

Available online at www.sciencedirect.com

Sensors and Actuators B 7031 (2003) 1-9

brought to you by \fbox CORE

www.elsevier.com/locate/sensorb

Gas-sensitive properties of thin film heterojunction structures 3 based on Fe₂O₃–In₂O₃ nanocomposites 4 M. Ivanovskaya^{a,*}, D. Kotsikau^a, G. Faglia^b, 5 P. Nelli^c, S. Irkaev^d 6 7 ^aScientific Research Institute for Physical and Chemical Problems of Belarus State University, Leningradskaya St. 14, 220050 Minsk, Belarus 8 9 ^bINFM-Gas Sensors Laboratory, University of Brescia, Via Valotti 9, 25133 Brescia, Italy 10 ^cDepartment of Engineering, University of Bergamo, viale Marconi, 5 24044 Dalmine (BG), Italy 11 ^dRussian Academy of Science, Institute for Analytical Instrumentation, Ryzhskii Av. 26, 198103 12 St. Petersburg, Russia 13 14 Abstract 15 This paper reports an investigation of the gas-sensitive properties of thin film sensors based on the double-layers $Fe_2O_3-In_2O_3$ and $Fe_2O_3-In_2O_3$ 16

17 In_2O_3/In_2O_3 towards gases of different chemical nature (C₂H₅OH, CH₄, CO, NH₃, NO₂, O₃). As it was found, the γ -Fe₂O₃-In₂O₃ composite 18 (Fe:In = 9:1, mol) is more sensitive to O₃; on the contrary, the α -Fe₂O₃-In₂O₃ (9:1) system, possesses a higher sensitivity to NO₂. The optimal 19 temperature for detecting of both gases is in the range of 70–100 °C. Sensors based on the γ -Fe₂O₃-In₂O₃ heterostructure show the maximum 20 response to C₂H₅OH at considerably higher temperatures (250–300 °C), but this layer is practically insensitive to other reducing gases like 21 CH₄, CO and NH₃ in the same temperature range.

An explanation of the different gas-sensitive behavior for the these samples resulted from the particular features of their structure and phase state.

24 © 2003 Published by Elsevier Science B.V. 25

26 Keywords: Gas sensor; Oxide heterojunction; Fe₂O₃; In₂O₃; Nanosized composite

28 1. Introduction

29 The existing literature reports that the sensitivity of 30 ceramic sensors based on Fe₂O₃ layers to reducing gases is rather low [1-3]. However, the doping of Fe_2O_3 with 31 quadrivalent metal ions (Sn, Ti, Zr) as well as the modifica-32 tion of this material with SO_4^{2-} ions can significantly 33 enhance the gas-sensitive properties of the corresponding 34 sensors towards ethanol and hydrocarbons [3]. In particular, 35 36 the addition of Fe_2O_3 to SnO_2 thick films leads to an increasing response to ethanol [4]. There are also some 37 papers concerning the effect of Fe₂O₃ additives on the 38 properties of In₂O₃ based sensors; for example, the sputter-39 ing of a Fe₂O₃ layer over In₂O₃ thin film increases its 40 sensitivity to O₃ and reduces the optimal operating tem-41 perature [5]. 42

*Corresponding author. Tel.: +375-17-2208106; fax: +375-17-2264696. *E-mail address:* ivanovskaya@bsu.by (M. Ivanovskaya).

A considerable improvement of In_2O_3 thin film sensors 43 with respect to O_3 by doping with γ -Fe₂O₃ is reported by 44 Gutman et al. [6]; the influence of α -Fe₂O₃ additives on 45 In_2O_3 behavior is negligible. The high activity of γ -46 Fe₂O₃-In₂O₃ composite in the O₃ detection can be asso-47 ciated with the specific features of γ -Fe₂O₃ structure, like 48 the presence of metal cation vacancies within the crystal 49 lattice and the readiness of $Fe^{2+} \leftrightarrow Fe^{3+}$ transformation 50 under exposure by gaseous species. Nevertheless, the 51 available data are not sufficient in order to realize if 52 iron oxides are suitable materials for gas sensing applica-53 tions. 54

As it is known, γ -Fe₂O₃ is characterized by a comparatively low thermal stability with respect to γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ phase transformation that ordinarily occurs at 485 °C. 57 This peculiarity of γ -Fe₂O₃ limits its use as long-term stable 58 gas-sensitive material. 59

The gas-sensitive properties of thin film layers of 60 complex structure based on both γ -Fe₂O₃ and α -Fe₂O₃ 61 have been extensively characterized in this paper. The use 62 of systems with complex composition allows us to 63

² doi:10.1016/S0925-4005(03)00175-8

2

81

83

ARTICLE IN PRESS

64 increase significantly the thermal stability of γ -Fe₂O₃ 65 phase (up to 650 °C) in γ -Fe₂O₃–In₂O₃ composite and 66 to modify its gas-sensitive characteristics by imparting 67 to the sensors the required sensitive and dynamical fea-68 tures.

