
Cybernetics and Systems Analysis, Vol. 48, No. 1, January, 2012

SOFTWARE–HARDWARE SYSTEMS

PARALLELIZATION OF SEQUENTIAL PROGRAMS:

DISTRIBUTION OF ARRAYS AMONG PROCESSORS

AND STRUCTURIZATION OF COMMUNICATIONS

E. V. Adutskevich,
a†

N. A. Likhoded,
a‡

and A. O. Sikorsky
b

UDC 519.6+681.3.012

Abstract. Data distribution functions are introduced. They are matched with scheduling functions. The

processors and iterations are determined that use an array element at its fixed position in a statement.

This makes it possible to obtain the initial data distribution and also information on the data volume

for every processor and on the structure of required communications.

Keywords: parallel computing, parallelization of algorithms, affine loop nest, parallel computer with

distributed memory, optimization of communications.

INTRODUCTION

In adapting a sequential algorithm to an implementation on parallel computers with distributed memory, two major

problems should be solved.

The first problem consists of the distribution of the operations of the algorithm among processors and establishment

of a new order of their execution. The main issue arising in solving this problem consists of the preservation of the order of

execution of informationally connected operations, i.e., the fulfillment of the conditions of preservation of dependencies of

the algorithm. Many publications (in particular, [1–5]) are devoted to the investigation of this problem, and various methods

of solving it are proposed in them.

The second problem lies in distributing data of the algorithm among processors and the establishing a data exchange

scheme for executing the obtained parallel algorithm. The main issue that arises in solving this problem consists of the

necessity to fix, at a definite instant of time, the location of a data item required for the execution of an operation and to

supplement the computational algorithm with new operations of data transmission and reception. At the same time, one

should take into account that the realization of communications on a parallel computer with distributed memory requires

considerable expenditures. Since the objective of using parallel computers is the decrease in the time of solving problems, in

parallelizing an algorithm one should strive to decrease communication expenditures for its implementation.

In contrast to the first problem, the second problem is less investigated. We will briefly review approaches to the

solution of this problem.

An obvious approach to data distribution and minimization of communication expenditures lies in partitioning an

algorithm into independently computed blocks [1, 6–9]. In this case, data are distributed according to the distribution of operations

that use these data and, hence, all processors of a parallel computing system can work independently without the need for data

exchange. As is obvious, this approach simplifies the problem of data distribution among processors and eliminates the problem of

data exchange, but, in practice, algorithms seldom allows for a decomposition into independent fragments.

Another approach lies in obtaining block versions of an algorithm, i.e., partitioning the iteration space of loop nests in

a special way [1, 10–13]. The objective of such a partitioning is the increase in the size of packages of transferred data and

122 1060-0396/12/4801-0122

©

2012 Springer Science+Business Media, Inc.

a

Institute of Mathematics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus,

†

zhenya@im.bas-net.by;

‡

likhoded@im.bas-net.by.

b

LLC “Yandex Bel,” Minsk, Republic of Belarus, alex_s@tut.by.

Translated from Kibernetika i Sistemnyi Analiz, No. 1, pp. 144–163, January–February 2012. Original article submitted

January 14, 2008. Updated article submitted March 19, 2010.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/290218665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

decrease in the frequency of communications. The approach is directed towards the minimization of overheads for data

exchanges irrespective of the problem of data array distribution.

There also is the approach lying in the establishment of a fixed (specified before the beginning of the execution of a

program and invariable during its execution) distribution of data among processors of a computing system [4, 14–19]. The

search for such a data distribution is carried under the condition of minimization of data exchanges between the processors

whose local memories store data and the processors in which these data are computed or are used as arguments for

computations during the execution of a parallel algorithm. Within the framework of this approach, algorithms of joint

distribution of operations and data of an algorithm among processors are proposed in [4, 16, 17]. In [18, 19], conditions are

considered whose fulfillment makes it possible to organize structured communications that are realized between a group of

processors and can be performed more quickly than the corresponding collection of communications between pairs of

processors. An advantage of this approach is a simplification of the data exchange scheme (an exchange always begins with

the processor that uses a data item as a result of computations to the processor whose local memory stores this data item and

vice versa, i.e., from the processor whose local memory stores a data item to another processor that uses this data item as an

argument for computations). The possibility of joint determination of a distribution of operations and data that is directed

towards the decrease in communications required for the realization of an algorithm is also among advantages of this

approach.

However, in many computational algorithms, array elements are redefined over the entire period of their execution. In

this case, this approach will lead to the organization of a large number of redundant communications between the processors

that use an array element for computations and the processor that stores it rather than to directly transfer it in turn between

the processors using this element. To reveal this situation and to change the data exchange scheme within the framework of

the approach being considered, the corresponding algorithm should be additionally investigated as is shown in [18]. Other

solutions to this problem are proposed in [20, 21].

In the present article, a new approach to the search for the distribution of data of an algorithm among processors and

iterations of a parallel algorithm is considered. In this case, taking into account that the distribution of operations of the

algorithm among processors and iterations of the parallel algorithm is already found, processors and iterations are

determined that use an array element at its fixed position in an operator during program execution. This information makes it

possible to obtain an initial distribution of arrays (including the distribution leading to the use of each array element by only

one processor) and information on the size of the arrays used in each processor (which is necessary for the reservation of

processor memory in writing a program), to establish the communications required for a given distribution of operations, and

to determine the possibility of structurization of communications. The obtained results are suitable for automation, which

makes it possible to use them for the development of software systems destined for parallelizing sequential algorithms.

BASIC DENOTATIONS

Let an algorithm be specified by an affine loop nest, i.e., the index expressions of variables and boundaries of

changing the loop parameters of the algorithm are affine functions of loop parameters and external variables.

Let, in a loop nest, there be K operators S � to be executed, and let L arrays al . be used. Simple variables are

considered to be arrays of dimension 0;V
n

�
�

� Z is the range of variation of the parameters of the loop nest for an operator

S � , where n � is the number of loops enveloping the operator S � ; Wl
l

� Z
�

is the range of variation of indices of the lth

array, where � l is the dimension of the lth array; N
e

�Z is the vector of external variables of the algorithm, where e is the

number of external variables. We call a realization of the operator S � for a concrete value of the vector of parameters of

loops J an operation and denote it by S J� () . The execution of all operations dependent on J is called the Jth iteration.

An occurrence (, ,)l q� is understood to be the qth occurrence of an array al in the operator S � . In other words, the

occurrence (, ,)l q� is the qth access in a sequence of accesses to elements of the array al during the next execution of the

operator S � . For the sake of obviousness, along with (, ,)l q� , we will also use the denotation (, ,)a S ql � . We denote the

variation range for indices of elements of an array a Fl () that are connected with the occurrence (,)l q� by Wl q, ,

.� We

denote by Q the set of occurrences (, ,)l q� of all arrays al in all operators S � (the union of occurrences (, ,)l q� over all l , �,

and q is taken).

123

For the l th array, the indices of its elements connected with an occurrence (, ,)l q� are expressed by an affine

function F V Wl q l, ,

:� � � of the form

F J F J G N f

J V N F

l q l q l q

l q

e

l

, , , , , ,

(, ,)

, ,

() ,

, ,

� � �
�

� �

� � �

� �Z q

n

l q

e l ql l lG f l q Q� � � �

� �

Z Z Z
�

�
� � �� �, , , (, ,) .

, ,

(, ,)

(1)

Example 1. Let A be a left triangular matrix of order N with diagonal elements equal to 1. We consider the following

algorithm for solving a system of linear algebraic equations Ax b� by the inverse substitution method:

S x b

i N

S x i b i

j i

S x i x

1

2

3

1 1

2

1 1

: () ()

,

: () ()

,

: () (

�

�

�

� �

�

do

do

i a i j x j) (,) ()�

enddo

enddo

The loop nest contains three operators S S S
1 2 3

, , and and elements of three arrays x b x, , and . In this case, n
1

0� ,

n
2

1� , n
3

2� , �
1

1� , �
2

1� , �
3

2� , V
1

1� { }() , V i i N
2

2� � 	 	{() |Z }, V i j i N j i
3

2

2 1 1� � 	 	 	 	 �{(,) | , }Z , W
1

�

W
2

� {() |i i N� 	 	Z 1 }, and W V
3 3

� .

