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The problem of the generation of stable (quasi-stable) 3þ1D light bullets in nonlinear media is addressed.
We consider a medium with a two-component relaxing cubic nonlinearity, and non-relaxing quintic one. It is
shown that a special adjustment of the pulse duration and the parameters of the two-component relaxing
nonlinearity enables one not only to suppress distortions of the temporal pulse envelope and self-induced
frequency shift, but to suppress a destructive effect of the azimuthal instability of vortex pulsed beams as well.
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1. Introduction

The formation of stable spatiotemporal localized struc-
tures of light fields (light bullets), when intensive laser
radiation propagates in nonlinear media, is one of the
most urgent problems, which concerns the current
theory of solitons and possible applications [1–3].
The latest results on the generation of light bullets can
be found in [4,5]. In this context, of special interest are
vortex-like pulsed beams (singular optical bullets) which
have attracted the attention of researchers because of
some specific features, such as the stable tubular form of
the vortex beams. However, it is convincingly shown
theoretically and experimentally that optical vortices, in
themost practically usable cases, are inherently unstable
against azimuthal perturbations [6,7].

One of the basic conditions for the formation of
stable optical vortex bullets (spatiotemporal solitons) is
the presence of the focusing nonlinearity saturation
preventing the spatiotemporal collapse of radia-
tion [1–3]. The most extensively studied models include
a combination of the cubic and quintic nonlinearities
with the opposite signs as well as a saturable
nonlinearity expressed in the rational form.
The stabilizing effect of the polynomial nonlinearity,
which results from the competition between the cubic
and quintic components, not only prevents the collapse,
but mostly suppresses the spatiotemporal instability of
pulsed beams as well, when the localized energy is
significantly higher than the critical value required for
the compensation for the dispersion and diffraction.

In this case, the analytical estimates and numerical
simulations are shown the possibility of stable propa-

gation of optical pulsed vortices with the intensity close
to the saturation threshold [8]. It should also be noticed
that in the case of a nonlocal nonlinearity [6,9] and
bimodal systems with hidden vorticity [10], the stability
of optical vortices is improved.

During the propagation of ultrashort pulses in
nonlinear media, when the nonlinearity relaxation time
is comparable with the pulse duration, the non-
stationary response of the media exerts a destructive
effect on the soliton-like pulse stability. However, it is
remarkable that in media with two-component relaxing

cubic nonlinearity where the relaxation is accompanied
by a frequency shift of Raman type, the influence of
the fast response of the focusing component can be
compensated for by the slow response of the defocus-
ing component. The condition of the mutual compen-
sation (counterbalance) of perturbations of the
relaxation origin has been obtained for the first time
in [11] for the case of temporal solitons. It was
demonstrated that for a soliton pulse whose duration
is longer than the fast relaxation time and shorter than

the slow relaxation time, the soliton envelope distor-
tion related to the fast non-stationary response is
essentially compensated by a relatively slow nonlinear
response. Recently the concept of fast and slow
interplaying nonlinearities was extended to the 3þ 1D
case, and a possibility to generate light bullets in
reorientational nematic liquid crystals was proven [12].
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The aim of the present paper is to show that the
approach with two relaxing nonlinearities can be
developed for spatiotemporal solitons as well while
considering singular pulsed beams. Namely, the com-
petition between the fast focusing and slow defocusing
nonlinearities is capable of suppressing the self-induced
frequency shift and azimuthal instability of optical
pulsed vortices.

