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1. Statement of the Problem, Basic Concepts and Definitions

Consider the following mathematical model of inhomogeneous extreme network

flow problem
Z Z clja:w — min, (1)
(4,5)€U k€K (i,5)

Z Jffj— Z a:é?i:af, forie[k,k;EK; (2)
jert (Uk) JEI (UF)
Yo > Nal=ay, forp=T11 (3)
(4,4)€U k€K (4,5)
S al<dd, for (i) € Up: 4)
kEKo(i )
0 <ajjy <dyy, for k € Ki(i,j), (i,j) € U; (5)
zj; >0, for ke K(i,j) \ Ki(i, ), (i,j) € U, (6)

where G = (I,U) — a finite orientated connected network without multiple
arcs and loops, I is a set of nodes and U C I x I is a set of arcs; K =
{1,...,|K|} — a finite non-empty set of different products (commodities) is
transported through the network G. For each k € K there exists a connected
subnetwork G* = (I*,U*) C G, such that U* C U is a non-empty set of arcs
carrying the k-th product, I¥ = I(U*) — is the set of nodes used for transporting
(producing/consuming/transiting) the k-th product. In order to distinguish the
products, which can simultaneously pass through an arc (7, j) € U, we introduce
the set K(i,j) = {k € K : (i,5) € U¥}. Similarly, K(i) = {k € K : i € I*}
is the set of products simultaneously transported through a node ¢ € I. Now
let us define a set Uy C U as an arbitrary subset of multiarcs of the network
G. Each multiarc (i,j) € Up has an aggregate capacity constraint for a total
amount of transported products from a subset Ky (i,j) C K(i,7),|Ko(i,75)| > 1.
For all arcs (i, j) € U we assume the amount of each product k € K (i,7) to be
non-negative. Moreover, each arc (i, j) € U can be equipped with carrying capa-
cities for products from a set K;(i,7j), where Ki(i,7) C K(i,7) is an arbitrary
subset of products transported through the arc (i,j). I (U¥) = {j € I* :
(i,7) € UFY, I7(U*) = {j € I* : (5, ) € U}, a;k — amount of the k-th product
transported through an arc (i, j); ¢ transportatlon cost through an arc (i, )
of a unit of the k-th product; dij carrymg capacity of an arc (4, j) for the k-th
product; d?j — aggregate capacity of an arc (i,7) € Uy for a total amount of
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products Ko(i,7); /\ M weight of a unit of the k-th product transported through
an arc (i,7) in the p—th additional constraint; «;, — total weighted amount of

products imposed by the p-th additional constraint; af — intensity of a node 7

for the k-th product.

2. Formula for Increment of the Objective Function

Let = = (xfj,(z',j) € Uk € K(i,j)) be a plan [2] of the problem (1)-(6),
i.e. components of the vector x meet the conditions (2)-(6). Along with the
plan z let us define support plan {z,Ug} as a pair, containing of an arbitrary
flow = and a support Ug = {Ug,k‘ € K;U*} U* C Uy, Uy = {(i,j) € Uy :
|K2(i, j)] > 1} of the problem (1)-(6) [2, 4]. Let us consider some other plan
T = (_” (i,7) €U, ke K(i,j) = (xf] —I—A:Efj :(i,4) € Uk € K(i,7)). Then
Az = (Amij, (1,5) e Uk € K(Z,j)) is the vector of flow increments along the
arc (i,7) € U.
Let us denote
k = =k
Fij = Z Lijs  Zij = Z Lijs
keKo(i,) k€Ko(3,5) (7)
AZZ']' =Zij — %ij = Z Axf], (Z,]) € Up.
kEKo(i,j)

Since the plan T meets the conditions (2)-(6) then the following relations

are true
ooah— Y @hi=dicelf keKk, (8)
jer (uk) jeI; (UF)

So> ArPEk =a, p=T11, 9)

(4,§)€U k€K (4,5)

> my Sy T 20, k€ Kolivg), () €U, (10)
where the constraints (4) are written down only for the support multiarcs U*.

