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Introduction
Many problems in linear and nonlinear programming [1,2] have

in details developed theory and comprehensively investigated meth-
ods of solution. However the process of allocation of special prob-
lems in separate classes [3] and the development of new solution
methods for them is a problem of interest. It is connected with the
fact that each class of problems is characterized by a special struc-
ture of the set of parameters and restrictions. The investigated
problem concerns the class of network optimization problems and
has additional parameters, such as the variables of intensity of units,
transformation factors of an arc �ow (the generalized network), in-
terrelation of the plan components (additional restrictions). Appli-
cation to the solution of network optimization problems of special
algorithms which are taking into account features of a problem, its
theoretical and graph properties [3,4], modern achievements in nu-
merical realization of �ow programming problems allows to solve
high dimensional problems.

1. Statement of the problem, basic concepts and
de�nitions.

Consider the following mathematical model of an extreme network
problem

ϕ(x) =
∑

(i,j)∈U

cijxij +
∑
j∈I∗

cixi −→ min, (1)

∑

(i,j)∈I+
i (U)

xij −
∑

(i,j)∈I−i (U)

µjixji =

{
xisign(i), i ∈ I∗,

ai, i ∈ I \ I∗,
(2)

∑

(i,j)∈U

λp
ijxij +

∑
i∈I∗

λp
i xi = βp, p = 1, q, (3)

0 ≤ xij ≤ dij, (i, j) ∈ U, (4)

b∗i ≤ xi ≤ b∗i , i ∈ I∗, (5)



where G = (I, U) � a �nite orientated generalized network without
multiple arcs and loops with set of nodes I and set of arcs U ,
|U | À| I |, I+

i (U) = {j : (i, j) ∈ U}, I−i (U) = {j : (i, j) ∈ U},
xij � a �ow along the arc (i, j); µij � transformation factor of the
�ow along arc (i, j), µij ∈]0, 1], I∗ � a subset of I,I∗ 6= ®. Nodes
i ∈ I∗ are named dynamic, sign(i) = 1, if i ∈ I∗+; sign(i) = −1, if
i ∈ I∗−; I∗+, I∗− ⊆ I∗, I∗+

⋂
I∗− = ®

Any node is a point of production (or consumption) of some
item, xij � a �ow on arc (i, j), µij � factor of transportation losses
of goods from node i to node j on arc (i, j), I∗ � set of nodespoints of
manufacture (consumption) with a preliminary unknown volume xi

of the manufactured (consumed) goods, ai � volume of production
(consumption) at node i ∈ I \ I∗.

Vector x = (xij, (ij) ∈ U, xi, i ∈ I∗) � is a plan, if on it restric-
tions (2) � (5) of the problem are carried out. A plan x0 ∈ X is
optimal, if c′x0 = min c′x, x ∈ X, where X is the set of plans. If
ε ≥ 0, a suboptimal (ε-optimal) plan xε is de�ned by an inequality

c′xε − c′x0 ≤ ε, xε ∈ X.

We shall name restrictions (2) a network part of system of basic
restrictions (2), (3), restrictions (3) � additional basic restrictions,
restrictions (4), (5) � direct restrictions.

2. A network part of the system of basic
restrictions, support criterion.

Let's de�ne a support of a network G = (I, U) for system (2).
De�nition 1. The set of sets R = {UR, I∗R}, UR ⊆ U, I∗R ⊆ I∗)

is named a support of a network G = (I, U) for system (2), if at
ŨR = UR, Ĩ∗R = I∗R system

∑

j∈I+
i (eUR)

xij −
∑

j∈I−i (eUR)

µjixji =

{
xisign(i), i ∈ Ĩ∗R,

0, i ∈ I \ Ĩ∗R
(6)

has only a zero solution, and has a nonzero solution in each of the
following cases:

1) ŨR = UR

⋃
(i, j), Ĩ∗R = I∗R, for any arc (i, j) ∈ U \ UR;

2) ŨR = UR, Ĩ∗R = I∗R
⋃{i}, for any node i ∈ I∗ \ I∗R.



