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Biodiversity theories neglect individual-level variability in ecological interactions even though

empirical work has revealed considerable genetic and phenotypic variation among individu-

als in natural populations. This impedes assessing the impact of individual-level variability

on biodiversity in multi-trophic ecosystems. Here we use a density-dependent and individual-

based food web model, tested against the largest individual-based food web to date, to show

that non-random intraspecific variation in prey selection alters species diversity in food webs.

Predators consuming many prey increase diversity by preferentially selecting common prey;

predators consuming few prey inhibit diversity by preferentially selecting rare prey, putting

them at risk of extinction. Thus species-level patterns cannot be explained by species-level

averages, but instead must consider individual-level variation in prey selection. Individual-
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level variation occurs in many biological and social contexts, suggesting that analyses of

individual-level interaction data will be relevant in a wide range of fields.

The paradox of low diversity being predicted by food web theory but high diversity being

observed in nature has been discussed intensively for more than a half-century 1–5. In recent years,

a great deal of progress towards understanding the link between the structure and dynamics of food

webs and its implications for species diversity has been made 6–12. Despite this work, finer-grained

analysis reconciling the empirical evidence of intraspecific variation 13, 14 with diversity patterns in

food webs has been lacking 15–23. Long-term empirical data and competitive models of resource

use predict species coexistence only if intraspecific trait variability is higher than interspecific trait

variability 24–26. Recent demonstrations that intraspecific variation in resource use and response to

fluctuating environments exceeds the differences in species-level averages within ecological com-

munities suggest that some individuals are specialized while others use a wide range of resources

during their life cycle 26–28. It also suggests that patterns found in relationships between traits of

individuals may differ significantly from the patterns of relationships found between species-level

means 13, 29–31. Intraspecific variation in resource use can enable coexistence within an ecological

community, but individual variation in prey selection across prey with different abundance can

lead to species extinctions in food webs. If most of the intraspecific variation in prey selection is

concentrated in rare and highly profitable prey species, then we can expect multiple extinctions

in the prey community and a high probability of food webs collapse 15, 32, 33. On the other hand, if

prey selection by individual predators drives a rare species advantage in which host-specific natural

enemies control each species when it becomes abundant, then we can expect highly diverse food

webs 34–36.

To date, the lack of high resolution individual-based food web data sets, with thousands of

individual diets and independent measures of prey abundance, has made it impossible to test the

role of intraspecific variation in prey selection on species coexistence in complex food webs 7, 37.
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Here we will test these ideas in a general framework using multiple years of individual diet samples

and independent estimates of prey and predator abundance in different environmental conditions

in three regions of the Guadalquivir river, southern Spain. The data include 47 predator and prey

species with approximately 100,000 individuals sampled and have sufficient resolution and num-

ber of species to permit inference at individual- and species-levels simultaneously (“Section A”

SI). This combination of individual resolution and large number of species is not available from

previous data sets, which are either focused on a few thousands individuals in a few species or on

a few individuals per species in food webs with a large number of species 7, 37–39.

We developed a suite of individual-based food web models 40, shown schematically in figure

1, to quantify the effect of intraspecific variation in predator populations on diversity in food webs.

From observations of prey consumption for each individual predator, and independent estimates

of prey and predator abundance, we inferred two biologically plausible mechanisms to predict the

variability in prey selection across individual predators and how the partitioning of this variation

across prey with different abundances alters food web diversity (“Methods Summary” and “Meth-

ods”): (1) At the beginning of the simulation all individual predators have equal ability to learn

from each successful experience in prey hunting in the sense that a successful encounter increases

their probability of future successful encounters (Fig. S1, SI). This ability captures the speed of

learning represented by α. Consider the following ecologically reasonable scenario in which in-

dividuals of abundant prey species tend to occur in high-density patches but individuals from rare

prey species tend to be more spatially isolated. We assume an individual predator that finds a high-

density patch will then be highly connected to the abundant prey species in that patch. Conversely,

a predator that never finds a patch will be weakly connected to the rare prey species, and (2) Finding

a high or low density patch with individuals of abundant or rare prey species can be a consequence

of chance and not an active prey selection process. In order to distinguish random encounters from

active searching of common or rare prey we explore the strength of prey selection by strongly and
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weakly connected individual predators by changing profitability across prey species with different

abundances (“Methods Summary”). At one extreme, rare prey are at an advantage, with preda-

tors eating common prey more frequently than expected under random encounters (i.e., negative

density-dependent prey selection), while at the other extreme larger and more profitable rare prey

are eaten with higher probability than small and common prey (i.e., positive density-dependent

prey selection).

