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Abstract

The behaviour of a layer of magnetic fluid in a plane capillary subjected to a uniform magnetic field is studied

numerically. Two different types of instabilities arise as the intensity of the magnetic field increases. For small contact

angles the layer breaks along the capillary axis and spreads over the capillary wall whereas for large contact angles the

layer elongates in the central part up to its separation from the walls. Critical parameters and shapes are studied by

solving the coupled nonlinear system of differential equations numerically.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The influence of a vertical uniform magnetic field on

the equilibrium state of a magnetic fluid drop in a

capillary has been considered in Ref. [1]. By means of an

ellipsoid approximation it has been shown theoretically

that two types of instability arise as the intensity of the

magnetic field increases. In the case of full wetting

(contact angle equals zero) the drop breaks along the

capillary axis and spreads over the capillary wall. If the

fluid is non-wetting (contact angle equals 1801) the drop

elongates in the central part up to its separation from the

walls. The last type of instability has been also observed

in experiments.

The main objective of the paper is to derive a model

for this phenomenon in a wide range of contact angles
- see front matter r 2004 Elsevier B.V. All rights reserve
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on the basis of the balance equations in ferrohydrody-

namics. Our model consists of the Young–Laplace

equation which defines the shape of the free surface

and the Maxwell equations which describe the structure

of the magnetic fields in the fluid and the surrounding

media. The deformation of the fluid layer in a narrow

gap of thickness 2a subjected to a uniform magnetic field

perpendicular to the undisturbed layer will be studied.

We suppose that the two free surfaces between two non-

magnetic parallel plates are two-dimensional, symmetric

and bounded by a non-magnetic gas. We consider only

plane perturbations of the magnetic field, thus the

problem can be reduced to a 2D problem in the cross-

section O:
2. Governing equations

The Maxwell equations for a non-conducting fluid are

given by

curl H ¼ 0; div B ¼ 0; in O
d.
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with the magnetic field strength H and the magnetic

induction B satisfying the constitutive relation

B ¼ m0ðM þ HÞ in Of ,

B ¼ m0H outside Of ,

where M is the magnetization, m0 ¼ 4p� 10�2 Vs=Am is

the permeability constant, Of is the domain occupied by

the magnetic fluid. The magnetization is assumed to be

parallel to the magnetic field and to follow the Langevin

law [2–4]

M ¼ MS coth
jHj

H�

� �
�

H�

jHj

� �
H

jHj
,

with the saturation magnetization MS, the Langevin

parameter H� ¼ MS=ð3wÞ; and the initial susceptibility

w: The Young–Laplace equation represents the force

balance at the free surfaces and can be written in the

form [5]

sK ¼
m0
2
ðMnÞ2

þ m0MSH� ln sinh
jHj

H� � ln
jHj

H�

� �
þ const,

where s is the surface tension coefficient, K the

curvature, n the surface normal, and const a constant

which has to be fixed by the given area jOf j of the fluid

cross section and the contact angle a: The coupled

nonlinear boundary value problem is defined by the

five dimensionless parameters: W ¼ m0M
2
Sa=ð2sÞ; U ¼

jOf j=a2; h1 ¼ H0=H�; w; and a:
*
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Fig. 1. Influence of the contact angle a on the critical value of

the intensity parameter h�1 of the applied field.
3. Solution method

The Maxwell equation can be solved by introducing

the magnetic potential j with H ¼ rj: In the exterior of
Of ; the magnetic potential is the solution of a linear

elliptic equation with given boundary condition at

infinity. In the interior of Of a nonlinear elliptic equation

for the magnetic potential has to be solved due to

nonlinear material law. At the interface we require

continuity of both the magnetic potential j and the

normal component of B. The coupled problem for

the magnetic potential is solved by a combination of the

boundary element method [6] with the finite element

method (BEM-FEM approach) which allows to satisfy

the far field condition at infinity and to handle the

nonlinear magnetization law within the fluid.

The solution of the magneto-static problem for a

given position of the free surface is only one step in the

exterior iteration. The second step consists in the

calculation of a new free surface satisfying the Young–

Laplace equation for a given right-hand side, i.e., in our

2D setting we look for a curve with given curvature. Let

the parametrization of this curve be given by x ¼

xðsÞ; y ¼ yðsÞ; s 2 ½0;L we end up with the following
second order system of ordinary differential equations

[7,8]

x00 þ y0ðF þ constÞ ¼ 0,

y00 � x0ðF þ constÞ ¼ 0; 0pspL,

which has to be completed by appropriate boundary

conditions and the requirement of a fixed area of the

cross section occupied by the fluid layer. This system is

solved by a second order finite difference scheme on an

adaptive grid. A similar approach has been applied

successfully to study the normal field instability [9].
4. Results of numerical simulations

In the following we present the results for the

parameter set w ¼ 5; U ¼ 4; and W ¼ 100: Both types

of instabilities could be detected numerically. The switch

from one type to the other has been observed at the

contact angle a ¼ a� ¼ 117�: The first type of instability
(spreading on the walls) appears for aoa� the second

type (separation from the walls) for a4a�: Further

numerical calculations indicate that the critical value for

the contact angle a ¼ a� does not depend on the

parameter W and only weakly on the susceptibility w:
Fig. 1 presents the critical values of the magnetic

intensity parameter h�1 at which instability occurs. The

regions of instability correspond to the domains

above the two curves. The expected configurations of

the magnetic fluid layer in these domains are indicated.

The contact angle a has a strong influence on the critical
intensity of the magnetic field. In the ranges aoa� and

a4a� the maximum of the critical parameter h�1 is

achieved when a ! a� and the minimum at a ¼ 0� and
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Fig. 2. Critical layer thickness as a function of the contact

angle a: For values aoa� the fluid layer breaks suddenly and

spreads over the walls whereas for ao1551 the layer separates

suddenly from the walls.

Fig. 3. Critical shapes of the free surface for two values of the

contact angle, a ¼ 1151 (left) and a ¼ 1201 (right).

Fig. 4. Isolines of the dimensionless magnetic potential j in the

range �2:4pjpþ 2:4:
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a ¼ 180�; respectively. In each of the ranges the

maximum is about two times of the minimum value.

In Fig. 2 two values of the critical layer thickness are

shown as a function of the contact angle a where l

denotes the ratio of the layer thickness to the gap width:

1, in the central section; 2, at the wall. Note that for

aoa� the layer is more elongated than for a4a�: The
critical minimal thickness l depends only weakly on the

contact angle for aoa� and achieves values of 0.26–0.38
in the interval 30�pap115�: In the range a�oao155�

the critical minimal thickness tends to zero if the contact

angle a increases. Thus, in the interval 155�oap180�

the fluid does not suddenly separate from the walls as it

is the case for smaller contact angles.

Critical shapes of the magnetic fluid layer which

correspond to the values a ¼ 115�oa� (left) and a ¼

120�4a� (right) for h1 ¼ h�1 are illustrated in Fig. 3.
The isolines of the dimensionless magnetic potential j
for a ¼ 45� and h1 ¼ h�1 are shown in Fig. 4. Note that

the magnetic field both inside and outside the fluid is

non-uniform. Thus, the ellipsoid approximation seems

to be not sufficient to model this case.
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