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Abstract: The problems of robustness in Bayesian forecasting are considered
under distortions of the hypothetical probability densities. The expressions
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1 Introduction

One of the main branches of applied Data Analysis is statistical forecasting. In statistical
forecasting a prior information is oftenly available in addition to the information con-
tained in observations (Viertl, 1996). The Bayesian approach is a method for involving
a prior information into forecasting procedures (West and Harrison, 1989). Procedures
derived from the Bayesian approach are proved to be optimal w.r.t. the minimal risk cri-
terion (Berger, 1985). Also, nowadays PCs are powerful enough to realize the necessary
computations using new numerical methods and the needed software is available (Pilz,
2000). That is why the Bayesian approach becomes to be used widely.

The optimality property of the Bayesian approach is valid only if a hypothetical model
is adequate to a considered process. In practice such an assumption is more than op-
timistic (Dutter, 1996; Rieder, 1994). Hence there are at least two classes of problems
to appear actual (Huber, 1981; Hampel, E.M. Ronchetti, P.J. Rousseeuw and W. Stahel,
1986): (i) robustness analysis of the classical Bayesian prediction statistic (p.s.) under dis-
tortions of the hypothetical model; (ii) construction of new robust p.s. using the Bayesian
approach.

Many papers are devoted to the problems of Bayesian robustness for model parameter
estimation (Berger et al., 1996). It is known that Bayesian forecasting is not reducible to
Bayesian parameter estimation. Some analytic results on robustness of Bayesian forecast-
ing under the Tukey–Huber distortions can be found in Galinskij and Kharin (1998). That
paper also contains the results of Monte-Carlo simulations for the case of distortions in
the weightedC-metric. Here we give the solutions for the problems (i), (ii) under certain
types of functional distortions indicated below.

2 Hypothetical Model and Optimal Forecast

Let on some probability space(Ω,F , P) be defined three random elements (Figure 1):
1) an unknown parameter vectorθ = (θ1, . . . , θm) ∈ Θ ⊆ Rm, with a hypothetical
probability density function (p.d.f.)π0(θ); 2) an observation vectorx = (xt) ⊆ X ∈ RT

stochastically dependent onθ with a hypothetical conditional p.d.f.p0(x | θ); 3) a value
to be forecastedy ∈ Y ⊆ R, stochastically dependent onθ, x, and distributed according
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to a hypothetical conditional p.d.f.g0(y | x, θ). Suppose that p.d.f.sπ0(θ), p0(x | θ),
g0(y | x, θ) are continuous functions. The problem is to construct a prediction statistic
(p.s.) ŷ = f(x) for y usingx, f(·): X −→ Y is a Borel function ofT variables. To
simplify the notation let us suppose that the hypothetical p.d.f. of an observation vector
has no zeroes:

p0(x) =

∫

X

p0(x | θ)π0(θ)dθ > 0, x ∈ X. (1)

Let X, Θ be compact sets.

X ⊆ RT Y ⊆ R

Θ ⊆ Rm

r

r

r rx

θ

y
ŷ
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Figure 1: Hypothetical model of Bayesian forecasting

The optimality criterion for construction of a p.s.f(·) is the minimum of the Bayesian
risk functional:

r0(f) =

∫

X

∫

Y

p0(x)q0(y | x)(f(x)− y)2dydx −→ min, (2)

where

q0(y | x) =

∫

Θ

g0(y | x, θ)π0(θ | x)dθ (3)

is the hypothetical Bayesian prediction density, and

π0(θ | x) = p0(x | θ)π0(θ)/p0(x).

