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Bayesian Overdispersed Poisson Model and the

Bornhuetter-Ferguson Claims Reserving Method

Peter D. England∗ Richard J. Verrall† Mario V. Wüthrich‡

October 26, 2010

Abstract

We consider the Bayesian overdispersed Poisson (ODP) model for claims reserving in

general insurance. We choose two different types of prior distributions for the parameters

and then study the different Bayesian predictors. This study leads, on the one hand, to the

classical chain ladder predictor and, on the other hand, to Bornhuetter-Ferguson predictors.

We highlight (either analytically or numerically) how these predictors are obtained and how

their prediction uncertainty can be determined.

1 Bayesian overdispersed Poisson model

1.1 Introduction

A number of papers have appeared in the recent literature looking at stochastic models related to

the Bornhuetter-Ferguson (BF) method of claims reserving, see for example Alai et al. [1], Mack

[10], Verrall [16]. The basic philosophy underlying these papers, and the BF method, is that

there is external knowledge about the ultimate losses that is not contained in the runoff triangles

of data. In statistical methodology, the usual way to incorporate such external knowledge is to

use Bayesian methods. This paper examines the use of Bayesian methods for overdispersed

Poisson (ODP) models. The Bayesian ODP model treated in this paper was briefly covered in

England-Verrall [4], the present paper provides a much more detailed analysis and examines the

use of different prior distributions and posterior estimators. We provide analytical results, where
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possible, which allow for intuitive interpretations. Where it is not possible to derive analytical

results, we use Markov chain Monte Carlo (MCMC) methods to obtain numerical results.

Although this paper is related to the BF method, in that the underlying philosophy is similar,

the results are not the same as the results from applying the conventional BF method. The

reason for this is that the BF method uses the same runoff pattern as the chain ladder (CL)

technique, whereas the application of Bayesian prior distributions to the rows of the claims de-

velopment triangle naturally affects the posterior distributions of the parameters for the columns

(i.e. the runoff parameters) of the claims development triangle - even if non-informative prior

distributions are used for the latter. It is possible to construct a Bayesian BF model where the

runoff pattern is exactly the same as in the CL technique (see Verrall [16]), but in that case it

is not clear that this is a statistically optimal estimator. Thus, the purpose of this paper is to

examine Bayesian models which incorporate prior knowledge about ultimate losses (as the BF

method does), but it is not the purpose to reproduce the results from the BF method exactly

(as in Alai et al. [1]).

The model assumptions are set out in full in Sections 1.2, 2.1 and 3.1, but the basic idea is

to use an ODP model for the incremental claims with cross-classified means µiγj , where µi

is the row parameter in accident year i (related to the exposure of accident year i) and γj is

the column parameter for development period j (related to the runoff pattern), and to apply

prior distributions to these parameters. We will assume that there is no prior knowledge about

the runoff parameters, and we use non-informative prior distributions for γj . By assuming

informative prior distributions for the µi’s we can incorporate external knowledge about the

ultimate losses. We investigate a number of different formulations of these informative prior

distributions, and examine the properties of the resulting posterior estimators. We also compare

our results with the traditional BF method.

An important observation will be that although we choose non-informative prior distributions

for the parameters, their shapes may have a significant influence on the resulting claims reserves.

Organization of the paper. In the remainder of this section we define the general Bayesian

ODP Model and we discuss prediction in a Bayesian framework. In Sections 2 and 3 we then

specify two different types of prior distributions (the uniform prior model with log link function

and the gamma prior model). Parameter estimates, e.g. for γj , are always denoted by γ̂j in the

uniform prior model with log link function and with γ̂∗j in the gamma prior model. In Section 4

we discuss parameter estimation via simulation methods and in Section 5 a numerical example
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is provided. All the statements are proved in the appendix.

1.2 Model assumptions

The model assumptions are similar to those in the Bayesian claims reserving models presented

in England-Verrall [4, 5], Verrall [16] and Wüthrich-Merz [17], Section 4.4. We assume that the

parameters are modeled through prior distributions and, conditional on these parameters, the

incremental claimsXi,j have independent ODP distributions for accident years i ∈ {0, . . . , I} and

development years j ∈ {0, . . . , I}. The final development year is given by I and the observations

at time I are given in the (upper) runoff triangle

DI = {Xi,j : i+ j ≤ I} .

Our goal is to predict the future claims in the lower triangle Dc
I = {Xi,j : i+ j > I, i ≤ I}.

Model 1.1 (Bayesian ODP model)

• µ0, . . . , µI , γ0, . . . , γI , ϕ are independent positive random variables with joint density u(·).

• Conditionally, given parameters Θ = (µ0, . . . , µI , γ0, . . . , γI , ϕ), are Xi,j independent ran-

dom variables with

Xi,j

ϕ

∣∣∣∣
Θ

(d)
∼ Poi (µiγj/ϕ).

The parameter µi plays the role of the row parameter (related to the exposure of accident year

i, see (1.2)), the γj ’s describe column parameters (related to an incremental claims development

(runoff) pattern that is not necessarily normalized, see (1.2)) and ϕ describes the dispersion

parameter. We obtain the following first two conditional moments

E [Xi,j |Θ] = µiγj and Var (Xi,j |Θ) = ϕ µiγj , (1.1)

and the conditional total ultimate claim of accident year i is given by

E




I∑

j=0

Xi,j

∣∣∣∣∣∣
Θ


 = µi

I∑

j=0

γj . (1.2)

We analyze the Bayesian ODP Model 1.1 for different types of prior distributions for Θ and

different types of parameter estimates for Θ (see (1.3)-(1.4) below).
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1.3 Bayesian predictors

Assume the Bayesian ODP Model 1.1 to hold. Using Bayes’ Theorem we find the posterior

density of Θ, given the observations DI , by

u(θ|DI) ∝
∏

i+j≤I

exp

{
−
µiγj
ϕ

} (µiγj
ϕ

)Xi,j/ϕ

(
Xi,j

ϕ

)
!

u(θ),

where the proportionality sign ∝ means up to normalization w.r.t. the random vector Θ. In

Bayesian theory there are two commonly used predictors, the minimum mean square error

(MMSE) predictor and the maximum a posteriori (MAP) predictor for Θ, given DI . These are

given by

Θ̂
MMSE

= E [Θ| DI ] , (1.3)

Θ̂
MAP

= argmax
θ

u(θ|DI). (1.4)

The predictor Θ̂
MMSE

minimizes the conditional prediction variance (see also (2.7) below)

and the predictor Θ̂
MAP

is the maximum likelihood estimator (MLE) for the posterior density

u(θ|DI). The MAP predictor Θ̂
MAP

has the advantage that it can often by calculated analyt-

ically. On the contrary, it has a bias term Θ̂
MMSE

− Θ̂
MAP

, relative to the posterior density

u(θ|DI), that can, in general, only be calculated numerically, for example, using the MCMC

methodology. This is discussed in the rest of this paper.

2 Uniform prior distributions and the chain ladder method

In this section we start with uniform priors and log links for the parameters µi and γj . Such a

model has already been studied in England-Verrall [5], Section 7.1. The crucial consequence of

the uniform priors assumption is that if we make them non-informative we obtain the classical CL

estimate from the MAP predictors. In this spirit, this model is another example that replicates

the CL reserves (see also Subsection 2.3).

2.1 The (non-informative) uniform priors model with log link

We define the parameters on the log scale: αi = log(µi) and βj = log(γj).

