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Abstract: The paper is devoted to analysis of approximations of the models
in sequential hypotheses testing and to construction of new robust sequential
test under the distortions presented by mixtures of probability distributions.
The previous results of the authors are extended to the case of arbitrary dis-
crete probability distributions. The theory is illustrated by computer mod-
elling.
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1 Introduction

In applications, especially in medicine (Whitehead, 1997), statistical quality control (Ma-
son and Young, 2002), biology (Durbin, 1998) and finance (Lai, 2001), sequential meth-
ods of hypotheses testing (see Wald, 1947; Siegmund, 1985) are used quite often. The
usage of this type of statistical procedures for such applications follows naturally from
the data character (see, for example Bauer and Röhmel, 1995).

Sequential procedures are applied in practice to the data which does not follow exactly
a considered hypothetical model (Huber, 1981). Usually a high percentage of the data fits
a hypothetical model, and within this model assumptions the sequential test could be op-
timal. But a small part of data does not follow the hypothetical model — the hypothetical
model is distorted (see Rieder, 1994). This leads often to loose of optimality of the test.
That is why the robustness analysis for a sequential test used should be performed, and
the robust tests need to be constructed to treat the data under distortions.

Some results on robustness analysis for sequential testing of hypotheses on data from
continuous distributions are presented in (Quang, 1985). Our previous results are related
to the special case of discrete model of observations (see Kharin, 2002). In this paper, we
consider the case of arbitrary discrete probability distributions with finite sets of values.

2 Mathematical Model, Sequential Probability Ratio
Test, Distortions

Let independent discrete random variablesx1, x2, . . . be defined on a measurable space
(Ω,F), xt ∈ U = {u1, . . . , uM}, ∀t ∈ N, U ⊂ RN , M < ∞. Let these random variables
be identically distributed:

Pθ(u) = P{xt = u | θ}, u ∈ U, (1)

whereθ ∈ Θ = {0, 1} is an unobservable parameter. There are two simple hypotheses on
the parameterθ:

H0 : θ = 0, H1 : θ = 1. (2)
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Denote the accumulated likelihood ratio statistic:

Λn = Λn(x1, . . . , xn) =
n∑

t=1

λW (xt), n ∈ N, (3)

where

λW (u) = log
P1(u)

P0(u)
, u ∈ U.

To test the hypotheses (2) aftern (n = 1, 2, . . .) observations, the decision

dn = 1[C+,+∞)(Λn) + 2 · 1(C−,C+)(Λn) (4)

is made according to the sequential probability ratio test (SPRT), (see Siegmund, 1985).
By 1D(·) we denote the indicator function of the setD. The decisionsdn = 0 anddn = 1
mean stopping of the observation process and acceptance of the correspondent hypothesis.
The decisiondn = 2 means that the(n + 1)-th observation is to be made. The thresholds
C−, C+ ∈ R, C− < 0 < C+, are the parameters of the test.

Below we generalize the test (4) replacing the functionλW (·) with another function
λ : U → R. In this case, we indicate that the test (4) is based on the functionλ(·).

Consider the model of distortions which will be analysed in Section 4. Let the hy-
pothetical model be under contamination of the Tukey–Huber type, (see Huber, 1981).
This means that instead of (1) the observationsx1, x2, . . . come from a mixtured discrete
probability distribution

P̄k(u) = P̄ (u; k) = (1− εk)Pk(u) + εkP̃k(u), u ∈ U, k = 0, 1, (5)

whereεk ∈ [0, εk+], k = 0, 1, are unknown probabilities of contamination,P̃k(u) is an
arbitrary contaminating probability distribution,̃Pk(·) 6= Pk(·).

