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Abstract

The amount of information encoded by networks of neurons critically depends on the correlation structure

of their activity. Neurons with similar stimulus preferences tend to have higher noise correlations than

others. In homogeneous populations of neurons this limited range correlation structure is highly detri-

mental to the accuracy of a population code. Therefore, reduced spike count correlations under attention,

after adaptation or after learning have been interpreted as evidence for a more efficient population code.

Here we analyze the role of limited range correlations in more realistic, heterogeneous population models.

We use Fisher information and maximum likelihood decoding to show that reduced correlations do not

necessarily improve encoding accuracy. In fact, in populations with more than a few hundred neurons,

increasing the level of limited range correlations can substantially improve encoding accuracy. We found

that this improvement results from a decrease in noise entropy that is associated with increasing corre-

lations if the marginal distributions are unchanged. Surprisingly, for constant noise entropy and in the

limit of large populations the encoding accuracy is independent of both structure and magnitude of noise

correlations.
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Introduction

The accuracy of information processing in the cortex depends strongly on how sensory stimuli are encoded

by a population of neurons. Two key factors influence the quality of a population code: (1) the shape

of the tuning functions of individual neurons and (2) the structure of interneuronal noise correlations.

Although the magnitude of noise correlations is debated, a common finding is that they are strongest

for neurons with similar tuning properties (Zohary et al., 1994; Bair et al., 2001; Smith and Kohn, 2008;

Cohen and Newsome, 2008; Ecker et al., 2010). Interestingly, such a limited range correlation structure

seems to be highly detrimental for a population code, even if correlations are small. If correlations are

unavoidable, it is generally believed that reducing them improves a population code (Zohary et al., 1994;

Ecker et al., 2010; Sompolinsky et al., 2001; Abbott and Dayan, 1999; Wilke and Eurich, 2002). In line

with this notion, a number of recent experimental studies find reduced spike count correlations under

experimental conditions where improved coding is expected, such as under attention (Cohen and Maunsell,

2009; Mitchell et al., 2009), adaptation (Gutnisky and Dragoi, 2008), or after learning (Gu et al., 2011).

Most previous theoretical studies of population coding use homogeneous population models, where

all neurons have tuning functions that differ only in their preferred stimulus and are otherwise identical

(Snippe and Koenderink, 1992; Abbott and Dayan, 1999; Sompolinsky et al., 2001; Wilke and Eurich,

2002). In these models, limited range correlations introduce a strong noise component in the subspace in

which the stimulus is encoded, impairing the population code (Sompolinsky et al., 2001). However, a very

prominent feature of cortical neurons is the diversity of their tuning functions. This heterogeneity changes

the way the stimulus is encoded and can critically alter the properties of a population code (Shamir and

Sompolinsky, 2006). Unfortunately, this has not been sufficiently appreciated. We extended the approach

pioneered by Sompolinsky and colleagues (Sompolinsky et al., 2001; Shamir and Sompolinsky, 2006) to

study population codes with heterogeneous tuning functions, arbitrary mean/variance relations (Fano

factors), and a broad range of correlation structures. To characterize the encoding accuracy, we used

Fisher information and maximum likelihood decoding and studied a simple model with heterogeneous

tuning functions, Poisson-like noise, and limited range correlation structure. We found that, in contrast

to current belief, decreasing correlations does not necessarily lead to increased information. Instead, if

correlations are strong enough, increasing them can substantially increase the encoding accuracy, even to

the point where a population with limited range correlations is more accurate than an independent one.

We show that this increase in encoding accuracy with higher correlations is due to a decrease in

noise entropy. If the entropy is kept constant the encoding accuracy can be improved substantially by

reducing correlations below a critical value. Surprisingly, in large neural populations the quality of a code
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is mainly determined by the amount of heterogeneity in the tuning functions and by the noise entropy,

while correlations play only a minor role.
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Methods

Population model

We consider a population of n neurons responding to a stimulus, which is characterized by its direction

of motion θ ∈ [0, 2π). The response of neuron j is given by

yj(θ) = fj(θ) + ηj(θ), (1)

where fj(θ) is the tuning curve of neuron j and ηj(θ) the trial-to-trial variability in the neural responses.