Indices of array elements used by operators of the algorithm are expressed by functions Fx S, ,

()

1

1

1 1� ,

F i E ix S, ,

()

() ()

2

1

1

� , F i j F i jx S x S, , , ,

(,) (,)

3 3

1 2

� � ()()1 0 i j
T

, F i j i jx S, ,

(,) ()()

3

3

0 1�
T

, Fb S, ,

()

1

1

1 1� , F i E ib S, ,

()

() ()

2

1

1

� ,

and F i ja S, ,

(,)

3

1

� E i j
()

()

2 T

. �

An operation S J J V� �(), ,� depends on an operation S I I V� �(), ,� if [22]

(1) S I� () is executed before S J� () ;

(2) S I� () and S J� () use the same array element (i.e., F I F Jl p l q, , , ,

() ()� �� for some l p q, , and) and at least one of

them redefines (changes) the element;

(3) this element is not redefined between the operations S I� () and S J� () .

This dependence can be true dependence (if an array element is first defined and then its value is used as an

argument), can be antidependence (if the value of an array element is first used as an argument and then is redefined), and

can be dependence with respect to output (if an array element is defined and then is redefined).

We denote the dependence of the operation S J� () on the operation S I� () by S I S J� �() ()� . Let

P I V J V S I S J�
 � � �{ }(,) | , , () ()� � � � � � be a set that specifies pairs of dependent operators. For each pair (,)� � �P,

we denote V J V S I S J� � � � �,

| () ()� �
 �{ }. Note that there can be more than one dependence between the operations

S I� () and S J� () if the equality F I F Jl p l q, , , ,

() ()� �� is fulfilled for more than one collection of l p q, , and . In this case, the

denotation S I S J

l p q

� �() ()

, ,

� can be used.

Let the dependencies between operations of an algorithm be specified by functions �� � � � �, ,

:V V� in such a

manner that if S I S J� �() ()� , I V� � , J V V� �� � �,

, then I J� �� �, () . If a pair of operators S � and S � generates more

than one dependence, then upper indices are also used for the denotation of the functions �� �,

. We call the functions �� �,

dependence functions and consider that they are affine,

� �

�

� � � � � �
� �

� � � �

�

� �

, , ,

(,)

, ,

() ,

, ,

J J N

J V N
e n n

� � �

� � �

�

Z Z , , , (,) ,

,

(,)

� �
� �� �� � �� � �

�

Z Z
n e n

P

(2)

Example 2 (a continuation of Example 1). The dependencies of a loop nest are described by the following functions [1, 6.8]:

�
1 3

1 0 0 1 1

,

(,) ()()i i� �
T

, (,)

,

i V1

1 3

� �{ }(,) |i i N1 2

2

� 	 	Z , �
2 3

1 1 0 1

,

(,) ()()i i�
T

, (,)

, ,

i V V1

2 3 1 3

� � , �
3 3

1

,

()

(,)i j �

0 1

0 1

0 1

�

�

�
�

�

�

�
�

�() ()i j
T T

, (,) (,) | ,

,

()

i j V i j i N j i� � � 	 	 	 	 �
3 3

1 2

3 2 1{ }Z ,�
3 3

2

,

()

(,)i j � E i j
()

() ()

2

0 1

T T

� , (,)

,

()

,

()

i j V V� �
3 3

2

3 3

1

. �

124

Dependence functions form a convenient mathematical apparatus for the description of the fine information structure

of an algorithm, i.e., for the description of information relations at the level of separate operations of the algorithm. Names

of these functions can be different, for example, covering functions of graphs of algorithms [1] or h-transformations [23, 24].

It is proved (the V. V. Voevodin theorem on information covering [1, 25]) that all dependencies of algorithms presented by a

sufficiently wide linear class of programs can be specified by functions linearly dependent on loop parameters and external

variables. Each function is defined on a linear polyhedron; the number of functions is independent of external variables and

is proportional to the number of assignment operators for real-life linear programs. The proportionality coefficient does not

exceed several units.

We denote n n
K

�

	 	

max

1 �
� . Let us consider vector functions t V

n()

:

�
� � Z , 1	 	� K . Let each function t

()�

associate with an operation S J� () a vector t J t J t Jn

() () ()

() ((), , ())

� � �
�

1

� with integer-valued coordinates. We assume that

functions t
�

�()

are affine,

t J J b N a

J V b
n

�
� � � � �

� �

�
� � �

�

� �

() (,) (,)

,

(,) (,

() ,

, ,

� � �

� �Z
�

� � � �)

,

, , , , .N a K n
e

� � 	 	 	 	Z Z 1 1

(3)

Functions t
()�

are called vector timing functions if the following conditions are fulfilled:

rank T n K
()

,

�
� �� 	 	1 ,

(4)

t J t I J V I V S I S Jlex

() ()

() (), , , () ()

� �
� � � �� � � � , (5)

where T
()�

is a matrix whose rows are composed of vectors � �� �(,) (,)

, ,

1

�

n
and the notation �lex means

“lexicographically greater or equal to.” It may be noted that, in the terminology of [1], functions t
�

�()

are called

unfoldings of the graph of an algorithm.

Vector timing functions specify transformation of loop nests. This means that the operation S J� () executed at the

Jth iteration of the initial loop nest will be executed at the t J
()

()

�
th iteration of the transformed loop nest. Thus, the

components of the vector t
()�

are interpreted as parameters of the transformed loop nest for the operator S � , i.e., t
1

()�
is the

parameter of the outermost loop and t n

()�
is the parameter of the innermost loop. The fulfillment of condition (4) guarantees

the nondegeneracy of the transformation, and the fulfillment of condition (5) guarantees the preservation of the order of

execution of informationally related operations of the algorithm, which provides the correctness of the transformation. A

collection of vector functions t t
K() ()

, ,

1

� is called multidimensional timing.

Example 3 (a continuation of Example 2). Let us consider the following two-dimensional timing: t
()

() (,)

1

1 1 1� ;

t i i
()

() (,)

2

1� , 2 	 	i N ; t i j i j
()

(,) (,)

3

� , 2 	 	i N , 1 1	 	 �j i . We transform the initial loop nest according to the

following multidimensional timing:

do

do

i N

j i

i j S x b

i j S

�

� �

� � �

� �

1

1 1

1 1 1

2 1

1

2

,

,

if () : () ()

if (,) : () ()

if () : () () (,) ()

x i b i

i S x i x i a i j x j

�

� � �2

3

enddo

enddo

�

We denote � � �l q l qF
, , , ,

.� rank Let us consider the basis of the space Z
n�

with base vectors ui

�

, 1	 	i l q� �, ,

and ui ,

1	 	 �i n l q� ��
, ,

, where ui are base vectors of the subspace kerFl q, ,� ; if � � �l q n
, ,

� , then the vectors ui are absent.

We denote the matrix whose columns are composed of vectors ui

�

by U
l q, ,�
�

.

125

Let F be an element of the set Wl . We denote by V Fl q, ,

()� the set of iterations of the initial loop nest whose

occurrence (, ,)l q� uses the same array element a Fl () ,

V F J V F J Fl q l q, , , ,

() | ()� � �� � �{ }.

We denote by �l q F
, ,

()� the set specifying the coordinates of the projection of the set V Fl q, ,

()� onto the linear

envelope of vectors ui :,

�l q n i

i

n

iF J J u
l q

l q

, ,

() () |

, ,

, ,

� �

�

	 	 	
� �

� �

� � � � �
�

�

�

�

�1

1

� , ()

, ,

J V Fl q�

�

�

�

�
�

�

�

�

�
�

� ;

in the case when � � �l q n
, ,

� , the set �l q F
, ,

()� is empty.

FUNCTIONS USING ARRAYS AT ITERATIONS OF LOOP NESTS

We introduce functions d W
l q

l q

n(, ,)

, ,

:

�
� � Z , (, ,)l q Q� � , with affine coordinate functions of the form

d F F z N y F
l q l q l q

l q�
� � � � �

� �
(, ,) (, , ,) (, , ,)

(, , ,)

() ()� � � ,

, , , ,

(

, ,

(, , ,) (, , ,)

, , ,

F W z N

y

l q

l q l q e

l q

l
� � ��

� � � � �

� �

 Z Z

F l q Q n) , (, ,) , .� � 	 	Z � �1

(6)

For each fixed F Wl q�
, ,� , we require the fulfillment of the condition

d F t J J V F
l q

l q�
�

�
�

�
(, ,) ()

, ,

() (), ()� � .