69 2. Experimental

The gas-sensitive properties of thin film double-layer sensors based on Fe₂O₃, and Fe₂O₃–In₂O₃ (Fe:In = 9:1 and 1:1, mol) were investigated; sensor response values to CH₃OH, C₂H₅OH (100–500 ppm), CH₄, CO (50 ppm) ozone (200 ppb) and NO₂ (0.5–5 ppm) were obtained.

The sensitive elements were formed from the stabilized sols of the corresponding metal hydroxides which were prepared by the sol-gel technique. The procedure of sol preparation used in this study consisted of the following steps:

- (i) forced hydrolysis of inorganic metal salt solution (FeCl₂, In(NO₃)₃) with a basic agent (NH₃),
- (ii) precipitation of metal hydroxide followed by its separation,
- (iii) formation of sol through peptization of the depo sit with a peptizing agent or as a result of self peptization.

The α -Fe₂O₃-In₂O₃ composite was prepared by com-88 bined precipitation of Fe(OH)₂ and In(OH)₃ hydroxides 89 followed by their oxidation with oxygen. A flow of air 90 was passed through the corresponding suspension during 91 5-6 h at 30 °C to perform the material oxidization. In 92 contrast, γ -Fe₂O₃-In₂O₃ sample was obtained by mixing 93 of individual sols of γ -Fe₂O₃ and In(OH)₃ in the required 94 95 proportions.

Sols were deposited onto polycrystalline Al_2O_3 substrates (3 mm × 3 mm × 0.25 mm size) with Pt interdigital electrode deposited on the front side and Pt meander heater on the back side.

An In_2O_3 sub-layer was preliminary deposited onto the substrate in order to form the heterojunction structure and provide suitable sensor conductance. A single-layer sensor, consisting only of In_2O_3 or Fe_2O_3 also were studied in parallel for comparison. The samples were dried at 25 °C and annealed at 300 °C in air.

The sensors were then mounted on a TO8 standard cases and were put inside the a chamber for the DC electrical measurements in presence of fixed gas concentrations and RH levels.

110 The sensor response was calculated as $\Delta G/G_{air}$ at CH₃OH, 111 C₂H₅OH, CH₄, CO detection and as $\Delta G/G_{gas}$ at NO₂ and O₃ 112 detection, where *G* is the electrical conductance of sensitive 113 layer.

114 The structure of the single oxides (Fe_2O_3 , In_2O_3) and 115 nanocomposites (Fe_2O_3 - In_2O_3) were characterized by means 116 of X-ray diffraction (XRD), transmission electron microscopy (TEM) and Mössbauer spectroscopy. The resonance117spectra were recorded and processed in a commercial118SM2201 Mössbauer spectrometer. The measurements repor-119ted here were performed at 298 K using a 15 mCi 57 Co (Rh)120source.121

3. Results and discussion

122

123

3.1. Gas-sensitive properties

As it was found, γ -Fe₂O₃-In₂O₃ (9:1)/In₂O₃ and α -Fe₂O₃-In₂O₃ (9:1)/In₂O₃ sensors are characterized by high sensitivity to O₃ and NO₂, respectively, over a low temperature range (70–135 °C), as it is reported in Fig. 1a and b. These response values are greater than those ones typical for a single-layer sensors based on In₂O₃ and Fe₂O₃.