The variability is assumed to follow a multivariate normal distribution with zero mean and covariance

Q(θ). We assume that the neurons’ preferred directions are uniformly spaced around the circle (i. e.

φj = 2πj/n, where j = 0, · · · , n − 1). Because of the circular nature of the stimulus, it is sometimes

convenient (both, for presentation and for calculations) to use negative indices ranging from −n
2 to n

2 .

These indices are simply understood modulo n. Thus, for example, if n = 32 then f−10 is the same as

f22.

Homogeneous population model

In the homogeneous population model all neurons have identical tuning functions except for their preferred

directions. In other words,

fj(θ) = f(θ − φj). (2)

In this model, the population is invariant under rotation. This means that any shift in the stimulus can be

translated into a renumbering of the cells in the population. The average population activity has the same

shape as the tuning function centered on θ. Throughout the paper we use von-Mises tuning functions

given by

fj(θ) = α+ β exp(γ[cos(θ − φj)− 1]). (3)

We use the parameter values α = 1, β = 19, and γ = 2. These parameters closely resemble the average

values found in our recordings from monkey V1 (Ecker et al., 2010) and result in tuning curves with a

maximum amplitude of 20 Hz (Fig. 1E).
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Table 1. List of symbols. We use boldface lowercase letters to denote (column) vectors (e. g. v) and
boldface uppercase letters for matrices (e. g. M). Scalars or scalar elements of vectors and matrices are
set in italics (e. g. a, vj or Mjk). The jth column of M is referred to as mj .

Symbol Meaning
n Number of neurons
θ Stimulus direction
fk(θ) Tuning function of neuron k (average spike count)
f Vector of tuning functions (for θ = 0; n× 1)

f̃ Discrete Fourier transform of f
y Vector of spike counts
φk Preferred direction of neuron k
σk(θ) Standard deviation of spike counts of neuron k
σ Vector of standard deviations (for θ = 0; n× 1)
S = Diag (σ) Diagonal matrix of standard deviations
gk = f ′

k/σk Normalized tuning curve derivatives
c(|φj ⊖ φk|) Spatial structure of correlation coefficients (⊖ is the angular difference)
c0 = c(0) Correlation coefficient of two neurons with identical preferred directions
R Matrix of correlation coefficients (n× n)
rjk Correlation coefficient of neurons j and k
〈r〉 Average correlation coefficient of the population, 〈r〉 ≈ 0.3 · c0.
r First column of R, rk = ck, except for r0 = 1
Q Covariance matrix (for θ = 0; n× n)
U Fourier basis, ujk = exp(−iωjk)/

√
n

R̃ Diagonal matrix containing eigenvalues of R. Diagonal elements are r̃
J Fisher information
Jmean Linear part of Fisher information (Eq. 8)
Jcov Non-linear part of Fisher information (Eq. 9)
Jhom
mean Jmean of a homogeneous population of neurons

Jindep Fisher information of an independent population of neurons
κ Degree of amplitude variability, κ = Var

[√
ak
]
.

ak Amplitude of tuning function of neuron k
F Fano factor (variance/mean)

Random amplitude model

In the random amplitude model, all neurons are assumed to have indentically shaped tuning functions

but potentially different amplitudes:

fj(θ) = ajf(θ − φj) (4)

Here, f(θ − φj) is as in the homogeneous model above. The amplitudes aj are assumed to be drawn

independently for each neuron, have mean 〈aj〉 = 1 and their square root has variance κ = Var
[√

aj
]
.

Our results do not require any specific distribution for the amplitudes. Note that in the random amplitude

model all neurons have the same tuning width because a multiplicative gain does not change the tuning

width.
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Other forms of heterogeneity

We numerically simulated two additional types of heterogeneous populations. In the first model (Fig. 8A)

we randomly drew the tuning widths, γ, from a lognormal distribution with mean 2 and variance 4

while keeping all other parameters constant as in the homogeneous model described above. In the second

model (Fig. 8B) we drew (with replacement) triples of tuning parameters (α, β, γ) from a database of 408

orientation tuning curves measured in V1 of awake monkeys (Ecker et al., 2010). We assigned preferred

directions uniformly spaced around the circle as above. We did not combine parameters from different

neurons independently (i. e. the number of possible tuning curve shapes was 408 rather than 4083).

