International Journal of Pure and Applied Mathematics

Volume 60 No. 3 2010, 345-354

DECOMPOSITION OF THE NETWORK SUPPORT FOR ONE NON-HOMOGENEOUS NETWORK FLOW PROGRAMMING PROBLEM

L.A. Pilipchuk¹, A.S. Pilipchuk², Y.H. Pesheva³ §

¹Belarussian State University
4, Nezalezhnosti Ave., Minsk, 220050, BELARUS
e-mail: pilipchuk@bsu.by

²State Scientific Institution

99, Academician A.K. Krasin Str., Minsk, 220109, BELARUS
e-mail: pilip74@rambler.ru

³Department of Differential Equations
Faculty of Applied Mathematics and Informatics
Technical University of Sofia

Abstract: We consider one extremal linear non-homogeneous problem of flow programming with additional constraints of general kind. We use the network properties of the non-homogeneous problem for the decomposition of a network

AMS Subject Classification: 65K05, 90C08, 90C35, 15A06 Key Words: multicommodity network flow programming, transportation problem, sparse matrices, decomposition of support, fundamental system of cycles, direct method, spanning tree, cyclic arc

P.O. Box 384, Sofia, 1000, BULGARIA e-mail: yhp@vmei.acad.bg

1. Mathematical Model

Let G = (I, U) be a finite oriented connected network without multiple arcs and loops, where I is a set of nodes and $U \subset I \times I$ is a set of arcs. Assume that a finite non-empty set $K = \{1, \ldots, |K|\}$ of different products (commodities) is

Received: March 20, 2010

support into trees and cyclic parts.

© 2010 Academic Publications

[§]Correspondence author

transported through the network G. For each $k \in K$ there exists a connected subnetwork $G^k = (I^k, U^k) \subseteq G$, such that $U^k \subseteq U$ is a non-empty set of arcs carrying the k-th product, $I^k = I(U^k)$, $I(U^k)$ – is the set of nodes used for transporting (producing/consuming/transiting) the k-th product. In order to distinguish the products, which can simultaneously pass through an arc $(i,j) \in U$, we introduce the set $K(i,j) = \{k \in K : (i,j) \in U^k\}$. Similarly, $K(i) = \{k \in K : i \in I^k\}$ is the set of products simultaneously transported through a node $i \in I$.

Now let us define a set U_0 as an arbitrary subset of multiarcs of the network $G, U_0 \subseteq U$. Each multiarc $(i,j) \in U_0$ has an aggregate capacity constraint for a total amount of transported products from a subset $K_0(i,j) \subseteq K(i,j), |K_0(i,j)| > 1$. For all arcs $(i,j) \in U$ we assume the amount of each product $k \in K(i,j)$ to be non-negative. Moreover, each arc $(i,j) \in U$ can be equipped with carrying capacities for products from a set $K_1(i,j)$, where $K_1(i,j) \subseteq K(i,j)$ is an arbitrary subset of products transported through the arc (i,j).

Thus, given transportation costs through arcs $(i, j) \in U$ for all products, we consider the min-cost flow problem on the described network G, where the products are, additionally, related by equality constraints of a general kind.

$$\sum_{(i,j)\in U} \sum_{k\in K(i,j)} c_{ij}^k x_{ij}^k \longrightarrow \min, \tag{1}$$

$$\sum_{j \in I_i^+(U^k)} x_{ij}^k - \sum_{j \in I_i^-(U^k)} x_{ji}^k = a_i^k, \quad \text{for } i \in I^k, k \in K;$$
 (2)

$$\sum_{(i,j)\in U} \sum_{k\in K(i,j)} \lambda_{ij}^{kp} x_{ij}^k = \alpha_p, \quad \text{for } p = \overline{1,l};$$
 (3)

$$\sum_{k \in K_0(i,j)} x_{ij}^k \le d_{ij}^0, \quad \text{for } (i,j) \in U_0;$$
(4)

$$0 \le x_{ij}^k \le d_{ij}^k$$
, for $k \in K_1(i,j), (i,j) \in U$; (5)