Model 2.1 In addition to Model 1.1 we assume that αi = log(µi) are uniformly distributed on

(−m,m) for m > 0, and βj = log(γj) are uniformly distributed on (−b, b) for b > 0 and ϕ > 0

is constant.
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Remark. It might be more appropriate to use different uniform priors for each parameter,

e.g. αi are uniformly distributed on (−mi,mi). However, if we choose non-informative priors

for αi = log(µi) and βj = log(γj) (i.e. we will let m → ∞ and b → ∞), then the specific prior

differences between the αi’s and between the βj ’s are not relevant.

With (1.1) we obtain

logE [Xi,j |Θ] = log (µiγj) = αi + βj ,

which illustrates the role of the log link function, see also England-Verrall [4], Section 2.3. That

is, with the log link function we derive the generalized linear model form.

The posterior density under Model 2.1 is given by

u(θ|DI) ∝
∏

i+j≤I

exp

{
−
eαieβj

ϕ

}(
eαieβj

)Xi,j
ϕ

I∏

i=0

1

2m
1(−m,m)(αi)

I∏

j=0

1

2b
1(−b,b)(βj).

If we assume that m and b are sufficiently large (we comment on this below) then the MAP pre-

dictors for αi and βj can be found by maximizing the posterior log-likelihood function log u(θ|DI)

analytically, see Section 2.3. This provides MAP estimators α̂i and β̂j for αi and βj , respectively,

that correspond to the solution of the following system of equations (see also e.g. (2.16)-(2.17)

in Wüthrich-Merz [17])

eαi

I−i∑

j=0

eβj =
I−i∑

j=0

Xi,j , for i = 0, . . . , I, (2.1)

eβj

I−j∑

i=0

eαi =

I−j∑

i=0

Xi,j , for j = 0, . . . , I. (2.2)

Remarks 2.2

• Ci,j =
∑j

k=0Xi,k is called the cumulative claims of accident year i up to development year

j. The (total) ultimate claims of accident year i is denoted by Ci,I and the outstanding

loss liabilities at time I for accident year i are given by

Ri =

I∑

j=I−i+1

Xi,j = Ci,I − Ci,I−i, (2.3)

under the assumption that Xi,j denotes claims payments. The final goal is to predict these

outstanding loss liabilities Ri and to determine the prediction uncertainty.

• The solution to (2.1)-(2.2) is not unique, i.e. whenever α̂i and β̂j solve the system (2.1)-

(2.2), then for any K ∈ R also α̂i + K and β̂j − K solve the system (2.1)-(2.2). The

requirement m and b sufficiently large now means that there exists at least one K ∈ R
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such that the solution (α̂0 + K, . . . , α̂I + K, β̂0 − K, . . . , β̂I − K) of (2.1)-(2.2) is within

[−m,m]I+1 × [−b, b]I+1. We fix such a constant K and then denote the resulting MAP

predictor by

Θ̂
MAP

=
(
eα̂

MAP
0 , . . . , eα̂

MAP
I , eβ̂

MAP
0 , . . . , eβ̂

MAP
I

)
.

The MAP predictor for the outstanding loss liabilities Ri in (2.3) is then defined by

R̂MAP
i = eα̂

MAP
i

I∑

j=I−i+1

eβ̂
MAP
j .

We see that K cancels in this product and hence the specific choice of K is not important

as long as at least one such K exists.

• The MAP optimization problem (2.1)-(2.2) can be solved analytically. This is discussed

in Section 2.3, below.

• For the priors of αi we can either use informative priors (i.e. m < ∞) or non-informative

priors (i.e. m → ∞). However, since we have only one parameter, namely m, we always

have prior expected value E[αi] = 0 and variance Var(αi) = m2/3. Because we would like

to have more flexibility in these parameter choices (if we have prior knowledge on αi), we

consider different priors in Section 3, which then leads to a Bayesian BF model. For the

BF method we refer to Bornhuetter-Ferguson [3].

• Note that the MAP predictors do not depend on the explicit choices of m, b and ϕ, once

m and b are sufficiently large. On the other hand the MMSE predictors will depend on

these parameter choices.

The MMSE predictor for Ri in (2.3) is given by

R̂MMSE
i = E [Ri| DI ] = E




I∑

j=I−i+1

Xi,j

∣∣∣∣∣∣
DI




=

I∑

j=I−i+1

E [µiγj | DI ] =

I∑

j=I−i+1

E
[
eαieβj

∣∣∣DI

]
. (2.4)

Due to the posterior dependence between αi and βj , given DI , this cannot be further decoupled

and calculated in closed form (see also Verrall [16]). Therefore, the MMSE predictor can only

be calculated numerically.
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We analyze the right-hand side of (2.4) in more detail. We denote α = (α0, . . . , αI), β =

(β0, . . . , βI), µ = (µ0, . . . , µI), γ = (γ0, . . . , γI). Doing the following change of variables µi = eαi

and γj = eβj we obtain

R̂MMSE
i,j = E

[
eαieβj

∣∣∣DI

]
=

∫

R2I

eαieβj u (α,β| DI) dα dβ (2.5)

=

∫

R2I
+

µiγj u (µ,γ| DI)

I∏

k=0

1

µk

I∏

l=0

1

γl
dµ dγ,

with posterior density

u (µ,γ| DI)

I∏

k=0

1

µk

I∏

l=0

1

γl
∝

∏

i+j≤I

exp

{
−
µiγj
ϕ

}
(µiγj)

Xi,j
ϕ (2.6)

×
I∏

i=0

µ−1
i

2m
1(e−m,em)(µi)

I∏

j=0

γ−1
j

2b
1(e−b,eb)(γj).

Maximizing the right-hand side of (2.6) provides the MAP estimators µ̂MAP
i and γ̂MAP

j .

Remarks 2.3

• Basically the same remarks about the uniqueness of the MAP estimators µ̂MAP
i and γ̂MAP

j

apply as in Remarks 2.2: (i) they are only unique up to multiplication (and division,

respectively) with a positive constant; (ii) we choose m > 0 and b > 0 so large that the

mode of the density (2.6) lies within [e−m, em]I+1 × [e−b, eb]I+1.

• The MAP optimization problem (2.6) can be solved analytically. This is discussed in

Section 3.2, below.

• The MAP predictor for the outstanding loss liabilities Ri in (2.3) is then defined by

R̆MAP
i = µ̂MAP

i

I∑

j=I−i+1

γ̂MAP
j .

This now leads to a slightly unpleasant observation. Note that the MMSE predictor in

(2.5) does not depend on the parametrization. This is not true for the MAP predictor!

The MAP estimators α̂MAP
i and β̂MAP

j solve the system of equations (2.1)-(2.2), whereas

the MAP estimators µ̂MAP
i and γ̂MAP

j will solve the system of equations (3.11)-(3.12),

below. Because these two systems of equations differ, we find

eα̂
MAP
i eβ̂

MAP
j 6= µ̂MAP

i γ̂MAP
j which in general implies R̂MAP

i 6= R̆MAP
i .

This property is well known in Bayesian statistics, see for example Smith [13]. It gives us

a first indication that the MAP predictor is not always suitable in a Bayesian context.
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2.2 Prediction uncertainty

We measure the prediction uncertainty in terms of the conditional mean square error of predic-

tion (MSEP) which for a DI -measurable predictor R̂i for Ri is given by (see also Wüthrich-Merz

[17], Section 3.1)

msepRi|DI

(
R̂i

)
= E

[(
Ri − R̂i

)2∣∣∣∣DI

]
= Var (Ri| DI) +

(
R̂i

MMSE
− R̂i

)2
. (2.7)

From (2.7) we see that the MMSE predictor R̂MMSE
i = E [Ri| DI ] minimizes the conditional

MSEP. The conditional MSEP for the MAP predictor is given by

msepRi|DI

(
R̂i

MAP
)

= E

[(
Ri − R̂i

MAP
)2∣∣∣∣DI

]
(2.8)

= msepRi|DI

(
R̂i

MMSE
)
+
(
R̂i

MMSE
− R̂i

MAP
)2

≥ msepRi|DI

(
R̂i

MMSE
)
.