(7)

Then each function d
l q(, ,)�

determines iterations of the transformed loop nest at which elements of the array al

connected with the occurrence (, ,)l q� are used. We call functions d
l q(, ,)�

functions using arrays at iterations of loop

nests. We note that functions d
l q

�
�(, ,)

are multivalued in the general case.

THEOREM 1. The coordinates d
l q

�
�(, ,)

of functions using arrays at iterations of a loop nest are specified by

formulas (6) in which
 � �(, , ,)l q
is a solution to the following system of equations:

 �� �
� �

� �
�

(, , ,)

, ,

, ,

(,)

, ,

l q

l q l q l q
F U U

� �

� ,

(8)

and vectors z
l q(, , ,)� �

and quantities y Fl q, , ,

()� � are specified by the equalities

z b G
l q l q

l q

(, , ,) (,) (, , ,)

, ,

,

� � � � � �
�
� � (9)

y F a fl q

l q l q

, , , ,

(, , ,) (, ,)

()� � � �
� � �
� � � � � �

�

�

�� 	 � 	 	
� �

� �

�
� �

� �i

i

n

i n l q

l q

l q
u

1

1

, ,

, ,

(,)

, ,

, () (� � F). (10)

Proof. Let F be an arbitrary fixed element of the set Wl q, ,� . Then F F Jl q�
, ,

()� , J V Fl q�
, ,

()� , and the fulfillment of

condition (7) is equivalent to the fulfillment of the equality t J d F J
l q

l q�
�

�
�

�
() (, ,)

, ,

() (())� � 0 for any J V Fl q�
, ,

()� .

We have

t J d F J J b N a
l q

l q�
�

�
�

�
� � � �

� ��() (, ,)

, ,

(,) (,)

,

() (())� � � � � (()

(, , ,)

, ,

 � �
�

l q

l qF J

� � � �z N y J b N
l q

l q

(, , ,)

, , ,

(,) (,)

)

� �
� �

� � � �� � � � � �a F J G N f z
l q

l q l q

l q l q

� �
� �

� �
� �

,

(, , ,)

, , , ,

(, ,) (, ,

()

,)

, , ,

�
� �N yl q�

� � � �() (

(,) (, , ,)

, ,

(,) (, , ,)

,

�

� � � �
�

� � � �
�

l q

l q

l q

lF J b G
,

(, , ,)

)q

l q
z N�

� �
� � �a f y

l q l q

l q� �
� � �

� �

,

(, , ,) (, ,)

, , ,

.

126

Equality (7) is fulfilled if the value of every quantity ()

(,) (, , ,)

, ,

�
� � � �
��

l q

l qF J , ()

(,) (, , ,)

, ,

(, , ,)

b G z N
l q

l q

l q� � � �
�

� �
� � ,

and a f y
l q l q

l q� �
� � �

� �

,

(, , ,) (, ,)

, , ,

� � reaches zero.

The first of these quantities equals zero for any vector J if the vector
 � �(, , ,)l q
is determined as a solution of the

following system of equations:
 �� �
�

� �(, , ,)

, ,

(,)

.

l q

l qF � However, this system does not necessarily has a solution since the

number of unknowns (coordinates of the vector
 � �(, , ,)l q
) is smaller than or equal to the number of equations (� �l n). To

this end, we represent the vector J in the form J J J� �
� ()0

, where J ui

i

i

l q

�

�

�

� �

� 	

� �

1

, ,

and J ui

i

n

i

l q

()

, ,

0

1

�

�

�

� 	
� ��

. Then we

obtain

() (

(,) (, , ,)

, ,

(,) (, , ,)

, ,

�
 �
� � � �
�

� � � �
�� � �

l q

l q

l q

lF J F q J J)()

()�

�
0

� � �
�

()

(,) (, , ,)

, ,

(,) ()�
 �� � � �
�

� �l q

l qF J J
0

� � � �
�

�

�

�()

(,) (, , ,)

, ,

(,)

, ,

�
 	 �� � � �
�

�
� �

�
l q

l q i

i

iF u

l q

1

	
� ��

i

i

n

i

l q

u

�

�

�

1

, ,

� � �
�

�

� �

�

� 	 �
 	

�
� � � �

�

�

i

i

i

l q

l q i i

i

l q

u F u

1

, ,

()

(,) (, , ,)

, ,

1

n

i

l q

u

� ��
� ��

�

�

, ,

(,)

.

The number of unknowns of the system
 �� �
�

� �(, , ,)

, ,

(,)l q

l q i iF u u
� �

� is greater than or equal to the number of

equations (� � �l l q�
, ,

). The system always has a solution since the rank of the extended matrix is equal to the rank of

the matrix of the system.

Thus, we obtain

t J d F J
l q

l q i

i

l q

�
�

�
�

�

�
� �	 �

�
() (, ,)

, ,

(,)

() (()) (

, ,

� �
�

�

�

1

u F ui

l q

l q i

� �

�
 � �
�

(, , ,)

, ,

)

� � � �

�

�

� 	 �

� ��

� � � � � �
�i

i

n

i

l q

l q

l q

u b G

1

, ,

(,) (,) (, , ,)

, ,

(z N
l q(, , ,)

)

� �
� � �a f y

l q l q

l q� �
� � �

� �

,

(, , ,) (, ,)

, , ,

.

Equality (7) is fulfilled for any J V Fl q�
, ,

()� if components of each vector
 � �(, , ,)l q
are determined as a solution of a

system of � �l q, ,

equations with � l unknowns,

 � �� �
�

� �
�

(, , ,)

, ,

(,)

, ,

,

l q

l q i i l qF u u i
� �

� 	 	1 ,

(11)

and the matrix z
l q(, , ,)� �

and functions y Fl q, , ,

()� � are specified by equalities (9) and (10), respectively. It may be

noted that the system of equations (11) can be written in the form (8) and, for each fixed F, vectors ()

, ,

	 	
� ��1

� �
�

� n l q

belong to the set �l q F
, ,

()� . �

In a special case (when the vector of external variables is not taken into account), Theorem 1 is proved in [26].

Example 4 (a continuation of Example 3). Let us find functions using arrays at iterations of the transformed loop

nest. Note that the transformation has been carried out according to the following two-dimensional timing: t
()

() (,)

1

1 1 1� ;

t i i
()

() (,)

2

1� , 2 	 	i N ; t i j i j
()

(,) (,)

3

� , 2 	 	i N , 1 1	 	 �j i .

For the occurrences (, ,)x S
1

1 and (, ,)x S
2

1 , according to equality (7), we obtain d
x S(, ,)

() (,)

1

1

1 1 1� and

d i i
x S(, ,)

() (,)

2

1

1� .

Let us consider the occurrences (, ,)x S
3

1 and (, ,)x S
3

2 . It suffices to take only one of these occurrences. We have

� (,)

(,)

3 1

1 0� , � (,)

(,)

3 2

0 1� , b b
(,) (,)3 1 3 2

0� � , a a
3 1 3 2

0

, ,

� � ; Fx S, ,

()

3

1

1 0� , Gx S, ,

3

1

0� , f
x S(, ,)

3

1

0� ; �x S, ,

3

1

1� , n
3

2� ;

u
1

0 1� (,) and u
1

1 0

�

� (,) . For � � 1, system (8) assumes the form
 (, , ,)

()

x S
3

1 1

1 0

1

0

�

�

�
�

�

�

�
�

� ()1 0

1

0

�

�

�
�

�

�

�
�

and, hence,
 (, , ,)x S
3

1 1

1� .

127

From relationships (9) and (10) we obtain z
x S(, , ,)

3

1 1

0 1 0 0� � � and y ix S, , ,

() (,)(,)

3

1 1 1

0 1 0 1 0 0 1 0� � � �	 . For � � 2 , we

obtain
 (, , ,)

() ()

x S
3

1 2

1 0

1

0

1 0

1

0

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�
�

and, hence,
 (, , ,)x S
3

1 2

0� ; z
x S(, , ,)

3

1 2

0 0 0 0� � � and y ix S, , ,

()

3

1 2

0 0 0� � �

	 	
1 1

0 1 0 1(,)(,) � , 	
1 1

3

� �x S i
, ,

() . For each i N� 1, ,� we define the set V i i j j i
x S, ,

() (,) |

3

1

1 1� 	 	 �{ }. Hence,

�
x S

i j j i
, ,

() |

3

1

1 1� 	 	 �{ } and y i jx S, , ,

()

3

1 2

� , 1 1	 	 �j i . We obtain d i
x S(, ,)

()

3

1

� �d i i j
x S(, ,)

() (,)

3

2

, 1 1	 	 �j i .