Theorem 1. (Network support criterion).The set of sets R =
{UR, I∗R} is a support of a network G = (I, U) for system (2), if
and only if the following conditions are ful�lled:

1) |UR|+ |I∗R| = |I|;
2) any component of the connectivity Gl

R = {I l, U l
R}, I l = I(U l

R), l =
1, s, (s-number of the components of connectivity) of the network
GR = (I, UR) is a network of one of the following types:

a) does not contain cycles (is a tree), and contains a unique
node from set I l

R, |I l
R

⋂
I∗R| = 1;

b) Contains a unique nondegenerate cycle and does not contain
nodes from set I∗, I l

R

⋂
I∗R = ®; l = 1, s.

Proof of theorem 1 is given in [5].
De�nition 2. A cycle is called nonsingular (nondegenerate),

if the product of transformation factors of arc �ows for its forward
arcs is not equal to the product of factors of transformation of arc
�ows for its backward arcs.

3. Fundamental system of elements.
On the basis of theorem 1 we shall choose a support R =

{UR, I∗R} of network G for system (2). Consider the construction of
the generated characteristic vectors [4], which make fundamental
system of solutions of system (7):

∑

j∈I+
i (U)

xij −
∑

j∈I−i (U)

µjixji =

{
xisign[i], i ∈ I∗,

0, i ∈ I \ I∗.
(7)

The theoretical and graph structure of support R = {UR, I∗R} of
network G for the network part of system of basic restrictions (2)
is a set of s � components of connectivity

Gl = (I l, U l
R),

s⋃

l=1

I l = I, I l = I(U l
R), l = 1, s I∗R =

s⋃

l=1

I l
R,

each of which is either a tree containing a unique dynamic node
from set i ∈ I∗R, |I l

R

⋂
I l| = 1, or does not contain dynamic nodes

I l
R

⋂
I l = ® and contains a unique nondegenerate cycle. On the

basis of network properties of the support (theorem 1) theoreti-
cal and graph properties of the fundamental system of solutions
of system (7) are considered in work [4] and the general solution



of linear system (2) is constructed. We shall designate through
δτρ = (δτρ

ij , (i, j) ∈ U ; δτρ
i , i ∈ I∗) and δγ = (δγ

ij, (i, j) ∈ U ; δγ
i , i ∈ I∗)

the characteristic vectors generated by arcs (τ, ρ), (τ, ρ) ∈ U\UR,
and nodes γ, γ ∈ I∗\I∗R accordingly, making fundamental system of
solutions of system (7) [4,6].

Consider the graph G̃ = (I, UR

⋃
(τ, ρ)), (τ, ρ) ∈ U\UR, I∗R ⊆

I, where set of sets R = {UR, I∗R} forms a support of network
G = (I, U) for system (2). Among the components of connectivity
of network G̃ = (I, UR

⋃
(τ, ρ)) there is a unique component of

connectivity (we shall designate it) which is a network of one of the
following types:

a) contains a unique nondegenerate cycle and a unique node
from set I∗R, |I l

⋂
I∗R| = 1;

b) contains a circuit connecting two nodes from set I∗R,
|I l

R

⋂
I∗R| = 2;

c) contains two cycles, at least one of which is non degenerate,
and does not contain nodes from set I∗R, |I l

R

⋂
I∗R| = ®.

Theorem 2. Among the components of the characteristic vec-
tor δτρ generated by arc (τ, ρ) ∈ U\UR or components of the char-
acteristic vector δγ generated by node γ ∈ I∗\I∗R, nonzero can be
only those components of the speci�ed vectors which correspond to
elements (arcs and dynamic nodes) of sets UR

⋃
(τ, ρ) and I∗R and

belong to the following network structures:
a) the unique circuit connecting a dynamic node (we shall des-

ignate it u) from set I∗R and a node υ of a cycle;
b) the unique circuit connecting nodes u and υ from set I∗R;
c) two cycles and a unique circuit which connects nodes of the

speci�ed cycles.
The proof of the theorem is given in [4].