$$x_{ij}^k \ge 0$$
, for $k \in K(i,j) \setminus K_1(i,j), (i,j) \in U$, (6)

where $I_i^+(U^k) = \{j \in I^k : (i,j) \in U^k\}, I_i^-(U^k) = \{j \in I^k : (j,i) \in U^k\}; x_{ij}^k$ – amount of the k-th product transported through an arc (i,j); c_{ij}^k – transportation cost through an arc (i,j) of a unit of the k-th product; d_{ij}^k – carrying capacity of an arc (i,j) for the k-th product; d_{ij}^0 – aggregate capacity of an arc (i,j) for a total amount of products $K_0(i,j)$; λ_{ij}^{kp} – weight of a unit of

the k-th product transported through an arc (i, j) in the p-th additional constraint; α_p – total weighted amount of products imposed by the p-th additional constraint; a_i^k – intensity of a node i for the k-th product.

Definition 1. The vector $x = (x_{ij}^k, (i, j) \in U, k \in K(i, j))$ is a non-homogeneous flow on the network G, if it satisfies the constraints (2)-(6).

For brevity, further in the paper, we will call a "non-homogeneous flow", simply, "a flow" and a "multinetwork", simply "a network".

Definition 2. The flow $x^0 = (x_{ij}^{0k}, (i, j) \in U, k \in K(i, j)), x^0 \in X$, where X is a set of all flows, is optimal if

$$\sum_{(i,j)\in U} \sum_{k\in K(i,j)} c_{ij}^k x_{ij}^{0k} = \min_{x\in X} \sum_{(i,j)\in U} \sum_{k\in K(i,j)} c_{ij}^k x_{ij}^k.$$

Definition 3. We call (2)-(4) the system of main constraints of the problem (1)-(6). Constraints (5)-(6) are the direct constraints of the problem (1)-(6).

Let us name, traditionally, different parts of the system of main constraints.

Definition 4. We call (2) the network part of the system of main constraints of the problem (1)-(6). Equations (3) are the additional part of the system of main constraints (additional constraints) of the problem (1)-(6). Inequalities (4) form the sparse part of the system of main constraints of the problem (1)-(6).

2. Example

In this section we introduce an example of the problem (1)-(6) for the multinetwork $G = (I, U), I = \{1, 2, 3, 4\}, U = \{(1, 3), (1, 4), (2, 1), (2, 4), (3, 2), (4, 3)\}.$ Let $K = \{1, 2, 3, 4, 5\}$ be the set of transported products (Figure 1). Characteristics of the structure of the network G are provided in Table 1. The mathematical model of the problem (1)-(6) for the multinetwork G = (I, U) (Figure 1) can be represented as (1a)-(6a).

$$\begin{array}{l} 2x_{13}^1 + x_{13}^2 + 3x_{13}^3 + 4x_{13}^5 + x_{14}^1 + 8x_{14}^4 + 5x_{21}^2 + x_{21}^4 + x_{24}^1 \\ +6x_{24}^2 + 2x_{24}^3 + 3x_{32}^2 + 2x_{32}^4 + x_{32}^5 + 4x_{43}^2 + x_{43}^3 \rightarrow \min, \end{array} \tag{1a}$$

Figure 1: Multinetwork G = (I, U)

Figure 2: Networks $G^k = (I^k, U^k), k = 1, 2.$

$$x_{13}^{1} + x_{14}^{1} = 1, \qquad x_{13}^{2} - x_{21}^{2} = -0.75,$$

$$x_{24}^{1} = 0.5, \qquad x_{21}^{2} + x_{24}^{2} - x_{32}^{2} = 0.25,$$

$$-x_{13}^{1} - x_{43}^{1} = -1, \qquad x_{32}^{2} - x_{13}^{2} - x_{43}^{2} = 0.5,$$

$$x_{43}^{1} - x_{14}^{1} - x_{24}^{1} = -0.5, \qquad x_{43}^{2} - x_{24}^{2} = 0,$$