Correlation structure

In our model, we assume the correlation coefficient of two neurons to be independent of the stimulus.

This allows us to parameterize the covariance matrix as

Qjk(θ) = σj(θ)σk(θ)rjk , (5)

where σ2
j (θ) is the variance of neuron j and rjk the correlation coefficient of neurons j and k. The

covariance matrix Q can be written as Q = SRS, where R is the correlation coefficient matrix, which is

pre- and post-multiplied by a diagonal matrix S of standard deviations.

The correlation coefficient of two neurons depends only on |φj ⊖ φk|, the angular difference between

their preferred directions (we use ⊖ to express the fact that it is a difference between two circular

quantities, i. e. φj ⊖ φk = arg exp[i(φj − φk)]),

rjk = c(|φj ⊖ φk|) + δjk(1 − c(0)) (6)

Here δjk is the Kronecker delta (δjk = 1 if j = k and δjk = 0 otherwise). We do not require any specific

form for c(|φj ⊖ φk|), other than that it must lead to a valid covariance matrix. For the large n case

this is equivalent to requiring it to be bounded between −1 and 1 and all its Fourier components to be

positive. While the former condition is a requirement for correlation coefficients, the latter ensures that

the covariance matrix remains positive definite in the limit of large populations. We further assume that

the variances are Poisson-like, which means σ2
j (θ) = fj(θ). This is sometimes referred to as proportional

noise (Wilke and Eurich, 2002), while the case where σ2
j does not depend on the stimulus is referred to

as additive noise. Because the correlation coefficients depend only on the difference between two neurons’

preferred directions, the correlation matrix, R, is circulant. We therefore have rjk = rj−k, where the
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vector r is the first column of R. We often refer to r simply as the correlation structure.

For all examples, we assume that the correlation matrix has limited range structure. This means that

the correlation between two neurons is maximal if they have identical preferred directions and decreases

with increasing difference in preferred direction. The parametric form we use is

c(|φj ⊖ φk|) = c0 exp

(
−|φj ⊖ φk|

L

)
, (7)

where c0 is the correlation of two neurons with identical preferred directions and L controls the spatial

scale (the larger L the longer the range of correlations). We use L = 1 for all figures in this paper.

Qualitatively, the results do not depend on the exact choice of L (within reasonable limits) and this value

is in good agreement with our V1 data (Ecker et al., 2010) and previously published studies (Zohary et

al., 1994; Bair et al., 2001). The parameter c0 controls the average level of correlations, 〈r〉, which also

depends on L. For L = 1 we have 〈r〉 ≈ 0.3 · c0. These values are included in the figures for reference.

Note that larger values of L lead to higher average correlations relative to c0 (for instance for L = 2 we

have 〈r〉 ≈ 0.5 · c0).

Fisher Information

To quantify the encoding accuracy of the population, we use Fisher information (Cover and Thomas,

1991). If a Gaussian distribution is assumed for the noise, the Fisher information can be written as the

sum of two terms, J = Jmean + Jcov, where (Kay, 1993, p. 47)

Jmean(θ) = f ′(θ)TQ(θ)−1f ′(θ) (8)

Jcov(θ) =
1

2
Tr
[(
Q′(θ)Q(θ)−1

)2]
(9)

and f ′ and Q′ are the derivatives of the tuning curve and the covariance matrix with respect to the

stimulus direction, θ. The term Jmean can be thought of as the information that is encoded in changes in

the mean firing rates of the population (i. e. the term f ′(θ)). In contrast, Jcov is the information encoded

by changes in the covariances (i. e. the term Q′(θ)).