Introduce the family of admissible p.s.sF = {f(·) : r0(f) < ∞}.
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It is well known that the optimal p.s. (w.r.t. the criterion (2)) is the Bayesian one
(posterior mean value ofy)

ŷ = f0(x) =

∫

Y

yq0(y | x)dy, x ∈ X. (4)

3 Robustness Characteristics under Distortions of the Hy-
pothetical Model

Let the hypothetical model which is presented in Figure 1 be distorted:πε(θ) ∈ Π, pε(x |
θ) ∈ P , vε(x, θ) ∈ V are distorted versions of the p.d.f.sπ0(θ), p0(x | θ), v0(x, θ) =
p0(x | θ)π0(θ) respectively, whereΠ, P , V are any sets of admissible distorted densities.
Under distortions the risk functional is:

r(f ; sε) =

∫

X

∫

Y

sε(x, y)(f(x)− y)2dydx, (5)

wheresε(x, y) = pε(x)qε(y | x), andpε(x), qε(y | x) are defined analogously to (1), (3)
through the distorted p.d.f.s.

Let us define two functionals on the set of admissible p.s.s: 1) an upper riskr+(f) as
an upper bound of the value set of the functional (5):

r(f ; sε) ≤ r+(f), sε(·) ∈ S,

whereS is defined by the setsΠ, P andV ; 2) the guaranteed upper risk functional

r∗(f) = sup
sε(·)∈S

r(f ; sε) ≤ r+(f). (6)

An admissible p.s.f ∗(·) is called ther+-robust p.s. if it minimizes the upper risk
functionalr+(·):

r+(f ∗) = inf
f(·)∈F

r+(f).

Let us define the robust p.s. by minimax criterion as

f∗(·) : r∗(f∗) = inf
f(·)∈F

r∗(f).

4 Robustness under Distortions of Prior Probability Den-
sity

Let us introduce the distance between two p.d.f.sh1(·), h2(·) in the space C(U) of con-
tinuous functions with a weight function1/w(u), w(u) > 0, u ∈ U :

ρw
C(U) (h1(·), h2(·)) = supu∈U (|h1(u)− h2(u)|/w(u)) . (7)

Condition 1. Suppose that the setΠ be theε+-neighborhood ofπ0(·) in the metric (7) for
someε+ ≥ 0, with the weight function1/π0(θ), π0(θ) 6= 0, θ ∈ Θ.
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Theorem 1. Under Condition 1 for an admissible p.s.̂y = f(x) the guaranteed upper
risk functional (6) satisfies the inequality:

r∗(f) ≤ r+(f) = (1 + ε+)r0(f). (8)

Proof. From Condition 1 it follows the inequality:

|∆π(θ)| ≤ ε+π0(θ), (9)

where
∆π(θ) = πε(θ)− π0(θ). (10)

The risk functional (5) takes the form:

r(f ; πε) =

∫

X

∫

Y

∫

Θ

(π0(θ) + ∆π(θ))p0(x | θ)g0(y | x, θ)(f(x)− y)2dθdydx.

Now, using (9) we come to (8).

Corollary 1. Under Condition 1 the Bayesian p.s. (4) isr+-robust:

ŷ = f0(x) = f ∗(x), x ∈ X.

Corollary 2. The upper risk functional (8) is non-decreasing onε+.

Now let us extend the set of admissible distorted prior p.d.f.s:πε(·) may have ordi-
nary discontinuity points. For this case the distance between two p.d.f.s can be formally
calculated according to (7). Introduce the notation:

s0(x, y | θ) = g0(y | x, θ)p0(x | θ), r1(f(·); θ) =

∫

X

∫

Y

s0(x, y | θ)(f(x)− y)2dydx,

Θz = {θ ∈ Θ : r1(f(·); θ) ≥ z} , z ∈ R+, (11)

z∗ = min



z ∈ R+ :

∫

Θz

π0(θ)dθ = min

{
1

1 + ε+

,
1

2

}

 ,

and let1V (u), u ∈ U , be the indicator function of a setV ⊆ U .

Theorem 2. If under Condition 1 only ordinary discontinuities are admitted for densities
fromΠ, then for an admissible p.s.̂y = f(x) the guaranteed upper risk functional (6) is

r∗(f) = r0(f) + ε+

∫

Θz∗

r1(f(·); θ)π0(θ)dθ −min{ε+, 1}
∫

Θ\Θz∗

r1(f(·); θ)π0(·)dθ; (12)

this supremum of risk is reached at the distorted p.d.f.

