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METHOD OF SUMMATION-INTEGRAL
EQUATIONS FOR SOLVING THE MIXED
PROBLEM OF NONSTATIONARY HEAT
CONDUCTION

V. P. Kozlov and P. A. Mandrik UDC 517.968.536.24

The solution of a mixed axisymmetric nonstationary problem of heat conduction is obtained in the
region of Laplace transforms. In solution of this problem, there occur summation-integral equations
with the parameter of the integral Laplace transform (L-parameter) and the additional parameter of
the finite integral Hankel transform (H-parameter). The laws governing the development of spatial
nonstationary temperature fields in a bounded cylinder and a half-space when one end surface of the
cylinder is in contact with the surface of the half-space in a circular region are determined.

We consider a system of a semibounded body and a bounded cylinder of height | and radius R that
touch each other at one of the end surfaces of the cylinder. The initia temperatures of the bodies and their
thermophysical characteristics are different; for example, zero temperature is maintained at the side surface
and the nontouching end surface of the cylinder, and the initial temperature of the semibounded body is
To>0. An ided (in a thermal sense) heat insulation exists beyond the circular contact region on the surface
of the semibounded body.

We denote the temperature of the semibounded body (r >0, z>0, 1>0) as Ty(r, z 1), the tempera
ture of the cylinder (O<r <R, -1 <z<0, 1>0) as Ty(r, z 1), and the coefficients of thermal conductivity and
therma diffusivity of the semibounded body and the cylinder as A; >0, a; >0 and A,>0, a, >0, respec-
tively.

The above-formulated mixed axisymmetric nonstationary problem of heat conduction can be written
as follows:

62T1(r,z,T) +EaTl(r,z,T) +ale(r,z,r) :iaTl(r,z,r)

5 ., r>0, z>0, 1>0; (1
or r or o7 ay ot
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with the initial conditions
T,(r,z0=T,, r>0, z>0; T,(r,z0)=0, O<r<R, -1<z<0, (©)]

and the boundary conditions
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T=T2(R,z,r):TZ(R,—l,r)zo, 0<r<R, 1>0; ®)
T,(r,0,T)=T,(r,0,7), 0<r<R, 1>0; (6)
aTl(r,o,r):_gaTz(r,O,r), 0<r<R, 1>0: (1
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To Egs. (1) and (2) we apply the Laplace transformation of the form

T=T,(,z9=L[T (r,z 7] =J'Ti (r,z) exp(-s)dr, i=1,2,
0

where Re s> 0; for brevity, here and in what follows it is omitted in the representation. Then, with account

for the initial conditions (3), it is necessary to solve the following system of differentia equations in the
region of L-transforms:

— a4 = — S T,0
(Tl)rr+r1(T1)r+(T1)zz__%1__0D=Ov r>0, z>0; 9)
an- sSgo
— e — S —
(Tz)rr+r1(T2)r+(T2)ZZ—a—T2=0, 0<r<R, -1<z<0. (10)
2

The boundary conditions (4)-(8) for the function-transforms i(r, z, 5) do not change.
The general solution of Eq. (9) by the Fourier method of separation of variables can be written in the
form of an improper integral:

_ T, 0 . o O
Tl(r,z,s):§+IC(p,s)expE|-sz Yo EJO(pr)pdp; r>0, z>0, (11)
0

where E(p, s) is the unknown analytical function and Jo(pr) is the Bessel function of the first kind of zero
order.
Taking the finite Hankel transform of Eg. (10)

R
?ZH =?2H (.29 :I?z (r,z,9) Jp(pr)rdr, —1<z<0,
0
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with account for the homogeneous initial condition from (3) and the boundary conditions (5), we obtain the
solution for the transform Ton(p, z, S) in the form

g U 0 g g 0O i
Tor (.29 =B (0.9 [bosn Lz0/p"+ > Losinh B[54 2 oot Uf52+ 2 ) —1<z<0, (12)

where E(E, S) is the unknown analytical function and the values of p are determined from the characteristic
equation

3o (1) =3, (1) =0. (13)

We note that the Bessel function of the material argument of the first kind of zero order Jo(LL) has an
uncountable set of roots [, nhamely: Y, = 2.4048, U, = 55201, p; = 8.6537, €tc.

