)‘onn. Obviously, this is equivalent to the replacement of the weight function Jy by
Joe=™. This operator satisfies the equalities e_’\Aomh =handvo (6_’\Ao,n) =v.

There exists a natural restriction operator 7: 7?4 — F¥l that maps every foliated function
g € FPY to its restriction wg to the set of straight standard traces. It is seen from the definitions of
the spaces FP? and Fy7 that ||7gllpq < ||gllpg- Therefore, the functional v o 7 induced by v on FP4
is continuous.

Recall that a density ® = ®(x) of smoothness ¢ < N — 1 is said to be flowing if ||d'®(z)/dx|| <
Bio®(z) for all z and i = 1,...,q. Hence, there exists C' such that all flowing densities satisfy the
inequality ||®||, < C'inf ®. Recall also that the constants G;; in Theorem 5.1 were chosen in such a
way that B > 2.

Lemma 8.1. There exists a large By such that, for any standard straight trace (I',®) with
flowing density ® = ®(x) of smoothness q € [1, N — 1], the following inequalities hold:

By ||®ly < (I, ®) < Biginf &. (50)

Proof. The normalization condition h(I;,1) = 1 and assertion (c) of Theorem 7.1 imply that
C’O_1 < h(T,1) < Cp. Since h is positive, we have C’O_1 inf & < A(T', @) < Cysup ®. These inequalities
and sup ® < ||®[|; < C'inf @ imply (59).

Definition 8.1. For any foliated function g € FP?, we define a seminorm | g];’q as the minimum
number satisfying the following condition: if a standard deformation Iy ~ (yi(x), z¢(x), x, xo) of skew

leaves is majorized by a pair (v,0), where o € [0, 0], and the deformation I} of straight leaves has
the form I} ~ (y:(x), z¢(x0), X, To), then, for any flowing density ® = ®(x) of smoothness p+ 1+ |7,

o o | < l9lov’n(T, @), il <q—4 (60)

Obviously, if p’ > p and ¢’ < ¢, then \g];’,q, < ]g\gq.
Lemma 8.2. Any foliated function g € FP1 obeys the estimates

— h h
Bl(]1|g|pq < lgllpg < 5BlO|g|pq + |79l pg-

Proof. The definition of the norm ||g[/,; (to be more precise, estimate (26)) and Lemma 8.1
imply |g|zq < Biollgllpg- On the other hand, any density ®(z) of smoothness p + 1 + |j| can
be represented as a difference of two flowing densities, i.e., as ® = ®; — &y, where Py(z) =
O(z) + 2[|®| 11415 and P2 = 2||®||,414)j- Therefore, (59) and (60) imply

ot ot

< |glp,ov? (R(Ty, 1) + AT, @) < [glk ov? - 5B1o)|® 14 (61)

Comparing this estimate with (26) and definition (57) of the norm ||7gl|,, with (25), we obtain
”ngq < 531‘9’&1 + ”7T9”pq-
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Lemma 8.3. There exists a large By such that, for any deformation Ty ~ (yi(x), 2, X, o) of
standard straight leaves and any family of densities ®;(x), the relation Ty < (v,0) and the estimates

3”‘]“'(1%(3:)

Srai || < Bk e(@), i+ |kl <p+ ],

which hold for some fixed multiindex j, imply the inequalities

a\jlg(ﬁ, dy)

ot < BHHﬂg”pq’l}jh(E, (I)t)a ‘J’ < q— 2.

Proof. Obviously, under the conditions of the lemma, the density @, is flowing. By Lemma 8.1,
we have [|®|,1 ;) < Bioh(I}, ®;). In estimates (37) in Lemma 4.6, we can replace ||g||pq by [|7g]|pg-
Setting 3 = sup 3y [|®¢[|,|; in these estimates and replacing ||®¢[|,+ ;| by Bioh(I}, ®;), we obtain
the assertion of Lemma 8.3.

As above, suppose that the weight function Jy is bounded from below by a positive constant.
Then, the following theorem is valid.