π∗(θ) = π0(θ)
(
1 + ε+1Θz∗ (θ)−min{ε+, 1}1Θ\Θz∗ (θ)

)
, θ ∈ Θ. (13)
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Proof. Let us consider the problem of variation calculus under notation (10), (11):




∫
Θ

r1(f(·); θ)∆π(θ)dθ −→ max
∆π(θ), ε∈[0,ε+]

,

−min{ε, 1}π0(θ) ≤ ∆π(θ) ≤ επ0(θ), θ ∈ Θ,

∫
Θ

∆π(θ)dθ = 0.

(14)

To obtain the guaranteed upper risk functional (6) is equivalent to solve (14). First let
us solve (14) for a fixedε ∈ [0, ε+]. According to Kuhn–Tucker theorem for convex
programming in an arbitrary space (Alexeev, 1979), the solution of the extremum problem
(14) is

∆π(θ) = π0(θ)
(
ε1Θz∗ (θ)−min{ε, 1}1Θ\Θz∗ (θ)

)
.

Putting this expression into the objective function in (14) and then maximizing it w.r.t.
ε ∈ [0, ε+], using the hypothetical risk definition (2), we come to (13), (12).

Using Theorem 2 one can find the maximal increment of the risk functional under the
considered distortions. To minimize the functional (12) w.r.t. p.s. the classical methods
of optimization can not be applied. But comparing (12) and (8) it is easy to conclude that
the both of increments,|r+(f)− r0(f)| and|r∗(f)− r0(f)| have the first order w.r.t. the
distortion levelε+, so it is possible to talk on the ”closeness” of properties of robustness
andr+-robustness for this case of distortions.

Some simulation results for autoregressive time series forecasting under distortions in
the weightedC-metric are presented in Galinskij and Kharin (1998).

5 Robustness under Distortions of Joint Probability Den-
sity

5.1 Distortions in the Weighted C-metric

Theorem 3. Let for someε+ ≥ 0 the setV of admissible distorted joint p.d.f.s be the
ε+-neighborhood ofv0(x, θ) in the weightedC-metric (7):

Π = {vε(·) : ρv0

C(X×Θ)(v
0(·), vε(·)) ≤ ε+}. (15)

Then the functional
r+(f) = (1 + ε+)r0(f) (16)

is an upper risk functional.

Proof. Let us use the definition of risk functional (5) in the form

r(f ; vε) =

∫

X

∫

Y

∫

Θ

g0(y | x, θ)vε(x, θ)dθ(f(x)− y)2dydx. (17)

Applying to the p.d.f.vε(x, θ) and to the expression (17) the transformations analogous
to those used in the proof of Theorem 1 we come to the statement of the theorem.
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Corollary 3. The Bayesian p.s. (4) isr+-robust under the conditions of Theorem 3 for
the upper risk functional (16):

f0(x) = f ∗(x), x ∈ X.

Consider the case, important for applications, where distortions (15) are caused by
distortions ofp0(x | θ), π0(θ) at different distortion levels.

Theorem 4. Let for someε1+ ≥ 0, ε2+ ≥ 0, the setsP , Π be the neighborhoods of the
hypothetical p.d.f.sp0(x | θ), π0(θ) in the weightedC-metric:

Π = {Πε1 : 0 ≤ ε1 ≤ ε1+} , Πε1 =
{

πε(·) : ρπ0

C(Θ)
(π0(·), πε(·)) = ε1

}
, (18)

P = {Pε2 : 0 ≤ ε2 ≤ ε2+} , Pε2 =
{

pε(· | ·) : ρp0

C(X×Θ)
(p0(· | ·), pε(· | ·)) = ε2

}
.

Then the guaranteed upper risk satisfies the inequality:

r∗(f) ≤ r+(f) = (1 + ε1+)(1 + ε2+)r0(f).

Proof. It is analogous to the proof of Theorems 1, 3. It is enough to use (18) in (17) and
to presentvε(x, θ) in the form

vε(x, θ) = pε(x | θ)πε(θ), x ∈ X, θ ∈ Θ.

Let us denote that under Theorem 4 conditions the statements analogous to Corollar-
ies 1, 2 are also valid.