The MMSE predictor and the conditional MSEP can, in general, only be determined numerically,

using e.g. the MCMC methodology.

First conclusions. In many situations the MAP predictor R̂i
MAP

has the advantage over

the MMSE predictor R̂i
MMSE

that it can be calculated analytically. The MMSE predictor on

the other hand has the advantage that it minimizes the prediction uncertainty if we use the

conditional MSEP as uncertainty measure. The MAP predictor obtains a positive bias term(
R̂i

MMSE
− R̂i

MAP
)2

, see (2.8). This bias term however needs to be interpreted carefully: it

is always measured w.r.t. the posterior density u(θ|DI).

2.3 Link to the chain ladder algorithm

The remarkable property of the MAP predictor R̂MAP
i in Model 2.1 with non-informative priors

and log link is that it is equal to the CL reserves R̂CL
i . That is, the non-informative priors

Bayesian Model 2.1 with MAP predictors is another stochastic model that leads to the CL

reserves: since our system (2.1)-(2.2) of equations is exactly the same as the one for the ODP

model (see (2.16)-(2.17) in Wüthrich-Merz [17]) we have

R̂MAP
i = R̂CL

i . (2.9)
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In the literature this was, for example, proved by Mack [8]. Therefore, we define for j =

0, . . . , I − 1 the CL factor estimators

f̂j =

∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Ci,j

.

Corollary 2.18 and Remarks 2.19 in Wüthrich-Merz [17] then imply that (for the appropriate

normalizing constant K)

β̂MAP
j = log



(
1−

1

f̂j−1

)
I−1∏

k=j

1

f̂k


 and α̂MAP

i = log



∑I−i

j=0Xi,j

∑I−i
j=0 e

β̂MAP
j


 . (2.10)

That is, we can explicitly calculate the MAP predictors. Moreover, this gives another stochastic

model that allows for the calculation of the conditional MSEP given in (2.8). Unlike in Mack’s

[9] distribution-free CL model and in the ODP model (see England-Verrall [4], Section 7.2) we

do not need any approximations here for the estimation of the MSEP, but we calculate the exact

conditional MSEP value (2.8) numerically in this Bayesian inference model (using the MCMC

methodology).

In this spirit the parameter uncertainty of the estimate Θ is part of the model, see (2.8).

Moreover, because we have all key figures in terms of the full posterior distributions, we can

calculate any risk measure of interest (not only the conditional MSEP).

3 Gamma prior distributions

In Section 2 we have used uniform priors with log links in order to obtain the CL reserves. In this

section gamma prior distributions (with the identity link) are used, especially for the modeling

of the row parameters µi. This allows us to incorporate prior expert knowledge about the model

parameters and we obtain claims reserves in a similar spirit to the BF method. However, in our

model, we still have the freedom to determine how much credibility weight we give to the prior

knowledge. A similar Bayesian ODP model with gamma priors has, for example, already been

studied in Section 7.11 of England-Verrall [4] and Example 4.51 of Wüthrich-Merz [17].

3.1 Informative priors for the row parameters

Model 3.1 In addition to Model 1.1 we assume that µi are Γ-distributed with mean mi > 0 and

shape parameter ai > 0, γj are Γ-distributed with mean cj > 0 and shape parameter b > 0, and

ϕ > 0 is constant.
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In contrast to Model 2.1, we now extend the prior model for µi to a two-parameter distribution.

Our aim is to keep the mean mi fixed and study the sensitivity in the shape parameter ai. The

priors for γj will be chosen to be non-informative (i.e. b → 0).

The posterior density (likelihood function) in Model 3.1 is given by

u(θ|DI) ∝
∏

i+j≤I

exp

{
−
µiγj
ϕ

}
(µiγj)

Xi,j
ϕ

I∏

i=0

µai−1
i exp

{
−
aiµi

mi

} I∏

j=0

γb−1
j exp

{
−
bγj
cj

}
. (3.1)

The MAP predictors using non-informative priors for γj (i.e. b → 0) are then found by solving

µi




I−i∑

j=0

γj +
aiϕ

mi


 =

I−i∑

j=0

X∗
i,j + aiϕ, for i = 0, . . . , I, (3.2)

γj

I−j∑

i=0

µi =

I−j∑

i=0

X∗
i,j , for j = 0, . . . , I, (3.3)

with adjusted incremental claims

X∗
i,j =





Xi,j for j ≥ 1 and i ≥ 1,

Xi,j − ϕ for (j = 0 and i ≥ 1) or (j ≥ 1 and i = 0),

Xi,j + (I − 1)ϕ for j = 0 and i = 0,

and adjusted cumulative claims C∗
i,j =

∑j
k=0X

∗
i,k.

Therefore, the MAP predictors for non-informative claims development pattern γj will be a

function of the parameters ϕ, m = (m0, . . . ,mI) and a = (a0, . . . , aI).

Lemma 3.2 We assume Model 3.1 is fulfilled, and we assume that
∑I−i

j=0X
∗
i,j > 0 for all i =

0, . . . , I and
∑I−j

i=0 X
∗
i,j > 0 for all j = 0, . . . , I. The solution to (3.2)-(3.3) satisfies µi > 0 and

γj > 0 for all ai ≥ 0 and i, j = 0, . . . , I.

We first state a CL type result. Note that in the following lemma we do a CL argument on the

rows instead of on the columns; and for a = 0 we obtain the CL method on rows. Its proof is

similar to the classical CL result (see e.g. Section 2.4 in Wüthrich-Merz [17]).

Lemma 3.3 In Model 3.1 equations (3.2)-(3.3) imply for j = 0, . . . , I − 1

∑I−j
k=0 µk∑I−j−1

k=0 µk

=

∑I−j
k=0C

∗
k,j + ϕ

∑I−j
k=0 ak

(
1− µk

mk

)

∑I−j−1
k=0 C∗

k,j + ϕ
∑I−j−1

k=0 ak

(
1− µk

mk

) .
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The statement of Lemma 3.3 can also be written in incremental form, i.e. for i = 1, . . . , I

µi∑i−1
k=0 µk

=
C∗
i,I−i + ϕ ai

(
1− µi

mi

)

∑i−1
k=0C

∗
k,I−i + ϕ

∑i−1
k=0 ak

(
1− µk

mk

) . (3.4)

This implies the following theorem:

Theorem 3.4 In Model 3.1 equations (3.2)-(3.3) imply for i = 1, . . . , I

µi =
C∗
i,I−i + ai ϕ

∑i−1
k=0C

∗
k,I−i + ϕ

∑i−1
k=0 µk

(
ak
µk

− ak
mk

+ ai
mi

)
i−1∑

k=0

µk, (3.5)

and
I∑

i=0

ai µi

mi
=

I∑

i=0

ai. (3.6)

Theorem 3.4 is now the key to obtain the MLE which are the same as the solutions of equations

(3.2)-(3.3). Note that the right-hand side of (3.5) only depends on µ0, . . . , µi−1. Therefore, once

we know the initial value µ0, the remaining estimators for µ1, . . . , µI are calculated iteratively

by (3.5). This is discussed in more detail below.