To evaluate the above two terms we have to invert the covariance matrix. Because R is circulant it

can be diagonalized by changing to the Fourier basis:

R = UR̃U∗ (10)
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The matrix U is the Fourier basis, given by

ujk =
1√
n
exp(−iωjk) (11)

(with ω = 2π/n), U∗ is the hermitian (complex transpose) of U, and R̃ is a diagonal matrix containing

the eigenvalues of R, which can be calculated by the discrete Fourier transform of r (the first column of

R), given by

r̃k =

n−1∑

j=0

rj exp(−iωjk). (12)

Using this factorization, Q(θ)−1 reads

Q(θ)−1 = S(θ)−1UR̃−1U∗S(θ)−1, (13)

which is easy to calculate because it contains only inverses of diagonal (S, R̃) matrices.

Calculation of Jmean

A model similar to ours but with the restriction to additive noise (i. e. with stimulus independent covari-

ance matrix, Q) has been studied by Sompolinsky et al. (2001). Although the additive case is somewhat

simpler because Jcov is zero (Q′ = 0), the approach can be generalized to obtain analytic expressions for

Jmean and Jcov in the non-additive case. For Jmean we use the above factorization of Q−1 and substitute

it into Eq. 8. After substituting gk = f ′

k/σk we obtain

Jmean =
1

n

n−1∑

k=0

|g̃k|2
r̃k

, (14)

where g̃ is the discrete Fourier transform of g (see Eq. 12; equivalently g̃ =
√
nU∗g). Note that because

g depends on the stimulus, θ, also Jmean is stimulus dependent. We usually omit this dependence on θ

for clarity.

Jmean in homogeneous population model

To illustrate the formula, we consider a homogeneous population of neurons (Fig. 1E) with limited range

correlation structure (Fig. 1A–D). In the general case, Jmean is a function of the stimulus, θ. However,

for a homogeneous population of neurons, where the tuning functions are broad compared to the spacing

between the preferred directions, Jmean can be treated as independent of θ. We can therefore restrict our
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Figure 1. Illustration of the calculation of the linear Fisher Information. A–D. Terms related
to correlation structure. A. Matrix of correlation coefficients. The population has a limited range
correlation structure. The correlation coefficient of two neurons depends only on the difference between
their preferred directions. B. Covariance matrix. Variances are equal to mean spike counts. C.
Correlation structure r. This corresponds to a single slice through the correlation coefficient matrix
shown in A. D. Fourier transform of correlation structure shown in C. This is the power spectrum of
the noise after normalizing to unit variances. E–I. Terms related to tuning curves in homogeneous
population model. E. Neurons’ tuning curves. For clarity, one tuning curve (with preferred direction
φ = 0) is highlighted. F. Average population response for θ = 0 given by fj = f(−φj). All the following
panels are evaluated at θ = 0. G. Normalized derivative g of the tuning curve. It looks flipped about
the y axis because gj = f ′(−φj)/σ(−φj) and f ′ is not symmetric. H. Power spectrum of normalized
derivatives shown in G. I. Signal-to-noise ratio of individual Fourier components. Jmean is the sum over
these terms. J–N. Terms related to tuning curves in heterogeneous population model. Panels are
analogous to E–I. J. Neurons’ tuning curves. The average firing rate over all neurons and conditions is
the same as for the homogeneous population. One neuron’s tuning curve is highlighted. K. Average
population response for stimulus θ = 0. Because each neuron has a different peak amplitude, the
population hill looks scattered around the mean tuning curve. Note that this scatter does not reflect
noise. L. Normalized tuning curve derivatives g. M. Power spectrum of normalized tuning curve
derivatives shown in L. Note that there is substantial power also in the higher frequencies (compare to
H). N. Signal-to-noise ratio of all Fourier components.
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analysis to the case θ = 0. In this case, the average population activity, f , is given by fj = f(−φj), where

φj is the preferred direction of neuron j (Fig. 1F). The covariance matrix Q is shown in Fig. 1B. Fig. 1C

and G show r and g, whose Fourier transforms (Fig. 1D,H) are the two main quantities entering Eq. 14.