The response values of α -Fe₂O₃ and γ -Fe₂O₃ samples 131 to O_3 and NO_2 at various operating temperatures are 132 reported in Table 1. It is clearly seen from these data 133 that γ -Fe₂O₃-In₂O₃ (9:1)/In₂O₃ sensor shows a high con-134 ductance variation in the O₃ atmosphere at 135 °C, while 135 its response to NO_2 at the same temperature is negligible. 136 In contrast, α -Fe₂O₃-In₂O₃ (9:1)/In₂O₃ sample shows a 137 good response to NO₂ in the temperature range 50–100 °C 138 together with a rather low one to O_3 . These distinctions, 139 observed in the behavior of both composites, can be used 140 for a selective analysis of O₃ and NO₂ in the gas mix-141 ture. 142

Generally, the sensitivity of In_2O_3 and SnO_2 films to O_3 is lower in comparison with its sensitivity towards NO_2 [7,8]. 144 In contrast, Fe_2O_3 -In₂O₃ layers are characterized by a higher sensitivity to O_3 than to NO_2 . Moreover, the indicated compositions show better NO_2 detection performances than the previously investigated sensors based on In_2O_3 -NiO [9] and In_2O_3 -MoO₃ thin films [7]. 143

It should be noted that the sensors show insufficiently 150 rapid response and rather long recovery time at low operating temperatures. Isothermal response of α -Fe₂O₃-In₂O₃ 152 (9:1)/In₂O₃ double-layer to 5 ppm NO₂ is represented in 153

Table 1

The comparison of response values of sensors based on both $\alpha\mbox{-}Fe_2O_3$ and $\gamma\mbox{-}Fe_2O_3$ to O_3 and NO_2

Detected gas	C _{gas} (ppb)	<i>T</i> (°C)	$\Delta G/G_{ m gas}$		
			α-Fe ₂ O ₃ -In ₂ O ₃ (9:1)/In ₂ O ₃	γ -Fe ₂ O ₃ -In ₂ O ₃ (9:1)/In ₂ O ₃	
03	100	100	65	130	
	100	135	450	8670	
NO ₂	500	100	65	15	
	500	135	75	10	
	5000	100	600	90	
	5000	135	440	50	

M. Ivanovskaya et al. / Sensors and Actuators B 7031 (2003) 1-9

Fig. 1. Temperature-dependent responses of $\rm In_2O_3$ based sensors to (a) 200 ppb O_3 and (b) 5 ppm NO_2.

Fig. 2. Isothermal response of α -Fe₂O₃–In₂O₃ (9:1)/In₂O₃ thin film sensor between 70 and 300 °C to 5 ppm NO₂ in 50% RH.

Table 2

Responses and dynamical parameters of In_2O_3 and $\alpha\text{-}Fe_2O_3\text{--}In_2O_3$ (9:1)/ In_2O_3 thin film sensors to 5 ppm NO_2 vs. temperature in the range of 55–250 $^\circ\text{C}$

<i>T</i> (°C)	In_2O_3			α-Fe ₂ O ₃ -In ₂ O ₃ (9:1)/In ₂ O ₃		
	$\Delta G/G_{\rm gas}$	τ_{res} (s)	$\tau_{\rm rec}~(s)$	$\Delta G/G_{\rm gas}$	$\tau_{\rm res}~({\rm s})$	$\tau_{\rm rec}~(s)$
55	300	110	>900	1375	30	>900
75	500	35	>900	1375	30	>900
100	260	30	>900	560	25	>900
135	220	25	>900	440	20	>900
150	45	25	850	110	25	800
200	12	25	725	25	20	540
250	3	25	235	4	25	90

M. Ivanovskaya et al. / Sensors and Actuators B 7031 (2003) 1-9

Fig. 3. Comparison of sensitivity of In₂O₃ based sensors doping with oxides of different metals to 1 ppm NO₂.

Fig. 2. The responses and dynamical characteristics of In_2O_3 and α -Fe₂O₃-In₂O₃ (9:1)/In₂O₃ thin film sensors are compared in Table 2.

Fig. 3 shows the dependence of the response values to NO₂ on the operating temperature for sensors with different composition of the sensitive layer. As it is seen from these curves, Fe_2O_3 -In₂O₃ sensors have not only the greatest signals, but they can operate properly at relatively low temperatures.