The inversion formula of the Hankel transform for (12) by the positive roots of Eq. (13) is known [1,
2] and has the form

0 2‘]0 Elm

D— Dy

— O

- 14)
T,(r,z 9= ToyG— 298] 0<r<R, -1<z<0, (
z Rle( m AN
where J1(1) is the Bessdl function of the first kind of first order.
From expressions (11), (12), and (14) at z = 0 we find
_ T. °_
TL(,0.9=—2+[C(p.9) I (pr) pdp, 1>0; (15
0
aT (r 09 _ ”
= IC(p, 9V + 5 Jo(Pn) pip, r>0; (16)
— O
- ZBB%"1 Sl
o™ O rg (17)
T,(r,0,9= Jo BB, 0<r<Rr;
Z RE () °5"R
_ - 2B B‘lﬁ % E
d0T,(r,0,s O O
L:_ u_r;+i JOS'lmLECOt% b.}.i E’ O<r<R (18)
0z ) RZJl(IJm) R a g 'Ry O0'R anf
The boundary conditions (6)-(8) in the region of L-transforms take the form

?1(r,0,s)=T2(r,0,s), 0<r<R; (19)
aTl(r,O,s)__&aTz(r,O,s) 0<r<R: 20)

oz AN 0z
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oT, (1, 0,9

=0, R<r<o, (21)
0z

and with account for (15)-(17) lead to the following system of summation-integral equations from which one

. . — — 0
must determine the values of the unknown functions C(p, s) and B%%m, SJ
O

0
- ZB% s%

T OR’ 0,
_+IC(p,s)Jo(pr)pdp Z PRI ) Jo még 0<r<R; (22)
J1 g U

JCE.9 VP + 5 %) pop=
0
© ZBBJL“,SE

0 0
1l 1l
=- V 5+ L Jottn oot Vﬁi U o<r<R; (23)
ZKARZJl(um) ‘H‘ RY @ R a
IE(D,S)Vp2+% Jo(pr) pdp=0, R<r<w, (24)
0

where Ky = A1/A; is the criterion characterizing the relative thermal conductivity of the bodies.
It is known from the theory of Bessel functions that if the function f(r, s) within the range 0<r <R
is represented by the Fourier-Bessel series

1 r
(9= A m_% (25)
) 0 RO

where U, are the roots of Eqg. (13), then the coefficients of expansion Ay, are calculated by the formula

Am= RZJl _[ (.9 Jq @m Dolr (26)

With account for (25) and (26), from Eq. (23) we can find the value
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The following assertion holds:
g H
R i m.
0 |j), if pi—,
IJO B%m rd, (pr) rdr = Elf :2 (28)
a~ 0 2 .
0 02 I (W), if pzﬁmf

where U, are the roots of Eqg. (13).

We prove the above. Let y; = y1(X) = Jo(p, X) and yo = yo(X) = Jo(pX). It is known that the Bessel
function of the first kind of zero order satisfies the corresponding differential equation. Consequently, the
equalities (xy;) = —p?y; and (xy,) = —p>xy, hold for y; and y,, whence we can write

p2xy2y1 - EZXY1Y2 =Y, (Xyll)l ~V1 (Xylz)l or (p2 - 52) Xy1Y, = (Y2Xy'1 - Y1Xy'2)' )

or, having integrated both sides of the latter equality from O to x:

X

(0° =) [ Xrya0X = XY¥s = XY (29)
0

Since y1 = pJo(pX) = — pda(PX) and v, = pJy(pX) = —pJi(px), passing in (29) to the initial notation of formula
(28) we can write

R

[0 ) 3y ) = pRJ, (BR) J; (PR) ~ PRI (PR) J; (PR) (30)
0

p*-p°

or under the assumption that pR = i, is the root of Eq. (13)

R
I‘]O B% YEIJO (pr) ror = PRI, (Hr) J; (PR) - U;nJo (PR) J; (M) . (31)
0 o=~ O 2 Hin

