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Equilibrium shapes of a ferrofiuid drop
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A numerical solution strategy for calculating equilibrium free surfaces of a ferrofluid drop under the action of uniform mag-
netic fields is proposed. Based on this strategy, drop shapes of nonlinear magnetisable fluids are obtained numerically in a
wide range of field intensities and compared with existing theoretical results,
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1 Introduction

The problem for calculating equilibrium free surfaces of a ferrofluid drop is described by a coupled system of the Maxwell’s
equations and the magnetically augmented Young-Laplace equation [4]. The Maxwell’s equations are formulated inside of
the bounded fluid domain §2; with an a-priori unknown boundary T' and outside in the air domain O = R\ ©2;. The
boundary position I' will be determined as a solution of the Young-Laplace equation. Both the magnetic field and drop
surface have to be found simultaneously. One possible way to handle numerically the coupled problem is to split it into two
subproblems: solving the Maxwell’s equations for the given drop shape and solving the Young-Laplace equation for the given
field distribution on the interface I, Iterations between two subproblems will result in the equilibrium shape. Discretisation
of the Maxwell's equations is realised by the coupled boundary-element/finite-element method and for the Young-Laplace
equation by the finite-difference method.

2 Mathematical formulation

Under the assumption of the axial symmetry for the drop shape we formulate the mathematical mode! in cylindrical coordinates
(r, z). Taking radius Ry of the initial circular drop shape as a characteristic length and intensity of the applied field Ho as a
characteristic field strength we write the two-dimensional Maxwell’s equations complemented by the boundary conditions in
dimensionless form
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Here u; and u; denote the scalar potentials in £, and §)2; x is the initial susceptibility, M, the magnetic saturation.
We describe the equilibrium shape of the ferrofluid drop by parametric functions r = r(s), z = z(s), where s denotes the
arc length of the equilibrium line I'. Using the approach in [3] the Young-Laplace equation can be written as
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The point s = 0 lies on the z axis and the point s = 1 on the plane z = 0. For details of calculating constants C and L see
[3]. Here H = |V, is the magnetic field intensity, H,, = 8u, /On, po denotes the magnetic permeability, V = 47 R3/3 the
drop volume, o the surface tension coefficient.

* Corresponding author: e-mail: olga.lavrova@mathemalik.uni—magdeburg.de. Phone: +49 391 67 12633, Fax: +49 391 67 18073.
** ¢.mail: polevikov@bsu.by, Phone: +375 172095532, Fax: +375 1722655 48.
=+ e.mail: lulz.lobiska® mathematik.uni-magdeburg.de, Phone: +49 39167 18650, Fax: +49391 67 18073.

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Section 25 838

3 Discretisation of the problem

To discretise equations (1)-(3) we use the idea of the coupled collocation boundary-element method (BEM} and the Galerkin
finite-element method (FEM), analysed in [5]. We apply the BEM in the unbounded domain £25 to fulfill exactly the boundary
condition for the magnetic field at the infinity (3). The FEM is used in the bounded domain £};, where nonlinearities of
the Maxwell’s equations occur, We reformulate equations (1)-(3) as the nonlocal boundary value problem for «; in ), and
Au1 /On on T, Piecewise linear and piecewise constant functions are used for the approximation of u, and du; /dn, respec-
tively. The fluid-air interface T is fixed during the process of solving equations {1)-(3) with a piecewise linear approximation
of the interface in the FEM discretisation and a cubic spline approximation in the BEM discretisation being used. The resulting
nonlinear discrete system is solved by a fixed-point iteration method with application of the Gaussian elimination method for
the linearised systems.

We use a finite-difference scheme of the second order approximation to discretise equations (4)-(5), for details see [3]. Grid
adaptation based on the information about the surface curvature is applied [3]. A two-layer iterative scheme is constructed
with tridiagonal matrices of the linearised systems.

4 Numerical results

The current work extents results of [2], where only linear magnetisable fluids were considered. The linear magnetisation is
a reasonable assumption in the region of weak fields [4], whereas nonlinear magnetisation is a necessary requirement for the
problem modeling in a wide range of field intensities.
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Fig. 1 The dependence of the drop elongation versus the dimensionless magnetic field. Calculations were made for the ferrofluid with
parameters y = 1.9, W = 62.

If we assume that the drop shape is spheroid then we can determine the drop elongation for every field intensity by applying
a theoretical approach, so-called the virial method [1]. The corresponding dependence is drawn by the solid line. The curves
with markers present numerical results, From the picture we see that for + € [0, 50] theoretical and numerical results nearly
coincide. It follows that for the considered ferrofluid the drop shape is rather close to spheroid in a wide range of field
intensities. For v > 50 the numerical results show a qualitative difference with the theory: a larger applied field produces less
elongated shape. Such a behavior of numerical results should be further studied.
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