4. Decomposition of system of restrictions.
Theorem 3. The general solution of system (2) can be pre-

sented [4] in the following form:

xij =
∑

(τ,ρ)∈U\UR

xτρδ
τρ
ij +

∑

γ ∈ I∗\I∗R

xγδ
γ
ij + x̃ij, (i, j) ∈ UR,

(8)



xi =
∑

(τ,ρ)∈U\UR

xτρδ
τρ
i +

∑

γ∈I∗\I∗R

xγδ
γ
i + x̃i, i ∈ I∗R,

where x̃ = (x̃ij, (i, j) ∈ U ; x̃i, i ∈ I∗) � any particular solution of
system (2).

Theorem 4. (network support criterion). The aggregation of
sets K = {UK , I∗K} is a support of a network G = (I, U) for system
(2), (3) if and only if the following conditions are executed:

1) The aggregation of sets K = {UK , I∗K} can be presented as
an association of not intersecting sets of sets R = {UR, I∗R}, W =
{UW , I∗W} and UK = UR∪UW UR∩UW = ® I∗K = I∗R∪I∗W , I∗R∩I∗W =
®;

2) The aggregation of sets R = {UR, I∗R} � is a support of the
network G = (I, U) for system (2) ( theorem 1).

3) |W | = q , where q � the number of linearly independent
equations of system (3).

4) The matrix of determinants ΛW = (ΛW1 , ΛW2), is nonsingu-
lar,

Λp
τρ =

∑

(i,j)∈UR

λp
ijδ

τρ
ij +

∑

i)∈I∗R

λp
i δ

τρ
i + λp

τρ,

ΛW1 = (Λp
τρ, p = 1, q; (τ, ρ) ∈ UW ), ΛW2 = (Λp

γ, p = 1, q; γ ∈ I∗W ),

Λp
γ =

∑

(i,j)∈UR

λp
ijδ

γ
ij +

∑

i)∈I∗R

λp
i δ

γ
i + λp

γ.

On the basis of theorem 4 we execute decomposition of system
(2),(3):

∑

(τ,ρ)∈U\UR

Λp
τρxτρ +

∑

γ∈I∗\I∗R

Λp
γxγ = β̃p, p = 1, q, (9)

β̃p = βp −
∑

(i,j)∈UR

λp
ijx̃ij −

∑

(k)∈UR

λp
kx̃k;

Λp
τρ =

∑

(i,j)∈UR

λp
ijδ

τρ
ij +

∑

i)∈I∗R

λp
i δ

τρ
i + λp

τρ,

(10)



Λp
γ =

∑

(i,j)∈UR

λp
ijδ

γ
ij +

∑

i)∈I∗R

λp
i δ

γ
i + λp

γ.

We shall name quantities Λp
τρ, Λp

γ determinants of the network
structures making fundamental system of solutions of system (7).They
are generated by arcs (τ, ρ) ∈ U\UR and nodes γ ∈ I∗\I∗R accord-
ingly, corresponding to the p−th restriction of system of additional
restrictions (3), p = 1, q.
Consider variables corresponding to aggregation of sets W . The
system (9) will become

ΛW xW = β̃ − ΛNxN , (11)

xW = (xτρ, (τ, ρ) ∈ UW ; xγ, γ ∈ I∗W ),

xN = (xτρ, (τ, ρ) ∈ UN ; xγ, γ ∈ I∗N).

The system (11) has a unique solution due to nonsingularity of
the matrix ΛW .

The support components are calculated according to (8).

5. Increment of the objective function.
Pair {x,K} of a plan and a support is called a support plan.

Support plan {x,K} is nonsingular if it satis�es the following con-
ditions:

0 < xij < dij, (i, j) ∈ UK ; a∗i < xi < a∗i , i ∈ I∗K (12)
Alongside with plan x we consider plan x, ∆x = x − x. From

[4,7] it follows that for the increment ∆x = (∆xij, (i, j) ∈ U ; ∆xi,
i ∈ I∗) the following relations are carried out:

∆xij =
∑

(τ,ρ)∈U\UR

δτρ
ij ∆xτρ +

∑

γ∈I∗\I∗R

δγ
ij∆xγ, (i, j) ∈ UR,

(13)

∆xi =
∑

(τ,ρ)∈U\UR

δτρ
i ∆xτρ +

∑

γ∈I∗\I∗R

δγ
i ∆xγ, i ∈ I∗R.



