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NONSTATIONARY TEMPERATURE FIELDS IN AN 
ISOTROPIC HALF-SPACE UNDER MIXED BOUNDARY 
CONDITIONS CHARACTERISTIC OF TECHNOLOGIES 
OF LASER THERAPY IN MEDICINE 

V. P. Kozlov and P. A. Mandrik UDC 517.968,536.24 

For the first time, the solution o f  the heat-conduction equation with mixed boundalw, conditions (BCs) 

is obtained as applied to the model o f  an isotropic nontransparent half-space, whose surface z = 0 is 

heated through the circular region o f  radius r = R with a heat-flux densi~, characteristic o f  a laser 

heat source, while outside o f  the circle o f  r > R and z = 0 there occurs intense cooling at the value o f  

the heat-transfer coefficient o~ = oo. 

The process of heating of biological objects by means of laser radiation sources is used in medical 
clinics for treatment, for example, of eye diseases. Therefore, to organize safe laser therapy, it is very impor- 
tant to know the laws of the development of spatial temperature fields in the objects investigated with the aim 
of limiting them to safe temperatures (a direct problem of mathematical physics). On the other hand, the de- 
veloped temperature fields are a result of the local heating of the surface by a laser source with the correspond- 
ing heat-flux density q(r, t) through the circular region on this surface. The determination of the law of change 
in the specific heat flux q(r, t), generated by the laser source, at which the temperature of the irradiated surface 
does not exceed admissible values for biological objects is an urgent and practically important problem (an 
inverse problem of mathematical physics). 

It should be noted that the heating of an isotropic half-space through the circular region under unmixed 
BCs has been studied in [1-4], which are associated with the corresponding solutions of Neumann problems. In 
the case of mixed BCs, the body of mathematics for seeking solutions of nonstationary heat-conduction prob- 
lems is considerably complicated, and the solutions themselves cannot be obtained in a closed analytical form. 

Let us dwell on the physical aspect of the subject of investigation that affects the mathematical state- 
ment of this problem. Since 1958, when A. L. Shavlov and Ch. G. Tauns [5] assumed that the principle of 
light amplification due to forced radiation can be extended to the optical spectrum, laser technology has 
achieved considerable advances. Different types of lasers have been created: gas, solid-state, semiconductor, 
dye lasers, and others, which are used in various fields of science, engineering, technology, and medicine. In 
most lasers, a beam of diameter 2R possesses azimuthal symmetry in the cross section with the highest inten- 
sity on the axis r = 0. As the distance r from the beam axis increases, the intensity of the radiation density (of 
the specific heat flux) q(r, z) changes following the exponential law 

q (r, ~) = q0 (~) exp , (1) 

where "~ is the time, r is the running cylindrical coordinate, R is the radius of the radiation beam in its cross 
section, and q(r, "~) is the heat-flux density. 

The value of r at which the radiation intensity decreases e times compared to the intensity on the beam 
axis r = 0 is called the transverse dimension R of the beam [4]. Generally speaking, R changes from point to 
point along the beam axis. Hereafter, in the mathematical statement of our problem we will assume that a 
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beam of  diameter 2R is focused onto the surface (z = 0) (normally to the surface) of  the half-space, while the 
intensity o f  the beam on the surface of  the object investigated in the circular region 0 < r < R changes follow- 
ing law (1) with account for the absorption capacity of  the surface. 

We recall that the ratio of  the radiation flux absorbed by a given body to that incident on the body is 
called the absorption capacity. Therefore, the second-kind boundary condition on a part of  the surface (z = 0, 
0 < r <  R) will be written in the form 

I÷/ - )~e__ (r, 0, x) = (Zsq 0 (x) exp , 0 < r < R ,  (2) 

where O~s is the coefficient of  absorption capacity for the surface of  the nontransparent isotropic half-space 
(0 < c~ < 1), q0(r) is the time law of  change in the specific power of  laser radiation, and )~ > 0 is the thermal 
conductivity coefficient of the object under investigation. 