5.2 Distortions in χ2-metric

Condition 2. Letv0(x, θ) 6= 0, x ∈ X, θ ∈ Θ, and for someε+ ≥ 0 the set of admissible
distorted joint p.d.f.s ofx, θ be theε+-neighborhood ofv0(·) in theχ2-metric:

V =
{

vε(·) : vε(x, θ) ≥ 0, x ∈ X, θ ∈ Θ;

∫
X

∫
Θ

vε(x, θ)dθdx = 1;
∫
X

∫
Θ

(vε(x,θ)−v0(x,θ))
2

v0(x,θ)
dθdx ≤ ε2

+

}
.

(19)

Let the subindex0 or ε at the operatorsE, D indicates which distribution is used:
hypothetical or distorted.

For an admissible p.s.̂y = f(x) introduce the functional:

rx,θ(f ; x, θ) = E0{(f(x)− y)2 | x, θ}.

Then the risk functional (5) takes the form:

rε(f ; vε) = Eε{rx,θ(f ; x, θ)}, vε(·) ∈ V. (20)
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Let us denote:

◦
rx,θ (f ; x, θ) = rx,θ(f ; x, θ)− E0{rx,θ(f ; x, θ)},

ε∗ =

√
D0{rx,θ(f ; x, θ)}

supx∈X,θ∈Θ |
◦
rx,θ (f ; x, θ)|

,

v∗ε+(f ; x, θ) = v0(x, θ)

(
1 + ε+

◦
rx,θ (f ; x, θ)√

D0{rx,θ(f ; x, θ)}

)
, (21)

R(x) = 1R
Θ v0(x,θ)dθ

· ∫
Θ

E0{y | x, θ}v0(x, θ)×(◦
rx,θ (f0; x, θ)− ∫

Θ

◦
rx,θ (f0; x, θ̃)π0(θ̃ | x)dθ̃

)
dθ.

Theorem 5. If the hypothetical model is distorted according to Condition 2 for some
ε+ ∈ [0, ε∗], then:

(i) for an admissible p.s.̂y = f(x) the guaranteed upper risk functional (6) is

r∗(f) = r0(f) + ε+

√
D0{rx,θ(f ; x, θ)}; (22)

(ii) the robust p.s. satisfies the following integral equation:

f∗(x) =
1∫

Θ
v∗ε+(f∗; x, θ)dθ

∫

Θ

E0{y | x, θ}v∗ε+(f∗; x, θ)dθ, x ∈ X. (23)

Proof. (i) 1) Consider the maximization problem of variation calculus





rε(f(·); vε(·)) −→ max
vε(·), 0≤ε≤ε+

,
∫
X

∫
Θ

vε(x, θ)dθdx = 1,

∫
X

∫
Θ

(vε(x,θ)−v0(x,θ))
2

v0(x,θ)
dθdx = ε2,

(24)

vε(x, θ) ≥ 0, x ∈ X, θ ∈ Θ, (25)

which is equivalent to obtain the guaranteed upper risk.
To solve (24), for a fixed distortion levelε ∈ [0, ε+], let us use the Lagrange method

with undefined multipliersλ1, λ2:

F (vε(x, θ); λ1, λ2) =

∫

X

∫

Θ

vε(x, θ)rx,θ(f ; x, θ)dθdx+

+λ1




∫

X

∫

Θ

vε(x, θ)dθdx− 1


 + λ2




∫

X

∫

Θ

(vε(x, θ)− v0(x, θ))
2

v0(x, θ)
dθdx− ε2


 . (26)
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To satisfy the necessity condition, for an arbitrary variationδvε(x, θ), we get

∫

X

∫

Θ

(
rx,θ(f ; x, θ)dθ + λ1 + 2λ2 · vε(x, θ)− v0(x, θ)

v0(x, θ)

)
δvε(x, θ)dθdx ≡ 0.

