International Journal of Pure and Applied Mathematics

Volume 60 No. 3 2010, 345-354

DECOMPOSITION OF THE NETWORK SUPPORT FOR ONE NON-HOMOGENEOUS NETWORK FLOW PROGRAMMING PROBLEM

L.A. Pilipchuk ${ }^{1}$, A.S. Pilipchuk ${ }^{2}$, Y.H. Pesheva ${ }^{3}$ §
${ }^{1}$ Belarussian State University
4, Nezalezhnosti Ave., Minsk, 220050, BELARUS
e-mail: pilipchuk@bsu.by
${ }^{2}$ State Scientific Institution
99, Academician A.K. Krasin Str., Minsk, 220109, BELARUS
e-mail: pilip74@rambler.ru
${ }^{3}$ Department of Differential Equations
Faculty of Applied Mathematics and Informatics
Technical University of Sofia
P.O. Box 384, Sofia, 1000, BULGARIA
e-mail: yhp@vmei.acad.bg

Abstract

We consider one extremal linear non-homogeneous problem of flow programming with additional constraints of general kind. We use the network properties of the non-homogeneous problem for the decomposition of a network support into trees and cyclic parts.

AMS Subject Classification: 65K05, 90C08, 90C35, 15A06
Key Words: multicommodity network flow programming, transportation problem, sparse matrices, decomposition of support, fundamental system of cycles, direct method, spanning tree, cyclic arc

1. Mathematical Model

Let $G=(I, U)$ be a finite oriented connected network without multiple arcs and loops, where I is a set of nodes and $U \subset I \times I$ is a set of arcs. Assume that a finite non-empty set $K=\{1, \ldots,|K|\}$ of different products (commodities) is

[^0]transported through the network G. For each $k \in K$ there exists a connected subnetwork $G^{k}=\left(I^{k}, U^{k}\right) \subseteq G$, such that $U^{k} \subseteq U$ is a non-empty set of arcs carrying the k-th product, $I^{k}=I\left(U^{k}\right), I\left(U^{k}\right)$ - is the set of nodes used for transporting (producing/consuming/transiting) the k-th product. In order to distinguish the products, which can simultaneously pass through an arc $(i, j) \in U$, we introduce the set $K(i, j)=\left\{k \in K:(i, j) \in U^{k}\right\}$. Similarly, $K(i)=\left\{k \in K: i \in I^{k}\right\}$ is the set of products simultaneously transported through a node $i \in I$.

Now let us define a set U_{0} as an arbitrary subset of multiarcs of the network $G, U_{0} \subseteq U$. Each multiarc $(i, j) \in U_{0}$ has an aggregate capacity constraint for a total amount of transported products from a subset $K_{0}(i, j) \subseteq$ $K(i, j),\left|K_{0}(i, j)\right|>1$. For all arcs $(i, j) \in U$ we assume the amount of each product $k \in K(i, j)$ to be non-negative. Moreover, each $\operatorname{arc}(i, j) \in U$ can be equipped with carrying capacities for products from a set $K_{1}(i, j)$, where $K_{1}(i, j) \subseteq K(i, j)$ is an arbitrary subset of products transported through the arc (i, j).

Thus, given transportation costs through $\operatorname{arcs}(i, j) \in U$ for all products, we consider the min-cost flow problem on the described network G, where the products are, additionally, related by equality constraints of a general kind.

