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Abstract

The paper deals with the problem of a statistical analysis of Markov chains
connected with the spectral density. We present the expressions for the function
of spectral density. These expressions may be used to estimate the parameter of
the Markov chain.

1 Introduction

We observe Ξ = {ξt, t = 0, 1, 2, . . .} a Markov chain with a finite states space S =
{0, 1}. Suppose that initial state probabilities and transition probability matrix are
known.

The purpose of this paper is to derive the expression for the spectral density function
of Ξ and to investigate it’s properties.

2 Spectral density function of the first order

Markov chain

Consider Ξ = {ξt, t = 0, 1, 2, . . .} a homogeneous Markov chain with a finite states
space S = {0, 1}, transition probability matrix

P =

(
ε 1 − ε

1 − ε ε

)
, (1)

where 0 ≤ ε ≤ 1, and initial state probabilities:

P{ξ0 = 0} = P{ξ0 = 1} =
1

2
. (2)

Theorem. Let Ξ be a homogeneous Markov chain satisfying (1), (2). Then spectral
density function of Ξ is

f(λ) =
1

8π

1 − (2ε− 1)2

1 − 2(2ε− 1) cosλ+ (2ε− 1)2
, (3)

where λ ∈ [−π, π].
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Proof. The spectral density function, defined as f(λ), may be written as [1]

f(λ) =
1

2π

∞∑
τ=−∞

r(τ) exp{−iλτ}, (4)

where
r(τ) = cov{ξt, ξt+τ} = E{ξtξt+τ} −E{ξt}E{ξt+τ} (5)

and λ ∈ (−π, π).
Under the conditions (1) and (2) we have

Eξt = P{ξt = 1} =
1

2
, (6)

E{ξt+τ} = P{ξt+τ = 1} =
1

2
(7)

and

E{ξtξt+τ}P{ξt = 1, xit+τ = 1} = P{ξt+τ = 1|ξt = 1}P{ξt = 1} =

=
1

2
P{ξt+τ = 1|ξt = 1},

where the conditional probability P{ξt+τ = 1|ξt = 1} can be defined from the transition
probability matrix pro τ steps [2], [3], which in our case equals:

P (τ) =
1

2

(
(2ε− 1)τ + 1 (2ε− 1)τ − 1
(2ε− 1)τ − 1 (2ε− 1)τ + 1

)
.

Consequently we can write down

P{ξt+τ = 1|ξt = 1} =
1

2
((2ε− 1)τ + 1)

and

E{ξtξt+τ} =
1

4
(1 + (2ε− 1)τ ). (8)

Then, after substituting (6), (7) and (8) to (5), we obtain

r(τ) =
1

4
(2ε− 1)τ .

Hence,

f(λ) =
1

8π
(1 + 2

∞∑
τ=1

(2ε− 1)τ cosλτ). (9)

It is easy to show, that for |q| < 1

∞∑
τ=1

qτ cos τλ =
q cos λ− q2

1 − 2q cosλ+ q2
. (10)
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Let q = 2ε− 1. Since |2ε− 1| < 1 when 0 ≤ ε ≤ 1, we can write down

∞∑
τ=1

(2ε− 1)τ cos τλ =
(2ε− 1) cosλ− (2ε− 1)2

1 − 2(2ε− 1) cosλ+ (2ε− 1)2
. (11)

After substituting (11) to (9) we obtain

f(λ) =
1

8π

(
1 + 2

(2ε− 1) cosλ− (2ε− 1)2

1 − 2(2ε− 1) cosλ+ (2ε− 1)2

)
=

=
1

8π

1 − (2ε− 1)2

1 − 2(2ε− 1) cosλ+ (2ε− 1)2
.

Corollary. If ε ∈
[
0, 1

2

[
then the frequency value λ1 = π being the maximum point of

the spectral density function f(λ) and

f(λ1) =
1

8π

1 − ε

ε
.

If ε ∈
]

1
2
, 1
]

then the frequency value λ2 = 0 being the maximum point of the spectral
density function f(λ) and

f(λ2) =
1

8π

ε

1 − ε
.

Proof. Consider the function f(λ), defined by equation (3). It is easy to obtain that
for the ε ∈

[
0, 1

2

[
the frequency value λ1 = π being the maximum point of the function

f(λ), and the frequency value λ2 = 0 being the minimum point of f(λ). Also for the
ε ∈

]
1
2
, 1
]

we can obtain that the frequency value λ1 = π being the minimum point
and λ2 = 0 – maximum point of the function f(λ).

Having calculated the function f(λ) in the points λ1 and λ2 we get

f(λ1) = f(π) =
1

8π

1 − ε

ε
, (12)

f(λ2) = f(0) =
1

8π

ε

1 − ε
. (13)
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