Thus, it is necessary to solve the equation 

0,.,. (r, z, I;) + r-10 (r, z, I:) + 0:_ (r, z, 1:) = a-10T (r, z, "C), r, z, "t: > 0 ,  (3) 

(where a > 0 is the thermal diffusivity coefficient of  the object, r and z > 0 are the cylindrical coordinates, and 
"c > 0 is the time) under the mixed discontinuous boundary conditions 

- 0 : ( r ,  0 , ' t ) = ~ - ~ q 0 ( ' 0 e x  p - , 0 < r < R ;  (4) 

0 (r, 0, x ) = 0 ,  r < R  <oo ,  

and the initial condition 0(r, z, 0) = 0. 
Applying the integral Laplace transform to Eqs. (3)-(5) 

(5) 

L [0 (r, z, x)] = 0 (r, z, s) = j" exp ( -  sx) 0 (r, z, x) dx 
0 

(6) 

(where Re s > 0 and for brevity of statements is implied further by default) and taking into accoun t the  condi- 
tion of limitation 0(r, z, x) with ~ + z2 --~ oo, it is easy to obtain a solution for representation of  0(r, z, s) in 
the form [6-8] 

o 

(P,s) expl-z41p2+Sl3Jo(Pr)dp, 

where C*(p, s) is the unknown function. 
Mixed boundary conditions (4) and (5) for representation (7) take the form 

- 0: (r, 0, s) = --~ q0 (s) exp - , 0 < r < R ,  

(7) 

0 (r, 0, s) = 0 ,  r < R < o o ,  

where 
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qo (s) = I exp ( -  sx) qo (x) dz .  
o 

Thus, taking into account mixed boundary conditions (4) and (5), we reduce the solution of differential 
problem (3)-(5) to the solution of the following paired integral equations in the region of L-transtbrms relative 
to the value of C*(p, s): 

c,o 

I'll * (p,  S) 2 + __ J o  (p r )  d p  = qo (s)  e x p  , 

o 

0 < r < R ,  (8) 

S C*(p,s)J0(pr)dp=0, R<r<~, 
o 

(9) 

where J0(pr) is the Bessel function of the real argument [3, 91 and q;(s) = ---~0(s). 

To solve Eqs. (8) and (9), we introduce into consideration another analytical function ~*(t, s) by means 
of the relation [6, 7] 

( /p2 s)) 
(p, s) = P g *  (t, s) sin t + dr. (10) 

Substitution of Eq. (10) into Eq. (9) provides immediately the fulfillment of the second paired equation 
due to the value of the following discontinuous integral [9, p. 203] for r > R: 

I P J ° ( P r ) s i n  2 + s  dp 

f 
I 

0, x < r ,  

]cos (~(x 2 
I 

~ / X  2 _ i. 2 
, x > r .  

Substituting further Eq. (10) into the first paired equation (8), we obtain the integral equation with the 
L-parameter for determining ~*(t, s): 

t ~_ (Z' s_) , 
o ~ rx-  t2 exp (1 "2-t  2) dr+ ~ (t,s) sin t d t -  

~a ))  0 

S t(p (t,s) s _ r  2) sin (t 2 

r 

dt = qo (s) exp -~-ff pd 9 
o 

, 0 < r < R .  

(11) 

We note that in deriving Eq. (11) the following formulas [9] were used: 

627 



d 
prJ o (pr) = ~ [rJ 1 (pr)], 

iJl (Pr) sin (t 4(P2 + s)/dP 

' /-+Is )) ,,~i r.,/(s)} ' e x p ,  sin~., -,- ,.+-,~"2-'2' 
=~ 

I t sin (t 2 - r 2) 

:sin/,VI:/l 
t,- ( , q T _ , .  -~ ' 

, r > t > 0 ,  

t > r > 0 .  