Theorem 8.4. There exist a large integer n € N, a small number o9 € (0,7n], and a
large constant C' such that, for any standard leaf deformations Ty ~ (yi(z),z(z), x,z0) and
Ly ~ (y(x), 2(20), X, o), the following assertion holds. If standard trace deformations (T}, ®}) C
(ZoJoe ™M™ (T}, @) and (T}, ®,) C (SoJoe™M™)™(T}, ®) have the forms T} ~ (yi(x'), zp(x'), X', xh)
and T ~ (@ (2), z(z0), X', xh) and the density ® = ®(z) of smoothness p+ 1+ |j| is flowing, then,
for any foliated function g € FP1, the relation I} < (v, 0), where o € [0,00], implies the estimates

dlilg(ry, @)  dVlg(T/, ®})
ot ot

1 o
< (ggu’;q +Clglh s + cuwgupq) o h(TY, )

forall |j| < q—4. If ¢ =4, it is assumed that |g|;;7q_1 = 0 in this inequality.

Proof. As n, we can take any positive integer satisfying the inequality
(1—Db)"eN" < 1/16 (62)

with ¢ defined in Corollary 1.3.1. Consider the homotopy Ity ~ (y(z), 72: () + (1 — 7)2¢(20), X, %0),
where 7 € [0, 1], as a deformation depending on the composite parameter (¢,7). By Lemma 4.1, the
relation I} < (v,0) implies

Ly < ((v, Bio),n). (63)

Suppose that I} ~ (y,(2'), 2. (2'), X', ;) is a deformation of standard leaves such that I}  C
Y2 (Ty;). For this deformation, consider the standard deformation T}, ~ (y}, ('), 2}, (zf), X, x}) of
straight leaves and the trace deformation (I}, ®}.) C (S¢Joe ™) (T}, ®). By Corollary 1.3.1,

< (ewv, (1- b)”o), (64)
I, < ((e"v,e“Byo), (1 — b)™n), (65)

whence
I/, < ((eMv,e“By0),0). (66)

Applying Corollary 5.1.2 (with v = 0), we obtain

oIk, )

k l . .
@yiatort || = Pk (Cov) (CaBro) @t (&), it Ikl +1<p+ 14l (67)
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These inequalities with i = 0, k = 0, and [ = 1 yield ®}_ < ef01¢nBiog! for all 7 € [0, 1]. Take og
so small that e%1¢nB17 < 9 for all o € [0,00]. Then, &} < 2d/; and, since the foliated function h
is positive, we have h(I},, ®}.) < 2h(T},, ®),). Estimate (66) and Lemmas 4.2 and 8.1 imply

i
Oh(Ty, Ph)
or

tT

< Ba||hl1,n—2¢""Bio||®ipll2 < ||h]l1, N2 By Bao Bioh(IY,, @),

whence

h(T!

trs (I’é ) < Qh(FtIT, (I)QO) S 2eXp(”hH17N_QeanlBgB100')h(ft/O, (I)QO)
Take ¢ so small that, for all o € [0, 0], this inequality implies
h(FtIT7 q);'r) S 4h(_t/07 ;0) (68)

_Consider the difference g(Ty, ®}) — g(T/, ®;) = Di(t) + Da(t), where Dy(t) = g(T};, ®};) —
g(Tf, ®},) and Ds(t) = g(I};, ®}1) — g(I}y, ®jy). Let us calculate separately the derivatives of D;(t).
Differentiating by the Leibniz formula, we obtain

oD (t) ol olil
8t9'( 81&3( 9( tlvq)Tl) 9( fm /Tl)) + Z gatj kaTk( 9( tllv /Tl) 9( tl’q)Tl))
T=t 0#k<j T=t
The application of estimates (64), (60), and (61) to this equality yields
ale(t) n co,\j 1 (T
‘T < glh (1 = b)"o(e“v) h(TYy, ®},)
n co, \j— 8“{‘(1)/
+ D Cflaly g (1= )"0 (eT0) ™ - 5By || =
07k<j pH1+[i—k]|
Substituting (62), (67), and (59) into this inequality, we obtain
ol Dy (¢ 1 o
T < (Gglalhy + Clalty 1) ovin(Th o) (69)

where C’ is a constant independent of the traces under consideration and the foliated function g.
Similarly, applying Lemma 8.3 and estimates (66) and (67), we derive an estimate of the form

1
IDy()| _ [0+ g(Th, @) , ,
| < [ |t i < gl H(T ). (70)

0
The substitution of (68) into (69) and (70) gives

ol

50 (Dl( )+ Dz(t))

Lo h T
< (Z|g|pq + 4C/|g|p,q71 + 4C/||7T9||pq) O-Ujh(FtIm 20)7
as required.