$$x_{13}^{3} = 0, \qquad x_{13}^{4} + x_{14}^{4} - x_{21}^{4} = 0.5,$$

$$x_{24}^{3} = 1, \qquad x_{21}^{4} + x_{24}^{4} - x_{32}^{4} = -0.25,$$

$$-x_{13}^{3} - x_{43}^{3} = -1, \qquad x_{32}^{4} - x_{13}^{4} = 0.75,$$

$$x_{43}^{3} - x_{24}^{3} = 0, \qquad -x_{14}^{4} - x_{24}^{4} = -1,$$

$$x_{13}^{5} = 1.5,$$

$$-x_{32}^{5} = -0.5,$$

$$x_{32}^{5} - x_{13}^{5} = -1,$$

$$(2a)$$

(i,j)			(1, 3))		(1,4)				
k	1	2	3	4	5	1	2	3	4	5
U^k	+	+	+	+	+	+			+	
U_0	+									
K(i,j)	$\{1, 2, 3, 4, 5\}$					{1,4}				
$K_1(i,j)$	$\{1, 2, 5\}$					{4}				
$K_0(i,j)$	${3,4}$									
(i,j)	(2,1)					(2,4)				
k	1	2	3	4	5	1	2	3	4	5
U^k		+		+		+	+	+	+	
U_0										
K(i,j)		$\{2,4\}$					$\{1, 2, 3, 4\}$			
$K_1(i,j)$		{	[2, 4]	}		{1,3}				
$K_0(i,j)$										
(i,j)			(3, 2))		(4,3)				
k	1	2	3	4	5	1	2	3	4	5
U^k		+		+	+	+	+	+		
U_0		·						+		·
K(i,j)	$\{2, 4, 5\}$					$\{1, 2, 3\}$				
$K_1(i,j)$	$\{2, 4, 5\}$					{3}				
$K_0(i,j)$							{	[1, 2]		

Table 1: Characteristics of the network structure

$$2x_{13}^{1} + 3x_{13}^{2} + x_{13}^{3} + x_{13}^{4} + 2x_{13}^{5} + x_{14}^{1} + 3x_{14}^{4} + 2x_{21}^{2} + x_{21}^{4} + x_{24}^{1} + x_{24}^{2} + 4x_{24}^{3} + 4x_{24}^{4} + 2x_{32}^{2} + 2x_{32}^{4} + 3x_{32}^{5} + x_{43}^{1} + x_{43}^{2} + 3x_{43}^{3} = 42,$$

$$2x_{13}^{1} + 2x_{13}^{2} + 3x_{13}^{3} + x_{13}^{4} + 2x_{13}^{5} + 3x_{14}^{1} + x_{14}^{4} + 2x_{21}^{2} + x_{21}^{4} + x_{24}^{1} + 2x_{24}^{2} + 4x_{24}^{3} + 3x_{43}^{3} = 58,$$

$$x_{13}^{3} + x_{13}^{4} \le 6, \ x_{13}^{3} \ge 0, \ x_{13}^{4} \ge 0,$$

$$x_{13}^{3} + x_{13}^{4} \le 6, \ x_{13}^{3} \ge 0, \ x_{13}^{4} \ge 0,$$

$$x_{13}^{3} + x_{13}^{4} \le 7, \ x_{13}^{4} \ge 0, \ x_{24}^{4} \ge 0,$$

$$(3a)$$

Figure 3: Networks $G^k = (I^k, U^k), k = 3, 4, 5.$

$$\begin{array}{llll} 0 \leq x_{13}^1 \leq 4, & 0 \leq x_{14}^4 \leq 4, & 0 \leq x_{24}^1 \leq 2, & 0 \leq x_{32}^4 \leq 3, \\ 0 \leq x_{13}^2 \leq 2, & 0 \leq x_{21}^2 \leq 5, & 0 \leq x_{24}^3 \leq 4, & 0 \leq x_{32}^5 \leq 2, \\ 0 \leq x_{13}^5 \leq 6, & 0 \leq x_{21}^4 \leq 2, & 0 \leq x_{32}^2 \leq 4, & 0 \leq x_{43}^3 \leq 4, \end{array} \tag{5a}$$

$$x_{14}^1 \ge 0, \ x_{24}^2 \ge 0, \ x_{24}^4 \ge 0.$$
 (6a)

3. Decomposition of the Network Support, Determinants of Cycles

In this section we define a support of the network G = (I, U) for the problem (1)-(6). In order to give the definition we will need to introduce some more sets.

