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Abstract: The paper is devoted to analysis of approximations of the models
in sequential hypotheses testing and to construction of new robust sequential
test under the distortions presented by mixtures of probability distributions.
The previous results of the authors are extended to the case of arbitrary dis-
crete probability distributions. The theory is illustrated by computer mod-
elling.
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1 Introduction

In applications, especially in medicine (Whitehead, 1997), statistical quality control (Ma-
son and Young, 2002), biology (Durbin, 1998) and finance (Lai, 2001), sequential meth-
ods of hypotheses testing (see Wald, 1947; Siegmund, 1985) are used quite often. The
usage of this type of statistical procedures for such applications follows naturally from
the data character (see, for example Bauer ablthfel, 1995).

Sequential procedures are applied in practice to the data which does not follow exactly
a considered hypothetical model (Huber, 1981). Usually a high percentage of the data fits
a hypothetical model, and within this model assumptions the sequential test could be op-
timal. But a small part of data does not follow the hypothetical model — the hypothetical
model is distorted (see Rieder, 1994). This leads often to loose of optimality of the test.
That is why the robustness analysis for a sequential test used should be performed, and
the robust tests need to be constructed to treat the data under distortions.

Some results on robustness analysis for sequential testing of hypotheses on data from
continuous distributions are presented in (Quang, 1985). Our previous results are related
to the special case of discrete model of observations (see Kharin, 2002). In this paper, we
consider the case of arbitrary discrete probability distributions with finite sets of values.

2 Mathematical Model, Sequential Probability Ratio
Test, Distortions

Let independent discrete random variablgesz,, ...be defined on a measurable space
Q,F), 2, € U={uy,...,uy},Vt € N,U C R, M < co. Let these random variables
be identically distributed:

Py(u) = P{z, =u |0}, uel, (1)

whered € © = {0, 1} is an unobservable parameter. There are two simple hypotheses on
the parametef:
H()ZQZO, H1(9:1 (2)
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Denote the accumulated likelihood ratio statistic:

n

A=Az, 20) =) Aw(zy), n €N, 3)

t=1

where

Aw (u) = log 253, ue U

To test the hypotheses (2) aften = 1,2, ...) observations, the decision

dp = Lioy +o0)(An) + 2 Lic_cp)(An) (4)

is made according to the sequential probability ratio test (SPRT), (see Siegmund, 1985).
By 1,(-) we denote the indicator function of the get The decisiong,, = 0 andd,, = 1
mean stopping of the observation process and acceptance of the correspondent hypothesis.
The decisioni,, = 2 means that thén + 1)-th observation is to be made. The thresholds
C_,C, €eR,C_ <0< C,,are the parameters of the test.

Below we generalize the test (4) replacing the functigi(-) with another function
A : U — R. In this case, we indicate that the test (4) is based on the funktion

Consider the model of distortions which will be analysed in Section 4. Let the hy-
pothetical model be under contamination of the Tukey—Huber type, (see Huber, 1981).
This means that instead of (1) the observations:,, . .. come from a mixtured discrete
probability distribution

Pe(u) = P(u; k) = (1 — e) Pe(u) 4 e Py(u), u € U, k=0,1, (5)

wheree, € [0,e44], k = 0,1, are unknown probabilities of contaminatiaf, (u) is an
arbitrary contaminating probability distributiof,(-) # Py (+).

3 Evaluation of the Characteristics of the Test

In Kharin (2002) explicit expressions for the characteristics of the test (4) are given under
additional assumption on the functiog, (-):

Aw (u) =mya, Yu € U, m, € Z, a € R,. (6)

Under this assumption the thresholds, C'; can be replaced with[ C_ /a | anda[C_ /a]
respectively without changes in the test (4). As long as (6) is satisfied, assung that
C_/a,Cy =Cy/a € Z. Fork = 0,1 introduce the notation:

Q" = (¢, ¢ =37 b jiPr(u), C- < i,j < Cy;

uelU

R(k) = (Tz(jk))7 c— <1< é—l—a j = é—vé+a
rl(g)_ =Y 1(C_ —i—my)Py(u), rl(g: =Y 1(my, +1i— Cy)Py(u);

uelU uelU
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7T(k) = (Wz(k)), Wl(k) = Z (5mu7l-]5k(u), C_<i< C+7

uelU

=Y 1(C_ —my)Pi(u =Y 1(m, — Cy)Pi(u),

uelU uelU
whered, ; is the Kroneker symboll(-) is the unit step function. Define the matrices
SB =Ty o — QW N=C, —C_+1,andB® = (S<'<f>)*1 R®, k =0,1. We denote

thei-th column of the matrix3*) asB((f)). Let1y_» be the vector column of sizZgV — 2)
all elements of which are equal to 1.
The next result gives the explicit expressions for the error probabilities of type | and
Il denoted by, 3, and conditional expected sequence sizes (ES3g)f the hypothesis
H, is true),k = 0, 1, for the test (4) under the assumption (6).