3 Evaluation of the Characteristics of the Test

In Kharin (2002) explicit expressions for the characteristics of the test (4) are given under
additional assumption on the functionλW (·):

λW (u) = mua, ∀u ∈ U, mu ∈ Z, a ∈ R+. (6)

Under this assumption the thresholdsC−, C+ can be replaced withabC−/ac andadC−/ae
respectively without changes in the test (4). As long as (6) is satisfied, assume thatC̄− =
C−/a, C̄+ = C+/a ∈ Z. Fork = 0, 1 introduce the notation:

Q(k) = (q
(k)
ij ), q

(k)
ij =

∑

u∈U

δmu,j−iP̄k(u), C̄− < i, j < C̄+;

R(k) = (r
(k)
ij ), C̄− < i < C̄+, j = C̄−, C̄+,

r
(k)

iC̄−
=

∑

u∈U

1(C̄− − i−mu)P̄k(u), r
(k)

iC̄+
=

∑

u∈U

1(mu + i− C̄+)P̄k(u);
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π(k) = (π
(k)
i ), π

(k)
i =

∑

u∈U

δmu,iP̄k(u), C̄− < i < C̄+;

π
(k)

C̄−
=

∑

u∈U

1(C̄− −mu)P̄k(u), π
(k)

C̄+
=

∑

u∈U

1(mu − C̄+)P̄k(u),

whereδi,j is the Kroneker symbol,1(·) is the unit step function. Define the matrices

S(k) = IN−2 −Q(k), N = C̄+ − C̄− + 1, andB(k) =
(
S(k)

)−1
R(k), k = 0, 1. We denote

thei-th column of the matrixB(k) asB
(k)
(i) . Let1N−2 be the vector column of size(N −2)

all elements of which are equal to 1.
The next result gives the explicit expressions for the error probabilities of type I and

II denoted byα, β, and conditional expected sequence sizes (ESSs)t(k) (if the hypothesis
Hk is true),k = 0, 1, for the test (4) under the assumption (6).

Theorem 1 (Kharin, 2002) If under conditions (1), (2), (6)|S(k)| 6= 0, then the charac-
teristics of the test (4) have the following expressions:

t(k) =
(
π(k)

)′ (
S(k)

)−1
1N−2 + 1, k = 0, 1,

α =
(
π(0)

)′
B

(0)
(2) + π

(0)

C̄+
, β =

(
π(1)

)′
B

(1)
(1) + π

(1)

C̄−
.

(7)

If the assumption (6) is broken, we can use the so-called approximated test to get
estimates of the conditional error probabilities and the conditional ESSs of the test (4).
We construct a functionλ : U → R that satisfies (6) and approximates the function
λW (·):

max
u∈U

|λ(u)− λW (u)| ≤ δ, (8)

whereδ > 0 is a parameter of approximation. As it is shown in (Kharin, 2004), the
functionλ satisfying (8), (6) can always be constructed.

As λ(·) satisfies (6), Theorem 1 holds, and we get the conditional error probabilities
and the ESSs of the test based on the functionλ(·). With δ being small enough these
values approximate the characteristics of the SPRT. Choosingλ(·) in a proper way we get
upper and lower bounds of these characteristics.

Let α, β, α, β be the error probabilities of the test (4) based on the functionsλ(·), λ(·)
respectively. Define random variables (stopping times)

τ0 = inf{n : Λn ≤ C−}, τ1 = inf{n : Λn ≥ C+},
τ 0 = inf{n : Λn ≤ C−}, τ 1 = inf{n : Λn ≥ C+},
τ 0 = inf{n : Λn ≤ C−}, τ 1 = inf{n : Λn ≥ C+},

where

Λn =
n∑

t=1

λ(xt), Λn =
n∑

t=1

λ(xt).

Denote byEk{·} the expectation w.r.t. the distributionPk, k = 0, 1, by o(1) the Landau
symbol.
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Theorem 2 If the functionλ(·) in the test (4), (3) is bounded by the functionsλ(·), λ(·) :
U → R, that is

λ(u) ≤ λ(u) ≤ λ(u), ∀u ∈ U, (9)

then
α ≤ α ≤ α, β ≤ β ≤ β. (10)

If, in addition,maxu∈U

{
|λ(u)− λ(u)|, |λ(u)− λ(u)|

}
= δ → 0, then

t
(k)
− ≤ t(k) ≤ t

(k)
+ , t

(k)
± = T

(k)
± + o(1), k = 0, 1, (11)

where
T

(0)
− = αE0 {τ 1 | τ 1 < τ 0}+ (1− α)E0 {τ 0 | τ 0 < τ 1} ,

T
(0)
+ = αE0 {τ 1 | τ 1 < τ 0}+ (1− α)E0 {τ 0 | τ 0 < τ 1} ,

T
(1)
− = βE1 {τ 0 | τ 0 < τ 1}+ (1− β)E1 {τ 1 | τ 1 < τ 0} ,

T
(1)
+ = βE1 {τ 0 | τ 0 < τ 1}+ (1− β)E1 {τ 1 | τ 1 < τ 0} .