On the basis of (13) for the increment ∆x we receive:
∑

(τ,ρ)∈U\UR

Λp
τρ∆xτρ +

∑

γ∈I∗\I∗R

Λp
γ∆xγ = 0, p = 1, q, (14)

Let's write down (13), (14) in a matrix form:

∆xR = SW ∆xW + SN∆xN ; ∆W ∆xW = −∆N∆xN , (15)

where
∆xW = {∆xij, (i, j) ∈ UW ; ∆xi, i ∈ I∗W},
∆xR = (∆xij, (i, j) ∈ UR; ∆xi, i ∈ I∗R),

∆xN = {∆xij, (i, j) ∈ UN ; ∆xi, i ∈ I∗N},
UK = UR ∪ UW , I∗K = I∗R ∪ I∗W ,

UN = U\UK , I∗N = I∗\I∗K ,

SW = (δτρ, (τ, ρ) ∈ UW ; δγ, γ ∈ I∗W ),

SN = (δτρ, (τ, ρ) ∈ UN ; δγ, γ ∈ I∗N).

Matrices ∆W and ∆N consist of determinants of the structures
generated by components of sets W = {UW , I∗W}, N = {UN , I∗N}
respectively. Set W = {UW , I∗W} on the basis of which components
of the vector ∆xW are constructed, is chosen so that |∆W | 6= 0. As
K is a support, from theorem 4, then |∆W | 6= 0. Hence, from (15)
vector ∆xW is calculated according to (16):

∆xW = −∆−1
W ∆N∆xN (16)

Let's calculate the increment of objective function (1):

∆ϕ(x) =
∑

(ij)∈U

cij∆xij =
∑

(τ,ρ)∈U\UR

∆τρ∆xτρ +
∑

γ∈I∗\I∗R

∆γ∆xγ,

using analytical expressions (13) for components of vector ∆xR .
Let's r′ = ∆

′
W Λ−1

W , r = (r1, r2, . . . rq),

∆̃N = (∆̃τρ, (τ, ρ) ∈ UN ; ∆̃γ, γ ∈ I∗N),

∆̃τρ = ∆τρ −
q∑

p=1

rpΛ
p
τρ, (τ, ρ) ∈ UN ,



∆̃γ = ∆γ −
q∑

p=1

rpΛ
p
γ, γ ∈ I∗N .

We shall name components of vector ∆̃N = (∆̃τρ, (τ, ρ) ∈ UN ; ∆̃γ,
γ ∈ I∗N) estimations. On construction, ∆̃K = 0, K = {UK , I∗K}. So,
the increment of objective function (1) of problem (1) � (5) looks
like

∆ϕ(x) =
∑

(τ,ρ)∈UN

∆̃τρ∆xτρ +
∑

γ∈I∗N

∆̃γ∆xγ (17)

6. Optimality criterion. An estimation of
suboptimality.

Theorem 5. For optimality of plan x it is necessary and enough
that there exists such a support K = {UK , I∗K} of network G for
system (2) � (3) at which on the support plan {x,K} the following
conditions of minimum are satis�ed

∆̃ijxij = min
0≤ω≤dij

∆̃ij ω, (i, j) ∈ UN ,

(18)
∆̃ixi = min

a∗i≤υ≤a∗i
∆̃i υ, i ∈ I∗N

The support on which the criterion of optimality (18) is carried out,
is called optimal. The support is referred to as regular, if

∆̃ij 6= 0, (i, j) ∈ UN , ∆̃i 6= 0, i ∈ I∗N .

