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a b s t r a c t

A mathematical model and a computational method for studying the influence of the par-
ticle diffusion on equilibrium shapes of a magnetic liquid is developed. It is then applied on
the ferrohydrostatic problem of doubly connected equilibrium shapes of a magnetic fluid
located on a horizontal plate around a vertical cylindrical conductor with a direct current.
Numerical simulations show the limits of the uniform concentration approximation.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Because of their ability for ponderomotive interaction with an external magnetic field, magnetic fluids have not only pro-
voked the development of a new direction in fluid mechanics but have become a new technological material which found a
wide application in engineering [1–4]. A magnetic fluid is a stable colloidal suspension of ferromagnetic particles in a carrier
liquid (oil, water, bio-compatible liquid). The size of particles is of the order of 10�8 m, and they are in the Brownian motion
state in the carrier liquid. Owing to the fact that the particles possess magnetic properties, not only Brownian motion but
also a magnetophoresis diffusion process takes place in a magnetic fluid [1,5]. This diffusion process becomes significant
when the magnetic fluid is under the influence of a high-gradient magnetic field.

The subject of the present study is the classical ferrohydrostatic problem on doubly connected equilibrium shapes of a
magnetic fluid located on a horizontal plate around a vertical cylindrical conductor with a direct current [1,2,6]. Axisymmet-
ric free-surface shapes which are realizing under the influence of the magnetic field of the conductor are preferable for the
mathematical model because of the magnetic field structure. Assuming a linear magnetization law and neglecting the cap-
illary pressure jump on the surface, the problem has been solved analytically, see [1,2]. The numerical solution for the more
detailed problem of taking both the capillary jump but also the (non-linear) Langevin’s magnetization law into consideration,
is realized in [6]. However, it should be emphasized that the simplest theoretical models studied in [1,2] and the more ad-
vanced in [6] are both based on the assumption of homogeneity of the magnetic fluid, i.e. the effect of magnetophoresis of
ferromagnetic particles in the fluid has been completely neglected. The purpose of this work is the investigation of the
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influence of diffusion of magnetic particles on equilibrium axisymmetric shapes of the free magnetic fluid surface. As the
fluid magnetization value is directly proportional to the particle concentration in the fluid volume [1,2,7,8], which is deter-
mined by the magnetic field structure, the diffusion effect is expected to become appreciable under a strongly non-uniform
magnetic field.

2. Mathematical model

2.1. General equations

Under the assumption that the magnetic particles are of spherical form and of equal size, the magnetic particle mass
transfer in a magnetic fluid can be described by the equation [7,8]:

oC
ot
þ v � rC ¼ Dr � ðrC � CLðnHÞrðnHÞ � CggÞ ð1Þ

n ¼ l0mm

kT
; g ¼ m

kT

where C is the volume concentration of the particles in the colloid; t the time variable; v the velocity of a convective motion;
D the diffusion coefficient; H the magnetic field intensity; g the acceleration of gravity; l0 ¼ 4p� 10�7 H m�1 is the magnetic
constant (magnetic permeability of vacuum); mm the magnetic moment of a particle; k ¼ 1:3806568� 10�23 J K�1 the Boltz-
mann constant; T the particle temperature; m the mass of a particle; and

LðcÞ ¼ coth c� 1
c

the Langevin function. We assume that the fluid is incompressible and the boundary is impermeable, thus

divv ¼ 0; v � n ¼ 0

where n denotes the outer unit normal at the boundary.
Eq. (1) is supplemented with the condition of impermeability of boundaries by particles:

oC
on
� CnLðnHÞ oH

on
� Cggn ¼ 0 ð2Þ

where gn is the normal component of the gravity acceleration.
A uniform distribution of concentration at the initial state,

C ¼ C0 ¼ const:; t ¼ 0 ð3Þ

is assumed. Eq. (1) together with conditions (2) and (3) represent the mathematical model of the diffusion process of ferro-
magnetic particles in a magnetic fluid. Notice that the solution of problem (1)–(3) satisfies the condition of conservation of
the mean concentration:

1
V

Z
V

C dV ¼ C0 for all t P 0

where V is the fluid volume (or the spatial domain of definition of the problem).
For t !1, we obtain the steady-state concentration problem with v ¼ 0 which can be written in the form

r � ðrC � Crðln uÞÞ ¼ 0 — inside the fluid

oC
on �

oðln uÞ
on C ¼ 0 — at the boundaryR

V C dV ¼ C0V

8>><
>>: ð4Þ

u ¼ exp
Z nH

0
LðcÞdcþ gg � r

� �
¼ sinhðnHÞ

nH
expðgg � rÞ

where r is the radius-vector of the current space point.
As shown in [8], problem (4) admits an analytical solution:

C ¼ u
C0V
J0

; J0 ¼
Z

V
udV ð5Þ

Estimations of the order of magnitude show that the influence of the gravity force on the diffusion of Brownian particles is
negligible, which simplifies the formula for determining u:

u ¼ uðnHÞ ¼ sinhðnHÞ
nH

ð6Þ

In this case, isolines of the magnetic field strength are also isolines of the particle concentration.
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The magnetic properties of the magnetic fluid are determined by its magnetization M which depends on both the mag-
netic field intensity H and the particle concentration C. In ferrohydrodynamics [1,2,7,8], the Langevin’s magnetization law for
a non-uniformly concentrated magnetic fluid is defined by the formula

M ¼ MðH;CÞ ¼ Ms

C0
LðnHÞC ð7Þ

where Ms is the magnetic fluid saturation magnetization; C0 the mean concentration corresponding to a uniform distribution
of the particles.

Equilibrium shapes of a free magnetic fluid surface are described by the Young–Laplace equation. In the static case, it
takes the form

rK ¼ qg � rþ 1
2

l0
M
H

Hn

� �2

þ l0

Z H

0
M dH þ pf � p0 ð8Þ

where K is the sum of principal free-surface curvatures which is positive if the surface is convex; r the surface tension coef-
ficient; q the fluid density; p0 the pressure in a surrounding non-magnetic medium; pf is the thermodynamic pressure in the
fluid.

Eq. (8) is supplemented with boundary conditions as well as with the non-local (integral) condition of fluid volume con-
servation. As boundary conditions we understand either conditions where the fluid contacts a solid wall specified by the wall
geometry and a given wetting angle, or symmetry conditions.

2.2. Statement of the problem

Consider a drop of a magnetic fluid located on the horizontal plate around a vertical cylindrical conductor (see Fig. 1). Let
R0 be the radius of the conductor, V be the fluid volume, a be the wetting (contact) angle on the solid walls. As the free surface
is supposed to be axisymmetric, its shape is determined by the equilibrium meridian line. We introduce cylindrical coordi-
nates R, Z by bringing the Z-axis into coincidence with the symmetry axis, directing it opposite to the gravity vector, and
placing the R-axis in the plate surface. Let S be the arc length of the unknown meridian line, that takes the value S ¼ 0 at
the upper contact point, i.e. at R ¼ R0, and S ¼ ‘ at the lower contact point, i.e. at Z ¼ 0. The meridian shape will be described
by the parametric functions RðSÞ, ZðSÞ. Then, the surface curvature is defined by the formula K ¼ �ðRZ0Þ0=ðRR0Þ where the
prime stands for differentiation with respect to S.

Direct current generates an azimuthal magnetic field of intensity H ¼ I=ð2pRÞ around the conductor where I is the current
strength. Owing to the azimuthal orientation of the field, its structure does not depend on the magnetic properties of the
fluid. In addition, since Hn ¼ 0 at each point of the axisymmetric free surface, the magnetic pressure jump at the surface
equals zero.

By using (5)–(7), it is not difficult to show that

Z H

0
M dH ¼ MsV

nJ0
ðu� 1Þ; J0 ¼

Z
V

udV ¼ 2p
Z ‘

0
uZRR0 dS

where u ¼ uðRÞ ¼ sinhðnHÞ=ðnHÞ, H ¼ HðRÞ ¼ I=ð2pRÞ, R ¼ RðSÞ, Z ¼ ZðSÞ. Consequently, Eq. (8) is transformed into

Z00 ¼ R0F; 0 < S < ‘ ð9Þ

with the abbreviation

∇H

Z

g

R R 
R0

V

α

S = 0

S = 

α

Fig. 1. Illustration of the problem.
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F ¼ qg
r

Z � l0MsV
rnJ0

u� Z0

R
þ const:

An arc length parametrization has been used, thus differentiating the identity ðZ0Þ2 þ ðR0Þ2 ¼ 1 with respect to S results in a
second differential equation:

R00 ¼ �Z0F ð10Þ

Natural conditions at the contact points are the following

Rð0Þ ¼ R0; Z0ð0Þ ¼ � cos a; R0ð0Þ ¼ sin a

Zð‘Þ ¼ 0; Z0ð‘Þ ¼ � sin a; R0ð‘Þ ¼ cos a
ð11Þ

Assuming that the drop volume V is a prescribed quantity, we can determine it as the volume of a body of revolution:

V ¼ 2p
Z ‘

0
ZRR0dS ð12Þ

Thus, the mathematical statement of determining the free surface shape in parametric representation ðRðSÞ; ZðSÞÞ, 0 6 S 6 ‘,
consists of the differential equations (9) and (10), the boundary conditions (11), and the integral constraint (12).