Next, to determine ~*(t, s) from Eq. (11), we proceed in a way which differs from that described in 
[7], i.e., we reduce Eq. (11) to an equation similar in appearance to a Fredholm integral equation but with the 
parameter s. For this, we multiply the left- and right-hand sides of equality (11) by the integrating factor 

1/2 
2cos (aS-(,2 - la2) / 

i #~.2_ p2 I-t, having preliminarily replaced i" by p in Eq. (11). Then Eq. (11) takes the form 
0 

J "7 ,.2 _ 12 o 

r, t ~ * ( t , s ) e x p ( - q ( s ( p 2 - t e ) ) )  

I ~/bt 2 - t 2 
0 

dt dp + 

+ I  ~ , .2_-~  I ~* ( t ' s )  sin t d t d p -  
0 0 

, - 2 c o s / q / S ( r 2 - p 2 ) ) / p  k t~* (',s) s i n / q ( D ( t 2 - p 2 ) ) /  

-S ~r~2 f V , ' ;  
o p 

dt dp = 

2cos/+/s<,  • s 
= q0 (s) ~/r 2 2 exp 

o - p o 
p dp dl.t, 0 < r < R .  (12) 

Changing in Eq. (12) the order of integration by the known Dirichlet formula for iterated integrals, we 
obtain in the right-hand side of Eq. (12) 

,2cos 
So 2 ."e'p{-"7/o p dp dp = 
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/q( a(/2 1t " 2 r 2cos " - l a  2) bt 

=q~,.,s expl ~/o~oS ~.: 
4 / - _ ~  2 o L ,  K ) P 

*, [°2] Iris /1 2 qo (s) exp 7 sin (r 2_ p2) p dp,  

.jtst o 
O < r < R .  

Acting in a similar way in the left-hand side of Eq. (12), we arrive at the equation 

t -~ * (t, s) dt + 2 -~ * (t, s) sin sin r dt - 

0 

. [i l )ll ls)ll - I t - ~ * ( t , s )  Si ( t+r )  +Si  ( , ' - t )  d t =  

o 

v { : l *  {v{ s /) =2qo  (s) exp ---¢ sin ( 1"2-9 2 ) P d P ,  O < r < R .  
,, ~, R') 

Next, differentiating the last equality with respect to r, we obtain 

R [sin l ' ~ / / s  ( t -  r)) l  sin 1 4 I s  (t + r)/)] 

~* ( , - , s ) -±  f ~* (,,~) - d,= 
'~ ,, L 7 - 7 .  , + , -  

= --~ qo (s) o exp ~/ 12 _ P 2 p d  9 , 0 < r < R .  (13) 

The integral equation with the L-parameter (13) is the initial one for determining the analytical function 
cp*(r, s). In [8], the solution of Eq. (13) was obtained for a constant right-hand side, in which the function 

2q0 
assigned in the circle (0 < r < R ,  z = 0) was equal to rcXs sff}Ta-a sin (sr~Ta-a). We introduce into Eq. (13) the 

notation W(r, s) - ~*(r, s) where q~(s) ¢ 0 and K2(r, t, s) = sin (s'~fa-a(t- '9) sin (s'477~a(t + r)) at which Eq. 
sq~)(s) t - r t + 1" 

(13) will be written as follows: 

~ ( r , s ) = 2  exp --~ ~2 0,_ o d P +  J~S 0 
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R 

+ l  S~t(t,s)K,2(r,t,s)dt, O < r < R .  
g o  

We will seek a solution of Eq. (14) in the form of a series of functions 

~ ( r ' s ) - l e x p ( - R 4 ( a ) ) - s  v,, o-)(S)",  
n=0 

and then we substitute this series into Eq. (14) and, as a result, obtain the equality 

i exp 7 
%, (r) (47)"-2 2 

.=0 = 71:-"S 0 ~/re  - 92 13 e x p  cos (r 2 _ p2) dp + 

R oo 

1 - -  
+ - -  S K2 (r, t, s) ~., V,, (t) (~ss)" dt, 

F,s 
0 /t:=O 

0 < r < R .  

As a power series, we can write the following product: 

exp (R 4 ( s / l  cos l ~ / I s  (r2 - P2)/ / :  
J) 

= ( ~ ) , ,  ~__ 1 
.=o L 2n! [(R 

+i'f r2-p 2 )"+(R-i ~ ) n l ] =  

* [ ~ x J  
: E  (~ss)n E A"j(R)(~f -O= ) ' 

n=:O j=O 

r > p ,  

where 

An, i (R)= j n ! ('~a )" 

are the binomial coefficients. 
The following product can easily be written in the Cauchy form [lO]: 

L(,-,,,s) Z v,,~,)~s)" = Z  c;, ~,, ,) ~ s  )" Z V.~')~S)"-- 
n=O .r'~) n=0 

n ~ 17 

= Z (~)" Z ~,k (,) c:_k (,, ,-)= Z (~)"  Z c;, (,, ,-) ~,.-m (,), 
n=0 k=0 n--0 m=0 

where ~t.(t) are the unknown functional coefficients of series (15), while C*m(t, r) has the form 

(14) 

(15) 

(16) 

(17) 

(18) 
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= - -  sin [(t - (t + r) m-l] = 
m !  