163 Fe_2O_3 -In₂O₃/In₂O₃ and Fe_2O_3 -In₂O₃ sensors posses poor 164 responses to low concentration of 50 ppm CO, as it is shown 165 in Fig. 4; they are also almost insensitive both to CH₄ and 166 NH₃. It is important to note that all double-layer sensors are 167 much more sensitive towards alcohol (C_2H_5OH , CH_3OH) 168 vapors than single-layer In_2O_3 and Fe_2O_3 samples; the 169 maximum response is showed by γ -Fe₂O₃-In₂O₃ composite. 170 Temperature dependent responses of γ -Fe₂O₃-In₂O₃ and 171 In₂O₃ sensors are represented in Fig. 5. 172

One should also point out that Fe_2O_3 -containing films 173 are insensitive to O_3 and NO_2 over the temperature range 174 of the most efficient ethanol detection (250–400 °C); at the 175 same time, their sensitivity regarding ethanol is negligible 176 at 50–150 °C, when O_3 and NO_2 interaction with oxide 177 surface has the maximum value. An increase of the In_2O_3 178 content within Fe_2O_3 -In₂O₃ composite up to 50 mol% 179

Fig. 4. Temperature-dependent responses of the layers of different composition to 50 ppm CO.

M. Ivanovskaya et al. / Sensors and Actuators B 7031 (2003) 1-9

Fig. 5. Temperature-dependent responses of In_2O_3 and Fe_2O_3 based single- and double-layer sensors to 100 ppm C_2H_5OH and 100 ppm CH_3OH .

T [°C]

300

350

250

leads to the growth of the sensor responses both to NO₂ andethanol.

80

70

60

50

40

20

10

0

200

9/9p 30

The comparison of gas-sensitive behavior of both singleand double-layer Fe_2O_3 species regarding NO_2 , CO and ethanol is presented in Table 3. In the case of O_3 , the response of single Fe_2O_3 layer was negligible and irreproducible.

Referring to the results of functional and structural inves-187 188 tigations, we can recommend a series of Fe₂O₃-In₂O₃ samples with different structural and phase state to be used 189 as advanced materials for O₃, NO₂ and C₂H₅OH detection. 190 The particular compositions, dispersion, structural and 191 phase features are listed in Table 4. The first three sensors 192 193 appeared absolutely selective to O₃, NO₂ and C₂H₅OH at the 194 indicated operating temperature. The fourth one can be used 195 for NO₂ detection (low temperatures) as well as for C₂H₅OH analysis (higher temperatures). 196

197 3.2. Structural characterization

Both TEM and XRD data give evidence that all the filmsstudied appear to be nanosized systems.

Table 3 The comparison of gas-sensitive behavior of $In_2O_3,\ Fe_2O_3$ and $Fe_2O_3-In_2O_3$ thin films

	NO ₂ , 5 ppm		CO, 50 ppm		C ₂ H ₅ OH, 100 ppm	
-	$\Delta G/G_{\rm gas}$	$T(^{\circ}C)$	$\Delta G/G_{\rm air}$	<i>T</i> (°C)	$\Delta G/G_{\rm air}$	$T(^{\circ}C)$
In ₂ O ₃	40	100	0.45	350	15	350
Fe ₂ O ₃	5	100	0.1	250	15	350
Fe ₂ O ₃ -In ₂ O ₃	65	135	1.25	350	65	300

Table 4 displays the average grain size of the samples200(300 °C) calculated from the corresponding XRD line201broadening.202

400

According to the XRD pattern, α -Fe₂O₃-In₂O₃ (9:1) 203 composite consists of α -Fe₂O₃ phase with increased para-204 meters of unit cell (see Fig. 6). The increasing of the cell 205 parameters is caused by the substitution of part of Fe(III) 206 ions with In(III) ones. Besides, the X-ray reflexes assigned to 207 the α -Fe₂O₃ phase are strongly broadened; this fact can be 208 explained both by the nano-dimension of particles and the 209 high defectiveness of the crystalline structure. 210

It was also assumed that α -Fe₂O₃ phase, obtained through the oxidation of γ -Fe₂O₃ phase, is quite different from α -Fe₂O₃ phase prepared by thermal dehydration of α -modification of iron(III) hydroxide. The irregularity of Fe(III) state within α -Fe₂O₃-In₂O₃ (9:1) can be observed from the Mössbauer pattern recorded from the indicated sample. 216

Table	4
-------	---

The most promising gas-sensitive materials recommended for fabricating of highly selective sensors and their structural peculiarities

			-	
Sample	<i>T</i> (°C)	Detected gas	Phase composition	Particle size (nm)
γ -Fe ₂ O ₃ -In ₂ O ₃ (9:1)	135	O ₃	γ -Fe ₂ O ₃ ^a C-In ₂ O ₃	25 25
α -Fe ₂ O ₃ -In ₂ O ₃ (9:1) γ -Fe ₂ O ₃	70–100 250	NO ₂ C ₂ H ₅ OH	α -Fe ₂ O ₃ γ -Fe ₂ O ₃	10–15 25–30
γ -Fe ₂ O ₃ -In ₂ O ₃ (1:1)	70–100 300	NO ₂ C ₂ H ₅ OH	$C-In_2O_3^a$ γ -Fe ₂ O ₃	7–8 5

Temperature of annealing is 300 °C.