Let $U_S^k \subseteq U^k, k \in K$ be arbitrary subsets of arcs of the networks G^k . For each arc $(i,j) \in U$ we define a subset of products $K_S(i,j) \subseteq K(i,j)$, $K_S(i,j) = \{k \in K : (i,j)^k \in U_S^k\}$, transported through an arc (i,j). Also, for arcs from the set U_0 we introduce a subset U^* , such that $U^* \subseteq \overline{U}_0 \subseteq U_0$, $\overline{U}_0 = \{(i,j) \in U_0 : |K_S^0(i,j)| > 1\}$, where $K_S^0(i,j) = K_S(i,j) \cap K_0(i,j), (i,j) \in U_0$.

Let $U_S^k \subseteq U^k, k \in K$ be arbitrary subsets of arcs of the subnetworks G^k . Thus, for each arc $(i,j) \in U$ we can define a subset of products $K_S(i,j) \subseteq K(i,j), K_S(i,j) = \{k \in K : (i,j)^k \in U_S^k\}$, transported through an arc (i,j). For arcs from the set U_0 we introduce a subset U^* , so that $U^* \subseteq U_0$. Also, we denote $K_S^0(i,j) = K_S(i,j) \cap K_0(i,j), (i,j) \in U_0$.

Definition 5. The aggregate of sets $U_S = \{U_S^k, k \in K; U^*\}$ $U^* \subseteq \overline{U}_0, \overline{U}_0 = \{(i,j) \in U_0 : |K_S^0(i,j)| > 1\}$, is a support of the network G (or, network support) for the problem (1)-(6), if the system

$$\sum_{j \in I_i^+(\hat{U}^k)} x_{ij}^k - \sum_{j \in I_i^-(\hat{U}^k)} x_{ji}^k = 0, \ i \in I^k, \ k \in K,$$
(7)

$$\sum_{k \in K} \sum_{(i,j) \in \hat{U}^k} \lambda_{ij}^{kp} x_{ij}^k = 0, \ p = \overline{1,l}, \tag{8}$$

$$\sum_{k \in K_S^0(i,j)} x_{ij}^k = 0, \ (i,j) \in \hat{U}^*, \tag{9}$$

has only the trivial solution $x_{ij}^k = 0, (i,j) \in \hat{U}^k, k \in K$, when $\hat{U}^k = U_S^k$ and $\hat{U}^* = U^*, \hat{K}_S^0(i,j) = K_S^0(i,j)$, but has a non-trivial solution if either:

1)
$$\hat{U}^k = U_S^k, k \in K; \hat{U}^* = U^* \setminus (i_0, j_0), (i_0, j_0) \in U^*, \text{ or } i_0 \in U^*$$

2)
$$\hat{U}^k = U_S^k, k \in K \setminus k_0, \hat{U}_S^{k_0} = U_S^{k_0} \bigcup (i_0, j_0)^{k_0}, (i_0, j_0)^{k_0} \notin U_S^{k_0}, k_0 \in K; \hat{U}^* = U^*,$$

$$\hat{K}_{S}^{0}(i,j) = \begin{cases} K_{S}^{0}(i,j), & \text{if } (i,j) \neq (i_{0},j_{0}), \\ K_{S}^{0}(i,j) \bigcup (K^{0} \cap K^{0}(i,j)), & \text{if } (i,j) = (i_{0},j_{0}). \end{cases}$$

Consider the support structure $U_S = \{U_S^k, k \in K; U^*\}, U_S^k \subset U^k, k \in K; U^* \subset \overline{U_0}, \overline{U_0} = \{(i,j) \in U_0 : |K_S^0| > 1\}, K_S(i,j) = \{k \in K(i,j) : (i,j)^k \in U_S^k\}, (i,j) \in U, K_S^0(i,j) = K_S(i,j) \cap K_0(i,j), (i,j) \in U_0.$ Let the set U_S^k contain l_k arcs $(i,j)^k$ such that removing them from the set U_S^k gives the set U_T^k such that the network $(I(U_T^k), U_T^k)$ contains no cycles but every network $(I(U_T^k), U_T^k) \cup (i,j)^k$ contains a cycle. Let us denote $U_C^k = U_S^k \setminus U_T^k, k \in K$.