Now, we introduce the dimensionless variables

s ¼ S
R0
; z ¼ Z

R0
; r ¼ R

R0

and reformulate problem (9)–(12) in dimensionless form

z00 ¼ r0f ; r00 ¼ �z0f ; 0 < s < L

rð0Þ ¼ 1; z0ð0Þ ¼ � cos a; r0ð0Þ ¼ sin a

zðLÞ ¼ 0; z0ðLÞ ¼ � sin a; r0ðLÞ ¼ cos a

U ¼ 2p
R L

0 zrr0ds

9>>>>=
>>>>;

ð13Þ

where the following abbreviations have been used

f ¼ Boz� A1

J1
Uu� z0

r
þ c; u ¼ uðrÞ ¼ r

A2
sinh

A2

r

J1 ¼ 2p
Z L

0
zrr0uds; U ¼ V

R3
0

Bo ¼ qgR2
0

r
; A1 ¼

l0MsR0

rn
; A2 ¼

nI
2pR0

Note that L ¼ ‘=R0 and c are undefined constants, whereas Bo (Bond number), A1, A2, and U (dimensionless volume) are given
dimensionless parameters. In order to determine the constant c, we write the first of the Eq. (13) in the form

ðrz0Þ0 ¼ rr0 Boz� A1

J1
Uuþ c

� �

and integrate it from s ¼ 0 to L. Taking into consideration the boundary conditions and the non-local constraint (last equa-
tion in (13)), we obtain a formula defining the constant c:

c ¼ 2
r2ðLÞ � 1

cos a� rðLÞ sin a� BoU
2p
þ A1UJ2

J1

� �

J2 ¼
Z L

0
rr0uds

ð14Þ

The solution zðsÞ, rðsÞ of the dimensionless problem (13) and (14) describes the equilibrium shape of the free surface and is
determined by five parameters: Bo, A1, A2, U and a.

3. Computational algorithm

Following the strategy in [9], we reformulate problem (13) and (14) in the new variables �s ¼ S=‘ ¼ s=L 2 ½0;1�,
�z ¼ Z=‘ ¼ z=L, �r ¼ R=‘ ¼ r=L for getting an explicit formula to compute the (unknown) constant L in the iteration process.
Moreover, we introduce the new unknown bð�sÞ being the angle between the tangent at the equilibrium line ð�zð�sÞ;�rð�sÞÞ,
0 6 �s 6 1, and the �r-axis. Having in mind that �z0 ¼ sin b and �r0 ¼ cos b, the problem (13) and (14) can be reformulated as

b0 ¼ U; bð0Þ ¼ a� p
2 ; bð1Þ ¼ �a;

�z0 ¼ sin b; �zð1Þ ¼ 0; �r0 ¼ cos b; �rð0Þ ¼ 1
L

)
ð15Þ
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where

U ¼ Uðb;�r;�z; LÞ ¼ Bo�zL2 � A1U

I1L2 u� sin b
�r
þ �c

u ¼
�rL
A2

sinh
A2

�rL
; L ¼ U

I0

� �1=3

�c ¼ 2
�r2ð1Þ � �r2ð0Þ

�rð0Þ cos a� �rð1Þ sin a� BoU
2pL

þ A1UI2

I1L2

� �

I0 ¼ 2p
Z 1

0

�z�r cos bd�s; I1 ¼ 2p
Z 1

0

�z�r cos bud�s; I2 ¼
Z 1

0

�r cos bud�s

We discretize the differential equation problem (15) on the uniform grid f�si ¼ ih j i ¼ 0;1; . . . ;N; h ¼ 1=Ng by the finite-dif-
ference scheme:

bi � bi�1

h
¼ Ui�1=2; Ui�1=2 ¼ Uðbi�1=2;�ri�1=2;�zi�1=2; LÞ

�zi � �zi�1

h
¼ sin bi�1=2;

�ri � �ri�1

h
¼ cos bi�1=2; i ¼ 1;N

bi�1=2 ¼
bi�1 þ bi

2
; �ri�1=2 ¼

�ri�1 þ �ri

2
; �zi�1=2 ¼

�zi�1 þ �zi

2

b0 ¼ a� p
2
; bN ¼ �a; �r0 ¼

1
L
; �zN ¼ 0; L ¼ U

I0

� �1=3

where the solution ð�zi;�riÞ of the difference scheme is an approximation of the unknown solution ð�z;�rÞ of the differential prob-
lem (15) at the grid nodes �si, i ¼ 1;N. The integrals I0, I1 and I2 are computed by the trapezoidal rule.