^a Main phase.

M. Ivanovskaya et al. / Sensors and Actuators B 7031 (2003) 1-9

Fig. 6. XRD patterns recorded from (a) α -Fe₂O₃-In₂O₃ (9:1), (b) γ -Fe₂O₃-In₂O₃ (9:1) and (c) γ -Fe₂O₃ samples. Temperature of annealing is 300 °C.

217 Regarding to magnetic properties, the oxides prepared by 218 the sol-gel technology differ from the corresponding stan-219 dard sample (Fig. 7a and b). We can distinguish three types 220 of Fe(III) ions with discriminate parameters in Mössbauer 221 spectrum of α -Fe₂O₃–In₂O₃ composite (Table 5).

(i) About 78% of total amount of Fe(III) ions is characterized by magnetic parameters and coordination environment typical for Fe(III) ions within amorphous or poorly crystallized α -Fe₂O₃ phase.

Table 5 Parameters of Mössbauer spectra recorded from iron-containing samples at 298 K

Sample	$\delta \ ({\rm mm\ s^{-1}})$	$\Delta \text{ (mm s}^{-1}\text{)}$	<i>B</i> (T)
α -Fe ₂ O ₃ -In ₂ O ₃ (9:1) (300°C)	0.38 (78)	0.08	50.7
	0.53 (15)	0	0
	0.22 (7)	0.69	0
γ-Fe ₂ O ₃ -In ₂ O ₃ (9:1) (300 °C)	0.33	0.02	48.6
γ-Fe ₂ O ₃ (sol) (300 °C)	0.34	-0.03	49.1
γ-FeOOH (300 °C)	0.33	0.78	0
α -Fe ₂ O ₃ (amorphous) (300 °C)	0.39	0.09	50.7
γ -Fe ₂ O ₃ (standard sample)	0.34	-0.05	49.6
α -Fe ₂ O ₃ (standard sample)	0.47	0.24	51.8
	0.38	0.12	51.5

The values in parentheses are in percent.

(ii) About 15% of Fe(III) has a cubic coordination environment. This type of coordination can be assigned to isolated Fe(III) ions in octahedral environment of oxygen, which is typical for cubic In_2O_3 modification. Moreover, γ -Fe₂O₃ can possess cubic structure as well. Used to the state of th

Under sample heating at 150–200 °C, the γ -Fe₂O₃ phase remains stable within α -Fe₂O₃-In₂O₃ (9:1) 232 sample obtained from Fe(II) precursor, which was 233 used in this study. The annealing of the composite at 234 temperatures over 250 °C leads to the transformation of 235 γ -Fe₂O₃ phase doped with In(III) ions into α -Fe₂O₃, whereas individual γ -Fe₂O₃ oxide remains stable 237 regarding $\gamma\text{-}Fe_2O_3$ \rightarrow $\alpha\text{-}Fe_2O_3$ phase transformation 238 up to 485 °C. Moreover, γ -Fe₂O₃ phase within γ -239 Fe_2O_3 -In₂O₃ composite is stable at temperatures up to 240 700 °C depending on the component ratio. Thus, in the 241 case of γ -Fe₂O₃–In₂O₃ (9:1) sample, the γ -Fe₂O₃ $\rightarrow \alpha$ -242 Fe_2O_3 phase transformation occurs at about 500 °C. 243

(iii) A minor part of Fe(III) ions (7%) can be only assigned to γ -FeOOH structure.