R

Applying the L'Hospital rule and taking into account that Jp = —=J;(X) and J1(x) = Jo(X) — % J1(X), we represent

the expression on the right-hand side of equality (31) for pR = iy, as %E}lg(pm) +J§(pm)E= g (), and

for pR# U, it vanishes since in the case considered the values of pR are aso the roots of Eq. (13).
Thus, assertion (28) is proved and from (27) we can write that
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0 0
— 0 R, Ky, L " _
BSL'" S - —Jl(um) 7tanh% u—’;‘+i E C(p 9 p2+i pdp, O<r<R.
oR' O O R a Qg &
Hn S
R 3
We subtitute the obtained value of B R ' sqinto the right-hand side of Eq. (22):
0
ro
00 0 JO%‘lmRD E E
Ty s o O H, S [
—+_[C(p,s)J0(pr)pdp— IC(p,s) Ky, \/ p°+— pdp Z 7tanh% —2+— 0 0<r<R
4 0 R a, [
m=1
VbJ,i
R 4

With allowance for the fact that

rg
00 ‘]0 %mﬁﬂ
U U

)3 S W) S
) )
Sy [ /a2

R a, g &
the first paired equation (22) takes the form

. T
[l
IC(p,s)aﬁK)\Il_tanh@ ;; ai %Jo(pr)pdp——zo, 0<r<R. 2
L Vi e

The second paired equation (24) remains virtually unchanged. .
To solve the paired integral equations (32) and (24), with the am of determining the functions C(p,
s), we use the substitution [3, 4]

O
[l

C(p9=—-— J'q)(t 5) cos% ;; +— Ddt (33)
O

v;_

a

which automatically ensures the fulfillment of the second paired equation (24), since [5]
O
R- 0o |:| ] s %
Jo @9 feost\p*+— K3 (pr) pdpct =
0 o Ud 10
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Dt 9 (- )3/4J_3,2%\7 r)EK/tdt 0<r<t<R;

O<t<R<r.

I

__In order to obtain the equation for determining the analytical function ®(t, s), we substitute the value
of C(p, s) from (33) into the first paired equation (32):

D
» COS ;; p*+

0
_[¢ (t, S)I Jo (pr) pdp dt +
0

;} P
3
0

0
R « tanh ;;p2+£|:|
+K, [¢ g LRy SE __ L 3
JEes[ cos {2 Ly mpdpai==-2, 0<r<r. (3
0 0 2 S

e

P o
i o o

With account for the value of the discontinuous integral [6]

[l
0 0 E?XPEL\/_T[ s
mcos%;7p2+a3% g = , t<r;
1 -t
i Bpp=0 .
o JZ.,s 0 sn&/S ve20
P 0 sm%‘\/a1 V- .
L ——, r<t,
U V-t
the integral equation with the L-parameter (34) takes the form
¢(t 9 expD-v Ddt ¢(t S ¢n - Eb|t+
7—z-—t2 IV‘Z“rZ av a U
- ] — ]
X [, —-a0 X s T,
+—I¢(t S) I tanh(x)cos% ;; Dl—azgs %JOE% ;;——— dedtz——o, 0<r<R. (3p)
0 W, O0Y?Y gagmpgoo'l’ a( s

Equation (35) is a basis one for determining the unknown analytical function 5(& s) = ¢(-r,s). The
method for solving these equations is formulated in [7] in detail. Having determined ¢(r, s), we find the
value of C(p, s) by formula (33). Substituting C(p, s) into (11), we find the L-transform of the temperature
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field ?1(r, z, ) which develops in the half-space with the mixed boundary conditions (6)-(8) in the region of
L-transforms:

O O
Tl(rzs)——+I¢(t S)I P (P) expD-zv_ Dcosgv_2 i %d . r>0, z>0.