Theorem 1 (Kharin, 2002) If under conditions (1), (2), (6)S*®)| # 0, then the charac-
teristics of the test (4) have the following expressions:

t® = (x®) (58) " Ly +1, k=0,1,
/ / (7)
_ (0) (0) _ 1) (1)
o= (7)) By +7g), 6= (x0) B+
If the assumption (6) is broken, we can use the so-called approximated test to get
estimates of the conditional error probabilities and the conditional ESSs of the test (4).
We construct a functiorh : U — R that satisfies (6) and approximates the function
max [A(u) — Aw (u)| <0, (8)

uelU

whered > 0 is a parameter of approximation. As it is shown in (Kharin, 2004), the
function \ satisfying (8), (6) can always be constructed.

As \(-) satisfies (6), Theorem 1 holds, and we get the conditional error probabilities
and the ESSs of the test based on the funchofn. With § being small enough these
values approximate the characteristics of the SPRT. Choosing a proper way we get
upper and lower bounds of these characteristics.

Leta, 3, @, 3 be the error probabilities of the test (4) based on the functionsA(-)
respectively. Define random variables (stopping times)

=inf{n: A, <C_}, n=inf{n: A, > C,},
To=inf{n: A, <C_}, 71 =inf{n: A, > C,},
To=inf{n: A, <C_}, 7y =inf{n: A, > C.,},

where
A(.Tt) .

1

X(l‘t)7 An =
1 t

n n

t

Denote byE,{-} the expectation w.r.t. the distributidf,, £ = 0,1, by o(1) the Landau
symbol.
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Theorem 2 If the function)(-) in the test (4), (3) is bounded by the functioxs), A(-) :
U — R, thatis

AMu) < Mu) < Au), Yu e U, (9)
then B
a<a<a f<BLP (10)
If, in addition, max,crr {|A(u) — Au)|, [Nu) = A(u)|} = 5 — 0, then
19 <40 <40 4B — 70 4 501y K =0,1, (11)
where

TO =B, {71 | 71 < 7o} + (
T\ = aBo{r, | 7y < o} + (
T = BE Ty | To < 11} + (
TJ(FI) = BEl {?0 ‘ To < ?1} + (

VEo {7y | To < 11},
a)Eog{To | To <T1},
B)E, {71 | T1 < To},
B)E AT | 11 < To}-

1 —
1 —

12
- (12)
1 —

Proof. From the sequential test construction it follows that# 7. First prove the
inequalitya < @. By the definition, we have = Py{m < 7}, @ = Po{T1 < To}. As
A, > A, we getry < 7y andr; > 7,. Hence,

Oé:P0{7'1<T()}§P0{?1<?O}:a.

The second inequality far and inequalities (10) fos are proved in the same way.
From the total probability formula we get

tO=E{n|rn<n}(l—a)+E{n|n <7} (13)
From the definition of the stopping times, 7, 7., £ = 0, 1, it follows that
To < To < To, T1 <71 < T3,
and
{fo<m}C{nn<n}C{ry<m}, {mi <z} C{n<mn}c{m <7} (14)
From the definition of the conditional error probabilities we get

PO{{?O >?1} ﬂ{TO < ’7'1}} =a— Q,

P{{nn>n}n{ry<nll=a-a (15)

Let us analyse summands in (13):

E(){TO ’ To < ’7'1}(1 — Oé) =
(1 —Oé)(E() {7’0 | {TO < 7'1} ﬂ{?g <?1}}P0 {?0 <T1 | T < Tl}—l—
EQ{TU | {7‘0 < Tl}m{?o >?1}}P0{?0 > T | T < 7'1}.