$$
\begin{gather*}
\sum_{(i, j) \in U} \sum_{k \in K(i, j)} c_{i j}^{k} x_{i j}^{k} \longrightarrow \text { min, } \tag{1}\\
\sum_{j \in I_{i}^{+}\left(U^{k}\right)} x_{i j}^{k}-\sum_{j \in I_{i}^{-}\left(U^{k}\right)} x_{j i}^{k}=a_{i}^{k}, \quad \text { for } i \in I^{k}, k \in K ; \tag{2}\\
\sum_{(i, j) \in U} \sum_{k \in K(i, j)} \lambda_{i j}^{k p} x_{i j}^{k}=\alpha_{p}, \quad \text { for } p=\overline{1, l} ; \tag{3}\\
\sum_{k \in K_{0}(i, j)} x_{i j}^{k} \leq d_{i j}^{0}, \quad \text { for }(i, j) \in U_{0} ; \tag{4}\\
0 \leq x_{i j}^{k} \leq d_{i j}^{k}, \quad \text { for } k \in K_{1}(i, j),(i, j) \in U ; \tag{5}\\
x_{i j}^{k} \geq 0, \quad \text { for } k \in K(i, j) \backslash K_{1}(i, j),(i, j) \in U, \tag{6}
\end{gather*}
$$

where $I_{i}^{+}\left(U^{k}\right)=\left\{j \in I^{k}:(i, j) \in U^{k}\right\}, I_{i}^{-}\left(U^{k}\right)=\left\{j \in I^{k}:(j, i) \in U^{k}\right\} ; x_{i j}^{k}$ - amount of the k-th product transported through an arc (i, j); $c_{i j}^{k}$ - transportation cost through an arc (i, j) of a unit of the k-th product; $d_{i j}^{k}$ - carrying capacity of an arc (i, j) for the k-th product; $d_{i j}^{0}$ - aggregate capacity of an arc $(i, j) \in U_{0}$ for a total amount of products $K_{0}(i, j) ; \lambda_{i j}^{k p}$ - weight of a unit of
the k-th product transported through an arc (i, j) in the p-th additional constraint; α_{p} - total weighted amount of products imposed by the p-th additional constraint; a_{i}^{k} - intensity of a node i for the k-th product.

Definition 1. The vector $x=\left(x_{i j}^{k},(i, j) \in U, k \in K(i, j)\right)$ is a nonhomogeneous flow on the network G, if it satisfies the constraints (2)-(6).

For brevity, further in the paper, we will call a "non-homogeneous flow", simply, "a flow" and a "multinetwork", simply "a network".

Definition 2. The flow $x^{0}=\left(x_{i j}^{0 k},(i, j) \in U, k \in K(i, j)\right), x^{0} \in X$, where X is a set of all flows, is optimal if

$$
\sum_{(i, j) \in U} \sum_{k \in K(i, j)} c_{i j}^{k} x_{i j}^{0 k}=\min _{x \in X} \sum_{(i, j) \in U} \sum_{k \in K(i, j)} c_{i j}^{k} x_{i j}^{k} .
$$

Definition 3. We call (2)-(4) the system of main constraints of the problem (1)-(6). Constraints (5)-(6) are the direct constraints of the problem (1)-(6).

Let us name, traditionally, different parts of the system of main constraints.
Definition 4. We call (2) the network part of the system of main constraints of the problem (1)-(6). Equations (3) are the additional part of the system of main constraints (additional constraints) of the problem (1)-(6). Inequalities (4) form the sparse part of the system of main constraints of the problem (1)-(6).

2. Example

In this section we introduce an example of the problem (1)-(6) for the multinetwork $G=(I, U), I=\{1,2,3,4\}, U=\{(1,3),(1,4),(2,1),(2,4),(3,2),(4,3)\}$. Let $K=\{1,2,3,4,5\}$ be the set of transported products (Figure 1). Characteristics of the structure of the network G are provided in Table 1. The mathematical model of the problem (1)-(6) for the multinetwork $G=(I, U)$ (Figure 1) can be represented as (1a)-(6a).

$$
\begin{align*}
& 2 x_{13}^{1}+x_{13}^{2}+3 x_{13}^{3}+4 x_{13}^{5}+x_{14}^{1}+8 x_{14}^{4}+5 x_{21}^{2}+x_{21}^{4}+x_{24}^{1} \\
& \quad+6 x_{24}^{2}+2 x_{24}^{3}+3 x_{32}^{2}+2 x_{32}^{4}+x_{32}^{5}+4 x_{43}^{2}+x_{43}^{3} \rightarrow \min , \tag{1a}
\end{align*}
$$