Solution to (3.2)-(3.3) for a ∈ (0,∞). We apply Theorem 3.4. Choose an initial value

µ̃0(µ) = µ > 0, then using (3.5) we define iteratively for i = 1, . . . , I

µ̃i(µ) =
C∗
i,I−i + aiϕ

∑i−1
k=0C

∗
k,I−i + ϕ

∑i−1
k=0 µ̃k(µ)

(
ak

µ̃k(µ)
− ak

mk
+ ai

mi

)
i−1∑

k=0

µ̃k(µ) =
1

Ii(µ)

i−1∑

k=0

µ̃k(µ),

where we have defined

Ii(µ) =


 C∗

i,I−i + aiϕ
∑i−1

k=0C
∗
k,I−i + ϕ

∑i−1
k=0 µ̃k(µ)

(
ak

µ̃k(µ)
− ak

mk
+ ai

mi

)




−1

.

Note that the vector (µ̃0(µ), . . . , µ̃I(µ)) is now a function of one single parameter µ > 0. The

MAP predictors for (3.2)-(3.3) are then found by using the normalizing condition (3.6), that is,

choose µ > 0 such that

I∑

i=0

ai µ̃i(µ)

mi
=

I∑

i=0

ai
mi

1

Ii(µ)

i−1∑

k=0

µ̃k(µ)
!
=

I∑

i=0

ai. (3.7)

We denote the resulting MAP predictors for 0 ≤ i, j ≤ I by

µ̂MAP∗
i (a) = µ̂MAP∗

i (a,m, ϕ) and γ̂MAP∗
j (a) = γ̂MAP∗

j (a,m, ϕ),

where γ̂MAP∗
j (a) is obtained from (3.3).
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Remarks 3.5

• Predictors in the gamma priors Model 3.1 are denoted by a superscript “∗”, e.g. γ̂∗j , whereas

predictors in the uniform priors Model 2.1 are simply denoted by β̂j and γ̂j , respectively,

depending on the parametrization (2.5).

• Note that the MAP predictors can now easily be found by a simple (one-dimensional) root

searching algorithm (it only depends on one single parameter µ > 0, see (3.7)). This is

slightly more involved than the closed form solution (2.10) in the uniform prior case, but

it is a lot simpler than the multi-dimensional GLM claims reserving problems where one

either uses the Newton-Raphson algorithm or Fisher’s scoring method to find the roots

for the multidimensional problems (see for example Chapter 6 in Wüthrich-Merz [17]).

• For the special case of mi ≡ m and ai ≡ a we obtain a closed form solution. Equation

(3.5) implies for constant mi and ai

µi =
C∗
i,I−i + aϕ

∑i−1
k=0

(
C∗
k,I−i + aϕ

)
i−1∑

k=0

µk.

The normalization condition (3.6) then provides

m(I + 1)
!
=

I∑

i=0

µi =
I∑

i=0

C∗
i,I−i + aϕ

∑i−1
k=0

(
C∗
k,I−i + aϕ

)
i−1∑

k=0

µk (3.8)

=


 C∗

I,0 + aϕ
∑I−1

k=0

(
C∗
k,0 + aϕ

) + 1




I−1∑

i=0

µi = . . . =

I−1∏

j=0

∑I−j
k=0

(
C∗
k,j + aϕ

)

∑I−j−1
k=0

(
C∗
k,j + aϕ

) µ0.

Hence, from this we can explicitly calculate the MAP predictor

µ̂MAP∗
0 (a) = m(I + 1)




I−1∏

j=0

∑I−j
k=0

(
C∗
k,j + aϕ

)

∑I−j−1
k=0

(
C∗
k,j + aϕ

)




−1

,

and the iteration then provides the remaining MAP predictors.

• We can now study the MAP predictors as a function of the degree of information a con-

tained in the prior estimates mi, in particular, we obtain a smoothed claims development

pattern γ̂MAP∗
j (a), where the degree of smoothing depends on a.

The MAP predictor for the outstanding loss liabilities of accident year i > 0 is then given by

R̂MAP∗
i (a) = µ̂MAP∗

i (a)

I∑

j=I−i+1

γ̂MAP∗
j (a). (3.9)
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3.2 Non-informative prior case

For the non-informative prior case we let ai → 0 for all i. The posterior density (likelihood

function) in Model 3.1 for non-informative priors is then given by

u(θ|DI) ∝
∏

i+j≤I

exp

{
−
µiγj
ϕ

}
(µiγj)

Xi,j
ϕ

I∏

i=0

µ−1
i

I∏

j=0

γ−1
j . (3.10)

There are two important observations: (i) The non-informative prior case in Model 3.1 has

exactly the same posterior density as the non-informative prior case in Model 2.1 “under the

change of variables”, see (3.10) and (2.6) for m, b → ∞. Therefore, the predictive posterior

distributions of the outstanding loss liabilities Ri in these two non-informative priors models

will coincide as well as their MAP predictors. (ii) Note that in the case (3.10) the last terms on

the left-hand side and the right-hand side of (3.2) disappear. Therefore, we are left with

µi

I−i∑

j=0

γj =
I−i∑

j=0

X∗
i,j , for i = 0, . . . , I, (3.11)

γj

I−j∑

i=0

µi =

I−j∑

i=0

X∗
i,j , for j = 0, . . . , I. (3.12)

Similar to the solution of (2.1)-(2.2) we find the following solutions to (3.11)-(3.12)

γ̂MAP∗
j (0) = eK

(
1−

1

f̂∗
j−1

)
I−1∏

k=j

1

f̂∗
k

and µ̂MAP∗
i (0) =

∑I−i
j=0X

∗
i,j∑I−i

j=0 γ̂
MAP∗
j (0)

,

for any positive constant eK and CL factors f̂∗
j for the transformed observations C∗

i,j+1

f̂∗
j =

∑I−j−1
i=0 C∗

i,j+1∑I−j−1
i=0 C∗

i,j

.

Therefore, we obtain a CL model for the incremental claims X∗
i,j . However, in this case we can

find a “natural” normalizing constant eK . Theorem 3.4 implies

µi(0) = lim
a→0

µi(a) =
C∗
i,I−i∑i−1

k=0C
∗
k,I−i

i−1∑

k=0

µk(0). (3.13)

Proposition 3.6 In Model 3.1 equations (3.2)-(3.3) imply

lim
a→0

µ̂MAP∗
0 (a) = (I + 1)


 1

m0
+

I−1∑

j=0

1

mI−j

C∗
I−j,j∑I−j−1

k=0 C∗
k,j

I−1∏

n=j+1

∑I−n
m=0C

∗
m,n∑I−n−1

m=0 C∗
m,n



−1

.

Therefore, Proposition 3.6 provides a natural scaling constant eK > 0 if we let the degree of

information a converge to 0.
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3.3 Strong prior case

For the strong prior case we let ai → ∞ for all i and obtain from (3.2)-(3.3)

µi

mi
= 1, for i = 0, . . . , I,

γj

I−j∑

i=0

µi =

I−j∑

i=0

X∗
i,j , for j = 0, . . . , I.

Therefore, µ̂MAP∗
i (∞) = mi and

γ̂MAP∗
j (∞) =

I−j∑

i=0

X∗
i,j /

I−j∑

i=0

mi.

In this case we can explicitly calculate the posterior distributions of γj , given DI . These posterior

distributions are independent with

γj |DI

(d)
∼ Γ

(
I−j∑

i=0

Xi,j/ϕ,

I−j∑

i=0

mi/ϕ

)
. (3.14)

This immediately implies that

γ̂MMSE∗
j (∞) =

∑I−j
i=0 Xi,j∑I−j
i=0 mi

, (3.15)

and the bias of the MAP predictor of γj is given by

γ̂MMSE∗
j (∞)− γ̂MAP∗

j (∞) =

∑I−j
i=0 Xi,j −

∑I−j
i=0 X

∗
i,j∑I−j

i=0 mi

=
ϕ

∑I−j
i=0 mi

.