Let us consider the occurrence (, ,)x S
3

3 . We have Fx S, ,

()

3

3

0 1� , Gx S, ,

3

3

0� , and f
x S(, ,)

3

3

0� ; �x S, ,

3

3

1� ;

ui � (,)1 0 and u
1

0 1

�

� (,) . For � � 1, we obtain
 (, , ,)

() ()

x S
3

3 1

01

0

1

10

0

1

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�
�

, whence
 (, , ,)x S
3

3 1

0� ; z
x S(, , ,)

3

3 1

0 0 0 0� � �

and y jx S, , ,

() (,)(,) ,

3

3 1 1 1

0 0 1 0 1 0� � � �	 	 	
1 3

3

� �x S j
, ,

() . For each i N� �1 1, ,� , we define the setV j i jx S, ,

() (,) |

3

3

� {

j i N� 	 	1 }. Hence, �x S j i j i N
, ,

() |

3

3

1� � 	 	{ } and y j i
x S, , ,

()

3

1 1

� , j i N� 	 	1 . For � � 2 , we obtain

 (, , ,)

() ()

x S
3

3 2

0 1

0

1

0 1

0

1

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�
�
, whence
 (, , ,)x S

3

3 2

1� ; z
x S(, , ,)

3

3 2

0 1 0 0� � � and y jx S, , ,

() (,)(,)

3

3 2 1

0 0 0 1 1 0 0� � � �	 .

Thus, we have d j i j
x S(, ,)

() (,)

3

2

� , j i N� 	 	1 .

We obtain functions using the array b . For the occurrences (, ,)b S
1

1 and (, ,)b S
2

1 , according to equality (7), we find

d
b S(, ,)

() (,)

1

1

1 1 1� and d i i
b S(, ,)

() (,)

2

1

1� .

Let us determine the function using the array a (the occurrence (, ,)a S
3

1). We have � (,)

(,)

3 1

1 0� , � (,)

(,)

3 2

0 1� ,

b b
(,) (,)3 1 3 2

0� � , and a a
3 1 3 2

0

, ,

� � ; F Ea S, ,

()

3

1

2

� , Ga S, ,

()

3

1

0 0�
T

, and f
a S(, ,)

(,)

3

1

0 0� ; �a S E
, ,

()

3

1

2

2� �rank and

n
3

2� ; ui are absent, u
1

1 0

�

� (,) , and u
2

0 1

�

� (,) . For � � 1, system (8) assumes the form
 (, , ,) () () ()

()

a S
E E E3

1 1 2 2 2

1 0�

and, hence,
 (, , ,)

(,)

a S
3

1 1

1 0� . From relationships (9) and (10) we obtain z
a S(, , ,)

()()

3

1 1

0 1 0 0 0 0� � �
T

and

y i ja S, , ,

(,) ()()

3

1 1

0 1 0 0 0 0� � �
T

. Similarly, for � � 2 , we have
 (, , ,) () () ()

()

a S
E E E3

1 2 2 2 2

0 1� , whence
 (, , ,)a S
3

1 2

� (,)0 1 ,

z
a S(, , ,)

()()

3

1 2

0 0 1 0 0 0� � �
T

, and y i ja S, , ,

(,) ()()

3

1 2

0 0 1 0 0 0� � �
T

. Accordingly, we obtain d i j i j
a S(, ,)

(,) (,)

3

1

� . �

THEOREM 2. If � � �l q n
, ,

! , then each array element connected with the occurrence (, ,)l q� is used at iterations

d F
l q(, ,)

()

�
differing from one another in linear combinations of vectors T ui

()

,

�
1	 	 �i n l q� ��

, ,

. If � � �l q n
, ,

� , then the

corresponding array element is used at a fixed iteration.

Proof. We first show that, for any value of
 � �(, , ,)l q
that is a solution to system (8), for a fixed F, the quantity

 � �(, , ,)l q
F �

� �

�
� � �(, , ,)

, ,

(, , ,) (, ,)l q

l q

l q l q
G N f� assumes the same value. Any vector J for which

F J G N f Fl q l q

l q

, , , ,

(, ,)

� �
�

� � � can be represented in the form J J J� �
� ()0

, where J Fl q
()

, ,

0

�ker � and J
�

is the

normal solution of the system of equations F J F G N fl q l q

l q

, , , ,

(, ,)

� �
�

� � � , J ui

i

i

l q

� �

�

�

� � 	

� �

1

, ,

. With allowance for the proof

of Theorem 1, we obtain the value

� � � �
�

� � �(, , ,) (, , ,)

, ,

(, , ,) (, ,)l q l q

l q

l q l q
F G N f� �

� � � �

� �
� �

� � �(, , ,)

, , , ,

(, ,) (, , ,)

()

l q

l q l q

l q l q

lF J G N f G
, ,

(, , ,) (, ,)

�
� � �
q

l q l q
N f�

� � �
�

� �

�
� �

�
(, , ,)

, ,

(, , ,)

, ,

()

()

l q

l q

l q

l qF J F J J
0

� �
�

�

� �

�

� �
 	 	
� �
�

� �� �
(, , ,)

, ,

(

, , , ,

l q

l q i

i

i i

i

l
F u

l q l q

1 1

, , ,)

, ,

� �
�

q

l q iF u
�

� �

�

� � �

�

i

i i

l q

u J

1

�
� � � �

�

	 � �
, ,

(,) (,)

that is a constant.

128

By Theorem 1, the coordinates of functions using arrays at iterations of loop nests are specified in the form

d F F b G
l q l q l q

l q�
� � � � � � �

�

(, ,) (, , ,) (,) (, , ,)

, ,

() ()� � � N a f
l q l q

� �� �
� � �

,

(, , ,) (, ,)

� � � � �

�

�

�

�

�

� 	 � 	
� � ��

� � � �
� �

�

i

i

n

i i

i

nl q

u J b N a

1 1

, ,

(,) (,)

,

l q

ui

, ,

(,)

�

� � �
� .

Hence, if � � �l q n
, ,

! , then the iterations at which the element a Fl () connected with the occurrence (, ,)l q� is used

can differ only in linear combinations of vectors T ui

()�
, 1	 	 �i n l q� ��

, ,

.

If � � �l q n
, ,

,� then the sum 	 �
� ��

� �
i

i

n l q

�

�

�

1

, ,

(,)

is absent (the set �l q F
, ,

()� is empty) and the value of d F
l q

�
�(, ,)

()

becomes fixed. �

Let us consider a set " fix n� �{ } { }� � �1

1, , , ,� � composed of � arbitrary elements of a set { }1, ,� n . We choose �

coordinates of multidimensional timing t
i�
�()

, � i fix�" , and denote by t
fix

()�
a vector function composed of the chosen

coordinates t t
�

�
�

�

�1

() ()

, ,� .

We denote by T
fix

()�
a matrix whose rows are composed of vectors � � �(,)i

, � i fix�" ; �
�

�

�l q

fix
l q

fix

F

T, ,

, ,

()

�

�

�

�

�

�

�

�

�

rank . We

denote by u
i

fix
, 1	 	 �i n

l q

fix

� �
�

, ,

, base vectors of the intersection of the subspace ker

F

T

l q

fix

, ,

()

�

�

�

�

�

�

�

�

�

�

and Z
n�

; vectors u
i

fix
can be

absent. Let us consider the basis of the space Z
n�

with base vectors u
i

fix� ,

, 1	 	i
l q

fix�
�, ,

, and u
i

fix
, 1	 	 �i n

l q

fix

� �
�

, ,

. We

denote the matrix whose columns are composed of vectors u
i

fix� ,

by U
l q

fix

, ,

,

�
�

.

We assume that T
fix

is an arbitrary fixed element of the set of values of the function t
fix

()�
and consider the set

V T J V t J T
fix

fix fix fix� �
�

() | ()

()

� � �{ }.