9. PROOF OF THEOREM 3.3

Theorem 9.1. Under the conditions of Theorem 7.2, there exist a large n € N, a small o¢ €
(0,m], and a large C' such that, for any foliated function g € FP9,

1

-2 h h h

|6 AO,TLg|pq < §|g|pq + C|g|p,q71 + CHTFng‘Z'
For q = 4, it is assumed that ]g\z,qfl = 0 in this inequality.
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First, we derive Theorem 3.3 from this theorem.

A. Let 7 be the natural projector from FP4 to F4?, and let v: Fhi — C972(M) be the functional
specified in Theorem 7.2. Then, the composition v o 7 maps continuously every space FP? to
C972(M). This proves assertion (a) of Theorem 3.3.

B. There exist a norm || - ||gq on FP4 equivalent to || - ||, and a number A € (0,1) such that
He*)‘Aomgng < AHgng for all foliated functions g € FP4Nkerv o .

By virtue of Corollary 7.2.2, the sequence of restrictions of the operators (e*)‘onn)m to Fiin
ker v converges to the zero operator in the uniform norm. Hence, there exist a norm || - ||7,, on F}]
equivalent to || - || g and a number A’ € (0, 1) such that [le=*Ag ngll, < A[lgll},, forall g € FiiNkerv.

Consider the following norm on FP4:

q
0 k| ,1h
l9llpg = > 8*lglp + I 7gllng.
k=4
By Lemma 8.2, this norm is equivalent to || - ||,q. By Theorem 9.1, for all g € FP? Nkerv o m, we
have

q
1
—-A 0 k h h
I Aol < 30" (Glalb-+ Claha s+ Climgll ) + Kl
k=4

q
1
< 306" (5 +08) ol + Cas" gl + Nl
k=4
Now, it suffices to take an arbitrary A € (A’,1) and 6 so small that %—I—Cd < A and, simultaneously,
Cqd' - llpg < (A=A - 5.
C. There exists a foliated function h € F*"N=2 such that e=*Ag,h = h and von(h) = 1.

Take an arbitrary foliated function g € F»V~2 for which the function v o w(g) € CN=4(M) is
bounded from below by a positive number. The foliated function hg = (v o 7(g))~'g belongs to
FUN=2 and von(hg) = 1. Consider the sequence h,, = (e*)‘Aoyn)mho. By construction, we have
vomo 6_’\A0,n = v om. Therefore, v o m(hy,,) = 1 and, hence, hy41 — hyy € kerv o . According
to assertion B, the sequence h,, converges at an exponential rate to a certain foliated function
h € FHN=2_ This function is the required one.

D. The sequence of operators (e*)‘onn)m on FP1 converges to the projector (v om)® h in the
uniform operator norm.

This is so because any foliated function g € FP? decomposes into a sum as g = v o w(g)h +
(9 — v om(g)h), where the second term belongs to FP? Nkerv o m. This completes the proof of
Theorem 3.3.

We proceed to prove Theorem 9.1. Suppose that a standard deformation I} ~ (y(x), z¢(x), x, o)
of skew leaves is majorized by a pair (v,0), where o € [0, 0], and ® = ®(x) is a flowing density
of smoothness p + 1 + |j|. Consider the standard deformation Ty ~ (y;(2), 2¢:(%0), X, Zo) of straight
leaves and the homotopy Iir ~ (y:(x), 72z:(x) + (1 — 7)2¢(20), X, x0). We will calculate the value
(e7* A0 1ng)(Lir, @) by the same method as in Section 6. By (49), we have

(eiAAO,ng) (Ft'ra Q)) = Z /\I/ltf(x/)g(rl/tT(x/)v (I);,T) dxlv (71)
=1 BY
where
Wyr (') = gltT(x/)MpltT(x/% (- (2), @4;) C (onoe_/\/n)n(rtn@)-
CltT(‘T )
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Lemma 9.2. There exists a large B1a independent of Ty and Ty, (x') such that, for any foliated
function g € FP1 and any flowing density ® of smoothness p+1-+|j|, the relation Ty < (v, o) implies
the estimate