(12)

Proof. From the sequential test construction it follows thatτ0 6= τ1. First prove the
inequalityα ≤ α. By the definition, we haveα = P0{τ1 < τ0}, α = P0{τ 1 < τ 0}. As
Λn ≥ Λn, we getτ0 ≤ τ 0 andτ1 ≥ τ 1. Hence,

α = P0{τ1 < τ0} ≤ P0{τ 1 < τ 0} = α.

The second inequality forα and inequalities (10) forβ are proved in the same way.
From the total probability formula we get

t(0) = E0 {τ0 | τ0 < τ1} (1− α) + E0 {τ1 | τ1 < τ0}α. (13)

From the definition of the stopping timesτk, τ k, τ k, k = 0, 1, it follows that

τ 0 ≤ τ0 ≤ τ 0, τ 1 ≤ τ1 ≤ τ 1,

and

{τ 0 < τ 1} ⊂ {τ0 < τ1} ⊂ {τ 0 < τ 1}, {τ 1 < τ 0} ⊂ {τ1 < τ0} ⊂ {τ 1 < τ 0}. (14)

From the definition of the conditional error probabilities we get

P0{{τ 0 > τ 1} ∩ {τ0 < τ1}} = α− α,
P0{{τ0 > τ1} ∩ {τ 0 < τ 1}} = α− α.

(15)

Let us analyse summands in (13):

E0{τ0 | τ0 < τ1}(1− α) =
(1− α)(E0 {τ0 | {τ0 < τ1} ∩ {τ 0 < τ 1}}P0 {τ 0 < τ 1 | τ0 < τ1}+

E0 {τ0 | {τ0 < τ1} ∩ {τ 0 > τ 1}}P0 {τ 0 > τ 1 | τ0 < τ1} .

Using (14), (15) we get

E0{τ0 | τ0 < τ1}(1− α) =
E0 {τ0 | τ 0 < τ 1} (1− α) + E0 {τ0 | {τ0 < τ1} ∩ {τ 0 > τ 1}} (α− α).

(16)
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Because of the finiteness of the integral (see Wald, 1947)
∫

τ0<τ1
τ0P0(dω) < ∞,

and because of the “shrinking” probabilities (15) atδ → 0, we have from (16):

E0{τ0 | τ0 < τ1}(1− α) ≤ E0 {τ 0 | τ 0 < τ 1} (1− α) + o(1), δ → 0. (17)

An upper bound for the second summand in (13) is constructed in the same way:

E0 {τ1 | τ1 < τ0}α = α(E0 {τ1 | {τ1 < τ0} ∩ {τ 1 < τ 0}}P0 {τ 1 < τ 0 | τ1 < τ0}+
E0 {τ1 | {τ1 < τ0} ∩ {τ 1 > τ 0}}P0 {τ 1 > τ 0 | τ1 < τ0}) =

E0 {τ1 | τ 1 < τ 0}α + o(1), δ → 0.

Finally,
E0 {τ1 | τ1 < τ0}α ≤ E0 {τ 1 | τ 1 < τ 0}α + o(1). (18)

Considering (17) and (18) together, we come to the upper bound (11) fort(0).
The lower bound fort(0), and both bounds fort(1) are proved with the same scheme.

Theorem 3 If the conditions of Theorem 2 hold, then the following inequalities are sat-
isfied:

t(0) ≤ (1− α)E0 {τ 1 | τ 0 < τ 1}+ αE0 {τ 0 | τ 1 < τ 0} ,
t(1) ≤ (1− β)E1 {τ 0 | τ 0 > τ 1}+ βE1 {τ 1 | τ 1 > τ 0} .