Figure 1: Multinetwork $G=(I, U)$

Figure 2: Networks $G^{k}=\left(I^{k}, U^{k}\right), k=1,2$.

$$
\begin{array}{cc}
x_{13}^{1}+x_{14}^{1}=1, & x_{13}^{2}-x_{21}^{2}=-0.75, \\
x_{24}^{1}=0.5, & x_{21}^{2}+x_{24}^{2}-x_{32}^{2}=0.25, \\
-x_{13}^{1}-x_{43}^{1}=-1, & x_{32}^{2}-x_{13}^{2}-x_{43}^{2}=0.5, \\
x_{43}^{1}-x_{14}^{1}-x_{24}^{1}=-0.5, & x_{43}^{2}-x_{24}^{2}=0, \\
x_{13}^{3}=0, & x_{13}^{4}+x_{14}^{4}-x_{21}^{4}=0.5, \\
x_{24}^{3}=1, & x_{21}^{4}+x_{24}^{4}-x_{32}^{4}=-0.25, \tag{2a}\\
-x_{13}^{3}-x_{43}^{3}=-1, & x_{32}^{4}-x_{13}^{4}=0.75, \\
x_{43}^{3}-x_{24}^{3}=0, & -x_{14}^{4}-x_{24}^{4}=-1, \\
& x_{13}^{5}=1.5, \\
-x_{32}^{5}=-0.5, \\
x_{32}^{5}-x_{13}^{5}=-1,
\end{array}
$$

Table 1: Characteristics of the network structure

$$
\begin{gather*}
2 x_{13}^{1}+3 x_{13}^{2}+x_{13}^{3}+x_{13}^{4}+2 x_{13}^{5}+x_{14}^{1} \\
+3 x_{14}^{4}+2 x_{21}^{2}+x_{21}^{4}+x_{24}^{1}+x_{24}^{2}+4 x_{24}^{3} \\
+x_{24}^{4}+2 x_{32}^{2}+2 x_{32}^{4}+3 x_{32}^{5}+x_{43}^{1}+x_{43}^{2}+3 x_{43}^{3}=42 \\
2 x_{13}^{1}+2 x_{13}^{2}+3 x_{13}^{3}+x_{13}^{4}+2 x_{13}^{5}+3 x_{14}^{1} \tag{3a}\\
+x_{14}^{4}+2 x_{21}^{2}+x_{21}^{4}+x_{24}^{1}+2 x_{24}^{2}+4 x_{24}^{3} \\
+3 x_{24}^{4}+2 x_{32}^{2}+4 x_{32}^{4}+x_{32}^{5}+x_{43}^{1}+3 x_{43}^{2}+3 x_{43}^{3}=58, \\
x_{13}^{3}+x_{13}^{4} \leq 6, x_{13}^{3} \geq 0, x_{13}^{4} \geq 0 \tag{4a}\\
x_{43}^{1}+x_{43}^{2} \leq 7, x_{43}^{1} \geq 0, x_{43}^{2} \geq 0
\end{gather*}
$$

Figure 3: Networks $G^{k}=\left(I^{k}, U^{k}\right), k=3,4,5$.

$$
\begin{gather*}
0 \leq x_{13}^{1} \leq 4, \quad 0 \leq x_{14}^{4} \leq 4, \quad 0 \leq x_{24}^{1} \leq 2, \quad 0 \leq x_{32}^{4} \leq 3 \\
0 \leq x_{13}^{2} \leq 2, \quad 0 \leq x_{21}^{2} \leq 5, \quad 0 \leq x_{24}^{3} \leq 4, \quad 0 \leq x_{32}^{5} \leq 2 \tag{5a}\\
0 \leq x_{13}^{5} \leq 6, \quad 0 \leq x_{21}^{4} \leq 2, \quad 0 \leq x_{32}^{2} \leq 4, \quad 0 \leq x_{43}^{3} \leq 4 \\
x_{14}^{1} \geq 0, \quad x_{24}^{2} \geq 0, \quad x_{24}^{4} \geq 0 \tag{6a}
\end{gather*}
$$