Therefore, in the strong prior case we obtain closed form posterior distributions which allow for

an analytical analysis of the model, both for the MAP predictor

R̂MAP∗
i (∞) = mi

I∑

j=I−i+1

γ̂MAP∗
j (∞),

and the MMSE predictor

R̂MMSE∗
i (∞) = mi

I∑

j=I−i+1

γ̂MMSE∗
j (∞).

3.4 Link to the Bornhuetter-Ferguson method

The BF method [3], as applied in practice, uses as claims development pattern γj the one

implied by the CL factor estimates given in (2.10). Therefore, the classical BF predictor for the

outstanding loss liabilities is given by

R̂BF
i = mi

∑I
j=I−i+1 e

β̂MAP
j

∑I
j=0 e

β̂MAP
j

, (3.16)
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where the β̂MAP
j ’s solve (2.1)-(2.2). R̂BF

i exactly corresponds to the BF predictor studied in

Alai et al. [1].

Mack [10] provides a different BF predictor where he uses a different method for the estimation

of the claims development pattern γj . We include a comparison of the results with two versions

of the Mack [10] method. In the first case we define the raw pattern (see Mack [10], formula (3))

γ̂rawj =

∑I−j
i=0 Xi,j∑I−j
i=0 mi

= γ̂MMSE∗
j (∞).

This pattern is not normalized, i.e. does not add up to 1. Therefore, we can also study a second

development pattern defined by

γ̂normj =
γ̂rawj∑I
j=0 γ̂

raw
j

.

We then define similar to Mack [10]

R̂Mack1
i = mi

I∑

j=I−i+1

γ̂rawj = R̂MMSE∗
i (∞) and R̂Mack2

i = mi

I∑

j=I−i+1

γ̂normj .

These BF predictors R̂BF
i , R̂Mack1

i and R̂Mack2
i can now be compared to the CL predictor

R̂CL
i = R̂MAP

i as well as to the MAP predictors R̂MAP∗
i (a), for ai ∈ [0,∞] and the corresponding

MMSE predictors. In this spirit, the Bayesian predictors can be viewed as BF predictors where

ai determines the degree of information contained in the prior value mi. These predictions and

estimators are compared in the examples Section 5.

Moreover, γ̂MAP∗
j (a) and γ̂MMSE∗

j (a) can be viewed as robust claims development patterns

where we also account for the prior information mi according to its degree of information ai.

4 Bias, prediction uncertainty and MCMC

4.1 Gibbs sampler

In general, Models 2.1 and 3.1 do not allow for analytical calculations of the posterior distribu-

tions. In most cases the posterior distribution of the parameters can only be determined up to

the normalizing constant. This is then the ideal situation to apply MCMC simulation methods

which provide empirical posterior distributions. These empirical posterior distributions then

allow for the calculation of claims reserves, cash flows and any desirable risk measure. For an

introduction to MCMC methods we refer to Gilks et al. [6], Asmussen-Glynn [2] and Spiegelhal-

ter et al. [14, 15]. We mention that in recent actuarial literature MCMC methods became rather
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popular (see e.g. Scollnik [12] and the literature therein, England-Verrall [4, 5] and Section 4.4

in Wüthrich-Merz [17]).

Here, we use the Gibbs sampler, see Gilks et al. [6], page 12. The Gibbs sampler is a simplified

version of the single-component Metropolis-Hastings algorithm [11, 7]. Our aim is to sample

from the posterior density u(θ|DI) with θ = (µ,γ) = (µ0, . . . , µI , γ0, . . . , γI), see (3.1). This

posterior density has the special property that

u(µ|DI ,γ) are independent gamma densities with parameters ai +

I−i∑

j=0

Xi,j

ϕ
and

ai
mi

+

I−i∑

j=0

γj
ϕ
,

u(γ|DI ,µ) are independent gamma densities with parameters b+

I−j∑

i=0

Xi,j

ϕ
and

b

cj
+

I−j∑

i=0

µi

ϕ
.

Thus, from these conditional posterior densities u(µ|DI ,γ) and u(γ|DI ,µ) we can directly sam-

ple from. The Gibbs sampler then goes as follows:

1. Initialize Θ(0) = (µ(0),γ(0)).

2. For t ≥ 1 do

(a) generate µ(t) ∼ u(·|DI ,γ
(t−1));

(b) generate γ(t) ∼ u(·|DI ,µ
(t));

(c) set Θ(t) = (µ(t),γ(t)).

Then, this algorithm provides a Markov chain (Θ(t))t≥0 whose stationary limit distribution is

given by u(θ|DI), see Gilks et al. [6] and Asmussen-Glynn [2].

4.2 Empirical distribution from Gibbs sampling

Using the Gibbs sampler we obtain (after burn-in T ) an empirical distribution from the sample

(
Θ(t) = (µ(t),γ(t))

)
t>T

=
(
(µ

(t)
0 , . . . , µ

(t)
I , γ

(t)
0 , . . . , γ

(t)
I )
)
t>T

which is an estimator for the posterior distribution u(·|DI). Therefore, we estimate the MMSE

predictor R̂MMSE
i by the sample mean

̂̂
Ri

MMSE

=
1

T̃ − T

T̃∑

t=T+1

I∑

j=I−i+1

µ
(t)
i γ

(t)
j .
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To indicate that this is the sample mean we use two hats in the notation. The conditional MSEP

of the MMSE predictor is estimated similarly. Note that

msepRi|DI

(
R̂i

MMSE
)

= Var (Ri| DI) (4.1)

= E [Var (Ri| DI ,Θ)| DI ] + Var (E [Ri| DI ,Θ)| DI)

= ϕ E [Ri| DI ] + Var




I∑

j=I−i+1

µiγj

∣∣∣∣∣∣
DI


 .

Therefore, we get the estimator

̂̂msepRi|DI

(
R̂i

MMSE
)

= ϕ
̂̂
Ri

MMSE

+
1

T̃ − T

T̃∑

t=T+1




I∑

j=I−i+1

µ
(t)
i γ

(t)
j




2

−

(
̂̂
Ri

MMSE
)2

.

Remarks 4.1

• We would like to emphasize that using the Gibbs sampler we do not only estimate the

conditional MSEP. The Gibbs sampler provides an approximation to the full posterior

distribution u(·|DI) and one can calculate any desirable risk measure.

• The empirical sample
(
Θ(t)

)
t>T

allows for the simulation of the payments Xi,j : for any

t > T we may sample for i+ j > I

X
(t)
i,j /ϕ

(d)
∼ Poi

(
µ
(t)
i γ

(t)
j /ϕ

)
. (4.2)

This provides the simulated cash flows. The sampled outstanding loss liabilities Ri are

then obtained by

R
(t)
i =

I∑

j=I−i+1

X
(t)
i,j . (4.3)

The sample (R
(t)
i )t>T then provides the empirical posterior distribution of Ri, given DI ,

see also Figure 2, below. Moreover, it also allows for the direct estimation of (4.1), simply

by calculating the sample variance of the simulated values.

5 Example

5.1 Univariate example

Before we start with a real data example (in the next subsection) we illustrate the behavior

of the MAP and the MMSE predictors in a univariate example. This example highlights the

importance of the choice of the prior distribution, the link function and its implications.
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Assume conditionally, given Λ, X1, . . . , Xn, Xn+1 are i.i.d. Poisson distributed with parameter

Λ. We assume that X1, . . . , Xn are observed and we would like to make Bayesian inference for

Λ and Xn+1.