2. Theoretical model

The 3þ 1D nonlinear extended Schrödinger equation
governing the pulse propagation in a media with the
cubic–quintic nonlinearity including two relaxing cubic
components in its general form is

i
@E

@z
þ D?Eþ

@2E

@t 2
þ jEj2E� jEj4E

� �
@ jEj2

@t
þ �

ðt
�1

jEj2 exp½ðt0 � tÞ��1s � dt
0

� �
E ¼ 0,

ð1Þ

�T05t5T0, r ¼ ðx2 þ y2Þ1=2 5R

where the dimensionless quantities are introduced,
which were used before in [1,8]. Here, as usual,
E¼E(r,�, t, z) is the complex envelope of the electric
field normalized to the threshold of the nonlinearity
saturation, �s is the relaxation time of the slow
component normalized to the character pulse dura-
tion �0¼ 10�12 s, D?E ¼ r�1@rðr@rEÞ þ r�2@2�E, and the
parameters � and � characterize the non-stationary
response of the fast focusing and slow defocusing
components, respectively [11]. It is also supposed that
the relaxation time �s of the slow component exceeds
the pulse duration whereas the relaxation time �f of the
fast component is essentially less than the pulse width
�: �s4�� �f. In particular, in the case of picosecond
pulses, relaxation times of the fast and slow compo-
nents are supposed to be in a range of 10�14–10�13 and
10�12–10�11 s, respectively.

In compliance with the special features of optical
vortices, the initial conditions for Equation (1) are
specified as:

Eðr,�, t, 0Þ ¼ Aðr, tÞ expðim�Þ: ð2Þ

The real function A(r, t) stands for the spatiotemporal
profile of the field amplitude, which is of a specific
toroidal form:

Aðr, tÞ ¼ A0 �ð Þ sinð#Þ,

� ¼ ðr 2 þ t 2Þ1=2,

sin# ¼ r=�, ð3Þ

where A0¼A0(�) is a solution of the two-point
boundary value problem

1

�2
@

@�
�2
@A0

@�
�
ðm2 þ 1Þ

�2
A0 � �A0 þ ðA

2
0 � A4

0ÞA0 ¼ 0,

lim
�!0

A0ð�Þ ¼ lim
�!1

A0ð�Þ ¼ 0: ð4Þ

Here � is the propagation constant.
The complex exponential multiplier in (2) accounts

for the linear circular phase modulation, and the
integer constant m is the topological charge of a vortex
beam, associated with the azimuthal field moment.

Initial-boundary conditions (2)–(4) are chosen to fit
the axial symmetry of a pulsed beam with the nested
vorticity in the transverse plane. In this case the pulse
width depends on � and �ffi 10 at m¼�1, �¼ 0.143.
In the numerical simulations, the boundary conditions
E(�T0)¼E(T0), E(R0)¼ 0 were used and a dissipation
was added at the boundary area of the calculation
domain to prevent the boundary effects.

In this formulation, the problem (1)–(2) has been
studied in close detail in [8]. The authors of [8] have
obtained families of approximate quasi-stationary
solutions with the non-zeroth topological charge and
have conducted a linear analysis of their stability
against azimuthal perturbations. The results obtained
in [8] adequately predict the dynamics of the azimuthal
perturbations, and what is the most interesting is that
for m¼� 1 a stability region in the input parameters’
area is determined. The results of such an analysis are
qualitatively confirmed by directly solving the problem
over a sufficiently extended distance of propagation.

3. Condition for self-compensation of the relaxing

perturbation

It is known (see, for example [1]) that the influence of
the inertiality manifests itself in the self-induced
frequency shift (the Raman effect). The direction of
the frequency shift is determined by the nonlinearity
sign. This shift is toward the low-frequency domain for
the focusing nonlinearity and vice versa for the
defocusing one. The competition of the relaxing
nonlinearities with opposite signs is just what enables
the mutual compensation to be realized to prevent the
pulse spectrum from a change on the whole. For the
case of temporal soliton propagation, the conditions of
practically complete suppression of nonlinear pertur-
bation are obtained in [11]. These conditions include
the relationship between the pulse duration, relaxation
times and the nonlinear refractive indices. This allows
us to argue that there is the feasibility of suppressing
the self-induced frequency shift by using two opposite
nonlinearities: the fast and slow ones, while controlling
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the pulse spectrum. This idea seems to be realizable in
the case of the presence of azimuthal perturbations of
optical vortex pulses because we are dealing here again
with the problem of controlling the pulse spectrum.