Consider formula (17) for the increment of the objective func-
tion:

∆ϕ(x) =
∑

(i,j)∈UN

∆̃ij∆xij +
∑

i∈I∗N

∆̃i∆xi =

=
∑

(i,j)∈UN

∆̃ij(xij − xij) +
∑

i∈I∗N

∆̃i(xi − xi)

Let's �nd the maximal decrease of the objective function:

∆ϕ(x) =
∑

(i,j)∈UN

∆̃ij(xij − xij) +
∑

i∈I∗N

∆̃i(xi − xi)



on the variables xij, (i, j) ∈ UN , xi, i ∈ I∗N satisfying the following
restrictions:

0 ≤ xij ≤ dij, (i, j) ∈ UN ; a∗i ≤ xi ≤ a∗i , i ∈ I∗N . (19)

We shall designate this minimum as follows β(x,K) = min∆ϕ(x)
and name it an estimation of suboptimality (ε-optimality) [1,2] of
the support plan {x, K}:

β(x,K) = min
(19)

∆ϕ(x) =
∑

(i,j)∈UN ,

(19),e∆ij<0

∆̃ij(xij − xij)+

+
∑

(i,j)∈UN ,

(19),e∆ij>0

∆̃ij(xij−xij)+
∑
i∈I∗,

(19),e∆i<0

∆̃i(xi−xi)+
∑
i∈I∗,

(19),e∆i>0

∆̃i(xi−xi) =

=
∑

(i,j)∈UN ,(19)

∆̃ij(zij − xij) +
∑

i∈I∗N ,(19)

∆̃i(zi − xi) = c′z − c′x

The solution of the problem of minimization of 4ϕ(x) under condi-
tions (19) is a pseudo-plan z = (zij, (i, j) ∈ U ; zi, i ∈ I∗) of problem
(1) � (5). Components of vector z are calculated by rules: on arcs
(i, j) ∈ UN and nodes i ∈ I∗N from the following conditions of opti-
mality criterion:

zij = 0, if ∆̃ij > 0; zi = a∗i, if ∆̃i > 0;

zij = dij, if ∆̃ij < 0; zi = a∗i if ∆̃i > 0;

zij ∈ [0, dij], if ∆̃ij = 0; (i, j) ∈ UN ; zi ∈ [a∗i, a∗i ], if ∆̃i = 0, i ∈ IN .

Components of vector zW = (zτρ, (τ, ρ) ∈ UW ; zγ, γ ∈ I∗W ) are
calculated from the system

ΛW zW = β, β = (β
p
, p = 1, q),

β
p

= αp −
∑

(τ,ρ)∈UN

Λp
τρzτρ −

∑

γ∈I∗N

Λp
γzγ,

αp = βp −
∑

(i,j)∈UR

λp
ijx̃ij −

∑

i∈I∗R

λp
i x̃i.



Components zR = (zτρ, (τ, ρ) ∈ UR; zγ, γ ∈ I∗R) are calculated from
the system:

zij =
∑

(τ,ρ)∈U\UR

zτρδ
τρ
ij +

∑

γ∈I∗\I∗R

zγδ
γ
ij + z̃ij, (i, j) ∈ UR,

zi =
∑

(τ,ρ)∈U\UR

zτρδ
τρ
i +

∑

γ∈I∗\I∗R

zγδ
γ
i + z̃i, i ∈ I∗R,

where z̃ = (z̃ij, (i, j) ∈ U ; z̃i, i ∈ I∗) � any particular solution of the
network part (1.2) of system (2), (3) for the conjugate �ow z̃ .

Theorem 6. ( ε - optimality criterion). At any ε ≥ 0 for ε �
optimality of plan x it is necessary and enough that a support K
exists, at which β(x,K) ≤ ε .

As shown in [5], the estimation of suboptimality allows the fol-
lowing decomposition β(x,K) = µ(x)+µ(K) , where µ(x) = ϕ(x)−
ϕ(x0) � a measure for nonoptimality of plan x, µ(K) = ψ(λ0)−ψ(λ)
� a measure for nonoptimality of the support. Thus, it is possible
to improve an estimation of ε - optimality by means of independent
improvement of the �ow and the support. We'll do the improve-
ment of the support with the help of the dual support method.