We now make different choices for the distribution Λ:

Case 1. Γ = log(Λ) has a non-informative uniform prior distribution. In that case the posterior

distribution of Γ, given X = (X1, . . . , Xn), is given by

u (Γ |X) ∝ e−neΓ(eΓ)
∑n

i=1
Xi . (5.1)

This implies

eΓ̂
MAP

=
1

n

n∑

i=1

Xi and Λ̂MMSE = E
[
eΓ
∣∣X
]
=

1

n

n∑

i=1

Xi.

In this case the MAP and the MMSE predictors coincide.

Case 2. We make the same assumptions as in Case 1 but we do a change of variable in (5.1).

We set Λ = eΓ this provides posterior density

u (Λ |X) ∝ e−nΛΛ
∑n

i=1
Xi−1.

This implies

Λ̂MAP =
1

n

n∑

i=1

Xi −
1

n
and Λ̂MMSE =

1

n

n∑

i=1

Xi.

That is, we obtain Λ̂MAP < Λ̂MMSE . This shows that the MAP predictors are not invariant

under re-parametrization and therefore are often not appropriate. This is well-known in Bayesian

theory, see for example Smith [13].

Case 3. Λ has a non-informative gamma prior distribution. In that case the posterior distri-

bution of Λ, given X, has exactly the same form as in Case 2 and therefore we obtain the same

inference picture as in Case 2.

Case 4. Λ has the non-informative Jeffrey’s prior distribution λ−1/2. In that case the posterior

distribution of Λ, given X = (X1, . . . , Xn), is given by

u (Λ |X) ∝ e−nΛΛ
∑n

i=1
Xi−1/2.

Jeffrey’s non-informative priors are often used because they have invariance properties under

parameter transformations. This implies

Λ̂MAP =
1

n

n∑

i=1

Xi −
1

2n
and Λ̂MMSE =

1

n

n∑

i=1

Xi +
1

2n
.
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In this paper we do not further investigate Jeffrey’s priors.

Conclusion. The MMSE predictor Λ̂MMSE has always minimal posterior variance and is

invariant under re-parametrization. Therefore the optimal Bayesian predictor for Xn+1, given

DI , is always given by

E [Xn+1|X] = E [E [Xn+1|Λ,X]|X] = E [Λ|X] = Λ̂MMSE .

5.2 Real data example

We revisit the BF example given in Tables 2.2-2.4 of Wüthrich-Merz [17] (this is the example

also considered in the BF analysis in Alai et al. [1]), see Table 1. We analyze this data set for

i\j 0 1 2 3 4 5 6 7 8 9 mi

0 5,946,975 3,721,237 895,717 207,760 206,704 62,124 65,813 14,850 11,130 15,813 11,653,101

1 6,346,756 3,246,406 723,222 151,797 67,824 36,603 52,752 11,186 11,646 11,367,306

2 6,269,090 2,976,233 847,053 262,768 152,703 65,444 53,545 8,924 10,962,965

3 5,863,015 2,683,224 722,532 190,653 132,976 88,340 43,329 10,616,762

4 5,778,885 2,745,229 653,894 273,395 230,288 105,224 11,044,881

5 6,184,793 2,828,338 572,765 244,899 104,957 11,480,700

6 5,600,184 2,893,207 563,114 225,517 11,413,572

7 5,288,066 2,440,103 528,043 11,126,527

8 5,290,793 2,357,936 10,986,548

9 5,675,568 11,618,437

Table 1: Observed incremental claims Xi,j , i+ j ≤ I, and prior values mi.

non-informative uniform priors according to Model 2.1 and for gamma priors according to Model

3.1. In order to compare the results to the results in Wüthrich-Merz [17] and Alai et al. [1] we

choose a fixed plug-in estimate ϕ = 14, 714.

5.2.1 Non-informative priors and the CL method

In this subsection we study Model 2.1 with non-informative uniform priors and log link as well

as Model 3.1 with non-informative gamma priors. The Gibbs sampler allows us to numerically

calculate the MMSE predictors

̂̂
R

MMSE

=
∑

i

̂̂
Ri

MMSE

and
̂̂
R

MMSE∗

=
∑

i

̂̂
Ri

MMSE∗

,

for Model 2.1 (with m, b → ∞) and Model 3.1 (with ai ≡ a → 0 and b → 0). In Model 2.1 the

posterior density is then given by (2.5)-(2.6) with m, b → ∞. In Model 3.1 the posterior density

is then given by (3.10).
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Note that for these two non-informative prior cases the posterior densities coincide, see (2.6)

and (3.10). Therefore, we only need to run one Gibbs simulation to solve both of these two cases

numerically.

We have used the Gibbs sampler and we have run 1,000,000 simulations after the subtraction

of burn-in costs T = 100, 000. This provided the empirical posterior distribution of the pa-

rameters
(
(µ

(t)
0 , . . . , µ

(t)
I , γ

(t)
0 , . . . , γ

(t)
I )
)
t=100,001,...,1,100,000

from which the MMSE predictors and

their empirical uncertainty ̂̂msepR|DI
(·) were provided, see Section 4.2. For the estimation of

the prediction uncertainty of the MAP predictor we have used formula (2.8). The results are

presented in Table 2.

claims reserves posterior bias term MSEP1/2

Model 2.1 (non-informative uniform priors with log link)

R̂MAP = R̂CL 6,047,059 (-2,339) (430,166)

̂̂
R

MMSE

(6,049,398) (430,160)

Model 3.1 (non-informative gamma priors)

R̂MAP∗ 5,783,089 (-266,229) (505,881)

̂̂
R

MMSE∗

(6,049,398) (430,160)

frequentist’s CL model of England-Verrall [4] and of Mack [9]

R̂CL from ODP, England-Verrall [4] 6,047,059 429,891

R̂CL from Mack [9] 6,047,059 462,960

Table 2: Claims reserves predictors with corresponding conditional MSEP1/2 in Model 2.1 (with

non-informative uniform priors and log link) and in Model 3.1 (with non-informative gamma

priors). The figures in brackets are obtained by Gibbs sampling, the others are exact. The

results are compared to the frequentist’s CL model of England-Verrall [4] and of Mack [9]. Note

that Mack [9] is a rather different model, so we include Mack’s [9] results only for comparison

purposes.

Observations 5.1

• We observe that the predictors of the outstanding loss liabilities are all rather similar in

these non-informative prior situations. The MAP predictor R̂MAP = 6, 047, 059 coincides

with the CL reserves R̂CL and it is also in line with the MMSE predictors
̂̂
R

MMSE

=

̂̂
R

MMSE∗

= 6, 049, 398 obtained by Gibbs sampling. Only the MAP predictor in the non-

informative gamma priors Model 3.1 gives a prediction R̂MAP∗ = 5, 783, 089 that deviates
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from the others. This prediction seems too low and moreover, as mentioned in Remarks

2.3, the MAP predictor is not invariant under re-parametrization. Therefore its use is

questionable.

• Note that although the MAP predictors for Models 2.1 and 3.1 (with non-informative

priors) are different, the distributions of the reserves are identical since they are from

the same Gibbs simulation. This highlights the danger of focusing solely on the MAP

predictors, and not on the distribution.

• Prediction uncertainties in terms of the conditional MSEP: We compare our Bayesian

calculations to the frequentist’s estimates found in the literature: (i) ODP (constant scale)

analytical approximation using asymptotic normality of MLEs, see Section 7.2 in England-

Verrall [4], (ii) distribution-free CL method, see Mack [9]:

m̂sepR|DI

(
R̂CL

)
=





ODP (constant scale) approximation, England-Verrall [4],

according to Mack’s distribution-free CL model [9].