Therefore, the sample based on γ -Fe₂O₃-In₂O₃ (9:1) 247 consists of γ -Fe₂O₃; a small amount of C-In₂O₃ phase is 248 also present (See Fig. 6). In this case, the grain size is greater 249 than in the case of α -Fe₂O₃ sample with the same composition. Mössbauer pattern of γ -Fe₂O₃-In₂O₃ system differs 251 from that one recorded from the standard sample by broad-252

245 246

M. Ivanovskaya et al./Sensors and Actuators B 7031 (2003) 1-9

Fig. 7. Mössbauer spectra recorded from (a) $\alpha\text{-Fe}_2O_3$ standard, (b) $\alpha\text{-Fe}_2O_3\text{-In}_2O_3$ (9:1) and (c) $\gamma\text{-Fe}_2O_3\text{-In}_2O_3$ (9:1) samples at 298 K.

ening and asymmetric shape of the resonance peaks (Fig. 7c). The distinctions in shape and parameters observed in Mössbauer spectra recorded from γ -Fe₂O₃–In₂O₃ and γ -Fe₂O₃ samples probably result from the following factors: γ -Fe₂O₃ cubic lattice distortion, irregularity of Fe(III) octahedral environment or Fe–O bond ionicity shift in the presence 258 of In(III) ions within γ -Fe₂O₃ crystal lattice. 259

3.3. Regularities of certain gas detection

On the base of the obtained results we made an attempt to 261 find the correlation between gas-sensitive behavior of $Fe_2O_3-In_2O_3/In_2O_3$ and $Fe_2O_3-In_2O_3$ active layers and their structural features. 264

3.3.1. Nitrogen dioxide

In order to obtain an advanced sensor for NO_2 detection, it is necessary to use materials which are characterized by high dispersion and defectiveness [10]. It is well known that doping of In_2O_3 with Ni(II) and Mo(VI) ions results in increasing of In_2O_3 based sensor sensitivity to NO_2 [7,9]. Addition of these ions leads to the formation of strongly defective In_2O_3 structure and favors the decreasing of oxide grains. 269 270 271 272

Similar changes were observed for α -Fe₂O₃ oxide doped 273 with In(III) ions. In the case of α -Fe₂O₃-In₂O₃ (9:1) sample, 274 together with α -In_xFe_{2-x}O₃ solid solution, it is possible to 275 distinguish other structural elements based on Fe₂O₃. We have 276 yet not succeeded in identification of the supposed additional 277 phases using XRD analysis, but the presence of several types 278 of Fe(III) ions was confirmed by Mössbauer spectroscopy. An 279 increased Fe–O bond length and the distortion of octahedral 280 environment of Fe(III) ions favors the effective adsorption of 281 NO_2 , whereas the presence of two types of ions (Fe(III) and 282 In(III)) within the α -In_xFe_{2-x}O₃ solid solution facilitates to a 283 certain extent the desorption of oxygen in comparison with the 2.84 simple oxides. Thus, high sensitivity of α -Fe₂O₃-In₂O₃ films 285 to NO₂ at low temperatures can be explained by high system 286 dispersion and the presence of Fe(III) ions in irregular coor-287 dination environment which is evoked by doping of Fe₂O₃ 288 phase with In(III) ions. 289

The growth of the response value of γ -Fe₂O₃-In₂O₃/In₂O₃ 290 sensor with the increasing of In₂O₃ content from 10 to 50% 291 within composite can be connected with grain size decreasing and the formation of highly defective sample with the high specific surface. 294

3.3.2. Ozone

The most important requirement for the efficient detection 296 of ozone at low temperatures $(70-100 \degree C)$ is the suitable 297 catalytic activity of an oxide in reaction of ozone decomposition: 298

$$O_3 \rightarrow O_2 + O.$$
 300
302

Iron oxide is known to be an active catalyst in this process; 303 the main factors which influence the catalytic ability of 304 Fe_2O_3 are oxidation state of a sample and its dispersion [11]. 305 The oxidation level of the sample is closely related to its 306 activity. Thus, α -Fe₂O₃ possesses better catalytic properties 307 than γ -Fe₂O₃. 308

With regards to O_3 , α -Fe₂O₃ phase demonstrates considerably higher sensitivity in comparison with γ -Fe₂O₃ species 310

7

260

265

295

8

ARTICLE IN PRESS

311 [6]. However, the origin of different behavior of these 312 systems is still unclear. In the case of γ -Fe₂O₃–In₂O₃ 313 composite, the presence of separate γ -Fe₂O₃ phase probably 314 provides an elevated activity of this sample towards O₃ at 315 low temperatures. In contrast, α -Fe₂O₃–In₂O₃ sample con-316 sists of In(III)— α -Fe₂O₃ solid solution; catalytic ability of 317 α -Fe₂O₃ phase in O₃ decomposition reaction is insignificant.