The models generate changes over time in the number of prey items per individual preda-

tor, the strength of prey selection across strongly and weakly connected individual predators as a

function of prey abundance, and the number of coexisting species in the food web as a function

of the strength in prey selection. Aggregated across the whole Guadalquivir estuary food web,

the distribution in the number of prey per individual predator is highly heterogeneous with most

individuals having a few prey items and a few individuals acting as ”hubs” containing more than

103 items (Fig. 2). The models with learning predict the variance of the number of prey items per

individual predator (log(σ2
data) = 8.6, and the CI [log(σ2

min) = 7.3, log(σ2
max) = 9.95]) and most

part of the distribution, but they fail to capture the lower portion of the distribution of the strongly

connected predators. These distributions are qualitatively similar across predator species and in

each environmental situation sampled (Figs. S2-S3, SI). The classical random encounter model

without learning strongly deviates from the observed data (Fig. 2). This departure from the model

without learning persists in each environmental situation for all the predators pooled and after ac-

counting for intraspecific variability within each predator species in each environmental situation

(p < 10−3 for all combinations, Kolmogorov-Smirnov test).

These results show that the process of previous predation success increasing an individual’s

probability of future predation success is an important mechanism driving the observed variation

in the number of prey per individual predator. They do not tell us how prey selection of individuals

with many prey in their gut and weakly connected predators drive prey abundances and under
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what situations population level means are able to generate the same dynamics as observed in the

highly heterogeneous individual-based food web. For example, if the random encounter model

with learning predicts the observed pattern of prey selection (frequency of diets containing rare

or abundant prey species), then population level means should be an appropriate simplification to

understand diversity in food webs. On the other hand, if abundant or rare prey occur in the observed

predator diets significantly more or less frequently than expected with random encounters, then

these deviations contain useful information for understanding the effects of density-dependent prey

selection on food web diversity.

Figure 3 shows individual prey selection in the empirical data with prey abundance as a

function of the number of prey items of each prey species found in each individual predator where

counts of different prey species in a single individual are connected. There is substantial variation

in prey selection across prey species with different abundance and across individual predators with

different number of prey in the stomach content. Do weakly connected individuals (Fig. 3a-3b),

preferentially select highly energetic and rare prey? Are these weakly and medium connected

individuals of small size? Similarly, do the most connected individuals (Fig. 3c-3d) preferentially

select the most common or rare prey? Are those strongly connected individuals of large size?

Body size is commonly used to explain patterns in predator-prey relationships 41, but in these

data, length of predator does not explain the variability in the number of prey items per individual

predator across weakly and strongly connected predators (Fig. 4a-d, top). The model with posi-

tive density-dependent prey selection best explains the variability observed in weakly and medium

connected individuals (Fig. 4a-b, bottom), while neutral prey selection best explains the variabil-

ity observed in medium-strongly connected individuals (Fig. 4c, bottom) and negative density-

dependent prey selection best explains the variability observed in strongly connected individuals

(Fig. 4d, bottom). The positive density-dependent mechanism predicting prey selection in weakly

and medium connected individuals strongly depart from the other models and it does not vary in
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space and time (AIC values in Table S1, SI). Even if the mechanisms predicting prey selection in

medium-strongly and strongly connected individuals vary in space and time, those mechanisms

deviate in most environmental situations from the random encounter model (AIC values in Table

S1, SI). The speed of learning values, α, that best predict the observed data in each connectivity

class at intraspecific level do not differ significantly across connectivity classes for the weakly,

medium, medium-strongly and strongly connected individuals (p > 10−1 for all combinations,

Kolmogorov-Smirnov test), but the strength in prey selection values, Ω, between weakly-medium

and medium-strongly and strongly connected individuals do differ significantly (p < 10−3 for all

pairwise combinations, Kolmogorov-Smirnov test) and in opposite directions (Fig. 4a-d. bottom).

These patterns of prey selection have significant implications for food web diversity (Fig. 5).

