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VALUE-AT-RISK PORTFOLIO OPTIMIZATION: A NOTE ON MULTIOBJECTIVE GENETIC ALGORITHM* 
Рассматривается дальнейшее развитие общего подхода оптимизации риска в условиях рынка. Предлагается модель, ори-

ентированная на различные меры риска, и эмпирическая методика расчета на основе многоцелевого генетического алгоритма. 

In this paper we develop a general framework for market risk optimization. The model is valid for any given risk measure. Our em-
pirical procedure is focused on VaR. We solve the problem using a multiobjective genetic algorithm (GA). The algorithm is very efficient 
and it can handle hundreds of assets in reasonable computer time. One of the advantages of this approach is that it is easily extend-
able.  

1. Introduction 
When VaR is considered as the risk measure to minimize, it leads to a non-convex and non-differential 

risk-return optimization problem. This problem is tackled in the literature in various ways. Using Arzac and 
Bawa (1977) framework, Jansen et al. (2000) and Campbell et al. (2001) use a safety-first theory approach 
to maximize expected return subject to a VaR constraint. In order to avoid the use of smoothing techniques, 
in this paper we propose a genetic algorithm (GA) approach to deal with the problem of minimizing VaR or 
any other measure that leads to non-convex and non-differential risk-return optimization problems. Also, we 
present a multiobjective evolutionary approach that optimizes simultaneously the return and the level of risk 
and evaluates the differences between mean-variance and mean-VaR efficient portfolios. One of the benefits 
of using GAs for multiobjective optimization is that GAs work with a population of individuals, which allows us 
to find several nondominated solution in a single run. Also, GAs are less susceptible than other techniques to 
the non-convexity of the search space.  

The paper is organized as follows: section 2 describes the portfolio optimization problem solved. Section 
3 describes how they have been applied to the portfolio optimization problem. Section 4 shows the results 
yielded by the GAs to the optimization problem, and the related conclusions are reported in section 5. 

2. Portfolio optimization 
In this work, we consider the Value-at-Risk (VaR) as an appropriate risk measure. VaR is defined as the 

maximum expected loss on an investment over a specified horizon given a confidence level 1-α. Usually α is 
fixed to be a 5 % or 1 %. In our study, we use the VaR definition given in Jorion (2001). That is,  

α= −VaR( ) ( ) ( ),p p pR E R q R  (1)
where α ( )pq R  is the α-quantile of .pR  

Approaches to quantify VaR such as delta-normal, delta-gamma or Monte Carlo simulation method rely 
on the normality assumption or other prespecified distributions. These approaches have several drawbacks, 
such as the estimation of parameters and whether the distribution fit properly the data in the tail or not 
(Baixauli and Alvarez, 2004). In our analysis we computed the VaR by historical simulation using Equation 
(1). Hence, α ( )pq R  is the empirical α-quantile of the actual historical data, this specification is valid for any 
underlying distribution, discrete or continuous, fat or thin-tailed. 

As we pointed out, mean-VaR problem becomes a non-convex and non-differential risk-return optimiza-
tion problem. For this reason, we use a multiobjective GA approach to find VaR-efficient portfolios and σ-
efficient portfolios by solving the following optimization problems:  
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3. Multiobjective genetic algorithm 
The GA implementation is based on ECJ (\url{http://cs.gmu.edu/\~{}eclab/projects/ecj}), a research evolu-

tionary computation system in Java developed at George Mason University's Evolutionary Computation 
Laboratory (ECLab). In this work the SPEA2 package of ECJ was used for the multiobjective aspect of the 
optimization (Zitzler et al., 2001). The reason for this choice was twofold. On the one hand, SPEA2 and 
NSGA-II have shown better performance than the others in various benchmark problems (Zitzler et al., 
2002). On the other, the on-line avability of the package facilitates the reproducibility of the results presented 
in this paper. 

The algorithm works as follows: 
 In step 1 and 2 the archive, A(g), where the nondominated solutions are stored and the population, 

P(g), are initialized. A(0) is an empty set and P(0) is initialized at random. 
                                                           

* Данная статья и последующие публикуются в авторской редакции. 
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 In step 3 the generation counter g is set to 1 and then the evolution loop starts. 
 In step 4 and 5 the individuals in the population and the archive are evaluated. 
 According to this evaluation a new archive is created in step 6 containing all the nondominated indi-

viduals found in the union of the previous archive and the population. 
 If the size of the resulting archive exceeds the archive size, in step 7 the archive is truncated. This 

truncation method removes those individuals which are at the minimum distance of another individual. This 
way the characteristics of the nondominated front are preserved and outer solutions are not lost. 

 The termination criterion in step 8 stops the algorithm when the number of generations has been com-
pleted. 

 In step 9 tournament selection with replacement is performed in the archive set in order to fill the mat-
ing pool, M(g). 

 The new population, P(g), is created in step 10 by applying crossover and mutation to the mating pool. 
 In step 11 the generation counter is increased. 

The evaluation method works as follows: 
 In step 1 the individual, ind, is normalized. ind is a vector of n integers 1 2( , ,..., ),GA GA GA

nw w w  where n is 
the number of assets available in the portfolio. 

 In step 2 the historical series of portfolio return is calculated as 
=∑ 1

n
i iji w R  ∀ ,j  where iw  is the normal-

ized weight assigned to asset i, n is the number of assets available in the portfolio and ijR  is the return of 
asset i at time j. 