Let us consider the set V F V Tl q

fix

fix, ,

() ()� �
of iterations of the initial loop nest whose occurrence (, ,)l q� uses the

same data item a Fl () and that are realized in the transformed loop nest at iterations with the fixed value of the

function t
fix

()�
equal to T fix . We denote by �

l q

fix

fixF T
, ,

(,)

�
the set specifying the coordinates of the projection of the set

V F V Tl q

fix

fix, ,

() ()� �
onto the linear envelope of vectors u

i

fix
,

�
l q

fix

fix

fix

n

fix
F T J

l q

fix
, ,

(,) () |

, ,

� �
	 	

� �

�

�

�

�

� �

�
1

� � � � #
�

�

�

�J u J V F V
fix

i

fix

i

n

i

fix

l q

f
l q

fix

,

, ,

, ,

, ()	
� �

�

� �
1

ix

fixT()

�

�

�

;

in the case when �
� �l q

fix
n

, ,

� , the set �
l q

fix

fixF T
, ,

(,)

�
is empty.

THEOREM 3. Iterations of the transformed loop nest that use an array element a Fl () , F Wl q�
, ,

,� with the fixed

value of the function t
fix

()�
equal to T fix are determined by values of functions d

l q

�
�(, ,)

that are specified by formulas (6),

where
 � �(, , ,)l q
is a solution of the system of equations

 �� �
� �

� �
�

(, , ,)

, ,

, ,

, (,)

, ,

,l q

l q l q

fix

l q

fix
F U U

� �

� ,

(12)

and the matrices z
l q(, , ,)� �

and quantities y Fl q, , ,

()� � are specified, respectively, by equality (9) and the following

equality:

129

y F a fl q

l q l q

i

fix

i

n
l

, , , ,

(, , ,) (, ,)

()

,

� � � �
� � �

�

 	
�

� � �

�

�

1

�

� � �
,

(,)

q

fix

u
i

fix
� , (13)

() (,)

, ,

, ,

	 	
� �

� �1

fix

n

fix

l q

fix

fix

l q

fix
F T� � �

�

� � .

THEOREM 4. If �
� �l q

fix
n

, ,

! , then, in the transformed loop nest with a fixed value of the function t
fix

()�
, each array

element connected with the occurrence (, ,)l q� is used at iterations differing from one another in linear combinations of

vectors T u
fix i

fix()

,

�
1	 	 �i n

l q

fix

� �
�

, ,

, where T
fix

()�
is a matrix whose rows are composed of vectors � � �(,)i

,

� i fixn�{ }1, , \� " . If �
� �l q

fix
n

, ,

� , then, when the value of the function t
fix

()�
is fixed, an array element is used only once.

In essence, the proofs of Theorems 3 and 4 repeat the proofs of Theorems 1 and 2, respectively, if F and T fix are

fixed.

DISTRIBUTION OF OPERATIONS AND DATA AMONG PROCESSORS

AND ITERATIONS

We introduce a set " s r n� �{ } { }� �
1

1, , , ,� � composed of r arbitrary elements of a set { }1, ,� n and a set " t �

� �
�

{ } { }� �r n sn
1

1, , , , \� � " . For convenience, we consider that the sets " s and " t are ordered as follows: � �i j! if

i j! (for every � �i j s, �" and � �i j t, �").

We introduce the following vector functions: t s

()�
is composed of functions t

i
i s�

� �()

, �" , and t
t

()�
is composed of

functions t
i�
�()

, � i t�" ; ds

l q(, ,)�
is composed of functions d

i

l q

�
�(, ,)

, � i s�" , and d
t

l q(, ,)�
is composed of functions

d
i

l q

�
�(, ,)

, � i t�" .

To implement an algorithm on a parallel computer, we assume that functions t s

()�
specify a mapping of operations of

the algorithm into the r-dimensional space of virtual processors and functions t
t

()�
specify iterations executed by the

processors. Functions ds

l q(, ,)�
specify the coordinates of the processors in which the array elements connected with the

occurrence (, ,)l q� are used, and functions d
t

l q(, ,)�
specify the iterations at which these elements are used.

Using Theorem 1, the distribution of input and output data among processors can be found and information on sizes

of arrays used in each processor can be obtained.

The distribution of input arrays among virtual processors can be specified with the help of the functions ds

l q(, ,)�
. To

this end, an element a Fl () of the input array al , F Wl q�
, ,� , should be allocated to the processor P d Fin s

l q
(())

(, ,)�
whose

coordinates are values of functions d F
i

l q

�
�(, ,)

() , � i s�" , corresponding to a vector ((), , ())

(, ,) (, ,)

d F d F
l q l q

r1

�
�

�
� with the

lexicographically smallest value.

The results of computations, i.e., elements a Fl () of the output array, are stored in the processor P d Fout s

l q
(())

(, ,)�
whose

coordinates are values of the functions d F
i

l q

�
�(, ,)

(), � i s�" , corresponding to the vector ((), , ())

(, ,) (, ,)

d F d F
l q l q

r1

�
�

�
� with

the lexicographically largest value.

The functions ds

l q(, ,)�
also make it possible to obtain information on the sizes of the arrays used in each processor.

To determine elements a Fl () of the output array al that are used in the processor with coordinates (, ,)t t r1

� , all elements

F of the set Wl q, ,� should be found for which ((), , ()) (, ,)

(, ,) (, ,)

d F d F t t
l q l q

r
r�

�
�

�

1

1

� �� .

We introduce the following denotations: Ts

()�
is a matrix whose rows are composed of vectors � � �(,)i

, � i s�" ; T
t

()�

is a matrix whose rows are composed of vectors � � �(,)i
, � i t�" ; �

�

�

�l q

s l q

s

F

T
, ,

, ,

()

�

�

�

�

�

�

�

�

�
rank and �

�

�

�l q

t l q

t

F

T
, ,

, ,

()

�

�

�

�

�

�

�

�

�
rank .

130

Let us formulate the corollaries from Theorem 2 that allow one to find out whether it is required to transfer data

between processors and iterations of a parallel algorithm or data are used by one processor or at one iteration and also to

specify vectors determining the direction of transmission.

COROLLARY 1. If � �� �l q l q

s

, ,

, ,

! , then each array element connected with the occurrence (, ,)l q� is used by the

virtual processors whose communications can be specified by vectors T us i

()�
, 1	 	 �i n l q� ��

, ,

; if � �� �l q l q

s

, ,

, ,

� , then the

array element is used only by one processor.

In fact, it follows from the proof of Theorem 2 that, for each array element connected with the occurrence (, ,)l q� ,

the values of d Fs

l q(, ,)

()

�
differ in linear combinations of vectors T us i

()�
, 1	 	 �i n

l q

s

� �
�

, ,

. If � �� �l q l q

s

, ,

, ,

� , then

ker ker

F

T

F
l q

s

l q

, ,

()

, ,

�

� �
�

�

�

�

�

�

�

�
� and T us i

()�
� 0 for all ui . Hence, in this case, d Fs

l q(, ,)

()

�
assumes a fixed value, i.e., the array

element is used by only one processor.

COROLLARY 2. If � �� �l q l q

t

, ,

, ,

! , then each array element connected with the occurrence (, ,)l q� is used at

iterations differing in linear combinations of vectors T u
t i

()�
, 1	 	 �i n l q� ��

, ,

; if � �� �l q l q

t

, ,

, ,

� , then the array element is

used at only one iteration.

The proof of Corollary 2 is similar to the proof of Corollary 1.

We denote by ui

s
, 1	 	 �i n

l q

s

� �
�

, ,

, base vectors of the intersection of the subspace ker

F

T

l q

s

, ,

()

�

�

�

�

�

�

�

�

�

�
and Z

n�
and by ui

t
,

1	 	 �i n
l q

t

� �
�

, ,

, base vectors of the intersection of the subspace ker

F

T

l q

t

, ,

()

�

�

�

�

�

�

�

�

�

�
and Z

n�
; the vectors ui

s
and ui

t
can be

absent.

Let us formulate the corollaries from Theorem 4 that allow one to reveal the character of using data by a fixed

processor or at a fixed iteration of the parallel algorithm.

COROLLARY 3. If �
� �l q

s
n

, ,

! , then, in one virtual processor, each array element connected with the occurrence

(, ,)l q� is used at iterations differing in linear combinations of vectors T u
t i

s()�
, 1	 	 �i n

l q

s

� �
�

, ,

; if �
� �l q

s
n

, ,

� , then the

array element is used in one processor only at one iteration.