3. Decomposition of the Network Support, Determinants of Cycles

In this section we define a support of the network $G=(I, U)$ for the problem (1)-(6). In order to give the definition we will need to introduce some more sets.

Let $U_{S}^{k} \subseteq U^{k}, k \in K$ be arbitrary subsets of arcs of the networks G^{k}. For each arc $(i, j) \in U$ we define a subset of products $K_{S}(i, j) \subseteq K(i, j)$, $K_{S}(i, j)=\left\{k \in K:(i, j)^{k} \in U_{S}^{k}\right\}$, transported through an $\operatorname{arc}(i, j)$. Also, for arcs from the set U_{0} we introduce a subset U^{*}, such that $U^{*} \subseteq \bar{U}_{0} \subseteq U_{0}, \bar{U}_{0}=$ $\left\{(i, j) \in U_{0}:\left|K_{S}^{0}(i, j)\right|>1\right\}$, where $K_{S}^{0}(i, j)=K_{S}(i, j) \bigcap K_{0}(i, j),(i, j) \in U_{0}$.

Let $U_{S}^{k} \subseteq U^{k}, k \in K$ be arbitrary subsets of arcs of the subnetworks G^{k}. Thus, for each arc $(i, j) \in U$ we can define a subset of products $K_{S}(i, j) \subseteq$ $K(i, j), K_{S}(i, j)=\left\{k \in K:(i, j)^{k} \in U_{S}^{k}\right\}$, transported through an arc (i, j). For arcs from the set U_{0} we introduce a subset U^{*}, so that $U^{*} \subseteq U_{0}$. Also, we denote $K_{S}^{0}(i, j)=K_{S}(i, j) \bigcap K_{0}(i, j),(i, j) \in U_{0}$.

Definition 5. The aggregate of sets $U_{S}=\left\{U_{S}^{k}, k \in K ; U^{*}\right\} U^{*} \subseteq \bar{U}_{0}, \bar{U}_{0}=$ $\left\{(i, j) \in U_{0}:\left|K_{S}^{0}(i, j)\right|>1\right\}$, is a support of the network G (or, network support) for the problem (1)-(6), if the system

$$
\begin{equation*}
\sum_{j \in I_{i}^{+}\left(\hat{U}^{k}\right)} x_{i j}^{k}-\sum_{j \in I_{i}^{-}\left(\hat{U}^{k}\right)} x_{j i}^{k}=0, i \in I^{k}, k \in K \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{k \in K} \sum_{(i, j) \in \hat{U}^{k}} \lambda_{i j}^{k p} x_{i j}^{k}=0, p=\overline{1, l} \tag{8}\\
\sum_{k \in K_{S}^{0}(i, j)} x_{i j}^{k}=0, \quad(i, j) \in \hat{U}^{*} \tag{9}
\end{gather*}
$$

has only the trivial solution $x_{i j}^{k}=0,(i, j) \in \hat{U}^{k}, k \in K$, when $\hat{U}^{k}=U_{S}^{k}$ and $\hat{U}^{*}=U^{*}, \hat{K}_{S}^{0}(i, j)=K_{S}^{0}(i, j)$, but has a non-trivial solution if either:

1) $\hat{U}^{k}=U_{S}^{k}, k \in K ; \hat{U}^{*}=U^{*} \backslash\left(i_{0}, j_{0}\right),\left(i_{0}, j_{0}\right) \in U^{*}$, or
2) $\hat{U}^{k}=U_{S}^{k}, k \in K \backslash k_{0}, \hat{U}_{S}^{k_{0}}=U_{S}^{k_{0}} \bigcup\left(i_{0}, j_{0}\right)^{k_{0}},\left(i_{0}, j_{0}\right)^{k_{0}} \notin U_{S}^{k_{0}}, k_{0} \in K ; \hat{U}^{*}=$ U^{*},

$$
\hat{K}_{S}^{0}(i, j)=\left\{\begin{array}{lll}
K_{S}^{0}(i, j), & \text { if } & (i, j) \neq\left(i_{0}, j_{0}\right), \\
K_{S}^{0}(i, j) \bigcup\left(K^{0} \cap K^{0}(i, j)\right), & \text { if } & (i, j)=\left(i_{0}, j_{0}\right)
\end{array}\right.
$$

Consider the support structure $U_{S}=\left\{U_{S}^{k}, k \in K ; U^{*}\right\}, U_{S}^{k} \subset U^{k}, k \in K ; U^{*} \subset$ $\bar{U}_{0}, \bar{U}_{0}=\left\{(i, j) \in U_{0}:\left|K_{S}^{0}\right|>1\right\}, K_{S}(i, j)=\left\{k \in K(i, j):(i, j)^{k} \in\right.$ $\left.U_{S}^{k}\right\},(i, j) \in U, K_{S}^{0}(i, j)=K_{S}(i, j) \cap K_{0}(i, j),(i, j) \in U_{0}$. Let the set U_{S}^{k} contain l_{k} arcs $(i, j)^{k}$ such that removing them from the set U_{S}^{k} gives the set U_{T}^{k} such that the network $\left(I\left(U_{T}^{k}\right), U_{T}^{k}\right)$ contains no cycles but every network $\left(I\left(U_{T}^{k}\right), U_{T}^{k} \cup(i, j)^{k}\right)$ contains a cycle. Let us denote $U_{C}^{k}=U_{S}^{k} \backslash U_{T}^{k}, k \in K$.

Definition 6. The elements of the set $U_{C}=\bigcup_{k \in K} U_{C}^{k}$ are called cyclic arcs. The elements of the set $U_{T}=\bigcup_{k \in K} U_{T}^{k}$ are called tree arcs.

Let K be the set $\{1,2, \ldots,|K|\}$. Let us suppose that U_{S}^{k} contain l_{k} independent cycles, $k \in K$. The cycles $Z_{k}=\left\{L_{\tau \rho}^{k},(\tau, \rho)^{k} \in U_{C}^{k}\right\}$ of the network G are called independent if every cycle has at least one edge that does not belong to other cycles and the unitary circulations [3], [5] form a linearly-independent system of vectors, $k \in K$.

Every $\operatorname{arc}(\tau, \rho)^{k} \in U_{C}^{k}$ belongs to some cycle $L_{\tau \rho}^{k}$ from the set U_{S}^{k}. If the network $G_{S}^{k}=\left(I\left(U_{S}^{k}\right), U_{S}^{k}\right)$ is connected then the cycles $Z_{k}=\left\{L_{\tau \rho}^{k},(\tau, \rho)^{k} \in\right.$ $\left.U_{C}^{k}\right\}, k \in K$ introduced the same way form the fundamental set of cycles. We introduse arbitrary numbering of arcs within the set and $U_{C}=\bigcup_{k \in K} U_{C}^{k}$. Let us mark every arc $(\tau \rho)^{k} \in U_{C}^{k}$ with the number $t=t(\tau \rho)^{k}$. Let us consider an arbitrary cycle $L_{t}^{k}, t=t(\tau, \rho)^{k}$. We choose the direction of cycle detour such that the arc $(\tau, \rho)^{k}$ is a forward one. Let $L_{t}^{k_{+}}, L_{t}^{k_{-}}$be sets of forward and backward arcs of the cycle L_{t}^{k} correspondingly.