Because both f and σ are smooth and slowly varying, g has almost all of its power in low frequencies,

the power spectrum converging to zero for higher frequencies. We can write r as rj = δj(1− c0) + cj . Its

Fourier transform can be split up into two parts as well:

r̃ = c̃+ (1 − c0) (15)

Because c (Eq. 7) is also a smooth and slowly varying function of the differences in preferred direction,

it also has most of its power in the low frequencies, power in higher frequencies quickly converging to

zero. The delta peak at zero (because each neuron is correlated with itself by 1 while neighboring neurons

with similar preferred directions have a correlation of c0) has a constant Fourier transform of magnitude

1 − c0. Taken together, this results in a power spectrum with high power in low frequencies decaying to

a constant offset 1− c0 at high frequencies.

Each of the terms |g̃k|2/r̃k in Eq. 14 can be seen as a signal-to-noise ratio of the kth Fourier mode of

the population (Fig. 1I). Jmean is then simply the sum over the individual signal-to-noise ratios. For the

homogeneous case, the only difference to the additive noise case studied by Sompolinsky et al. (2001) is

that for other mean-variance relationships the tuning curve derivatives are normalized by the standard

deviations. Because of this, the scaling behavior of Jmean for large populations is similar to the additive

case: the low-frequency Fourier components of signal and noise grow at the same rate with n, leading to

a saturation of Jmean for large networks (see Fig. 3A).

Jmean in random amplitude model

The above considerations suggest that the saturation of Jmean can be avoided by introducing high fre-

quency components into the signal, g̃, for which the noise amplitude is small. In fact, this is naturally the

case for any realistic population of neurons. The vanishing power in high frequencies for the homogeneous

population model is a result of the simplifying assumption of identical tuning functions for all neurons.

This results in the mean population activity f having the same shape as the tuning function f evaluated

at the neurons’ preferred directions. In realistic populations of neurons, however, tuning curves display a

significant amount of heterogeneity between neurons – such as different amplitudes, widths, or baselines

of their tuning functions – introducing high frequency components into f and, hence, also in g.

To illustrate this point, we ignored all types of heterogeneity except for the neurons’ overall amplitudes
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and constructed a model population by assigning each neuron a tuning curve with a peak amplitude

randomly drawn from a distribution of amplitudes that has the same mean as the homogeneous population

(Fig. 1J). Fig. 1K and L show the resulting mean population activity f as well as the normalized derivatives

g for this population at stimulus θ = 0. Because of the randomly selected amplitudes for each neuron,

g has power in all frequencies (Fig. 1M). Intuitively, this affects Jmean positively in two ways. First,

the overall number of Fourier components significantly contributing to Jmean is increased. Second, the

signal-to-noise ratio is better for the high-frequency components g̃k because r̃k is small for large k (it

converges to 1− c0).

The exact value of Jmean depends on the specific set of amplitudes aj that are drawn at random. We

here generalize the results of Shamir and Sompolinsky (2006) to the case with non-additive, stimulus

dependent noise. In the random amplitude model with Poisson-like noise we have

gj =
√
aj

f ′(−φk)√
f(−φk)

≡ √
ajqj (16)

We define
√
aj = µ+ bj, which splits

√
aj into a non-random component µ and a random component bj

with mean zero and variance κ = Var
[√

aj
]
. Plugging this into the formula for Jmean, we obtain

〈Jmean〉 =
〈
[(µ+ b) · q]TR−1[(µ+ b) · q]

〉

= µ2qTR−1q+ 2µqR−1 〈b · q〉+
〈
[b · q]TUR̃−1U∗[b · q]

〉

= µ2Jhom
mean + nκd (17)

where Jhom
mean is the linear Fisher information of a homogeneous population and d converges to a constant

independent of n and is defined as

d =
1

n2

∑

j

q2j
∑

k

1

r̃k
, (18)

To arrive at Eq. 17 we used

〈
|[b · q]Tuk|2

〉
=
∑

i

∑

j

〈bibj〉 qiqjuiku
∗

jk =
κ

n

∑

j

q2j , (19)

which holds because bj is white noise with variance κ (i. e. 〈bibj〉 = δijκ) and ujku
∗

jk = 1/n.