%g(rlto(x,)v ‘I’::o) < B12H7rngqvjh(Fl/t0(x/), ‘I)Qo), U’ <q-—2

Proof. Obviously, I} < (v,0). Hence, I},;(z') < (v,0) by Corollary 1.3.1. According to
Corollary 5.1.2, we have
oMy ()

(Oz')iotk

‘ < 5z|k\(0nv)kq)£(x/)v i+ ‘k’ <p+1+ ’]‘

Thus, Lemma 9.2 follows from Lemma 8.3.

Let us represent the difference

di(t,2") = W1 (2")g(T (2), @) — Puo () g(Tio ('), Pho) (72)
as a sum of three terms: d;(t,2') = dj (t,2') + dja(t, 2') + di3(t, 2’), where

din(t,2") = Wy (z )( (T (2"), @41) — gL ("), i),
dia(t, «’13/) (‘I/ltl ‘I’ltO(x/)) (Q(Fl/tl («’13/)7 @21) - Q(Fl/to(x/)a ‘I’Qo))a
diz(t,2") = (Vi (') — Upo(2')) 9T (2'), Pip)-
By construction, d;(t,z') = 0 for 2’/ gé BY. Let us differentiate the terms separately:
olldy (¢, z") ol
B v = Wyo(w )8tﬂ( 9(T (2), ®ty) — 9T ("), o))

ANFI, o (2! §lF—F]
b3 op I T 1 (), @) — ol o), B).

il o k| li—kl
8d127@) = ZCJ"“Z?(‘PM (a') = ‘I’lto(fcl))%(g(rlh (2'), ®41) — 9T ('), Qo))v

ot k<j
amdl?)(ta ') ka‘kl ’ ’ oli =+ o &
T ZCJ' w(‘l’ltl(x ) — Yyo(w ))Wg(rlto(x ), ®49))-
k<j

Recall that \g];’q > \g];’q, for ¢ > ¢’. Applying Theorem 8.4, Lemma 6.3 (with m = 0), and
Lemma 9.2 to these three equalities, we obtain estimates of the form
olildy, (t, ")
oti

1 .
< Wy (') (jglﬁq + C‘Q’g,q—l + CH?Tngq> av? h(Tp ("), @)

+ Z CJI'CBWIC(C +1) <|9|Z,q_|k\ + ‘|779Hp,qf\k|> Uvjikh(rl/to(x/)u 10)s
0£k<j

8|j\dl2(t,x/) < ZC’?B Uja(c+1) <| |h + || )O_Ujfkh(l—\/ (), )
ot - i=9 Ilp.a—Ik| 9llp,q—|k| 1to\T" ), ®0)>

k<j

8mdl?)(ta CC/)

ot < Z CJ]'CBW]CUBH H']Tng,qf\k|vjikh(rl/t0(x/)v ‘I’Qo)'

k<j
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Summing them, we obtain

olldy (t,z") 1 ,
a7 | S Wyo(z') (Z|9|Zq + C||7T9||pq> ov’ h(Ty (2'), Pig)

+C" (19t + gl + I17gllp0 ) o0 h(Thole'), @) (73)

for a sufficiently large C’.
Formula (71) implies that

m

> / & (T @), B di’ = (= A0,ah)(T, @) = (T, @)
=lp

The functions ¥;0(2’) are nonnegative; for some [ and 2/, they are positive and bounded away from
zero. Hence, there exists a constant C” independent of the choice of the leaves I} and I}, (z') and
of the flowing density ®, such that

Z/ ltO d:’: <C”Z /‘I/ltO ltO(x/)v go)dx’:(j'”h(ft’@).

I=1 gy I=1 gu

Finally, (71)—(73) imply the estimate

olil olil a\yldt
@(6 MMong)(Lh, @) — 815]( Aong) (T, @ <Z/ l z) da’
I=1

1 o o
< (J1lts + sl ) a0 ®) + CC (gl 1+ olaly + Imalhg)o (T ).
Taking o € [0, 0¢] with a sufficiently small oy, we obtain the assertion of Theorem 9.1.
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