Since at low temperatures a limiting stage of the reaction is removing of chemisorbed oxygen, the presence of the second phase (In_2O_3) in γ -Fe₂O₃ is capable to facilitate the desorption of oxygen from the oxide surface.

At temperatures higher than 100 °C decomposition of ozone is passing effectively in gas phase according to the following equation:

$$\begin{array}{cc} {}^{325}_{327} & O_3 \rightarrow O_2 + O \end{array}$$

328 Detection of O₃ is going at Fe₂O₃–In₂O₃ through the 329 adsorption of not molecular (O₂) but atomic (O) oxygen 330 species. Thus, one can explain the observed differences in 331 optimal detecting temperature of O₃ using α -Fe₂O₃–In₂O₃ 332 and γ -Fe₂O₃–In₂O₃ composites by change of detection 333 mechanism as a result of operating temperature variation.

334 3.3.3. Alcohol

The sensors based on heterojunction oxide structures show considerable response in alcohol (ethanol, methanol) media. The heterojunction between the oxide and the solid solution phases appears to be very active in course of both adsorption and oxidation of alcohol.

It is shown in [12] that the presence of two types of centers 340 341 possessing the discriminate redox and acid-base properties 342 and participating in transformation processes of alcohol 343 molecule is an essential requirement to achieve high sensor response when alcohol detection is mentioned. Alcohol 344 detection is considered as a multi-step process involving 345 both reductive-oxidative and acid-base interactions. Oxide 346 347 phases within the composite differ by oxygen-oxide surface bonding energy which can be the relative measure of oxide 348 activity in the oxidation reactions. The reactivity of oxides in 349 acid-base reactions depends on electronegativity of metal 350 cation. The electronegativity is the measure of Lewis acid 351 352 site activity. Thus, the centers of one type can mainly participate in adsorption-desorption processes of alcohol 353 molecules, whereas complete oxidation of intermediates is 354 going effectively at the centers of another type. 355

Increased response of γ -Fe₂O₃-In₂O₃ (1:1)/In₂O₃ sample as compared with γ -Fe₂O₃-In₂O₃ can be explained by the presence of an higher contact interface between In₂O₃ and γ -Fe₂O₃ phases within γ -Fe₂O₃-In₂O₃ composite.

360 4. Conclusions

The sensing characteristics of Fe_2O_3 -In₂O₃ sensors towards gases of different chemical nature are found to be very promising. It is important to note that the most sensitive materials consist of two layers. In this case, the 364 specific heterojunction is formed providing the differentia-365 tion between receptor and transducer functions. As it was 366 established, γ -Fe₂O₃-In₂O₃ (9:1) composite is highly sen-367 sitive to O₃; on the contrary, the α -Fe₂O₃-In₂O₃ (1:1) system 368 possesses the highest sensitivity to NO₂. The γ -Fe₂O₃-In₂O₃ 369 sensor is sensitive to C2H5OH at considerably higher tem-370 peratures (250–300 °C) but it is practically inactive to detect 371 the other reducing gases (CH₄, CO, NH₃). 372

An attempt to establish the correlation between particular 373 structural features of the samples and their gas-sensitive 374 behavior was made in this paper. 375

Acknowledgements

This work has been performed in the frame of the EC 377 Program "INCO-COPERNICUS-II" (GASMOH Project 378 #ICA2-CT-2000-10041). 379