—

Subtracting from (8)-(10) the corresponding constraints (2)-(4), we obtain:

doAxh— ) Azf=0,ielf keK, (11)
Jer (UF) JEI;7 (U*)

> Ak p=1,1, (12)

(4,7)eU k€K (i,5)
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> A=Az, (i,§) €U, (13)
keKo(i.4)
where Az;; is defined by formula (7).
Let us order components of solution of system (11)—(13) the following way:
Az' = (Azl,, Axy,, Ax'y), where Azl = (A:Ew,(l ) eUkkeK), Ax,=
(Axl;, (i, )% € Uc,k € K), Azy = (Azf,(6,5)F € U,k € K), Ufy =

UK\ (UFJUE) , UF — spanning tree of the graph G*, k € K.
The general solutlon of the homogeneous system (11) is the following [4]:
Acki= 3 Aaksign(i,g) e, (i,5)f €Uk ke K, (14)
(r.p)REUM\UE
. Loif (i) €
sign(i, /)" =< —1, if (i,j)F e Lt ;

0, if (i,j)F¢ Lk

Let us put the items, corresponding to components of the vector Az’., together:
=D D aldd=), >, dd

kEK (i,5)kcUk keK (ij)keUf
+>0 > sk (15)
kEK (i,j)keUR\U¥:
Let us substitute (14) into (15):

:Z Z ij Z Am’ﬁpsign(i,j)Lf(w)

keK (ij)keUk (T.p)R€UR\UF,
PY Y A,
keK (7,p)keUR\UL
k ko . .LkT k
=Y T | T demeston| ad,
keK (7,p)keUP\UL (i,4)* €U},

k ~
Let us denote > cfjsign(i,j)Lt(w), with A’ﬁp. Then

(Zvj)keLic(-,—’p)
- Z Z AL A, (16)
keK (7,p)keU*\UL
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Knowing that Uk\Ué? = Ug U U}{,, we break the sum again:

Ap()=>" > Ab Al +>" > Ak ALk (17)

keK (r,p) keUk keEK (1, p)keUk

By analogy with [6], [7] we obtain the components of the vector Axj. for
system (11)-(13):

!
L ~ ~
A"Em = Z Vt(w)’c,pﬁp + Z Vt(w)’“7l+5(i,j)5l+5(i7j)’

p=1 (i,5)eU*
k k a Epv _l
T, eUnkeK, = ~ . (18
(. p)* € UL g (B&Lj),( )€U0> (18)

The values of the components of the vectors Bp and Ef(m-) are computed ac-
cording to the following formulas:

By = - Z Z Rp(Lf(T,p))Axﬁpv p= m7 (19)

keK (T, p)kEUk
Bﬁ( AZZ] Z Z 6&(2,] ))A‘Tﬁpa (17]) ceU”. (20)
keKo(i,5) (r,p)k UL,

Taking into account the formula (14) we obtain:

=2 2 A Z%p e

kEK (r,p)keUL,

P ANk k
+ Z Vi(r,p)k 1+€(i,7) PI+€ (i) +Z Z A7 Az7,. (21)

(i,j)eU* keK (r,p)keUk
Let us introduce the following denotation:

Tp = Z Z zﬁpyt(ﬂ-,p)k,pv p= 77

kK (r, p)k

TU_Z Z T Vi(r,p)k 1+£(i.5) (i,5) € U™,

kEK (1, p)kEU’c

[

Taking into account the denotations made, we may represent Ag(x) the follow-
ing way:

Ap(z) = Z mjAzij—i—Z Z [&’ﬁp

(4,9)€U~ keK (r,p)keUk
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k k
—er L) = D rifey L) | Ak,
(1.5)eU

Z ’y,JAz”—i—Z Z Ak Aa:m, (22)

(i,9)eU~ keK (r,p)keU¥
where Az;; is defined by formula (7)