Negative density-dependent prey selection, or the advantage of the rare, (Ω− << 0), predicts that

most intraspecific variation in prey consumption is aggregated in the most common prey species,

and thus the variability in prey consumption across prey species with different abundance is larger

than in the random encounter model, (Ωo ≈ 0), and positive density-dependent selection model,

(Ω+ >> 0), for all the classes ranging from strongly to weakly connected individuals, thus, σ̂2−

> σ̂2
o > σ̂2

+. This drives diversity to a maximum value (Fig. 5). Equalizing profitability between

common and rare prey species moves the dynamics to be neutral or to a random encounter model

with the strength of prey selection, Ω ≈ 0. Species richness is still high, but some extinctions of

rare prey may occur. Increasing slightly the profitability of rare species to the strength of selection

values that best predict the observed weakly connected predators triggers a collapse in the prey

community (Figs. 4-5, Ω ≈ [10,1000]). The nonlinear decay of species richness after a slight

increase in the strength of prey selection remains qualitatively the same in space and time (Fig.

S4 SI). Overall species diversity is limited by weakly connected individuals that represent in the

food web studied here the 95% of the total number of individuals sampled. Weakly connected

individuals drive extinctions by preferentially consuming individuals of rare species, while high

6



variability in the number of prey items per predator is maintained by negative frequency depen-

dence in the most strongly connected predators leading them to consume common prey and so not

drive extinctions even though they are strong consumers.

The pattern of prey selection found here could be a consequence of strongly and weakly con-

nected predators actively foraging in a system in which prey are distributed in a spatially heteroge-

neous, patchy manner. Strongly connected predators preferentially search the most abundant prey

species in high-density patches with a few number of prey species. A strongly connected preda-

tor that finds this kind of patch will then be highly connected to just one or a few common prey

species. Conversely, weakly connected predators preferentially search low-density patches with a

large number of rare prey species. A weakly connected predator will then be weakly connected

to more than one rare prey species. These mechanisms are taken into account in our modeling

framework and they reproduce quite well the patterns of prey selection observed in the empirical

data. This implies that individual-level prey selection of spatially heterogeneously distributed prey

can drive patterns of species diversity and coexistence in multi-trophic ecosystems.

This analysis of individual variation in connectivity expands on a general relation demon-

strated by earlier studies of the epidemiological consequences of heterogeneity of infectiousness

in contact networks 42. Targeting the most highly connected individuals implies treating a small

proportion of individuals, but this strategy can fail because some less-connected individuals can

be highly infectious 27. In the context of the large individual-based food web studied here, highly

connected individual predators are preferentially selecting common prey, so their effect on prey

coexistence is larger than on prey extinction and their overall effect is lower than we would ex-

pect based on their number of interactions. The opposite is true for weakly connected individuals.

They preferentially select rare prey and thus their effect on extinction probability of prey species is

larger than we expect based on their low number of interactions. Hence, the greater the proportion

of weakly connected individuals consuming rare prey, the more pronounced their negative effect
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on diversity will be.

These patterns of intraspecific variability reconcile some of the mechanisms promoting vari-

ation within natural populations with the patterns that promote or inhibit diversity in food webs.

It has been shown that non-random interactions among species can increase diversity 43, but the

reverse is also possible if weakly connected individuals are preferentially selecting rare prey. Nest-

edness and compartments are two of the most general patterns in observed ecological networks

that increase coexistence and diversity in food webs 44, 45. These two patterns can be obtained from

at least two scenarios of intraspecific variability with opposite consequences for species diversity:

1) nestedness with strongly and weakly connected individuals selecting common and rare prey,

respectively, and 2) the opposite scenario with strongly and weakly connected individuals select-

ing rare and common prey, respectively. Because the number of strongly connected individuals

in large networks is orders of magnitude lower than the number of weakly connected individuals,

the species-level effects on diversity and stability of these two opposite intraspecific-level patterns

may differ significantly.