Since for bi, we have the boundary conditions b0 ¼ a� p=2 and bN ¼ �a, the recursion formula could be used to compute
bi�1 from bi for i ¼ N;N � 1; . . . ;2 or contrary bi from bi�1 for i ¼ 1;2; . . . ;N � 1. Both variants of the tangential method have
been discussed in [9]; the first one turns out to be more stable and resulted in a faster iterative algorithms. Therefore, we
used the first variant solving

bnþ1
i ¼ bnþ1

iþ1 � hUn
iþ1=2 þ ð1� sÞðbn

i � bn
iþ1 þ hUn

iþ1=2Þ
i ¼ N � 1;N � 2; . . . ;1; bnþ1

N ¼ �a; bnþ1
0 ¼ a� p

2

)
ð16Þ

�rnþ1
i ¼ �rnþ1

i�1 þ h cos bnþ1
i�1=2; i ¼ 1;2; . . . ;N; �rnþ1

0 ¼ 1
Ln ð17Þ

�znþ1
i ¼ �znþ1

iþ1 � h sin bnþ1
i�1=2; i ¼ N � 1; . . . ;0; �znþ1

N ¼ 0 ð18Þ

where n ¼ 0;1;2; . . . is the iteration number, s > 0 is the relaxation parameter. Computations at each iteration are conducted
by recurrence formulas. First, the recurrence rule (16) is used to compute the grid values of bnþ1

i . Then, by employing pro-
cedures (17) and (18), new iterative approximations are determined for the free surface coordinates. And, finally, the grid
function Unþ1

iþ1=2 and the dimensionless length Lnþ1 are formed by the found values of �rnþ1
i , �znþ1

i , bnþ1
i .

All computations have been performed on the uniform grid with the mesh size of h ¼ 1=N ¼ 1=4000.

4. Numerical results

The numerical study has been performed for fixed values Bo ¼ 1, A1 ¼ 6, U ¼ 400, a ¼ 45� and 90�, for a wide range of
values of the parameter A2 characterizing the magnitude of the current strength in the conductor. Note that the values
for Bo, A1, and U correspond the experimental data used in [6]. In order to study the influence of the diffusion process, com-
putations have been carried out both taking the diffusion effect into consideration and assuming a uniform concentration of
the particles in the fluid. In the latter case, the mathematical model described in [6] has been used.

Characteristic equilibrium axisymmetric shapes of the drop at a ¼ 90� for three values of A2 are represented in Fig. 2. They
show that increasing the parameter A2 causes the displacement of the contact line on the plate in the direction of the mag-
netic field gradient, i.e. closer to the conductor, and accordingly the elevation of the contact line with the conductor becomes
higher. As illustrated, the particle diffusion gives rise to appreciable strengthening of this process compared to a uniform
particle concentration. In Fig. 3, plots of basic geometric characteristics of the magnetic fluid drop in dependence of the mag-
netic parameter A2 are shown, where z0 ¼ zð0Þ denotes the height of the drop and r1 ¼ rðLÞ the radius of its base. We see a
considerable dependence, both quantitatively and qualitatively, between the case of approximating the particle concentra-
tion as uniform and the case of taking into account the diffusion of magnetic particles. In the former case, the drop height
grows almost linearly for increasing A2 and the radius is monotonically decreasing. In the latter case, growth of the drop
height is much more intensive, but of special interest is the behaviour of the drop radius r1 for increasing A2: first it decreases
up to some value and then it begins to increase, i.e. the fluid withdrawal from the conductor takes place. This effect can be
explained by intense redistribution of the particles as the parameter A2 grows (see Fig. 4). At sufficiently large values of A2, a
great bulk of particles are concentrated in the close vicinity of the conductor, while their concentration far from the conduc-
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Fig. 3. Characteristic sizes of the drop depending on the parameter A2: (1) a ¼ 45�; (2) a ¼ 90� . Solid lines correspond to a non-uniform particle concen-
tration, the dashed lines to a uniform approximation.
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Fig. 2. Free surface shapes at a ¼ 90�: (1) A2 ¼ 0, (2) A2 ¼ 3 and (3) A2 ¼ 6. Uniform particle concentration (left) and non-uniform particle concentration
(right).
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Fig. 4. Distribution of particle concentration in the magnetic fluid drop depending on parameter A2 at a ¼ 90�: (1) A2 ¼ 0, (2) A2 ¼ 2:5, (3) A2 ¼ 5 and (4)
A2 ¼ 7:5.
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tor is close to zero and does not influence appreciably the free surface shape. In other words, near the contact point situated
on the plate the force impelling the fluid to move in the direction of conductor is negligible and in this neighbourhood the
free surface is shaped mainly under the action of capillary forces and gravity.

5. Summary

The numerical results illustrated in several plots give grounds for the conclusion that the diffusion of ferromagnetic par-
ticles in a magnetic fluid under the action of a non-uniform magnetic field greatly influences the free magnetic fluid surface
shape. The approximation by a uniform particle concentration seems to be applicable only on ferrohydrostatics problems
with nearly uniform magnetic fields.
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