Using (14), (15) we get

E(){TO | T < 7'1}(1 — a) =

Eo{mo | 7o <71} (1—@) + Eo {ro | {ro < m} N {Fo > 7)) @—a). 1O
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Because of the finiteness of the integral (see Wald, 1947)

/ Topo(du}) < 00,
T0<T1
and because of the “shrinking” probabilities (15pat> 0, we have from (16):
EO{TO | T < 7'1}(1 — a) < Eg {?0 ‘ To < ?1} (1 —@> + 0(1), 6 — 0. (17)
An upper bound for the second summand in (13) is constructed in the same way:

Eo{n|n<nla=a(Ey{n|{n <m}nN{n <zo}} Pof{ri <10 | 71 <70} +
Eo{r [{n <7} N {zy > 1o}} {1 > 10 [ 1 < 7o}) =
EO{Tl |Il <Io}@+0(1), 6 — 0.

Finally,
Eo{n |n<nla< Ey{r | <1to}a+o(1). (18)

Considering (17) and (18) together, we come to the upper bound (14Y}or
The lower bound fot(¥), and both bounds fat are proved with the same scherse.

Theorem 3 If the conditions of Theorem 2 hold, then the following inequalities are sat-
isfied:

10 < (1_%)E0 {r1 |70 <1} +QEo{To | T1 <70}, (19)
tW) < (1=B)E {70 | To > T1} + BEL {1, | 71 > 70}
Proof. Analyse the first summand in (13):
Ex{ro|mo<n}(1—a)=1=" [, cp oPo(dw) - (1 —a) < (20)
1 ey, iPo(dw) = (1= a) - Bo {1y | 7o <71}
Considering the second summand in (13), we get:
Eo{n|n<n}a=_- [ nPoldw) o< (1)

R ToPo(dw) =a - Eo{To | T1 < To} -

[0

From (13), (20), (21) we get the first inequality of (19). The second inequality is proved
in the same waym

The upper bounds (19) can be calculated using the theory of denumerable Markov
chains (Kemeni et al., 1966). Although the result of Theorem 3 is not asymptotic, we
recommend to use in practice the main terms (12) of the asymptotic expansions (11),
because the inequalities in (19) are “rough”.

The next result gives the explicit expressions for the conditional ESSs under assump-
tion (6).

Theorem 4 If under conditions (1), (2), (6)S*)| # 0, k = 0, 1, then for the test (4)

-1
Ep{ro| 7o <m}=(n5 + (@®)(S®)1RE) " (a®y(s®)2RE +1,
(22)

1

E{n |1 <7} = (ng) + (W(k))/(s(k)>—1R(c_{f+))‘ (W(k)y(g(k))—zR(C{i) +1.
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Proof. Define a random sequence

_ _ A,
&n=0C - 1[C+,+oo)(An> +C_ - 1(_00707](/\”) + ? . 1(C,,C+)(An) € Z,neN.

Then¢, is a homogeneous Markov chain with states, two of thent;_ andC.,, being
absorbing ones. If the hypothedi&, £ = 0, 1, is true, the matrix of transition probabili-

ties of&,, is given by
*) ) I2 | O2><N—2
PY =)= — — — ’

R® | o®

wherel; is the(2 x 2)—identity matrix ands, y_» is (2 x N —2)—matrix with all elements
equal to 0. The vector of initial probabilities of nonabsorbing states, efquals tor*)
and initial probabilities of absorbing states equalvrgf)), ﬂ(f“). The rest of the proof
follows from the finite Markov chains theory (Kemeni and §nel| 19%9).

Theorems 2, 4 give a possibility to evaluate lower and upper bounds of the characteris-
tics of the test (4). We construct functiok§), A(-) that approximatey (-) and satisfy (6)
and (9). Then we calculate characteristics of the tests based-pm\(-) using (7) and
get upper and lower bounds via (10) and (12).

We also can use the results of Theorems 2, 4 to evaluate the accuracy of existing esti-
mates obtained via approximationxf; (). Suppose we have already the approximations
&, /3 of the error probabilities obtained using the functii)(n) that satisfies (6) and ap-
proximates\yy () with an accuracy. Considering (6), let us denote* = max{m € Z :
a/m > 6}, as = a/m*, and define the functions(-), A(+):

Au) = {g(u), if AMu) < Aw(u), Nu) = {::\\(u), if A(u) > A (w), 23)

Au) — ag, otherwise (u) + as, otherwise

Note that the functions (23) satisfy (6) with= a;.