Current biodiversity theory can explain species abundance patterns for many groups 46, 47, but

does not explain patterns of intraspecific variation in ecological interactions nor their implications

for diversity patterns in multi-trophic ecosystems 23, 48. The models we have explored generate dif-

ferent degrees of intraspecific heterogeneity in prey selection and these models can be compared

with the patterns of individual diets and species diversity using highly resolved individual-based

food web data. We have shown that higher intraspecific than interspecific trait variability within

one community is not sufficient to guarantee species coexistence in a food web. The same intraspe-

cific variation in prey selection across prey species with different abundance can be structured in

ways that facilitate or undermine diversity in the prey community. We have therefore determined

the conditions necessary for the required changes in prey selection under similar intraspecific vari-

ability and in profitability across prey with different abundance to attain coexistence; if these are
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not met, then highly profitable and rare prey go locally extinct. Several traits can explain prey selec-

tion and here we have studied only two of them, learning ability and active searching by changing

profitability across prey species as a proxy for spatial heterogeneity of resources. Further analysis

taking into account genetic variability and traits driving individual variability in metabolism and

phenotype may be required to further disentangle the effect of multiple traits 49 on predator diets

and their effect on species diversity in food webs across space and time.

We have developed a framework for understanding the mechanisms driving intraspecific vari-

ability in the number of prey and the strength of prey selection in natural populations and its con-

sequences for patterns of biodiversity in multi-trophic ecosystems. Underlying this framework

there are three simple birth-death models that include learning from previous feeding experience

with negative, neutral and positive density-dependent prey selection. By examining these models

under different parameter combinations and confronting them with data, we conclude that the fac-

tors driving prey selection in weakly and strongly connected individual predators at intraspecific

level vary significantly, and thus population level means, classically used to develop food web the-

ory, can fail to anticipate the mechanisms driving species extinction, coexistence and diversity in

multi-trophic ecosystems.

Methods Summary

Our model is a stochastic, individual-based birth and death model with R1(t), R2(t), ..., RSR
(t)

and C1(t), C2(t), ..., CSC
(t) for t ≤ 0 the sampled population abundance of prey species-n and

predator species-m, with SR and SC , the total number of prey and predator species, respectively.

For Δt sufficiently small, a birth-death event occurs in the prey and predator community. Predator

j has a probability of selecting a prey given by:

Cj
m(t) =

K

1 +K ∗ e−αωj(t−1)
, (1)
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where K defines the learning carrying capacity of individual j of species m, α is the speed at

which new successful encounters increase the ability of individual j to catch a new prey item, and

ω is the number of prey items in the stomach contents of predator j at time t − 1 (Fig. S1). The

probability of an individual prey i of species n being selected is a function of its profitability given

by:

P (Ri
n) =

En

hn
, (2)

where En and hn define the net energy content and the handling time of prey species n. The

strength of prey selection is given by the difference in profitability between the most rare, ψ, and

the most common prey, ϕ. To test deviations from neutrality in prey selection among individual

predators and their effect on species richness, we study the following three scenarios:

Ω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω− = [P (Rψ)− P (Rϕ)] < 0

Ωo = [P (Rψ)− P (Rϕ)] = 0

Ω+ = [P (Rψ)− P (Rϕ)] > 0,

(3)

where Ω−, Ωo, and Ω+ represent the negative (profitability decaying linearly from common to rare

prey), neutral (equal profitability for all prey species) and positive (profitability decaying from rare

to common prey) density-dependent prey selection, respectively.
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Figure Legends

•Figure 1. Diagrams of the learning models. Right and left column of a-c represent the predator

and prey populations, each with different abundance, respectively. Each link means a prey item

is in the stomach content of an individual predator. Each individual predator is represented by a

black node and the size of each node within each predator population represents the probability of

catching an individual prey. This probability is a function of the number of previous successful en-

counters by each individual predator (see “Methods Summary”). This process generates variation

at intraspecific level and it produces at least two types of individual predators: Strongly and weakly

connected individuals. The same intraspecific variance in the number of prey per individual preda-

tor within each predator population from a-c can have different prey selection patterns across prey

with different abundance and thus can lead to species extinctions in food webs. We have tested

three learning models with the strength in prey selection following: a), Negative density-dependent

prey selection or rare prey advantage: Strongly and weakly connected individual predators select

preferentially the most common prey species. b), Random encounter model: prey selection is only

a function of prey and predator abundance. Strongly and weakly connected individual predators

select less common prey just by chance (orange links), and c), Positive density-dependent prey

selection: increasing profitability of rare prey attracts strongly and weakly connected individual

predators (blue and red links).