0 ]p2+ ail (36)

Using formulas (14), (27)-(29), and (33), we find the solution for the L-transform ?z(r, z, 9) in the
bounded cylinder

) 0 0 0 O 0 O u
T 0 rod L H Hn s % ’ Hn s E T/ s %
T,(hz9=-% 3 b —0rgosh {0\ 2+ 2 H-sinh {0\ 70+ 2 Heot H\/ 72+ 2 Hx
0 0
07> 0
KAtanh% Pm,s D
OvYR & _ N 5 o 0
{p_([¢(t,s)cos%vp +5 Hitdp, 0<r<R, -I<z<0, (37)
s
R 2

where U, are the roots of Eqg. (13).
We consider the limiting case of the solutions (36) and (37) for R — o that corresponds to the con-
tact of an unbounded plate of thickness (height) | with a half-space. In this case, the second paired equation

(24) actualy disappears and the value of C(p, s) is found directly from (32) on the basis of the inversion
formula for the Hankel transform:

-1

0 0
S
_ Tooo S K)\ ;;a+p2 O = s DE
=—— e — D|:|
Cp.9 =5 [ I (P rek1+ tanh%Vp t2 O (38)
0 O St O
tp
U a U
Substituting (38) into the solution (10), we find
0 0
O TO 2 S O
o ol — ex D—z;; +— U O
Ty O s PO VP Ta O O
T (rhz9=2-[p[E 03, (pr) Jp (PX) xdx dp =
0 0% ? 2 E
1+ tanh%;7p2+i On
O a U
g ;;£+p2 O
0 a, 0



=9_09 : (39)
s s
?S 2
K)\ a—1+r 0 - 0
;7 s
1+ tanhg p +a2 0
;7£+ 2
r
&
If in (39) r - O, then we obtain the corresponding one-dimensional solution
O 0
0 epdzy/= U O
_ To O O a 0 D
T,(z9=T,(0 z,s)=?51— , 220, (40)
O + S DD
g1 K,Dtanhg\/a2 e

where Ky = K)vVay/a,.

Thus, we obtained the solution in the region of L-transforms for the system, of contact at the instant
T >0, of an unbounded plate of height | with zero initial temperature and a semibounded body with the initial
temperature To. All the inverse transforms of the temperature fields Ti(r, z, s) are found by the inversion
formula of the Laplace integral in the complex plane Re s> 0.

If the height of the unbounded plate is | - «, then tanh (IVs/a,) — 1 and we obtain the known
solution of A. V. Luikov for two contiguous semibounded bodies [2].

It is more convenient to consider the limiting case R — o« for (37) from Egs. (12) and (40), since in
this case the paired equations are absent and the finite Hankel transform changes over to infinite. In this case,
we take into account the boundary condition (6) in the corresponding region, and proceeding from Eq. (40)
we obtainat z=0

ToKy

s%ﬁwgvigg

Substituting (41) into (12) and using the inversion formula for the iterated Hankel integral [1], we
obtain for R — o

T (0,0,9=T,y (p.0,9=B(p 9=

I Jo (pX) xax . (41)

© [ O O O 0 0O m
?2(0,z,s):jpj %:OSh%]zDV;z+% S—sinh g]zmvgﬂi Bcotgvghaiz %x
0 O

ToKp
o (Pr) Jo (pX) xdx dp = - X

]
O O— O
KoYz Vs £
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0 o __ 0 o __ O O— 1IN
x [osh %]zm\/% O sinh gzzm\/aiz Ecot%'\/% D, -1<z<0. (42)

When | - o, cot (IVs/ay) — 1, and from (42) we obtain the one-dimensional equation for the case
of contact of two semibounded rods whose side surfaces are heat insulated [2]. _

It is seen from the solutions (40) and (42) that the temperature Ty(r, 0, ) = Ty(r, 0, ) in the region
of contact (O<r <R, z= 0) of the bounded cylinder with the semibounded body depends on the parameter s,
and conseguently, on time (for the inverse transform). It was assumed earlier [2] that a constant temperature
is instantly established in the plane of contact of two half-spaces (z = 0) depending on the complex
1/(1+Ky) and is held constant, including the steady state.

Thus, the solution of the given problem yields the following result: contact between a bounded body
and a semibounded one does not lead to a constant temperature being held at the site of contact and depends
on time and on the linear dimensions of the bounded cylinder.
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