COROLLARY 4. If �
� �l q

t
n

, ,

! , then, at one iteration, each array element connected with the occurrence (, ,)l q� is

used by virtual processors such that communications between them can be specified by vectors T us i

t()�
, 1	 	 �i n

l q

t

� �
�

, ,

; if

�
� �l q

t
n

, ,

� , then the array element is used at one iteration only in one processor.

Corollaries 3 and 4 can be obtained if, in the conditions of Theorem 4, we put " "fix s� and " "fix t� , respectively.

DATA EXCHANGE ORGANIZATION

In practice, even an optimal initial distribution of data does not eliminate the necessity of data exchange between

processors during the execution of an algorithm. As follows from Corollary 1, data exchange can be required for the

elements of an array al that are connected with an occurrence (, ,)l q� if the inequality � �
� �l q

s

l q
, ,

, ,

$ is fulfilled.

As is well known, on parallel computers with distributed memory, such structured communications as broadcast,

scatter, gather, reduction, and also data translation are executed much more quickly than the corresponding collection of

point–to–point communications. Therefore, it is desirable to reveal the possibility of organization of such communications.

We will formulate and investigate the conditions that, in some cases, allow one to determine the possibility of

organization of mostly used fast communications, namely, data broadcast and data translation. Broadcast (simultaneous

propagation) is the transmission of a data item to a group of processors in which the data item is used as an argument at one

iteration. Translation is the transmission of a data item from one processor to another in the case when an array element is

131

used in turn in different processors. Point-to-point communication is the transmission of a data item from one processor to

another.

Organization of broadcast. Assume that we have functions of the form (6) that specify the use of data arrays by

virtual processors and n-dimensional timing with coordinates of the form (3); r coordinates specify a spatial mapping of

operations of an algorithm into the r-dimensional space of virtual processors and the other n r� coordinates specify iterations

executed by processors in lexicographic order.

Let a vector T be an element of the set of values of a function t
t

()�
. We consider the set

V T J V t J T
t

t� �
�

() | ()

()

� � �{ } of iterations of the initial loop nest at which an operator S � is executed and that are

implemented in the space of virtual processors at the Tth iteration and the set V F V Tl q

t

, ,

() ()� �
of iterations of the initial

loop nest whose occurrence (, ,)l q� uses the same data item a Fl () and that are implemented in the space of virtual

processors at the Tth iteration.

We denote by U
l q

t

, ,�
a matrix whose columns are composed of vectors ui

t
.

LEMMA 1 [18]. Let there be true dependencies generated by an occurrence (, ,)l q� , and let �� �,

be a dependence

function. If the condition

�� � �,

, ,

U
l q

t
� 0

(14)

is fulfilled, then the data item a Fl () is not redefined between iterations of the set V F V Tl q

t

, ,

() ()� �
.

THEOREM 5. Let �
� �l q

t
n

, ,

! . At the Tth iteration, the broadcast of the data item a Fl () to processors

P d Fs

l q
(())

(, ,)�
can be organized, where the parameters of functions ds

l q(, ,)�
are specified according to formulas (12), (9),

and (13) if we put " "fix t� and T Tfix � in one of the following cases:

(1) elements of the array al occur only in the right sides of operators of the algorithm;

(2) for a true dependence generated by the occurrence (, ,),l q� condition (14) is fulfilled.

Proof. It follows from the condition of the theorem that the function Fl q, ,� occurs in the right side of the operator S �

and, hence, elements of the array al are used as arguments at the qth occurrence in the operator S � . Since �
� �l q

t
n

, ,

! ,

according to Corollary 4, at one iteration, each array element connected with the occurrence (, ,)l q� is used by virtual

processors, and communications between them can be specified by vectors T us i

t()�
, 1	 	 �i n

l q

t

� �
�

, ,

; by Theorem 3, when

T Tfix � and " "fix t� , the coordinates of such processors are specified by the function d Fs

l q(, ,)

()

�
whose parameters are

determined from system (12) and relationships (9) and (13). The processors use the same value of the data item a Fl () since

this data item is not redefined between iterations of the set V F V Tl q

t

, ,

() ()� �
; in case (1), this data item is not redefined at

all, and, in case (2), the impossibility of redefinition is guaranteed by condition (14). �

In case (1) of Theorem 5, the broadcast of the element a Fl () is carried out from the processor P d Fin s

l q
(())

(, ,)�
to

which a Fl () is distributed if another scheme of distribution of input arrays (for example, array replication) has not been

used. In case (2), the broadcast is carried out from the processor in which a Fl () has been computed.

It may be noted that, under the conditions of Theorem 5, broadcast can be degenerate if, by virtue of distinctive

features of the set V� , the set V F V Tl q

t

, ,

() ()� �
contains only one element.

Organization of data translation. We will formulate and prove theorems that allow one to reveal the possibility of

organization of translation of a data item. In Theorem 6, the case will be investigated when a data item is used as an

argument at different iterations by different processors and the data item is transferred at several iterations. In Theorem 7, the

case will be investigated when a data item is used as an argument and is redefined in turn by different processors at one

iteration with a shift in time in the course of program execution.

Let � � �l q n
, ,

! . We denote byUl q, ,� a matrix whose columns are composed of base vectors ui ,1	 	 �i n l q� ��
, ,

.

132

LEMMA 2 [18]. Let there be true dependencies generated by an occurrence (, ,)l q� , and let �� �, be a dependence

function. If the condition

�� � �, , ,

Ul q � 0 (15)

is fulfilled, then, between iterations of the set V Fl q, ,

()� , the data item a Fl () is not redefined.

THEOREM 6. Let � �
� �l q

t

l q
, ,

, ,

$, let � �
� �l q

s

l q
, ,

, ,

$, and let �
� �l q

t
n

, ,

� . At iterations d F
t

l q(, ,)

()

�
, the translation

of the data item a Fl () between processors P d Fs

l q
(())

(, ,)�
can be organized, where the parameters of the functions ds

l q(, ,)�

and d
t

l q(, ,)�
are specified according to formulas (8), (9), and (10) in one of the following cases:

(1) the array al occurs only in the right sides of operators of the algorithm;

(2) condition (15) is fulfilled for the true dependence generated by the occurrence (, ,)l q� .

Proof. The function Fl q, ,� occurs in the right side of the operator S � and, hence, elements of the array al are used at

the qth occurrence in the operator S � as arguments. The condition � �
� �l q

t

l q
, ,

, ,

$ means that the data item a Fl () is used in

the course of program execution at the qth occurrence of the array al in the operator S � at several iterations (Corollary 2),

and the condition � �
� �l q

s

l q
, ,

, ,

$ means that a Fl () is used in several processors (Corollary 1); the condition �
� �l q

t
n

, ,

�

implies (Corollary 4) that, at a fixed iteration, the array al is used by only one virtual processor.

Thus, the data item a Fl () is used at several iterations d F
t

l q(, ,)

()

�
in several processors P d Fs

l q
(())

(, ,)�
, and this

data item is used at each iteration by one processor. By Theorem 1, the parameters of the functions are determined from

system (8) and relationships (9) and (10). Processors use the same data item since, between iterations of the set V F
l q, ,

()� ,

the data item a Fl () is not redefined: in case (1), this data item is not redefined at all and, in the case (2), the impossibility of

redefinition is guaranteed by condition (15). �

Translation should be carried out according to the lexicographic ordering of vectors ((), , ())

(, ,) (, ,)

d F d F
l q l q

r1

�
�

�
� .

In case (1) of Theorem 6, before the beginning of translation, the data item a Fl () is, according to the initial distribution, in

the local memory of the processor P d Fin s

l q
(())

(, ,)�
that is the first to participate in translation. In case (2) of Theorems 6,

before the beginning of translation, the data item a Fl () should be transferred from the processor in which a Fl () has been

computed to the processor P d Fs

l q
(())

(, ,)�
whose coordinates are values of functions d F

i

l q

�
�(, ,)

() , � i s�" , that correspond

to the vector ((), , ())

(, ,) (, ,)

d F d F
l q l q

r1

�
�

�
� with the lexicographically smallest value.