We observe that our Bayesian models provide a prediction uncertainty in the range of

430,000. This is very similar to the estimate of England-Verrall [4] in the asymptotic

normality approximation. Mack [9]’s model is a rather different model, therefore we include

Mack’s [9] results only for comparison purposes.

• The Bayesian models now have the advantage that they provide the full posterior parame-

ter distributions. Therefore, we can calculate the predictive distribution of the outstanding

loss liabilities (not only the claims reserves and the conditional MSEP). This is further

outlined below.

5.2.2 Informative gamma priors

We turn to Model 3.1 (gamma priors) with informative priors, that is, we implement prior

knowledge about the exposure parameters µi. We choose the degree of information a constant

for all accident years, i.e. ai ≡ a ∈ [0,∞]. Then the MAP predictors in Model 3.1 are given by

R̂MAP∗(a) =
∑

i

R̂MAP∗
i (a) =

∑

i+j>I

µ̂MAP∗
i (a) γ̂MAP∗

j (a).

These are calculated by the root searching algorithm given in (3.7) for a ∈ (0,∞), the cases

a = 0 and a = ∞ can be solved explicitly. Figure 1 gives the MAP predictors R̂MAP∗(a) for

different degrees of information a ∈ [0,∞]. We see that in our case the claims reserves R̂MAP∗(a)
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Figure 1: MAP predictors R̂MAP∗(a) for different degrees of information a ∈ [0,∞].

are an increasing function in the degree of information a. This comes from the fact that the

prior estimates mi are rather conservative (this will be further highlighted below).

Next, we determine the MMSE predictors and the prediction uncertainties in the gamma priors

model. Therefore we again apply the Gibbs sampler. After subtracting the burn-in costs T =

100, 000 we again simulate 1,000,000 samples. The results are provided in Table 3.

claim reserves posterior bias term MSEP1/2

R̂MAP∗(a = 0) 5,783,089 (-266,229) (505,881)

̂̂
R

MMSE∗

(a = 0) (6,049,398) (430,160)

R̂MAP∗(a = 100) 5,878,911 (-266,615) (499,621)

̂̂
R

MMSE∗

(a = 100) (6,145,526) (422,526)

R̂MAP∗(a = ∞) 6,367,134 -276,913 482,406

̂̂
R

MMSE∗

(a = ∞) 6,644,047 395,012

Table 3: Claims reserves predictors with corresponding conditional MSEP1/2 in the gamma

Model 3.1 for different degrees of information a. The figures in brackets are obtained by Gibbs

sampling.

Observations 5.2

• The first observation is that in the Gibbs sampler we obtain long-range dependencies for

later development periods. This comes from the fact that we have large variances (for
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non-informative priors) and only a few observations. Therefore, we need many simulations

(T̃ large) for the convergence of the empirical mean.

• Similar to the non-informative gamma prior case we see substantial posterior bias terms

in the MAP predictors. This comes from the fact that the dispersion ϕ is fairly large

compared to the incremental payments Xi,j in later development periods. For a = ∞, for

example, this results in γ̂MAP∗
9 (∞) = 0.01% and γ̂MMSE∗

9 (∞) = 0.14% which explains the

posterior bias terms. This again indicates that the MAP predictors should not be used.

• We see that the MMSE predictors are increasing in the degree of information a. This

comes from the fact that the prior means mi were chosen rather conservative and the

more weight we give to these conservative prior means the more the MMSE predictors

increase.

• The conditional MSEPs are decreasing in the degree of information a. This is rather

obvious because the less uncertainty we have in the prior distributions the less prediction

uncertainty we obtain. We see that the conditional MSEP1/2 decreases from 430,160 to

395,012.

As mentioned above, we obtain the full posterior distribution from the Gibbs sampler for the

outstanding loss liabilities R =
∑

iRi, conditional on DI , see (4.3). We consider in Model 3.1

the case a = 100. The histogram of the total reserves from 100,000 simulation of the outstanding

loss liabilities R is given in Figure 2.
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Figure 2: Histogram for R|DI
in Model 3.1 for a = 100 from 100,000 simulations.
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This empirical distribution now allows for the estimation of any any risk measure, not only the

conditional MSEP. Moreover, we can also plot confidence intervals, for example, in Figure 3 we

show the confidence intervals per accident year i. As expected, we observe that the uncertainty
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Figure 3: Confidence intervals of Ri|DI
, i = 1, . . . , 10, in Model 3.1 for a = 100.

in old accident years is rather low, because they are already well developed, whereas for younger

accident years we obtain bigger ranges.

The Gibbs sampler not only provides the conditional distribution of the outstanding loss li-

abilities Ri, given DI , but we also obtain the conditional distribution of the cash flows Xi,j ,

conditionally given DI . From these cash flows we can determine how the uncertainty evolves

over time (over the development years). In Figure 4 we show the development of the uncertainty
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Figure 4: Development of Ci,j , i = I and j ≥ 0, over time in Model 3.1 for a = 100.
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over time for the youngest accident year. We see that the payment for the first development

year is given (contained in DI). This is why there is no uncertainty at time 1. After this first

development year we obtain the corresponding confidence intervals. Figure 5 describes the same
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Figure 5: Development of Ci,j , i = I − 1 and j ≥ 0, over time in Model 3.1 for a = 100.

development uncertainty but for the second youngest accident year. Of course, we observe a

smaller uncertainty, because we have more observations compared to the case in Figure 4.

5.2.3 Strong gamma prior case and the BF method

Finally, we compare the gamma priors Model 3.1 with strong priors for µi to the classical BF

predictor. In the literature the classical BF predictor is given by (3.16). We also compare the

classical BF predictor to the BF predictors obtained from Mack [10]:

R̂Mack1 =
∑

i

R̂Mack1
i =

∑

i+j>I

mi γ̂
raw
j (BF-Mack predictor from raw pattern),

R̂Mack2 =
∑

i

R̂Mack2
i =

∑

i+j>I

mi γ̂
norm
j (BF-Mack predictor from normalized pattern).

For the calculation of the prediction uncertainty of the BF predictor there are different methods

in the literature: The conditional MSEP m̂sepR|DI

(
R̂BF

)
of the classical BF predictor is calcu-

lated with Alai et al. [1] and the conditional MSEPs m̂sepR|DI

(
R̂Mack1

)
and m̂sepR|DI

(
R̂Mack2

)

of the BF-Mack predictors are calculated according to Mack [10]. The results are presented in

Table 4.

Observations 5.3
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claims reserves MSEP1/2

̂̂
R

MMSE∗

(a = ∞) from Model 3.1 6,644,047 395,012

R̂BF from BF [3] with Alai et al. [1] 7,356,578 471,973

R̂Mack1 from Mack [10] raw pattern 6,644,047 539,678

R̂Mack2 from Mack [10] normalized pattern 7,505,455 726,531

Table 4: Claims reserves predictors with corresponding conditional MSEP1/2 according to Model

3.1 with strong priors, Alai et al. [1] and Mack [10].

• The different BF predictors are rather diverse. This comes from the fact that the prior

values mi are too high, which has the rather unpleasant effect that we do not obtain

reliable estimates for the claims development pattern γj . For the raw pattern we obtain
∑

j γ̂
raw
j =

∑
j γ̂

MAP∗
j (∞) < 1. If we normalize this raw pattern, we get predictors R̂Mack2

and R̂BF that are too high. Also the non-normalized ones
̂̂
R

MMSE∗

(a = ∞) and R̂Mack1

seem to be too high because of the large values of mi.