•Figure 2. The distribution in the number of prey per predator. All the 105 prey and predator

individuals sampled in all environmental conditions are pooled; x-axis and y-axis represent the

rank individuals in number of prey, and the absolute number of prey per individual predator, re-

spectively. Black represents the empirical data, solid and dotted red are the mean and CI from the

all the learning models. The observed distribution is highly heterogeneous with most individuals

having a few prey items and a few individuals acting as ”hubs” containing more than 103 items.

For comparison we also plotted results from the random encounter model without learning (solid
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and dotted orange are the mean and CI); this model deviates strongly from the observed data.

•Figure 3. The distribution of prey abundance of species k for each individual predator

pooled across all the samplings as a function of the number of items of prey species k. Counts

of different prey species in a single individual predator are connected. There are four classes of

predators: a,b), Weakly and medium connected predators: All predator individuals with more or

equal than 1 and less than 10 prey items in the stomach content, a, and all individuals with more

or equal than 10 and less than 102 items, b, respectively. c, Medium-strongly connected predators:

All individuals with more or equal than 102 and less than 2 × 102 items, and d, Strongly connected

predators: All individuals with more than 2 × 102 items.

•Figure 4. The number of prey as a function of total length (a-d, top), and abundance of prey

species k as a function of prey selection defined as the mean number of prey items of each prey

species k consumed by each individual predator (a-d, bottom). Black dots represent the observed

values and continuous and dotted red lines represent the mean and the CI from the model that best

fit the data. a-b), Weakly, a, and medium, b, connected predators. The best fit is given by the

positive density-dependent prey selection model in a, with α = [0.0015], Ω = [844], μC = 0.0057,

and AIC = -142, and b, α = [0.005], Ω = [101], μC = 0.028, and AIC = -22.45. c), Medium-

strongly connected predators. The best fit is given by the random encounter model with, α =

[0.0088], Ω = [0], μC = 0.044, and AIC = 20.78, and d, Strongly connected individuals. The best

fit is given by the negative density-dependent prey selection model with α = [0.0036], Ω = [-805],

μC = 0.0177, and AIC = 38.

•Figure 5. Species richness for the prey community as a function of the strength of prey

selection, Ω, for the 105 prey and predator individuals sampled pooled across all the environmental

conditions. A slight increase or decrease in the strength of prey selection generate a nonlinear

decay or increase of species richness, respectively. This result remains qualitatively the same in
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space and time (Fig. S4 SI).
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Methods

Generalized stochastic individual-based predator-prey model For Δt sufficiently small, each

death event for prey species is described as:

Ri
n(t)

DRn=μP (Rn)C
j
m

(
Rn
JR

)(
Cm
JC

)
�� ∅(t+Δ(t)) (4)

Cj
m(t)

��

Cj
m(t+Δ(t))

where ∅ is an empty site in the prey community after the death of an individual prey i of species n

by an individual predator j of species m at time t. We scale time to prey dynamics, μ = μRn,Cm =

1 and P (Rn), C
j
m, Rn and Cm are the profitability of prey species n, the probability of selecting a

prey by the individual predator j of species m, and the total number of individuals of prey n and

predator m, respectively. JR and JC are the total abundance in the prey and predator community.

At the same time we have an offspring l in the prey species n given by

Rk
n(t)

Rn
JR−1 �� Rl

n(t+Δ(t)) (5)

The death-birth process in the predator community occurs if and only if a value sampled

from a uniform distribution [0,1] is smaller than the mortality rate of predator species m, μCm ,

which is parametrized a priori by the observed number of individual predators found in the total

sample. After approximately 105 prey samples, only 5% were individuals belonging to some of the

10 predator species sampled. These events are described as in eqs. (A-1) and (A-2) but with DCn

and Cn instead of DRn and Rn, respectively.