376

References

- Y. Nakatani, M. Matsuoka, Effect of sulfate ion on gas sensitive 381 properties of α-Fe₂O₃ ceramics, Jpn. J. Appl. Chem. (1982) L758–L760. 382
- [2] T.G. Newor, St.P. Yordanov, Ceramic gas sensors: technique and application, Techmomic, Lancosh, 1996.
 384
- [3] W. Chang, D. Lee, Characteristics of α-Fe₂O₃ thick film gas sensors, Thin Solid Films 200 (1991) 329–339.
 386
- [4] O.K. Tan, W. Zhu, Q. Yan, L.B. Kong, Size effect and gas sensing
characteristics of nanocrystalline $x \text{SnO}_2$ - $(1 x)\alpha$ -Fe₂O₃ ethanol
sensors, Sens. Actuators B 65 (2000) 361–365.387
- [5] T. Takada, K. Suzuki, M. Nakane, Highly sensitive ozone sensor, Sens. Actuators B 13–14 (1993) 404–407.
 391
- [6] F.H. Chibirova, E.E. Gutman, Structural defects and gas-sensitive properties of some semiconductor metal oxides, Rus. J. Phys. Chem. 74 (9) (2000) 1555–1561.
 394
- [7] A. Gurlo, N. Bârsan, M. Ivanovskaya, U. Weimar, W. Göpel, In₂O₃ 395 and In₂O₃-MoO₃ thin film semiconductor sensors: interaction with NO₂ and O₃, Sens. Actuators B 47 (1998) 92–99. 397
- [8] M. Ivanovskaya, A. Gurlo, P. Bogdanov, Mechanism of O₃ and NO₂ 398 detection and selectivity of In₂O₃ sensors, Sens. Actuators B 77 399 (2001) 264–267.
- M. Ivanovskaya, P. Bogdanov, G. Faglia, G. Sberveglieri, The features of thin film and ceramic sensors at the detection of CO and NO₂, Sens. Actuators B 68 (2000) 344–350.
 403
- [10] P. Bogdanov, M. Ivanovskaya, E. Comini, G. Faglia, G. Sberveglieri, Effect of nickel ions on sensitivity of In₂O₃ thin film sensors to NO₂, Sens. Actuators B 57 (1999) 153–158.
- [11] V.V. Lunin, M.P. Popovich, S.N. Tkachenko, The Physical Chemistry of Ozone, Moscow State University, Moscow, 1998.
 408
- [12] M. Ivanovskaya, D. Kotsikau, G. Faglia, P. Nelli, Influence of chemical composition and structural factors of Fe₂O₃–In₂O₃ based sensors on their selectivity and sensitivity to ethanol, in: Proceedings of the International Conference on Eurosensors XVI, Prague, Czech Republic, 15–18 September 2002.

Biographies

Maria Ivanovskayareceived her degree in chemistry in 1980 from Belarus415State University in the field of photochemistry. Till 1988 she carried out416investigations in the field of solid state photochemistry (TiO2, ZnO, 417

M. Ivanovskaya et al. / Sensors and Actuators B 7031 (2003) 1-9

9

BiOBr) and chemistry of photographic processes. Since 1989 she has been
worked in Scientific and Research Institute for Physical and Chemical
Problems (Belarus State University). Since 1993 she has been occupied a
leading research position. Her main scientific interests are solid state
chemistry in applications to catalysis and semiconductor gas sensors,
structural features of nanosized oxides (SnO₂, MoO₃, In₂O₃, Fe₂O₃) and
oxide composites.

425 *Dzmitry Kotsikau* graduated from the Belarus State University in 2001 with 426 honors; in the same year entered the post graduate courses. Now he is 427 working in the field of solid state chemistry and semiconductor gas 428 sensors. His main scientific interests are Fe_2O_3 -In₂O₃ nanosized 429 composites, their structural and gas-sensitive characterization.

Guido Faglia has received an MS degree from the Polytechnic of Milan in 1991 with a thesis on gas sensors. In 1992 he has been appointed as a researcher by the Gas Sensor Laboratory at the University of Brescia. He is involved in the study of the interactions between gases and semiconductor surfaces and in gas sensors electrical characterization. In 1996 he has received the PhD degree by discussing a thesis on semiconductor gas sensors. In 2000 he has been appointed associate professor in Experimental

456

Physics at University of Brescia. During his career Guido Faglia has437published more than 60 articles on International Journals with referee.438

Paolo Nelli received his MS degree in physics from the University of Pavia 439 in 1987, after then he joined the Gas Sensor Laboratory at the University of 440 Brescia, where at present he carries out his research activity on gas sensors. 441 He held a permanent position at the Department of Chemistry and Physics 442 for Materials of the University of Brescia; his interests are focused on the 443 preparation and characterization of gas sensors based on semiconducting 444 metal oxides. He is co-author of about forty papers on gas sensors and 445 material science and 30 presentations at international congresses on the 446 same topics. 447

Sobir Irkaev graduated from the Tadjik State University in 1965; then he 448 entered the post graduate courses in Moscow State University in 1967. He 449 received his Doctor of Science degree in 1994; Philosophy Doctor degree 450 in 1971. Now he is working at Institute for Analytical Instrumentation of 451 Russian Academy of Science, since 1971 up to now occupies the head of 452 Resonance Laboratory position. He is the author of two monographs: 453 "Nuclear Gamma Resonance", 1970 and "Mössbauer Spectroscopy", St. 454 Petersburg, 1997, over 80 publications and 20 patents. 455