Definition 7. The number $R_{p}\left(L_{t}^{k}\right)=\sum_{(i, j)^{k} \in L_{t}^{k}} \lambda_{i j}^{k p} \operatorname{sign}(i, j)^{L_{t}^{k}}$ is called the determinant of the cycle L_{t}^{k} with respect to the additional restriction (3) with the number p, where

$$
\operatorname{sign}(i, j)^{L_{t}^{k}}=\left\{\begin{array}{lll}
1, & \text { if } & (i, j)^{k} \in L_{t}^{k_{+}} \\
-1, & \text { if } & (i, j)^{k} \in L_{t}^{k_{-}} \\
0, & \text { if } & (i, j)^{k} \notin L_{t}^{k}
\end{array}\right.
$$

Let us put the arcs of the set U^{*} in arbitrary order. Let $\xi=\xi(i, j)$ be the serial number of the multiarc (i, j) in the set $U^{*}, 1 \leq \xi \leq m, m=\left|U^{*}\right|$. We build the matrix $D=\binom{D_{1}}{D_{2}}$, where $D_{1}=\left(R_{p}\left(L_{t}^{k}\right), p=\overline{1, l}, t=\overline{1, \widetilde{t}}, \widetilde{t}=\left|U_{c}\right|\right.$ is a matrix of order $l \times \widetilde{t}$ consisting of determinants $R_{p}\left(L_{t}^{k}\right)=R_{p}\left(L_{(\tau, \rho)}^{k}\right), t=t(\tau, \rho)$ with respect to the restrictions $(3), D_{2}=\left(\delta_{\xi(i, j)}\left(L_{t}^{k}\right), \xi(i, j)=\overline{1, m}, t=\overline{1, \widetilde{t}}\right)$ is an $m \times \widetilde{t}$-matrix that consists of the following elements:

$$
\delta_{\xi(i, j)}\left(L_{t}^{k}\right)= \begin{cases}1, & \text { if }(i, j)^{k} \in L_{t(\tau, \rho)}^{k_{+}}, k \in K_{0}(i, j),(i, j) \in U_{0} \\ -1, & \text { if }(i, j)^{k} \in L_{t(\tau, \rho)}^{k_{-}}, k \in K_{0}(i, j),(i, j) \in U_{0} \\ 0, & \text { if }(i, j)^{k} \notin L_{t(\tau, \rho)}^{k}, k \in K_{0}(i, j),(i, j) \in U_{0} \\ 0, & \text { if }(i, j)^{k} \notin L_{t(\tau, \rho)}^{k}, k \in K(i, j) \backslash K_{0}(i, j) \\ \quad(i, j) \in U_{0} \\ \xi=\xi(i, j),(i, j) \in U^{*}\end{cases}
$$

If $\tilde{t} \neq l+m, m=\left|U^{*}\right|$ we supply the matrix D with zeros to make it a square matrix of order $\max \left\{\widetilde{t}, l+\left|U^{*}\right|\right\}$. Let $R\left(U_{S}\right)=\operatorname{det} D$.

4. Theoretical - Graphical Properties

Theorem 1. (Criterion of Support) The set of $\operatorname{arcs} U_{S}=\left\{U_{S}^{k}, k \in K, U^{*}\right\}$, $U_{S}^{k} \subset U^{k}, k \in K ; U^{*} \subset \bar{U}_{0}, \bar{U}_{0}=\left\{(i, j) \in U_{0}:\left|K_{S}^{0}\right|>1\right\}, K_{S}(i, j)=\{k \in$ $\left.K(i, j):(i, j)^{k} \in U_{S}^{k}\right\},(i, j) \in U, K_{S}^{0}(i, j)=K_{S}(i, j) \bigcap K_{0}(i, j),(i, j) \in U_{0}$ is a support of the network G iff the following conditions are met:

1. $I\left(U_{S}^{k}\right)=I^{k}, k \in K$;
2. U_{S}^{k} is a connected set, $k \in K$;
3. $R\left(U_{S}\right) \neq 0$.