(19)

Proof. Analyse the first summand in (13):

E0 {τ0 | τ0 < τ1} (1− α) = 1
1−α

· ∫τ0<τ1
τ0P0(dω) · (1− α) ≤

1−α
1−α

· ∫τ0<τ1
τ 1P0(dω) = (1− α) · E0 {τ 1 | τ 0 < τ 1} .

(20)

Considering the second summand in (13), we get:

E0 {τ1 | τ1 < τ0}α = 1
α
· ∫τ1<τ0

τ1P0(dω) · α ≤
α
α
· ∫τ1<τ0

τ 0P0(dω) = α · E0 {τ 0 | τ 1 < τ 0} .
(21)

From (13), (20), (21) we get the first inequality of (19). The second inequality is proved
in the same way.

The upper bounds (19) can be calculated using the theory of denumerable Markov
chains (Kemeni et al., 1966). Although the result of Theorem 3 is not asymptotic, we
recommend to use in practice the main terms (12) of the asymptotic expansions (11),
because the inequalities in (19) are “rough”.

The next result gives the explicit expressions for the conditional ESSs under assump-
tion (6).

Theorem 4 If under conditions (1), (2), (6)|S(k)| 6= 0, k = 0, 1, then for the test (4)

Ek {τ0 | τ0 < τ1} =
(
π

(k)

C̄−
+ (π(k))′(S(k))−1R

(k)

C̄−

)−1
(π(k))′(S(k))−2R

(k)

C̄−
+ 1,

Ek {τ1 | τ1 < τ0} =
(
π

(k)

C̄+
+ (π(k))′(S(k))−1R

(k)

C̄+

)−1
(π(k))′(S(k))−2R

(k)

C̄+
+ 1.

(22)
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Proof. Define a random sequence

ξn = C̄+ · 1[C+,+∞)(Λn) + C̄− · 1(−∞,C−](Λn) +
Λn

a
· 1(C−,C+)(Λn) ∈ Z, n ∈ N.

Thenξn is a homogeneous Markov chain withN states, two of them,̄C− andC̄+, being
absorbing ones. If the hypothesisHk, k = 0, 1, is true, the matrix of transition probabili-
ties ofξn is given by

P (k) = (p
(k)
ij ) =




I2 | 02×N−2

— — —
R(k) | Q(k)


 ,

whereI2 is the(2×2)–identity matrix and02×N−2 is (2×N−2)–matrix with all elements
equal to 0. The vector of initial probabilities of nonabsorbing states ofξn equals toπ(k)

and initial probabilities of absorbing states equal toπ
(k)

C̄−
, π

(k)

C̄+
. The rest of the proof

follows from the finite Markov chains theory (Kemeni and Snell, 1959).
Theorems 2, 4 give a possibility to evaluate lower and upper bounds of the characteris-

tics of the test (4). We construct functionsλ(·), λ(·) that approximateλW (·) and satisfy (6)
and (9). Then we calculate characteristics of the tests based onλ(·), λ(·) using (7) and
get upper and lower bounds via (10) and (12).

We also can use the results of Theorems 2, 4 to evaluate the accuracy of existing esti-
mates obtained via approximation ofλW (·). Suppose we have already the approximations
α̃, β̃ of the error probabilities obtained using the functionλ̃(·) that satisfies (6) and ap-
proximatesλW (·) with an accuracyδ. Considering (6), let us denotem∗ = max{m ∈ Z :
a/m ≥ δ}, aδ = a/m∗, and define the functionsλ(·), λ(·):

λ(u) =

{
λ̃(u), if λ̃(u) ≤ λW (u),

λ̃(u)− aδ, otherwise,
λ(u) =

{
λ̃(u), if λ̃(u) ≥ λW (u),

λ̃(u) + aδ, otherwise.
(23)

Note that the functions (23) satisfy (6) witha = aδ.

Corollary 1 If functionsλ(·), λ(·) are defined by (23), then the following inequalities
hold for the two tests of the type (4) based on these functions:

|α̃− α| ≤ α− α, |β̃ − β| ≤ β − β.

Proof. As λ(u) ≤ λW (u) ≤ λ(u), andλ(u) ≤ λ̃(u) ≤ λ(u), ∀u ∈ U , from Theorem 2
we get thatα ≤ α ≤ α andα ≤ α̃ ≤ α. Hence,|α̃− α| ≤ α− α. The second inequality
is proved similarly.