Definition 6. The elements of the set $U_C = \bigcup_{k \in K} U_C^k$ are called cyclic arcs.

The elements of the set $U_T = \bigcup_{k \in K} U_T^k$ are called tree arcs.

Let K be the set $\{1, 2, \ldots, |K|\}$. Let us suppose that U_S^k contain l_k independent cycles, $k \in K$. The cycles $Z_k = \{L_{\tau\rho}^k, (\tau, \rho)^k \in U_C^k\}$ of the network G are called independent if every cycle has at least one edge that does not belong to other cycles and the unitary circulations [3], [5] form a linearly-independent system of vectors, $k \in K$.

Every arc $(\tau, \rho)^k \in U_C^k$ belongs to some cycle $L_{\tau\rho}^k$ from the set U_S^k . If the network $G_S^k = (I(U_S^k), U_S^k)$ is connected then the cycles $Z_k = \{L_{\tau\rho}^k, (\tau, \rho)^k \in U_C^k\}, k \in K$ introduced the same way form the fundamental set of cycles. We introduse arbitrary numbering of arcs within the set and $U_C = \bigcup_{k \in K} U_C^k$. Let

us mark every arc $(\tau \rho)^k \in U_C^k$ with the number $t = t(\tau \rho)^k$. Let us consider an arbitrary cycle $L_t^k, t = t(\tau, \rho)^k$. We choose the direction of cycle detour such that the arc $(\tau, \rho)^k$ is a forward one. Let $L_t^{k_+}, L_t^{k_-}$ be sets of forward and backward arcs of the cycle L_t^k correspondingly.

Definition 7. The number $R_p(L_t^k) = \sum_{(i,j)^k \in L_t^k} \lambda_{ij}^{kp} \operatorname{sign}(i,j)^{L_t^k}$ is called the determinant of the cycle L_t^k with respect to the additional restriction (3) with the number p, where

$$\operatorname{sign}(i,j)^{L_t^k} = \begin{cases} 1, & \text{if } (i,j)^k \in L_t^{k_+}; \\ -1, & \text{if } (i,j)^k \in L_t^{k_-}; \\ 0, & \text{if } (i,j)^k \notin L_t^k. \end{cases}$$

Let us put the arcs of the set U^* in arbitrary order. Let $\xi = \xi(i,j)$ be the serial number of the multiarc (i,j) in the set $U^*, 1 \leq \xi \leq m, m = |U^*|$. We build the matrix $D = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix}$, where $D_1 = (R_p(L_t^k), p = \overline{1,l}, t = \overline{1,t}), \widetilde{t} = |U_c|$ is a matrix of order $l \times \widetilde{t}$ consisting of determinants $R_p(L_t^k) = R_p(L_{(\tau,\rho)}^k), t = t(\tau,\rho)$ with respect to the restrictions (3), $D_2 = (\delta_{\xi(i,j)}(L_t^k), \xi(i,j) = \overline{1,m}, t = \overline{1,t})$ is an $m \times \widetilde{t}$ -matrix that consists of the following elements:

If $\tilde{t} \neq l+m, m=|U^*|$ we supply the matrix D with zeros to make it a square matrix of order $\max\{\tilde{t}, l+|U^*|\}$. Let $R(U_S)=\det D$.

4. Theoretical – Graphical Properties

Theorem 1. (Criterion of Support) The set of arcs $U_S = \{U_S^k, k \in K, U^*\}$, $U_S^k \subset U^k, k \in K; U^* \subset \overline{U}_0, \overline{U}_0 = \{(i,j) \in U_0 : |K_S^0| > 1\}, K_S(i,j) = \{k \in K(i,j) : (i,j)^k \in U_S^k\}, (i,j) \in U, K_S^0(i,j) = K_S(i,j) \cap K_0(i,j), (i,j) \in U_0 \text{ is a support of the network } G \text{ iff the following conditions are met:}$

- 1. $I(U_S^k) = I^k, k \in K;$
- 2. U_S^k is a connected set, $k \in K$;
- 3. $R(U_S) \neq 0$.