The extremum function is

v∗ελ1,λ2
(x, θ) = v0(x, θ)

(
1− 1

2λ2

(λ1 + rx,θ(f ; x, θ))

)
, x ∈ X, θ ∈ Θ. (27)

Using the restrictions in (24), we have

λ∗1 = − ∫
X

∫
Θ

v0(x, θ)rx,θ(f ; x, θ)dθdx,

(λ∗2)
−1 = −2ε

(∫
X

∫
Θ

v0(x, θ) (λ∗1 + rx,θ(f ; x, θ))2 dθdx

)− 1
2

.
(28)

Putting (28) into (27), we come to (21).
2) For a fixed p.s.f(·), if ε ∈ [0, ε∗], then (25) holds, and (21) is a p.d.f.
3) Maximizing the objective function in (24) w.r.t.ε ∈ [0, ε+], we come to (22).
(ii) Minimizing the guaranteed upper risk

r∗(f) =
∫
X

∫
Θ

v0(x, θ)rx,θ(f ; x, θ)dθdx+

ε+

√
∫
X

∫
Θ

v0(x, θ)

(
rx,θ(f ; x, θ)− ∫

X

∫
Θ

v0(x̃, θ̃)rx,θ(f ; x̃, θ̃)dθ̃dx̃

)2

dθdx −→ inff(·),

with the Lagrange method, we get for anyδf(·)
∫

X

∫

Y

∫

Θ

(f(x)− y)g0(y | x, θ)v0(x, θ)

(
1 +

ε+
◦
rx,θ (f ; x, θ)√

D0{rx,θ(f ; x, θ)}

)
δf(x)dθdydx ≡ 0,

which leads to (23).

Note. The equation (23) does not give an analytic expression for the robust p.s. Never-
theless, it gives the possibility to construct iteration procedures for its computing.

Corollary 4. Under the Theorem 5 conditions the one-step approximation for the robust
p.s. is

f(1)(x) =
1∫

Θ
v∗ε+(f0; x, θ)dθ

∫

Θ

E0{y | x, θ}v∗ε+(f0; x, θ)dθ, x ∈ X. (29)

Corollary 5. The guaranteed upper risk functional (22) is non-decreasing function w.r.t.
the parameterε+ ∈ [0, ε∗].

Theorem 6. If the distortions of the hypothetical model are given by (19) for someε+ ∈
[0, inff(·)∈F ε∗] andmesT (supp R(·)) > 0, then



A. Kharin 185

(i) the absolute deviation of one-step approximation (29) from the Bayesian p.s. (4) is
of the first order w.r.t.ε+:

|f(1)(x)− f0(x)| = O(ε+), x ∈ X; (30)

(ii) the profit in the guaranteed upper risk value is of the second order:

r∗(f(1))− r∗(f0) = O(ε2
+) < 0. (31)

Proof. (i) Let D0 = D0{rx,θ(f0; x, θ)}. First, we get the asymptotic expansion:

(∫
Θ

v0(x, θ)

(
1 + ε+

◦
rx,θ(f0;x,θ)√

D0

)
dθ

)−1

=

1
p0(x)

(
1− ε+√

D0

∫
Θ

◦
rx,θ (f0; x, θ)π0(θ | x)dθ+

ε2
+

D0

(∫
Θ

◦
rx,θ (f0; x, θ)π0(θ | x)dθ

)2

+O(ε3
+)

)
, x ∈ X.

(32)

Putting (32) into (29), we find

f(1)(x) =
∫
Θ

∫
Y

yh0(y, θ | x)
(
1 + ε+

◦
rx,θ(f0;x,θ)√

D0

)
×

(
1− ε+√

D0

∫
Θ

◦
rx,θ (f0; x, θ̃)π0(θ̃ | x)dθ̃+

ε2
+

D0

(∫
Θ

◦
rx,θ (f0; x, θ̃)π0(θ̃ | x)dθ̃

)2

+O(ε3
+)

)
dydθ.