Let us note that the asymptoticsα− α → 0, β − β → 0 is reached by takingδ → 0.
The accuracy of the estimates of the conditional ESSs can be evaluated in the same

way.
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4 Minimax Robust Sequential Test

A family of modified sequential tests is proposed to robustify (4) in (Kharin, 2002):

d = 1[C+,+∞)(Λ
g
n) + 2 · 1(C−,C+)(Λ

g
n), (24)

Λg
n =

n∑

t=1

g(λ(xt)),

where
g(z) = g− · 1(−∞,g−](z) + g+ · 1[g+,+∞)(z) + z · 1(g−,g+)(z),

andg−, g+ ∈ R, g− < g+, are parameters of (24).
The minimax robust test is defined as the solution of the extremal problem:

{
w0π0α(g(·)) + w1π1β(g(·)) → ming(·)
π0t

(0)(g(·)) + π1t
(1)(g(·)) ≤ C(π0t

(0) + π1t
(1)),

(25)

whereC > 1 is a parameter,w0, w1 ≥ 0 are losses caused by the errors of type I and
II respectively,π0, π1 are known prior probabilities of the hypotheses,α(g(·)), β(g(·)),
t(0)(g(·)), t(1)(g(·)) are the error probabilities and conditional ESS of the test (24) under
the least favorable contaminating distribution, that is given in (Kharin, 2002).

Note that the test (24) can be treated as the test (4) based onλ(u) = g(λW (u)). Hence,
if λ(·) satisfies (6), Theorem 1 holds and the problem (25) can be solved numerically by
iterating through all possible values ofg−, g+.

If the assumption (6) doesn’t hold, we can replace the characteristicsα(g(·)), β(g(·)),
t(0)(g(·)), t(1)(g(·)), t(0), t(1) in (25) with their upper bounds using the results given by
Theorem 2 and Corollary 1. The solution of the constructed extremal problem approxi-
mates the solution of the problem (25) according to the theory presented in Section 3, and
can be found numerically.

5 Numerical Results

To illustrate the theoretical results we performed computer modelling. The case of the
observed sequence of random vectors

xi = (xi1, xi2, xi3, xi4, xi5) , xij ∈ N4 = {1, 2, 3, 4},
M = 1024, U = N5

4 ,

was considered.
The hypothesesH0, H1 were formed by the expressions:

P0 (u) = 1/45, u ∈ U,
P1{xij = 1} = 0.4, j = 1, 2, 3,
P1{xij = k} = 0.2, j = 1, 2, 3, k ∈ {2, 3, 4},
P1{xij = k} = 0.25, j = 4, 5, k ∈ N4.
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The thresholdsC− andC+ for the test (4) were calculated using the Wald formulae:

C+ = log
1− β0

α0

, C− = log
β0

1− α0

,

whereα0 andβ0 are the so-called “desired” conditional error probabilities (they are max-
imal possible values of the error probabilities of type I and II).

For a number of pairs ofα0, β0 the estimateŝα, β̂, t̂(0), t̂(1) of the error probabilities
and the conditional ESSs were obtained using Monte-Carlo method. For each set of pa-
rametersN = 1000000 experiments were done. Also for each pair ofα0, β0 the lower and
upper boundsα, β, T

(0)
− , T

(1)
− , α, β, T

(0)
+ , T

(1)
+ , were calculated using (10) and (12), (22).

The bounds were obtained using the approximation with the parametersa = δ = 0.005.
The results of computer modelling are presented in Tables 1 and 2. The cases where the
Monte-Carlo estimate of the conditional ESS was out of the correspondent interval are
marked with the bold font.