Proof. Is made [5].

Figure 4: A support for the problem (1a)-(6a): bold arrows mean tree arcs, thin arrows mean cyclic arcs

(i,j)	(1,3)	(1,4)	(2,1)
$K_S(i,j)$	$\{2, 3, 4, 5\}$	{1}	$\{2,4\}$
$K_S^1(i,j)$	$\{2, 5\}$	Ø	$\{2, 4\}$
$K_S^0(i,j)$	$\{3,4\}$		
$K_N(i,j)$	{1}	{4}	Ø
$K_N^1(i,j)$	{1}	{4}	Ø
$K_N^0(i,j)$	Ø		
10 (,0)			
(i,j)	(2,4)	(3, 2)	(4,3)
	$ \begin{array}{c} (2,4) \\ \{1,2,3,4\} \end{array} $	$(3,2)$ $\{2,5\}$	$(4,3)$ $\{2,1,3\}$
(i,j)	(' '		,
$(i,j) \\ K_S(i,j)$	$\{1, 2, 3, 4\}$	$\{2, 5\}$	$\{2, 1, 3\}$
$ \begin{array}{c} (i,j) \\ K_S(i,j) \\ K_S^1(i,j) \end{array} $	$\{1, 2, 3, 4\}$	$\{2, 5\}$	$\{2,1,3\}$ $\{3\}$
$ \begin{array}{c} (i,j) \\ K_S(i,j) \\ K_S^0(i,j) \\ K_S^0(i,j) \end{array} $	{1,2,3,4} {1,3}	$\{2,5\}$ $\{2,5\}$	$\{2,1,3\}$ $\{3\}$ $\{2,1\}$

Table 2: Characteristics of the support for the problem (1a)-(6a)

Let $D = D(U_S)$ be the matrix of determinants that corresponds to the support $U_S = \{U_S^k, k \in K, U^*\}$.

An example of a support for the problem (1a)-(6a) can be found at Figure 4. The characteristics of the support are represented in Table 2, where

$$K_{S}^{1}(i,j) = K_{S}(i,j) \bigcap K_{1}(i,j), (i,j) \in U;$$

$$K_{S}^{0}(i,j) = K_{S}(i,j) \bigcap K_{0}(i,j), (i,j) \in U_{0};$$

$$K_{N}(i,j) = K(i,j) \setminus K_{S}(i,j);$$

$$K_{N}^{1}(i,j) = K_{N}(i,j) \bigcap K_{1}(i,j), (i,j) \in U;$$

$$K_{N}^{0}(i,j) = K_{N}(i,j) \bigcap K_{0}(i,j), (i,j) \in U_{0}.$$

$$U^{*} = \varnothing, \ D = \begin{bmatrix} R_{1}(L_{32}^{2}) & R_{1}(L_{43}^{2}) \\ R_{2}(L_{32}^{2}) & R_{2}(L_{43}^{2}) \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ 6 & 1 \end{bmatrix}, \ \det D \neq 0.$$

References

- [1] Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin, *Network Flows: Theory, Algorithms, and Applications*, New Jersey (1993).
- [2] L.A. Pilipchuk, A.S. Pilipchuk, Y.H. Pesheva, Algorithms for construction of optimal and suboptimal solutions in network optimization problem, *IJPAM*, **54**, No. 2 (2009), 193-205.
- [3] L.A. Pilipchuk, E.S. Vecharynski, Y.H. Pesheva, Solution of large linear systems with embedded network structure for a non-homogeneous network flow programming problem, *Mathematica Balkanica*, New Series, **22**, No-s: 3-4 (2008), 233-252.
- [4] L.A. Pilipchuk, *Linear Inhomogeneous Problems of Networks Flows*, Minsk, BSU (2009), In Russian.