THEOREM 7. Let �
� �l q

t
n

, ,

! , and let there be the true dependence generated by the occurrence (, ,)l p� in the left

side of an operator S � and the occurrence (, ,)l q� in the right side of the operator. Then the translation of the data item

a Fl () between processors P d Fs

l q
(())

(, ,)�
at the Tth iteration can be organized, where the parameters of the functions

ds

l q(, ,)�
are specified according to formulas (12), (9), and (13) under the assumption that " "fix t� and T Tfix � .

Proof. The condition �
� �l q

t
n

, ,

! means that, generally speaking, the operator S � is executed at the Tth iteration on

more than one processor P d Fs

l q
(())

(, ,)�
(Corollary 4). Since there is a true dependence generated by the occurrence p of

the array al in the left side of the operator S � and by the occurrence q in the right side of the operator, the data item a Fl () is

used as an argument at the Tth iteration and is redefined. The aforesaid means that the translation of the data item a Fl ()

between processors P d Fs

l q
(())

(, ,)�
can be organized at the Tth iteration. By Theorem 3, when T Tfix � and " "fix t� , the

coordinates of such processors are specified by the function d Fs

l q(, ,)

()

�
whose parameters are determined from system (12)

and relationships (9) and (13). �

Translation should be carried out according to the lexicographic order of vectors ((), , ())

(, ,) (, ,)

d F d F
l q l q

r1

�
�

�
� .

Before the beginning of the translation of the data item a Fl () , it should be transferred from the processor in which it is

stored to the processor P d Fs

l q
(())

(, ,)�
whose coordinates are the values of functions d F

i

l q

�
�(, ,)

() , � i s�" , that correspond

to the vector ((), , ())

(, ,) (, ,)

d F d F
l q l q

r1

�
�

�
� with the lexicographically smallest value.

133

As in the case of broadcast, translation can be degenerate if the set V F V Tl q

t

, ,

() ()� �
consists of only one element.

Example 5 (a continuation of Example 4). According to the functions that use arrays and have been found above, we

establish a distribution of array elements among processors and iterations of a parallel algorithm and determine a data

exchange scheme.

Let us consider the case when " s � { }1 and " t � { }2 . The first coordinate of the multidimensional timing specifies a

mapping of operations of the algorithm onto a processor row, and the second coordinate specifies the order of execution of

the operations by processors. We write the corresponding code (uniformly for each processor) destined for the execution of

the algorithm on N processors. The symbol p denotes the number of a processor. The loop variable t corresponds to

iterations of the algorithm

if

do max

()

, (,)

if () : () ()

if (

1

1 1 1

1 1 1

1

	 	

� �

� � �

p N

t p

p t S x b

p � � �

� � �

2 1

2

2

3

,) : () ()

if () : () () (,) ()

t S x p b p

p S x p x p a p t x t

enddo

endif

We have Ts

()

()

1

0� , Ts

()

()

2

1� , and Ts

()

(,)

3

1 0� ; T
t

()

()

1

0� , T
t

()

()

2

0� , and T
t

()

(,)

3

0 1� . The equalities �
�a S ql , ,

�

�
�a S q

s

l , ,

are fulfilled for all occurrences (, ,)a S ql � except for (, ,)x S
3

3 . According to Corollary 1, each array element

connected with any occurrence (, ,)a S ql � except for (, ,)x S
3

3 is used by only one processor. To use the third occurrence

of the array x in the operator S
3

, data should be transferred.

The true dependencies generated by the third occurrence of the array x in the operator S
3

are specified by the functions

�
1 3,

and �
3 3

1

,

()

. For both functions, condition (14), namely, �
1 3

3

3

0 0

1

0

0

,

, ,

()U
x S

t
�

�

�

�
�

�

�

�
�

� and �
3 3

1

3

3

0 1

0 1

1

0

0

,

()

, ,

U
x S

t
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

� are

fulfilled. Hence, by Theorem 5 (�
x S

t

, ,

3

3

1� , n
3

2� , and �
x S

t
n

, ,

3

3

3

!), at the Tth iteration, the broadcast of the data item x t()

to the processors P d ts

x S
(())

(, ,)

3

3

� � �P t z N y t
x S x S

x S(())

(, , ,) (, , ,)

, , ,

 3 3

3

3 1 3 1

3 1

can be carried out, where
 (, , ,)x S
3

3 1

,

z
x S(, , ,)

3

3 1

, and y tx S, , ,

()

3

3 1

are found by formulas (12), (9), and (13) under the assumption that " "fix t� � { }2 and T Tfix � .

We obtain
 (, , ,)

() ()

x S
3

3 1

0 1

0

1

1 0

0

1

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�
�
, whence
 (, , ,)x S

3

3 1

0� ; z
x S(, , ,)

3

3 1

0 0 0 0� � � , y tx S, , ,

()

3

3 1

0 0� � �

	 	
1 1

1 0 1 0(,)(,) � , 	
1

3

3

� �
x S

t
t T

, ,

(,) . Since V tx S, ,

()

3

3

�{ }(,) |p t t p N� 	 	1 for each t N� �1 1, ,� and

V T p T T
t

3

1() (,) |� �{ 	 	p N }, we have V t V T p T T p Nx S

t

, ,

() () (,) |

3

3

3

1# � � 	 	{ } for t T� and V tx S, ,

()

3

3

#V T
t

3

() � %

for t T& . Then �
x S

t
T T p T p N

, ,

(,) |

3

3

1� � 	 	{ } and �
x S

t
t T

, ,

(,)

3

3

� %, t T& . Accordingly, we have y T px S, , ,

()

3

3 1

� ,

where T p N� 	 	1 and y tx S, , ,

()

3

3 1

0� , t T& .

Thus, at the Tth iteration, the broadcast of a data item x T() is carried out from the processor P T(), in which x T() has

been computed to processors P p() , T p N� 	 	1 .

We can now write the following pseudocode of the algorithm (the rules of distribution of communication operations

in a program code are described in [18]):

134

if

do max

()

, (,)

if () : () ()

if (

1

1 1 1

1 1 1

1

	 	

� �

� � �

p N

t p

p t S x b

p � � �

�

2 1

2

2

,) : () ()

()

: ()

t S x p b p

p

x t

if

Broadcast Receive from

endif

enddo

if

Bro

P t

S x p x p a p t x t

p N

()

: () () (,) ()

()

3

1

� �

	 �

adcast Send to

endif

endif

: () (), , ()x p P p P N� 1 �

Let us consider the case when " s � { }2 and " t � { }1 (the second coordinate of the multidimensional timing specifies

a mapping of operations of the algorithm onto a processor row, and the first coordinate specifies the order of execution of

the operations by processors).

We write the code destined for the execution of the algorithm on N �1 processors as follows:

do

if (

t N

p t

t p S x b

t p

�

	 	 �

� � �

� �

1

1 1

1 1 1

2 1

1

,

)

if () : () ()

if (,) S x p b p

t S x p x p a p t x t

2

3

2

: () ()

if () : () () (,) ()

�

� � �

endif

enddo

The equalities � �
� �

a S q a S q

s

l l
, ,

, ,

� are fulfilled for all occurrences (, ,)a S ql � except for (, ,)x S
3

1 and (, ,)x S
3

2

�� �x S x S, , , ,

3 3

1 2

1� � and � �
x S

s

x S

s

, , , ,

3 3

1 2

2� �). In executing the algorithm on a parallel computer, the use of elements of

the first and second occurrences of the array x in the operator S
3

requires data transfer.

Since �
x S

t
n

, ,

3

1

3

! (�
x S

t

, ,

3

1

1� and n
3

2�) and there is a true dependence generated by the occurrences (, ,)x S
3

1 and

(, ,)x S
3

2 , by Theorem 7, at the Tth iteration, the translation of the data item x t() between processors

P d t P t z N ys

x S x S x S

x S(()) (

(, ,) (, , ,) (, , ,)

,

3 3 3

3

1 1 2 1 2

� � �

, ,

())

1 2

t can be organized, where
 (, , ,)x S
3

1 2

, z
x S(, , ,)

3

1 2

, and y tx S, , ,

()

3

1 2

are found by formulas (12), (9), and (13) under the assumption that " "fix t� � { }1 and T Tfix � . We obtain

 (, , ,)

() ()

x S
3

1 2

1 0

1

0

0 1

1

0

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�
�
, whence
 (, , ,)x S

3

1 2

0� ; z
x S(, , ,)

3

1 2

� 0 0 0 0� � and y tx S, , ,

() (,)(,)

3

1 2 1 1

0 0 0 0 1 0 1� � � �	 	 ,

	
1

1

3

� �
x S

t
t T

, ,

(,) . Since V t t p p tx S, ,

() (,) |

3

1

1 1� 	 	 �{ } for each t N� 1, ,� and V T
t

3

() �{(,) |T p 1	 p T	 �1}, we have

V t V T T p p Tx S

t

, ,

() () (,) |

3

1

3

1 1# � 	 	 �{ } for t T� and V tx S, ,

()

3

1

V T
t

3

() � % for t T& . Then �
x S

t
T T p

, ,

(,) |

3

1

� { T � 1

	 	p N} and �
x S

t
t T

, ,

(,)

3

1

� %, t T& . Accordingly, we have y T px S, , ,

()

3

1 2

� , where 1 1	 	 �p T and y tx S, , ,

()

3

1 2

0� , t T& .