7. The dual problem. Decomposition of the
linear system for calculation of the conjugate

�ow.
The dual problem for problem (1) - (5) looks like:

∑

i∈I\I∗
aiyi +

q∑
p=1

βpτp +
∑
i∈I∗

a∗iωi −
∑
i∈I∗

a∗i ti −
∑

(i,j)∈U

dijυij −→ max,

yi − µijyj − υij +

q∑
p=1

λp
ijτp ≤ cij, (i, j) ∈ U,

−yisign(i) + ωi − ti +

q∑
p=1

λp
i τp = ci, i ∈ I∗, (20)

υij ≥ 0, (i, j) ∈ U,

ti ≥ 0, ωi ≥ 0, i ∈ I∗.



A vector

λ = (y, τ, t, ω, υ) = (yi, i ∈ I; τk, k = 1, q; ti, ωi, i ∈ I∗; υij, (i, j) ∈ U),

which components satisfy all restrictions of dual problem (20), is
referred to as a dual plan of problem (1) - (5). We shall calculate
the conjugate �ow δ = (δij, (i, j) ∈ U ; δi, i ∈ I∗) corresponding to
the dual plan λ by:

δij = cij − yi + µijyj −
q∑

p=1

λp
ijτp ≤ cij, (i, j) ∈ U,

δi = ci + yisign(i)−
q∑

p=1

λp
i τp, i ∈ I∗.

If for the support non degenerate [2] conjugate �ow {δ,K} sup-
port K is not optimum, then in case of dual nondegeneracy [2] there
exists a variation ∆δ of conjugate �ow δ, which conducts to an in-
crease in the dual objective function. Two variants for construction
of a direction are possible.

1) Let (i0, j0) � an arc on which the limit of �ow xij (0 or di0j0)
is achieved. We shall construct a direction ∆δK = (∆δij, (i, j) ∈
UK ; ∆δi, i ∈ I∗K) as follows:

∆δi0j0 =

{ −1, if xi0j0 = di0j0 ,
1, if xi0j0 = 0,

∆δij = 0, (i, j) ∈ UK\(i0j0),

∆δi = 0, i ∈ I∗K .

2) Let i0 � is a dynamic node on which the limit of component
xi0(xi0 = b∗i ∨ b∗i ) is achieved.

We shall construct a direction ∆δK = (∆δij, (i, j) ∈ UK ; ∆δi, i ∈
I∗K) as follows:

∆δi0 =

{ −1, if xi0 = b∗i0 ,
1, if xi0 = b∗i0 ,

∆δij = 0, (i, j) ∈ UK , ∆δi = 0, i ∈ I∗K\i0
Arc (i0, j0) and dynamic node i0 are named critical.



Let's consider case 1). We shall designate α = ∆δi0j0 , τp = rp,
p = 1, q; yi = ui, i ∈ I. Support elements of an increment of the
conjugate �ow satisfy the system:

∆δi0j0 = −(∆ui0 − µi0j0∆uj0 +

q∑
p=1

λp
ij∆rp) = α,

∆δij = −(∆ui−µij∆uj+

q∑
p=1

λp
ij∆rp) = 0, (i, j) ∈ UK\(i0, j0), (21)

∆δi = ∆uisign(i)−
q∑

p=1

λp
i ∆rp = 0, i ∈ I∗K .

Let's consider any element (arc or node) from set W = (UW , I∗W ).
To each element from set of sets W there corresponds the character-
istic vector δ(τ, ρ) ∨ δ(γ) generated by this element. We multiply
each nonzero element of the characteristic vector δ(τ, ρ), (τ, ρ) ∈
UW by the equation of system (21), corresponding to this element,
and we sum up the received equalities:

q∑
p=1

Λp
τρ∆rp = −αδτρ

i0j0
, (τ, ρ) ∈ UW . (22)

Consider set I∗W . To each element γ ∈ I∗W there corresponds
a characteristic vector δ(γ) = (δγ

ij, (i, j) ∈ U ; δγ
i , i ∈ I∗). We mul-

tiply every nonzero component of vector δ(γ) by corresponding to
this component equation of system (21). We execute the speci�ed
transformations for all elements of set I∗W :

q∑
p=1

Λp
γ∆rp = −αδγ

i0j0
, γ ∈ I∗W . (23)

In a matrix-vector form relations (22), (23) will become:

Λ
′
W ∆r = α, α = (−αδτρ

i0j0
, (τ, ρ) ∈ UW ;−αδγ

i0j0
, γ ∈ I∗W ). (24)

The aggregation of sets K = {UK , I∗K} is a support of network
G = (I, U) for system (2), (3) and hence, matrix ΛW is nonsingular.