1 sin 1 1 tin-j-1 ij [(_ 1 ) i -  1 ] .  
m [  

Substituting series (17) and (18) into formula (16), we obtain an equation for determining the coeffi- 
cients ~,,(r), which, as is easy to see, will not be the integral equation for the unknown function ~,( t )  (since 

C(*)(t, r) = 0) but will represent the recursion formula 

~,, (r) = 2 ~ A,,j (R) exp - (r 2 - P') --¢- pdp + 

j=0  0 

n R 

1 
+ - ~ .  ; C m (t, J') tF.-m (t) d t ,  

It  
m--O 0 

(19) 

where C~,l(t, r) - 0  with m = 0, l, 2, 4, 6, 8 . . . . .  
Thus, for example,  from Eq. (19) we obtain 

2 '/4 

where 

/-;t ~F1 (r) - . ~ - e x p  erfi ; 

3R_____~ exp effi - rR2 
• 2 (r)  = 4 a  ~ 2 ~  ' 

5R4 exp - erfi - 
~3 (r) - 12 "~-~a ~ 

"3 

2rLa ~ + e tc . ,  3='a  L 

2; 
erfi (x) = - i erf  (ix) = ~ -  exp (t 2) dt = - - ~  

0 .-  

2k+ 1 
X 

k !  (2k + 1) 

Substitution of ~ , ( r )  f rom Eq. (19) into Eq. (15) gives the representation 

- I- 4l 11 (r, s) = 2 exp R s 
~ s  

i exp " (r  2 _  p2)-~).5 

o 

pdp + 

2 
/ t  

* P- 2 -¢- [ ~., Am+l, i(R) exp (r  - 9  2 ) -  pd 9+ 
j--O o 
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m+l R 

1 
+-- Z ~ C; (t, 1")lqlm_k+ ' (1)dt], 

2 k--O 0 
O < r < R ,  (20) 

for which there is the inverse Laplace transform [11], since 

, i exp  / 

L- l [ j21exp (_k~s ) l_exp l  -~-~'T) 

where 

(-1), 
Hj(x)=j! ~ l ! ( j ' - 2 / )  ! 

/=0 

( 2x ) i- 2l 

is the Hermite polynomial [3, 9]. 
The value of ¢p*(r, s) is found from the equation 

-~* (r, s) = sqo (s) -~ (r, s) , (21) 

while for determination of the original ~p*(r, x) at the k n o w n  L-l[sq~)(s)] = q~)(l:) and L-t[~(r, s)] = ~(r, I:) we 
have 

T 

_ ~  - -  f * ¢p* (r, "~) = L -I IV* (r, s)] = L -1 [sqo (s) ~ (r, s)] = j V (r, ~) q0 (x - ~) d~. 
0 

We find the value of C*(p, s) from Eq. (10) by substituting ~*(t, s) into it. The temperature field for 
the representation of 0(r, z, s) is determined from Eq. (7), and the original 0(r, z, x) = L-l[0(r, z, s)] is found 
from the well-known [12] inversion formula. 

In conclusion, it should be noted that, according to Eqs. (21) and (20), the stationary values of the 
corresponding functions with s---> 0 can be written in the form 

cp (I")= lim [sT* (r,s)] 2 lim [sqo (s)] exp _ pdp, 
s--~O /~ s--)O 0 

v ( r ) =  lim [ s ~ ( r , s ) ] = 2  exp P" ~/r--p2 dp .  
s-O0 7Z 0 

Here the last formula coincides with the solution of the Laplace equation for a half-space [13, 14] with mixed 
boundary conditions 

° ( ; /  - O : ( r , O ) = . q o e x  p - , O < r < R ;  O(r ,O)=O,  r < R < ~ .  
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