Thus, at the Tth iteration, the translation of the data item x T() is carried out between processors P T() , 1 1	 	 �p T . We

write the following pseudocode of the algorithm using the rules of organization of data transceiving that are described in [18]:

135

if Receive from

do

if

() () ()

,

()

2 1 1

1

1 1

	 	 � �

�

	 	 �

p N x p P p

t N

p t

if

if

if

() : () ()

(,) : () ()

(

t p S x b

t p S x t b t

t

� � �

� � �

�

1 1 1

2 1

2

1

2

)

() () ()

: () () (,) (

if Receive fromp x t P p

S x p x p a p t x

� �

� �

2 1

3

t

p N x t P p

)

() () ()if Send to

endif

endif

enddo

	 � �1 1

Note that the method of organization of communications that is proposed in the present article is more easily used

than the method from [18] and does not lead to redundant communications.

CONCLUSIONS

This article considers some aspects of mapping algorithms specified by sequential programs onto parallel computers

with distributed memory. Problems are investigated that arise after the distribution of operations among processors and

determination of the order of executing the operations by a parallel algorithm.

We summarize the obtained results as follows:

— for each element of data arrays, processors (and iterations) are specified on which (at which) it is used;

— the problem of distribution of initial data (input arrays) among processors and problem of determination of the

sizes of the arrays used in each processor are investigated;

— new sufficient conditions convenient in practice are obtained for the possibility of organization of simultaneous

data broadcast and translation.

In further investigations, the authors intend to apply the developed mathematical apparatus (functions using array

elements) to the formalization of communication operations (only computing operations are formalized in the initial

algorithm) and organization of dynamic distribution of array elements in realizing parallel algorithms.

REFERENCES

1. V. V. Voevodin and Vl. V. Voevodin, Parallel Computations [in Russian], BKhV-Peterburg, St. Petersburg (2002).

2. A. W. Lim and M. S. Lam, “An affine partitioning algorithm to maximize parallelism and minimize communication,”

in: Proc. 1st ACM SIGARCH Intern. Conf. on Supercomputing (1999), pp. 228–237.

3. A. Darte and F. Vivien, “Automatic parallelization based on multi-dimensional scheduling,” Techn. Rep. 94-24, LIP,

ENS-Lion (1994).

4. E. V. Adutskevich and N. A. Likhoded, “A consistent generation of pipeline parallelism and distribution of operations

and data among processors,” Programmirovanie, 32, No. 3, 54–65 (2006).

5. E. V. Adutskevich, S. V. Bakhanovich, and N. A. Likhoded, “Conditions of generation of consistent timing and

distribution of operations and data among processors,” in: Proc. Intern. Sci. Conf. “Supercomputer systems and their

application (SSA’2004),” Minsk (2004), pp. 160–164.

6. W. Shang and J. A. B. Fortes, “Independent partitioning of algorithms with uniform dependencies,” IEEE Trans. on

Computers, 41, No. 2, 190–206 (1992).

136

7. D. Bau, I. Kodukula, V. Kotluar, K. Pingali, and P. Stodghill, “Solving alignment using elementary linear algebra,”

in: Proc. 7th Workshop on Languages and Compilers for Parallel Computing, Springer (1994), pp. 46–60.

8. A. W. Lim and M. S. Lam, “Communication-free parallelization via affine transformation,” in: Proc. 7th Workshop

on Languages and Compilers for Parallel Computing, Springer (1994), pp. 92–106.

9. N. A. Likhoded, “Mapping of affine loop nests onto independent processors,” Cybernetics and Systems Analysis,

Vol. 39, No. 3, 459–466 (2003).

10. R. Schreiber and J. J. Dongarra, “Automatic Blocking of Nested Loops,” Tech. Rep. 90-38, The University of

Tennessee (1995).

11. M. Dion, T. Risset, and Y. Robert, “Resource-constrained scheduling of partitioned algorithms on processors arrays,”

Integration, the VLSI Journal, 20, No. 2, 139–159 (1996).

12. A. V. Frolov, “Determination and use of oriented sections of real-word graphs of algorithms,” Programmirovanie,

No. 4, 71–80 (1997).

13. A. W. Lim, S.-W. Liao, and M. S. Lam, “Blocking and array contraction across arbitrary nested loops using affine

partitioning,” in: Proc. ACM SIGPLAN Symposium on Principles and Practice of Programming Languages (2001),

pp. 103–112.

14. A. Darte and Y. Robert, “On the alignment problem,” Parallel Processing Letters, 4, No. 3, 259–270 (1994).

15. M. Dion and Y. Robert, “Mapping affine loop nests,” Parallel Computing, 22, No. 10, 1373–1397 (1996).

16. E. V. Adutskevich and N. A. Likhoded, “Mapping affine loop nests: Solving of the alignment and scheduling

problems,” in: Proc. 7th Int. Conf. on Parallel Computing Technologies (PaCT-2003), (Nizhni Novgorod, Russia,

Sept. 15–19 (2003)), Springer, Berlin (2003), pp. 1–9.

17. E. V. Adutskevich and S. V. Bakhanovich, “Adaptation of algorithms for realization on distributed memory systems:

Space-time localization and data distribution,” in: Proc. Intern. Sci. Conf. “Supercomputer systems and their

application” (SSA’2004), Minsk, Republic of Belarus (2004), pp. 165–169.

18. E. V. Adutskevich and N. A. Likhoded, “Optimization of Data Exchange in Parallel Computers with Distributed

Memory,” Cybernetics and Systems Analysis, Vol. 42, No. 2, 298–303 (2006).

19. M. Dion, C. Randriamaro, and Y. Robert, “Compiling affine nested loops: How to optimize the residual

communications after the alignment phase?” J. Parallel and Distrib. Computing, 30, No. 2, 176–187 (1996).

20. J. Garcia, E. Ayguade, and J. Labarta, “A framework for integrating data alignment, distribution, and redistribution in

distributed memory multiprocessors,” in: IEEE Transactions on Parallel and Distributed Systems, 12, No. 4, 416–430

(2001).

21. L. Pan, J. Xue, M. K. Lai, M. B. Dillencourt, and L. F. Bic, “Toward automatic data distribution for migrating

computations,” in: Int. Conf. on Parallel Processing, Xian, China (2007).

22. U. Banerjee, “An introduction to a formal theory of dependence analysis,” J. Supercomput., No. 2, 133–149 (1988).

23. P. Feautrier, “Some efficient solutions to the affine scheduling problem. Part 1,” Intern. Journ. of Parallel

Programming, 21, No. 5, 313–348 (1992).

24. U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan, “Automatic

transformations for communication-minimized parallelization and locality optimization in the polyhedral model,”

Lecture Notes in Computer Science, 4959, 132–146 (2008).

25. V. V. Voevodin, “Information structure of sequential programs,” Russ. J. of Numerical Analysis and Math. Modeling,

10, No. 3, 279–286 (1995).

26. N. A. Likhoded, “Functions for data distribution among processors and iterations of a parallel algorithm,” Dokl. NAN

Belarusi, 51, No. 4, 19–24 (2007).

137

	Abstract
	INTRODUCTION
	BASIC DENOTATIONS
	FUNCTIONS USING ARRAYS AT ITERATIONS OF LOOP NESTS
	DISTRIBUTION OF OPERATIONS AND DATA AMONG PROCESSORS AND ITERATIONS
	DATA EXCHANGE ORGANIZATION
	CONCLUSIONS
	REFERENCES