Af—p = Aﬁp - ZTPRP(Lf(T )) o Z rijéﬁ(iyj) (Lf(‘r,p))’
p=1 (i,7)eU*

(.p)" €Uk, keK, ~j=rj. (23)

3. Conditions of Optimality

Definition 1. A support plan {z, Ug} is called nonsingular if the following
conditions are met:
0< a: <dfj, ke Ky(i,5), (i.j) €U,
xl; %0, ke K30 j), (id) € U,
ah; > o ke Kg(z' INKLG, ), (i,5) € U\Uy,

0< Y ab<dl, (i,5) € U\U".
keKo(i,5)

(24)

Theorem 1. Let {x,Ugs} be a support plan. The following conditions are
necessary for optimality of {x,Us} and are also sufficient if {x,Ug} is nonsin-
gular:

xf; =0 if A% >0,
xf] =df, 1fAk <0, (25)
f € [O’df]] lfAk _0 k € K}V(%])a(%]) € Ua
k. =0 if Ak >0
zg 1] )
ok > 00f A = 0,k € K3(i. ), (i,5) € Up; (26)

ay; =0 if AF; >0,

2f > 00 AL = 0.k € Kn(i,j)\KY (), (7)€ U\ 27
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Z :EZ—ZO ff%‘j>0,

keKo(i,5)
Z :Ef] = d?] ff%‘j < 0, (28)
keKo(i,5)
> afy € [0,dY] if yij =0, (4,§) € U*;
keKo(i.5)
Proof. The proof is given in [4]. O

In the criterion of an optimality (25)—(28) we used the analytical formula
for computing reduced costs A’ﬁ :

k Nk k
ATp = A Z rp t(7—p Z 7‘@‘7(5&‘(2’]) (Lt(Tvp))’
(4,5)eU*

(.p)" €Uk, keK, ~j=r;.

For computing reduced costs A’ﬁp we can build the vector r = (r, : p =
1,574, (1,7) € U*), u; = (uf,k € K(i)), i € I as a solution of the potential
system [2, 4].

We compute the reduced costs Afj for the arcs (i,5)% € Uy, UY = Uk\Ug,
k € K and for the arcs ()%, k € K2(i,7), (i,j) € U* using the following
formula:

!
Afj:cfj— uf—ué‘?—l—Z)\Zprp . (29)

One may check that the formulas (23) and (29) give the identical results
for the problem (1)-(6). Strategy of application (23) or (29) are described in
1, 4, 6].

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin, Network Flows:
Theory, Algorithms, and Applications, New Jersey (1993).

[2] R. Gabasov, F.M. Kirillova, O.I. Kostjukova, Constructive Methods of Op-
timization. Part 3: Network Problems, Minsk, BSU (1986), In Russian.

[3] L.A. Pilipchuk, Y.V. Malakhouskaya, D.R. Kincaid, M. Lai, Algorithms of
solving large sparse underdetermined linear systems with embedded net-
work structure, Fast-West J. of Mathematics, 4, No. 2 (2002), 191-202.



362

[4]

[5]

L.A. Pilipchuk, A.S. Pilipchuk, Y.H. Pesheva

L.A. Pilipchuk, Linear Inhomogeneous Problems of Networks Flows,
Minsk, BSU (2009), In Russian.

L.A. Pilipchuk, A.S. Pilipchuk, Y.H. Pesheva, Algorithms for construc-
tion of optimal and suboptimal solutions in network optimization problem,
IJPAM, 54, No. 2 (2009), 193-205.

L.A. Pilipchuk, I.V. Romanovski, Y.H. Pesheva, Inverse matrix updating
in one inhomogeneous network flow programming problem, Mathematica
Balkanica, New Series, 21, No-s: 1-2 (2008), 329-338.

L.A. Pilipchuk, E.S. Vecharynski, Y.H. Pesheva, Solution of large linear
systems with embedded network structure for a non-homogeneous network

flow programming problem, Mathematica Balkanica, New Series, 22, No-s:
3-4 (2008), 233-252.