Proof. Is made [5].

(4)

Figure 4: A support for the problem (1a)-(6a): bold arrows mean tree arcs, thin arrows mean cyclic arcs

(i, j)	$(1,3)$	$(1,4)$	$(2,1)$
$K_{S}(i, j)$	$\{2,3,4,5\}$	$\{1\}$	$\{2,4\}$
$K_{S}^{1}(i, j)$	$\{2,5\}$	\varnothing	$\{2,4\}$
$K_{S}^{0}(i, j)$	$\{3,4\}$		
$K_{N}(i, j)$	$\{1\}$	$\{4\}$	\varnothing
$K_{N}^{1}(i, j)$	$\{1\}$	$\{4\}$	\varnothing
$K_{N}^{0}(i, j)$	\varnothing		
(i, j)	$(2,4)$	$(3,2)$	$(4,3)$
$K_{S}(i, j)$	$\{1,2,3,4\}$	$\{2,5\}$	$\{2,1,3\}$
$K_{S}^{1}(i, j)$	$\{1,3\}$	$\{2,5\}$	$\{3\}$
$K_{S}^{0}(i, j)$			$\{2,1\}$
$K_{N}(i, j)$	\varnothing	$\{4\}$	\varnothing
$K_{N}^{1}(i, j)$	\varnothing	$\{4\}$	\varnothing
$K_{N}^{0}(i, j)$			\varnothing

Table 2: Characteristics of the support for the problem (1a)-(6a)

Let $D=D\left(U_{S}\right)$ be the matrix of determinants that corresponds to the support $U_{S}=\left\{U_{S}^{k}, k \in K, U^{*}\right\}$.

An example of a support for the problem (1a)-(6a) can be found at Figure 4. The characteristics of the support are represented in Table 2, where

$$
\begin{gathered}
K_{S}^{1}(i, j)=K_{S}(i, j) \bigcap K_{1}(i, j),(i, j) \in U \\
K_{S}^{0}(i, j)=K_{S}(i, j) \bigcap K_{0}(i, j),(i, j) \in U_{0} \\
K_{N}(i, j)=K(i, j) \backslash K_{S}(i, j) \\
K_{N}^{1}(i, j)=K_{N}(i, j) \bigcap K_{1}(i, j),(i, j) \in U \\
K_{N}^{0}(i, j)=K_{N}(i, j) \bigcap K_{0}(i, j),(i, j) \in U_{0} \\
U^{*}=\varnothing, D=\left[\begin{array}{cc}
R_{1}\left(L_{32}^{2}\right) & R_{1}\left(L_{43}^{2}\right) \\
R_{2}\left(L_{32}^{2}\right) & R_{2}\left(L_{43}^{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
7 & -3 \\
6 & 1
\end{array}\right], \operatorname{det} D \neq 0
\end{gathered}
$$

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin, Network Flows: Theory, Algorithms, and Applications, New Jersey (1993).
[2] L.A. Pilipchuk, A.S. Pilipchuk, Y.H. Pesheva, Algorithms for construction of optimal and suboptimal solutions in network optimization problem, IJPAM, 54, No. 2 (2009), 193-205.
[3] L.A. Pilipchuk, E.S. Vecharynski, Y.H. Pesheva, Solution of large linear systems with embedded network structure for a non-homogeneous network flow programming problem, Mathematica Balkanica, New Series, 22, No-s: 3-4 (2008), 233-252.
[4] L.A. Pilipchuk, Linear Inhomogeneous Problems of Networks Flows, Minsk, BSU (2009), In Russian.

[^0]: Received: March 20, 2010
 (c) 2010 Academic Publications
 ${ }^{\text {§ }}$ Correspondence author