Table 1: Conditional error probabilities for the hypothetical model

α0 β0 α α̂ α β β̂ β

0.01 0.01 0.00630 0.00662 0.00749 0.00660 0.00731 0.00766
0.01 0.05 0.00646 0.00686 0.00763 0.03655 0.03960 0.04070
0.01 0.10 0.00671 0.00707 0.00781 0.07402 0.07706 0.07974
0.05 0.05 0.03527 0.03656 0.03868 0.03693 0.03907 0.04077
0.05 0.10 0.03673 0.03824 0.03949 0.07368 0.07632 0.07880
0.10 0.10 0.07418 0.07814 0.07938 0.07290 0.07614 0.07713

Table 2: Conditional ESSs for the hypothetical model

α0 β0 T
(0)
− t̂(0) T

(0)
+ T

(1)
− t̂(1) T

(1)
+

0.01 0.01 32.2909 32.5822 33.0935 30.0705 30.5502 30.9739
0.01 0.05 21.1276 21.3349 21.7386 28.3925 28.6475 28.9499
0.01 0.10 16.6312 16.7791 17.0242 26.4813 26.7070 26.8189
0.05 0.05 19.7907 19.9744 20.1483 18.7114 18.9015 18.9374
0.05 0.10 15.4720 15.5673 15.6722 17.2044 17.1832 17.2227
0.10 0.10 14.2885 14.2113 14.3149 13.2700 13.1961 13.3513

These results show that the lower and upper bounds of the characteristics of the test
are precise enough. The upper boundsα, β of the error probabilities can be successfully
used instead of Wald’s estimatesα0 andβ0, when the thresholdsC−, C+ are given. The
main termsT (k)

± calculated according to (12) could also be used in practice.
Similar experiments were performed for the case where the hypothetical model (1) is

distorted according to (5),π0 = π1 = 1
2
, w0 = w1 = 1, C = 10, and the minimax robust

sequential test (24) withg− = −0.231158, g+ = 0.241208. The levels of contamination
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were equal toε0 = ε0+ = ε1 = ε1+ = 0.1. Contaminating distributions were chosen to
be the least favorable ones (for construction see Kharin, 2002):

P̃0{xij = 1} = 1, j = 1, 2, 3,

P̃0{xij = k} = 0, j = 1, 2, 3, k ∈ {2, 3, 4}, P̃0{xij = k} = 0.25, j = 4, 5, k ∈ N4,

P̃1{xij = 2} = 1, j = 1, 2, 3,

P̃1{xij = k} = 0, j = 1, 2, 3, k ∈ {1, 3, 4}, P̃1{xij = k} = 0.25, j = 4, 5, k ∈ N4.

The results are presented in Tables 3 and 4. For comparison, the estimates of the SPRT
(4) characteristics are also given in the tables. The results show the robustness of the test
(24).

Table 3: Conditional error probabilities for the distorted model

α0 β0 α̂ α(g) α̂(g) α(g) β̂ β(g) β̂(g) β(g)
0.01 0.01 0.24 0.0015 0.0034 0.0059 0.11 0.0049 0.0082 0.0185
0.01 0.05 0.19 0.0016 0.0035 0.0060 0.22 0.0301 0.0427 0.0722
0.01 0.10 0.18 0.0017 0.0037 0.0061 0.30 0.0662 0.0863 0.1298
0.05 0.05 0.31 0.0147 0.0246 0.0348 0.20 0.0309 0.0427 0.0709
0.05 0.10 0.28 0.0154 0.0249 0.0353 0.27 0.0675 0.0862 0.1272
0.10 0.10 0.36 0.0401 0.0581 0.0753 0.24 0.0690 0.0867 0.1253

Table 4: Conditional ESSs for the distorted model

α0 β0 t̂(0) T
(0)
− (g) t̂(0)(g) T

(0)
+ (g) t̂(1) T

(1)
− (g) t̂(1)(g) T

(1)
+ (g)

0.01 0.01 60.2 197.5 225.0 244.7 50.7 241.7 263.4 304.9
0.01 0.05 38.6 130.1 147.6 160.0 40.1 235.0 246.7 270.3
0.01 0.10 30.2 101.0 114.2 123.4 33.5 222.7 228.0 240.5
0.05 0.05 28.0 127.3 139.8 146.5 25.7 153.7 158.9 170.5
0.05 0.10 21.1 98.4 107.0 111.5 21.3 143.7 144.3 148.7
0.10 0.10 16.9 92.9 98.0 99.2 16.0 108.8 108.2 110.1
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