Corollary 1 If functions\(-), A(-) are defined by (23), then the following inequalities
hold for the two tests of the type (4) based on these functions:

|d—a|§@—g, |B_ﬁ|§§_5

Proof. As A\(u) < Aw(u) < A(u), a A( ) < Au) < Mu), Vu € U, from Theorem 2
we get thaty < o < @ anda < @ < a. Hence|a — a| < @ — a. The second inequality
Is proved similarlym

Let us note that the asymptotias— « — 0, 3 — 3 — 0 is reached by taking — 0.

The accuracy of the estimates of the conditional ESSs can be evaluated in the same
way.
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4 Minimax Robust Sequential Test

A family of modified sequential tests is proposed to robustify (4) in (Kharin, 2002):

d= 1[C+7+00) (Agl) +2- ]‘(C—CH(A%)v (24)

n

A% =2 9(Ma)),

t=1
where
g('Z) =g-- 1(—00,97](2) + 9+ - 1[9+,+<>0)(Z) +z- 1(9—79+)(z)7

andg_,g, € R, g_ < g, are parameters of (24).
The minimax robust test is defined as the solution of the extremal problem:

womoar(g(+)) +wimB(g(-)) — ming.
{ Rt (g()) + mt(g() < Clmpt 4 ), (29)

whereC' > 1 is a parametenyy, w; > 0 are losses caused by the errors of type | and
Il respectively,my, m are known prior probabilities of the hypothese$y(-)), 5(g(-)),
tO(g(-)), tM(g(-)) are the error probabilities and conditional ESS of the test (24) under
the least favorable contaminating distribution, that is given in (Kharin, 2002).

Note that the test (24) can be treated as the test (4) based:pr= g(A\w (u)). Hence,
if A\(-) satisfies (6), Theorem 1 holds and the problem (25) can be solved numerically by
iterating through all possible values @f, g .

If the assumption (6) doesn’t hold, we can replace the characterigti¢s) ), 5(g(-)),
tO(g(-)), tO(g()), t©, t1) in (25) with their upper bounds using the results given by
Theorem 2 and Corollary 1. The solution of the constructed extremal problem approxi-
mates the solution of the problem (25) according to the theory presented in Section 3, and
can be found numerically.

5 Numerical Results

To illustrate the theoretical results we performed computer modelling. The case of the
observed sequence of random vectors

T = (@1, Tio, Tis, Tia, Tis) , Tij € Ny = {1,2, 3,4},
M =1024,U = N},

was considered.
The hypothese#l,, H, were formed by the expressions:

P[)(u):]_/45, UGU,

Pl{xij = 1} = 04, j = 1,2,3,

Pl{.fﬁij = ]{3} = 02, j = 1,2,3, ke {2,3,4},
Pl{fL'ij = k} = 025, ] = 4,5, k e N4.
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The threshold¢’_ andC', for the test (4) were calculated using the Wald formulae:

1—60’0_:1% Bo

C+ = IOg
(7)) 1«—-a0

9

wherea, andg, are the so-called “desired” conditional error probabilities (they are max-
imal possible values of the error probabilities of type | and II).

For a number of pairs afy, 3, the estimates, 3, {©, {1 of the error probabilities
and the conditional ESSs were obtained using Monte-Carlo method. For each set of pa-
rametersV = 1000000 experiments were done. Also for each paingf 3, the lower and
upper boundsy, 3, 7, TV, @, 8, T\, T{", were calculated using (10) and (12), (22).
The bounds were obtained using the approximation with the parameters = 0.005.
The results of computer modelling are presented in Tables 1 and 2. The cases where the
Monte-Carlo estimate of the conditional ESS was out of the correspondent interval are
marked with the bold font.