 In step 3 the expected return of the portfolio is calculated as: 
=

= ∑ 1
1( ) ,T

jjE R R
T

 where T is the number 

of observations per asset. 
 In order to calculate the empirical VaR, the vector R is arranged from highest to lowest in step 4. 
 The position the 0,05-quantile takes is calculated in step 5 as 0,05T (rounded if necessary). 
 In step 6 the 0,05-quantile is set to the element in the position 0,05T in the returns vector. 
 The VaR is calculated in step 7 as the expected return minus the 0,05-quantile of the historic return series. 
 In step 8 and 9 the two objective values of ind are set to the expected return and the inverse of the 

VaR (since the GA implemented maximizes the objectives). 
Table 1 shows the control parameters of the multiobjective GA used. 

T a b l e  1  
GA control parameters 

Parameter Value 
Replacement operator Generational 

Selection operator Tournament selection 
Tournament group size 7 

Crossover rate 1 
Mutation rate 0,05 

Population size 1000 
Archive size 100 

Termination criterion 50 generations 
 

4. Empirical results 
The data used in this work were extracted from the Bloomberg database. It is a set composed of twelve 

composite returns indices from USA, Canada, Japan, UK, France, Germany, Spain, Holland and Sweden. 
We employed weekly data of these indices from January 1992 until December 2005. 

Figure 1 shows both the σ-efficient frontier obtained with classical quadratic programming and the GA 
VaR-efficient frontier obtained with GAs in the VaR-return space for periods 92–01, 94–03 and 96–05. That 
is, we have plotted the VaR-efficient frontier obtained using GAs against the VaR values of the σ-optimal 
portfolios. The vertical axis shows the expected rate of return after a week, that is 5-trading days, in percent-
age points. The horizontal axis shows VaR values as a percentage of the original portfolio value. 

In period 92–01 it can be observed that the differences between the efficient frontiers are not so signifi-
cant (the gap is negligible). Although it should be noted that the vertical axis represents a larger range of ex-
pected returns than for other periods. Again the larger difference in expected returns appears for VaR values 
below 3,5 %. In period 94–03 the difference between both efficient frontiers is absolutely relevant for portfo-
lios with VaR below 3,5 %. During the period 96–05 the differences between the efficient frontiers tend to 
disappear when portfolios with high expected return are compared. It must be highlighted that all this efficient 
frontiers have been obtained over ten year periods which included different conditions, high and small volatil-
ity periods and bullish and bearish markets. To sum up, we observe differences for all the periods consid-
ered. Such fact hints to use the GA algorithm in order to introduce new measures of risk. 
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Figure 1. Efficient frontier for mean-VaR portfolios and frontier for mean-VaR with mean-variance efficient portfolios,  

1992–2001, 1994–2003 and 1996–2005 

Following Gaivoronski (2005), in order to quantify the differences between σ-optimal portfolios, σ
ow , and 

VaR-optimal portfolios, VaR,ow  we calculated the substitution error given by the largest value of VaR for some 

expected return. To measure this error, for each expected return value *R  we evaluated the VaR of the 
VaR-optimal portfolio, VaRVaR( ),ow  and the VaR of the σ-optimal portfolios, σVaR( ).ow  That is, we computed, 
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This measure represents the relative improvement of VaR and expected return as percentage. We com-
puted the mean of σ−VaR

o oE E and the percentage of cases in which the improvement exceed some threshold, 
given by θ.  

When we compare the σ-efficient frontier and the VaR-efficient frontier in terms of expected return per 
percentage of VaR, table 2, we can observe that the majority of VaR-optimal portfolios are more efficient, if 
we measure efficiency in terms of Equation (2). Particularly, the percentage of VaR-optimal portfolios that are 
more efficient than σ-optimal portfolios, that is, σ− >VaR 0E E %, goes from 81,21 % in 96–05 to 90,33 % in 
94–03. The mean improvement goes from 0,134 % in 96–05 to 0,217 % in 92–01, which implies in annual-
ized values 7 % to 11,3 %. 
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T a b l e  2  
Comparison of results for efficient frontiers 

1992–2001 1994–2003 1996–2005 

mean EVaR–Eσ 0,2174 0,1354 0,1348 
EVaR–Eσ>–1 % 100 100 100 
EVaR–Eσ>–0,5 % 100 99,39 100 
EVaR–Eσ>0 % 82,47 90,33 81,21 
EVaR–Eσ>0,5 % 1,28 0 0 
EVaR–Eσ>1 % 0 0 0 

Overall, the results point out the importance of solving the mean-VaR problem using an appropriate 
method in order to select an efficient portfolio when investors express their market risk in function of the VaR. 
Multiobjective GAs have proven to be able to solve the problem. Moreover, the time needed to compute 
around 300 points of the efficient frontier on a 2,8 GHz Celeron CPU with 1 GB RAM is of 60 seconds. This 
means that the algorithm could handle a massive amount of data (if available) in reasonable computing time. 

5. Conclusions 
We have developed a framework for portfolio selection that moves away from convex objective functions 

or standard mean-variance approach where non-differential restrictions can not be imposed. In our analysis, 
the risk measure minimized is VaR, which leads to non-convex objective functions. We have compared the 
mean-variance with mean-VaR approach to measure efficiency of the classical approach when investors are 
worried about portfolio's potential loss function, that is, the downside risk. We have evaluated optimal VaR-
efficient portfolios and optimal σ-efficient portfolios for international stock indices observed weekly over the 
period 1992–2005. Results indicate reliability of VaR-efficient portfolios and significant improve over σ-
efficient portfolios. Multiobjective GAs have demonstrated their adequacy for solving this problem in no-time. 
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