We shall calculate vector δr :

δr = (Λ
′
W )−1α. (25)



Components ∆δN = (∆δτρ, (τ, ρ) ∈ UN ; ∆δγ, γ ∈ I∗N) of direc-
tion ∆δ are:

∆δτρ =

{ −∑q
p=1 Λp

τρ∆rp −∆δi0j0δ
τρ
i0j0

, if (i0, j0) − critical arc;

−∑q
p=1 Λp

τρ∆rp −∆δi0δ
τρ
i0

, if i0 − critical node;

∆δγ =

{ −∑q
p=1 Λp

τρ∆rp −∆δi0j0δ
γ
i0j0

, if (i0, j0) − critical arc;

−∑q
p=1 Λp

γ∆rp −∆δi0δ
γ
i0
, if i0 − critical node.

In a matrix-vector form last relations look like

∆δN = −Λ
′
N∆r − αt,

where vector t = (δτρ
i0j0

, (τ, ρ) ∈ UN ; δγ
i0j0

, γ ∈ I∗N) if arc (i0, j0) is
critical, and t = (δτρ

i0
, (τ, ρ) ∈ UN ; δγ

i0
, γ ∈ I∗N) , if dynamic node

i0 is critical. The dual step along the constructed direction ∆δ is
calculated by standard rules [1,2].

References
[1] Gabasov R., Kirillova F.M. Methods of linear programming.

Part 3. Special problems. Minsk, BSU, 1980 (in Russian).

[2] Al'sevitch V.V., Gabasov R., Glushenkov V. S. Optimization of
linear economical models: Static problems. Minsk:BSU, 2000
(in Russian).

[3] Ivanchev D. Network optimization. Heron Press, So�a, 2002
(in Bulgarian).

[4] Pilipchuk L. A., Malakhouskaya Y. V, Kincaid D. R., Lai M.
Algorithms of solving large sparse underdetermined linear sys-
tems with embedded network structure . East-West J. of Math-
ematics, 2002, Vol. 4, No. 2, p. 191�202.

[5] Pilipchuk L.A. Algorithms for solution of a nonhomogeneous
network distributive problem. News of Byelorussian Academy
of sciences,1986, No. 3 (in Russian).



[6] Pilipchuk L. A. Algorithms for solution of large sparse linear
systems in extremal distributive problems. Proceedings of the
I International conference "Information systems and technolo-
gies" (IST'2002), Minsk, 2002 (in Russian).

[7] Pilipchuk L. A. Network optimization problems Applications
of Mathematics in Engineering and Economics'27,eds. D.
Ivanchev and M.D. Todorov � Heron Press, So�a, 2002.

[8] Kotov V. M., Pilipchuk L. A., Sobolevskaya E. P. Theory of
algorithms. Part1. Minsk:BSU, 2001 (in Russian).

[9] Pilipchuk L. A., Pilipchuk A. S., Optimality criterion for one
dual linear extreme problem Vestnik BSU. Ser.1, �2, 1998 (in
Russian).

[10] Pilipchuk L. A., Pesheva Y. H. Decomposition of Linear Sys-
tem in Dual Flow Problems Mathematica Balkanica. New Se-
ries , Vol. 21, Fasc. 1-2, 2007. P. 21 - 29.

[11] Pilipchuk L. A., Vecharynski E. S., Pesheva Y. H. Solution
of Large Linear Systems with Embedded Network Structure
for a Non-Homogeneous Network Flow Programming Problem.
Mathematica Balkanica. New Series Vol. 22, Fasc. 3-4, 2008.
P. 235 - 254.