Table 1: Conditional error probabilities for the hypothetical model

Qg Bo a a a B B g
0.01 | 0.01 | 0.00630 | 0.00662 | 0.00749 || 0.00660 | 0.00731 | 0.00766
0.01 | 0.05 | 0.00646 | 0.00686 | 0.00763 || 0.03655 | 0.03960 | 0.04070
0.01 | 0.10 || 0.00671 | 0.00707 | 0.00781 || 0.07402 | 0.07706 | 0.07974
0.05 | 0.05 | 0.03527 | 0.03656 | 0.03868 || 0.03693 | 0.03907 | 0.04077
0.0510.10 | 0.03673 | 0.03824 | 0.03949 || 0.07368 | 0.07632 | 0.07880
0.10 | 0.10 || 0.07418 | 0.07814 | 0.07938 || 0.07290 | 0.07614 | 0.07713

Table 2: Conditional ESSs for the hypothetical model

a | B 7 i 7 7w i T
0.01 | 0.01 || 32.2909 | 32.5822 | 33.0935 || 30.0705 | 30.5502 | 30.9739
0.01 | 0.05 | 21.1276 | 21.3349 | 21.7386 || 28.3925 | 28.6475 | 28.9499
0.01 ] 0.10 16.6312 | 16.7791 | 17.0242 || 26.4813 | 26.7070 | 26.8189
0.05 | 0.05 19.7907 | 19.9744 | 20.1483 18.7114 | 18.9015 | 18.9374
0.05]0.10 15.4720 | 15.5673 | 15.6722 17.2044 17.1832 | 17.2227
0.10 | 0.10 14.2885 | 14.2113 | 14.3149 13.2700 13.1961 | 13.3513

These results show that the lower and upper bounds of the characteristics of the test
are precise enough. The upper boungg of the error probabilities can be successfully
used instead of Wald’s estimates and 3y, when the threshold§_, C', are given. The
main termsTj(f) calculated according to (12) could also be used in practice.

Similar experiments were performed for the case where the hypothetical model (1) is
distorted according to (5} = ™ = % wy = w; = 1, C = 10, and the minimax robust
sequential test (24) with. = —0.231158, g, = 0.241208. The levels of contamination
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were equal t¢y = oy = £; = g1, = 0.1. Contaminating distributions were chosen to
be the least favorable ones (for construction see Kharin, 2002):

Poley =1} =1, j=1,2,3,
Pg{xl‘j = k’} =0,7=1,2,3, ke {2,3,4}, PO{:L'ij = k?} =0.25, j = 4,5, ke Ny,
Pz =2}=1,7=1,23,
Pl{mz-j = k’} =0,7=1,2,3, ke {1,3,4}, Pl{l'ij = k?} =0.25, j = 4,5, k € Ny.
The results are presented in Tables 3 and 4. For comparison, the estimates of the SPRT

(4) characteristics are also given in the tables. The results show the robustness of the test
(24).

Table 3: Conditional error probabilities for the distorted model

a0 | Bo & alg) | alg) | a(g) B Blg) | Blg) | Blg)

0.01 | 0.01 ]| 0.24 || 0.0015 | 0.0034 | 0.0059 || 0.11 || 0.0049 | 0.0082 | 0.0185
0.01 | 0.05 ]| 0.19 || 0.0016 | 0.0035 | 0.0060 || 0.22 || 0.0301 | 0.0427 | 0.0722
0.01]0.10 | 0.18 || 0.0017 | 0.0037 | 0.0061 || 0.30 || 0.0662 | 0.0863 | 0.1298
0.05 ] 0.05| 0.31 | 0.0147 | 0.0246 | 0.0348 || 0.20 || 0.0309 | 0.0427 | 0.0709
0.05 1 0.10 | 0.28 || 0.0154 | 0.0249 | 0.0353 || 0.27 || 0.0675 | 0.0862 | 0.1272
0.10 | 0.10 || 0.36 || 0.0401 | 0.0581 | 0.0753 || 0.24 || 0.0690 | 0.0867 | 0.1253

Table 4: Conditional ESSs for the distorted model

ao | B || 1O [ 1) [1O9) [ T{(g) | 1V | T(g) | iD(g) | T ()
0.01 | 0.01 | 60.2 197.5 | 225.0 | 244.7 50.7 241.7 | 263.4 | 304.9
0.01 ] 0.05 | 38.6 130.1 | 147.6 | 160.0 40.1 235.0 | 246.7 | 270.3
0.01 | 0.10 || 30.2 101.0 | 114.2 | 123.4 33.5 222.7 | 228.0 | 240.5
0.05 ] 0.05 || 28.0 127.3 | 139.8 | 146.5 25.7 153.7 | 168.9 | 170.5
0.05]0.10 || 21.1 98.4 107.0 | 111.5 21.3 143.7 | 144.3 | 148.7
0.10 | 0.10 || 16.9 92.9 98.0 99.2 16.0 108.8 108.2 | 110.1
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