(33)

After simplifying, we come to

f(1)(x)− f0(x) = ε+ · 1√
D0

R(x)−
ε2
+ · 1

D0

∫
Θ

◦
rx,θ (f0; x, θ)π0(θ | x)dθR(x) +O(ε3

+), x ∈ X, (34)

which provides (30).
(ii) The second statement can be proven in two steps. 1) We construct the asymp-

totic expansion w.r.t.ε+ for the functionalrx,θ(f(1); x, θ) using the expansion off(1)(x)
obtained in (i):

rx,θ(f(1); x, θ) = rx,θ(f0; x, θ) + 2ε+ · R(x)(f0(x)−E0{y|x,θ})√
D0

+

ε2
+

1
D0

(
R2(x) + 2R(x) (F0(x, θ)− f0(x))

∫
Θ

◦
rx,θ̃ (f0; x, θ̃)π0(θ̃ | x)dθ̃

)
+O(ε3

+).

(35)
2) Using the result from the first stage we obtain the asymptotic expansion forr∗(f(1)).
Using (35) and the risk functional definition, we get

r0(f(1)(·)) = r0(·) +
ε2
+

D0

∫

X

p0(x)R2(x)dx +O(ε3
+). (36)



186 Austrian Journal of Statistics, Vol. 31 (2002), No. 2&3, 177-188

Introduce the notation:

∆1(f(1)(·), f0(·)) = r0(f(1)(·))− r0(f0(·)), (37)

∆2(f(1)(·), f0(·)) = ε+

(√
D0{rx,θ(f(1); x, θ)} −

√
D0

)
, (38)

Q(x, θ) = R(x)(f0(x)− E0{y | x, θ}), x ∈ X, θ ∈ Θ,
◦
Q (x, θ) = Q(x, θ)− ∫

X

∫
Θ

v0(x̃, θ̃)Q(x̃, θ̃)dθ̃dx̃.

According to Theorem 5,

r∗(f(1)(·))− r∗(f0(·)) = ∆1(f(1)(·), f0(·)) + ∆2(f(1)(·), f0(·)). (39)

Putting (36) into (37), we have

∆1(f(1)(·), f0(·)) =
ε2
+

D0

∫

X

p0(x)R2(x)dx +O(ε3
+). (40)

By the definition

D0{rx,θ(f(1); x, θ)} =

∫

X

∫

Θ

v0(x, θ)(
◦
rx,θ (f(1); x, θ))2dθdx. (41)

After using (35) and performing transformations,

◦
rx,θ (f(1); x, θ) =

◦
rx,θ (f0; x, θ) + 2ε+ · 1√

D0

◦
Q (x, θ) +O(ε2

+), x ∈ X, θ ∈ Θ. (42)

Putting (42) into (41), we get

D0{rx,θ(f(1); x, θ)} = D0+

4ε+ · 1√
D0

◦
rx,θ (f0; x, θ)

∫
X

∫
Θ

v0(x, θ)
◦
rx,θ (f0; x, θ)

◦
Q (x, θ)dθdx +O(ε2

+),

and, after simplifying,

D0{rx,θ(f(1); x, θ)} = D0 − 4ε+ · 1√
D0

∫

X

p0(x)R2(x)dx +O(ε2
+). (43)

Using (43) in (38), we have

∆2(f(1)(·), f0(·)) = −2ε2
+ ·

1√
D0

E0{R2(x)}+O(ε3
+). (44)

Finally, putting (40), (44) into (39), we come to

r∗(f(1))− r∗(f0) = −ε2
+ ·

E0{R2(x)}
D0

+O(ε3
+).

Metrices, which are used here for the description of deviations of probability distri-
butions, including the weightedC-metric, and theχ2-metric, are discussed in Borovkov
(1997). Also a discussion on different concepts of variation of hypothetical distributions
in Bayesian statistical analysis is presented in Meczarski (1998).
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6 Conclusion

The following main results have been obtained in the paper:
(i) The analytic expressions for the guaranteed upper risk and the upper risk function-

als are obtained under distortions of prior and joint p.d.f.s in the weighted C-metric. For
this type of distortions ther+-robustness property of the Bayesian prediction statistic have
been proven.

(ii) Under distortions inχ2-metric the expression for the guaranteed upper risk is ob-
tained, and the integral equation for the robust p.s. is derived; the one-step approximation
of the robust p.s. is constructed and the asymptotic properties of this approximation are
obtained.
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