To determine the conditions of the mutual com-
pensation for nonlinear distortions, we fix the values of
� and �s, whereas the value of � should be found from
the condition of minimizing the absolute value of the
functional  (E )¼

Ð Ð Ð
trjEj2 dt d� dr. This functional

was calculated using the result of the numerical
solution of Equation (1) with initial conditions for
which  (E(z¼ 0))¼ 0. The condition  (E )¼ 0 is ful-
filled for symmetric pulses with the maximum at the
point t¼ 0 and E(t)¼E(�t). The value and sign of the
functional  (E ) characterise the pulse shift in time,
which is due to the frequency shift in the presence of
the group velocity dispersion. It is evident that the
absence of the frequency shift ensures the preservation
of the zero value of the functional  (E ) and the
condition of the minimum of the absolute value of
 (E ) at a sufficiently long distance of the pulse
propagation is equivalent to the condition of the
minimum of the overall frequency shift stemming from
the influence of inertiality of the two-component
nonlinearity. Thus, the problem of determining the
parameter � related to the feasibility of the mutual
compensation of the frequency shift is reduced to
the classical one-parametric optimization problem.
The use, for instance, of standard optimization
methods provided by the Matlab optimization toolbox
permitted us to find a suitable value of � using as an
objective function the above functional calculated for
the solution of Equation (1) at a comparatively short
distance z¼ 50–100.

The result of the numerical simulations for
�¼ 0.143, m¼�1, �s¼ 50 are shown in Figure 1.
In this case, in the absence of perturbations (�¼ 0,
�¼ 0), there occurs the formation of a stable vortex
structure of a pulsed beam having unit topological
charge. The dependence of the absolute value of the
functional  (E ) on the parameter � at �¼ 0.1328 is
presented in Figure 1(a). As is seen from the results
presented, the minimum value of this functional is
achieved at �ffi 0.2878.

Figure 1(b) illustrates also the spectra of the vortex
pulsed beam at z¼ 1000 in the presence of one of the
perturbing components (fast or slow one) and in
the presence of both components simultaneously at
the condition of the minimum of j (E )j. It is easily seen
that under the action of each of the perturbation
components individually there takes place a shift of the
pulse frequency, the absolute value of which exceeds the
width of its initial spectrum. The fast (focusing)
component brings about the frequency shift toward
the low frequency region, whereas the slow (defocusing)

one is responsible for a shift being much the same in
value but toward the high-frequency region. In combi-
nation, the influence of both components results in
mutual suppression of the frequency shift, and the pulse
spectrum is practically unchangeable on the frequency
axis in the process of propagation over a long distance.

4. Influence of relaxation perturbation on stability of

optical vortex pulsed beams

As criteria for estimating the influence of relaxation
perturbation on stability of vortex pulsed beams,

Figure 1. Absolute value of the functional  (E ) as a
function of the parameter � at �¼ 0.1328 and the spectra
of the vortex pulsed beam at propagation distance z¼ 1000 in
the presence and absence of the relaxing components: slow
(�¼ 0.2878, �¼ 0), fast (�¼ 0.1328, �¼ 0), fast and slow
(�¼ 0.1328, �¼ 0.2878), unperturbed (�¼ 0, �¼ 0).
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we used the energy integral

PðzÞ ¼
X
k

ð
r

r

ð
t

ð
�

Ekðr,�, z, tÞ
�� ��2 d� dt dr ð5Þ

and the relative value of azimuthal perturbations

PsðzÞ ¼ P�1ðzÞ

�
X
s6¼m

ð
r

r

ð
t

ð
�

Ekðr,�, z, tÞ expð�is�Þ d�

�����
�����
2

dt dr:

ð6Þ

A persistent rise of azimuthal perturbations as well as a
decrease in the energy integral, are associated with the
instability, which results in the destruction of the
vortex structure of the pulsed beam at a sufficiently
long distance of propagation.