• The predictors R̂MMSE∗(a = ∞) and R̂Mack1 coincide because they use the same parame-

ter estimates. However, the underlying reasoning is slightly different which can be seen in

the prediction uncertainty. For the MMSE predictor R̂MMSE∗(a = ∞) there is no uncer-

tainty in mi (because we assume perfect information a = ∞), whereas in R̂Mack1 we also

add uncertainty to mi.

• The gamma priors Model 3.1 is consistent in the sense that it also uses the prior knowledge

on µi to estimate the claims development pattern γj (whereas the other BF methods are

not). In this spirit our Bayes model should be preferred. Moreover, we also have the

flexibility to attach credibility weights in terms of a to this prior knowledge which then

results in Table 3.

6 Conclusions

The Bayesian ODP claims reserving model with uniform priors and log link (Model 2.1) and

with gamma priors (Model 3.1) give mathematically consistent ways to estimate claims reserves

in the BF [3] spirit:

• they use prior knowledge mi for the expected ultimate claim;

• they combine the prior knowledge mi with an estimated claims development pattern γ̂j to
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obtain the reserves;

• this claims development pattern is estimated using a credibility weighted average between

the observations DI and the prior knowledge mi according to the degree of information a

contained in the prior knowledge. Complete prior knowledge (a = ∞) leads to a BF model

similar to Mack [10], no prior knowledge (a = 0) leads to the CL case, and for a ∈ (0,∞)

we can model any intermediate case.

The advantage of such full Bayesian models is that they allow for a complete analysis and for

the calculation of any risk measure, whereas the frequentist’s approaches (Alai et al. [1] and

Mack [10]) need additional approximations for the determination of the conditional MSEP, and

are unable to provide additional information such as predictive distributions of cash flows.

Limitations and outlook for further research. This paper only considers the ODP model

with constant scale factor ϕ, and the BF model in the context of the CL model without a tail

factor. In many cases the choice of a constant scale parameter ϕ should be checked. Often

data suggests that ϕj depends on the development period j. Furthermore, it should be checked

whether the conditional independence assumption between the Xi,j ’s is appropriate and whether

one should include tail factors beyond the latest development period.

A Proofs

Proof of Lemma 3.2. This is an immediate consequence of the assumptions and (3.2)-(3.3).

✷

Lemma A.1 In Model 3.1 equations (3.2)-(3.3) imply for j = 0, . . . , I

I−j∑

k=0

µk

j∑

m=0

γm =

I−j∑

k=0

C∗
k,j + ϕ

I−j∑

k=0

ak

(
1−

µk

mk

)
.

Proof of Lemma A.1. We first prove the two statements (an empty sum is set equal to 0)

I−j∑

k=0

C∗
k,j =

I−j∑

k=0

µk

j∑

m=0

γm + ϕ

I∑

k=I−j+1

ak

(
1−

µk

mk

)
, (A.1)

I∑

i=0

ai µi

mi
=

I∑

i=0

ai. (A.2)
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If we sum (3.2) over i = 0, . . . , I and (3.3) over j = 0, . . . , I we obtain

∑

i+j≤I

γjµi + ϕ

I∑

i=0

ai µi

mi
− ϕ

I∑

i−0

ai =
∑

i+j≤I

X∗
i,j =

∑

i+j≤I

γjµi.

This immediately implies statement (A.2). We now turn to (A.1). The proof is similar to the

proof of Lemma 2.17 in Wüthrich-Merz [17] and goes by induction.

We start with j = 0: We have using in the second step (3.3) for j = 0

I∑

k=0

C∗
k,0 =

I∑

k=0

X∗
k,0 = γ0

I∑

k=0

µk.

This proves the claim for j = 0.

Induction step j → j +1. We assume that the claim holds true for j ≤ I − 1, then we prove the

claim for j + 1:

I−(j+1)∑

k=0

C∗
k,j+1 =

I−j−1∑

k=0

j+1∑

m=0

X∗
k,m =

I−j∑

k=0

j∑

m=0

X∗
k,m −

j∑

m=0

X∗
I−j,m +

I−j−1∑

k=0

X∗
k,j+1.

To the first term on the right-hand side we apply the induction assumption

I−j∑

k=0

j∑

m=0

X∗
k,m =

I−j∑

k=0

C∗
k,j =

I−j∑

k=0

µk

j∑

m=0

γm + ϕ

I∑

k=I−j+1

ak

(
1−

µk

mk

)
,

and to the second and third term (3.2) and (3.3), respectively. This implies

I−(j+1)∑

k=0

C∗
k,j+1 =

I−j∑

k=0

µk

j∑

m=0

γm +

I∑

k=I−j+1

ϕak

(
1−

µk

mk

)

−

[
µI−j

j∑

k=0

γk + ϕaI−j

(
µI−j

mI−j
− 1

)]
+ γj+1

I−j−1∑

k=0

µk

=

I−(j+1)∑

k=0

µk

j+1∑

m=0

γm + ϕ

I∑

k=I−(j+1)+1

ak

(
1−

µk

mk

)
.

This proves (A.1). If we now combine (A.1) and (A.2) we obtain

I−j∑

k=0

µk

j∑

m=0

γm =

I−j∑

k=0

C∗
k,j − ϕ

I∑

k=I−j+1

ak

(
1−

µk

mk

)
=

I−j∑

k=0

C∗
k,j + ϕ

I−j∑

k=0

ak

(
1−

µk

mk

)
.

This proves the claim.

✷

28



Proof of Lemma 3.3. Choose j ≤ I − 1 then we have from Lemma A.1 and equation (3.2)

I−j−1∑

k=0

µk

j∑

m=0

γm =

I−j∑

k=0

µk

j∑

m=0

γm − µI−j

j∑

m=0

γm (A.3)

=

I−j∑

k=0

C∗
k,j + ϕ

I−j∑

k=0

ak

(
1−

µk

mk

)
−

j∑

k=0

X∗
I−j,k − aI−jϕ

(
1−

µI−j

mI−j

)

=

I−j−1∑

k=0

C∗
k,j + ϕ

I−j−1∑

k=0

ak

(
1−

µk

mk

)
.

If we divide the equality in Lemma A.1 by (A.3) we obtain the claim.

✷

Proof of Theorem 3.4. We solve (3.4) for µi. In a first step we obtain for i = 1, . . . , I

µi

[
i−1∑

k=0

C∗
k,I−i + ϕ

i−1∑

k=0

ak

(
1−

µk

mk

)]
=

(
i−1∑

k=0

µk

)[
C∗
i,I−i + ϕ ai

(
1−

µi

mi

)]
.

Moreover, we have

µi

[
i−1∑

k=0

C∗
k,I−i + ϕ

i−1∑

k=0

ak

(
1−

µk

mk

)
+

ai ϕ

mi

i−1∑

k=0

µk

]
=

(
i−1∑

k=0

µk

)
[
C∗
i,I−i + ai ϕ

]
.

Therefore, if we divide by the bracket on the left-hand side we obtain

µi =

(∑i−1
k=0 µk

) [
C∗
i,I−i + ai ϕ

]

∑i−1
k=0C

∗
k,I−i + ϕ

∑i−1
k=0 µk

(
ak
µk

− ak
mk

+ ai
mi

) .

But then the first claim easily follows. The second claim was already proved in (A.2).

✷

Proof of Proposition 3.6. The proof follows from the normalization condition (3.6) and (3.13)

similar to the derivation (3.8).

✷
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