The transition probabilities of the birth-death process for the individual-based prey-predator

food web satisfy:

Pr [Rn − 1|Rn]=DRn

(
JR −Rn

JR − 1

)
(6)

Pr [Rn + 1|Rn]=DR �=n

(
Rn

JR − 1

)
(7)
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Pr [Cn − 1|Cn]=DCn

(
JC − Cn

JC − 1

)
(8)

Pr [Cm + 1|Cm]=DC �=m

(
Cm

JC − 1

)
(9)

Testing the models using ABC and AIC Results in Figs. 2 and 4a-d bottom were obtained after

sampling approximately 90, 000 prey individuals per replicate after 104 replicates using the ABC

method 50. In Fig. 2 we simulated the distribution of the number of prey items per individual

predator j (denoted as Ws = [ω
(j)
s ]) using α = [10−4, 10−2], K = 100, and μC = [0, 5 × 10−2]. In

Fig. 4a-d bottom we simulated the mean number of items of prey k for four connectivity classes

(denoted as Ŵs) using the previous parameter ranges and Ω = [-1000,1000]. We compared these

distributions with the observed data using the following general algorithm:

1. Generate θ from π(.), where θ = [α, μC , Ω].

2. Simulate W and Ŵ from each stochastic model with parameter θ.

3. Calculate distance for L(Wo, Ws) and L′
(Ŵo, Ŵs)

between simulated (Ws, Ŵs) and observed data (Wo, Ŵo).

4. Accept θ if L ≤ ε and L′ ≤ ε
′
; return to 1,

where ε and ε
′
denote arbitrary values that satisfy a compromise between efficiency and accuracy50.

We have used quite large ε and ε
′
values in the simulations so all the outcomes from the models for

any parameter combination were used to compare the models with the observed data.

We implicitly assume that our predictions will not reproduce the observations exactly. Un-

controlled randomness from various unknown sources will make observations, Wo, Ŵo, deviate

from the theoretical model predictions, Ws, Ŵs. In order to consider this inevitable mismatch, we

22



have used an error model. We have considered a least-absolute values criterion, which is known to

be robust even when errors in the data are not normally distributed 51.

We defined the following error function to model the probability of observing Wo = [ω
(j)
o ]

absolute number of items per individual predator j given a model prediction, Ws = [ω
(j)
s ]:

P (ω(j)
o |ω(j)

s ) ∼ exp−
∣∣∣∣∣ω

(j)
o − ω

(j)
s

ω
(j)
s

∣∣∣∣∣ . (10)

To satisfy ∫ ∞

0

P (ω(j)
o |ω(j)

s )dω(j)
o = 1, (11)

we obtain,

P (ω(j)
o |ω(j)

s ) =
1

ω
(j)
s (2− e−1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
exp(−ω

(j)
o −ω

(j)
s

ω
(j)
s

) : ω
(j)
o > ω

(j)
s

exp(−ω
(j)
s −ω

(j)
o

ω
(j)
s

) : ω
(j)
o < ω

(j)
s

(12)

Assuming independent observational errors, it is straightforward to write a likelihood for the distri-

bution of the number of items per individual predator for all the predators sampled, T , and identify

the best fit as the one that minimizes the sum of the absolute values of the misfits as follows:

L(ω(1)
o , ..., ω(T )

o |μC , α) =
T∑

j=1

log(P (ω(j)
o |ω(j)

s )). (13)

For Fig. 4a-d bottom and Table S1, we followed these additional steps: 1) sort prey abun-

dance for all prey species, SR, from the most rare to the most common after each replicate, and 2)

identify the best fit as the one that minimizes the sum of the absolute values of the misfits for the

mean value for each of the four connectivity classes, c:

L′
(ω̂(1)

oc , ..., ω̂
SR
oc |μC , α,Ω) =

SR∑
i=1

log(P (ω̂(i)
oc |ω̂(i)

sc )), (14)

where ω̂
(i)
oc and ω̂

(i)
sc are the observed and the model prediction of the mean number of prey items

per individual predator for each prey i for each of the four classes of individual connectivity,

23



respectively. We use Akaike information criteria (AIC) to compare the three models for each of

the four classes. In the general case, the AIC is

AIC = 2k − 2 ln(L′
) (15)

where k is the number of parameters in each of the models, the 2 before the k is a “penalization

of parameter constant” and L′
is the maximum value of the likelihood function for the estimated

model. Model replicates to calculate the CI taking the percentiles 0.05 and 0.95 were generated

with the best parameter estimates for α (Fig. 2), and α and Ω, (Fig. 4a-d, bottom) along with

a family of pairs within 0.5 log-likelihood units away from the minimum. Result for Fig. 5 are

obtained after 104 replicates and 1,000,000 birth-death cycles per replicate. In each replicate we

randomly pick up a strength of prey selection value, Ω, from the range [-10000,10000] and count

the number of prey species with a number of individuals larger than 0.
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