Let us consider, at first, the case of the initial
conditions (2–4) with �¼ 0.143, m¼ 1, which corre-
spond to the stable propagation of the singular pulse in
the absence of the inertiality of the nonlinear response
(�¼ 0, �¼ 0) [8]. The initial stage of evolution of such
a beam at z5200 is accompanied by the transient
process, and, as a result of this, there occurs the
scattering of some initial energy (about 2–3%) and
formation of a localized quasi-stationary vortex struc-
ture characterized by a relative stability of the energy
integral and the absence of rise in the azimuthal
perturbation. When one of the perturbing components
(fast or slow) is switched on, the situation is changed
toward loss of the stability, which manifests itself by a
stronger scattering of the pulse energy (Figure 2(a))
and the rise in the azimuthal perturbations
(Figure 2(b)). It is remarkable that under the simulta-
neous effect of both components, when magnitudes of
the perturbing factors � and � satisfy the Raman shift
compensation, the dynamics of the singular pulsed
beam remains stable as in the absence of the relaxation
perturbations (see Figure 2).

Of obvious interest is also the investigation of the
influence of the perturbing factors on the dynamics of
vortex pulsed beams in the case where they are not
stable in the absence of the relaxation induced pertur-
bations. As an example, let us consider the solution of
problem (2)–(4) at �¼ 0.15, m¼ 2. As is known [8],
vortex pulsed beams with the topological charge
jmj41 are azimuthally unstable. The development of
the instability is excited by the exponential rise
of azimuthal perturbations (6). It is remarkable that
in the presence of the relaxation factors, satisfying the
conditions of the complete or partial compensation for
the frequency shift, the rise in azimuthal perturbations
is essentially retarded. As a result the distance of stable

propagation of a vortex-structured beam (before the
filamentation) increases by 20–40% as compared to the

case of the non-perturbed propagation in media with
the instantaneous nonlinear response (Figure 3).

5. Conclusions

We have established an effective suppression
of azimuthal perturbations during the propagation of

Figure 2. Dynamics of the energy integral P(z) and
azimuthal perturbation Ps(z) in the presence and absence of
the relaxing components: slow (�¼ 0.2878, �¼ 0), fast
(�¼ 0.1328, �¼ 0), fast and slow (�¼ 0.1328, �¼ 0.2878),
unperturbed (�¼ 0, �¼ 0).
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pulsed vortex beams in media with a composite cubic–
quintic nonlinearity, in which there are two cubic
components with opposite signs and different relaxa-
tion times (slow defocusing and fast focusing compo-
nents of the cubic nonlinearity). A non-trivial nature of
this phenomenon lies in the fact that each of the two
components exerts a destructive effect on the stability
when acting individually, whereas it is just the joint
action of these components that improves stability of
optical vortices, allowing the azimuthal perturbations
to be suppressed completely or partly. The full suppres-
sion of the azimuthal perturbations is observed in the
case of the optical vortices demonstrating stable
behavior in the medium with instantaneous nonlinear
response. In the case of the topological charge jmj5 2,
when stable vortex states can not be implemented in the
media with the instantaneous cubic–quintic nonlinear-
ity, a partial suppression of the azimuthal instability is
achieved. This enables one to prolong the propagation
distance by 20–40% as compared to the propagation of
the same pulsed vortex in media with the instantaneous
nonlinear response. The condition of maximum sup-
pression of the azimuthal perturbations is well consis-
tent with the condition of suppression of the self-
induced frequency shift. Namely, it is necessary that the
pulse duration be intermediate between the relaxation
times.

At present there are a number of nonlinear optical
materials whose properties are described well in the
framework of the cubic–quintic model. To mention a
few, we can refer to some semiconductors and doped
glasses (for example, AlGaAs and CdSxS1�x), as well
as to chalcogenide glasses and some organic materials
(e.g. stilbazolium derivatives).
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