The above calculations can be generalized to non-Poisson mean-variance relationships. For instance,

if σ(θ) = f(θ)α, define a1−α
j = µ+ bj and κ = Var

[
a1−α
j

]
and Eq. 17 will still be valid. By setting α = 0,

the result of Shamir and Sompolinsky (2006) is obtained. Unless α = 1 (i. e. the standard deviations are

equal to the means) populations with amplitude variability will have Jmean asymptotically proportional
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to n even in the presence of limited range correlations.

Furthermore, from Eq. 17 one can see that for an independent population of Poisson-like neurons,

amplitude variability does not affect Jmean on average. Because for an independent population r̃k = 1,

we have

〈Jmean|c0 = 0〉 = (µ2 + κ)
∑

j

q2j =
∑

j

q2j , (20)

which is independent of κ and identical to that of a homogeneous population.

Considering the large n limit of Jmean of a correlated population relative to that of an independent

population, we obtain

lim
n→∞

〈Jmean|c0 > 0〉
〈Jmean|c0 = 0〉 = lim

n→∞

µ2Jhom
mean +

κ
n

∑
j q

2
j

∑
k

1
r̃k∑

j q
2
j

=
κ

1− c0
. (21)

The first term in the numerator above saturates to a finite value and can therefore be ignored. For the

second term note that r is assumed to be smooth and slowly varying, in which case only O(
√
n) Fourier

components r̃k are large and for the remaining components r̃k → 1 − c0. Thus,
1
n

∑
k

1
r̃k

→ 1
1−c0

for

large n.

Calculation of Jcov

Using similar methods as above, we also derived an expression for Jcov in terms of Fourier transforms

that does not contain an inverse of the covariance matrix anymore:

Jcov =

n−1∑

k=0

h2
k +

1

n2

n−1∑

k=0

|h̃k|2 ·
[
r̃ ∗ 1

r̃

]

k

(22)

where hk = σ′

k/σk and h̃ is the discrete Fourier transform of h. The expression [r̃ ∗ 1/r̃]k is the kth

component of the circular convolution of r̃ with its pointwise inverse.

We briefly outline the derivation in the following. First, note that the derivative of the covariance

matrix with respect to θ is Q′ = S′RS + SRS′, where S′ = Diag (σ′). Substituting this expression into

Eq. 9, expanding the square, and using the matrix trace identity Tr [ABC] = Tr [BCA], we obtain

Jcov = Tr
[
S′S−1S′S−1

]
+Tr

[
S′RS′S−1R−1S−1

]
. (23)

Because S is diagonal, the first term reduces to

Tr
[
S′S−1S′S−1

]
=

n−1∑

k=0

h2
k. (24)
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To simplify the second term, let V = U∗S−1S′UR̃ and W = U∗S′S−1UR̃−1. Because S−1S′ is diagonal,

U∗S−1S′U is circulant with the first column being the inverse Fourier transform of the diagonal elements.

A right multiplication by the diagonal matrices R̃ and R̃−1 scales the columns, resulting in

vjk =
1

n
r̃kh̃k−j wjk =

1

n

h̃k−j

r̃k
. (25)

Substituting V and W into the second term for Jcov, we obtain

Tr
[
S′RS′S−1R−1S−1

]
= Tr [VW] =

1

n2

n−1∑

l=0

|h̃l|2 ·
[
r̃ ∗ 1

r̃

]

l

(26)

For an independent population of neurons, r̃k = 1 and, by using Parseval’s theorem, the simple formula

for Jd, the Jcov of an independent population of neurons (Shamir and Sompolinsky, 2001) is recovered:

Jd = 2

n−1∑

k=0

(
σ′

k

σk

)2

(27)

Note that for correlated populations Jcov can be bounded from above and below by

Jd ≤ Jcov ≤ 1

2

(
1 +

1

1− c0

)
Jd. (28)

Thus, asymptotically Jcov always grows linearly with n, irrespective of the correlation structure. In

addition, unlike for Jmean, small correlations do not substantially alter Jcov compared to independence

(because the upper and lower bound become equal for c0 → 0). In addition, it is easy to see that Jcov

is unaffected by amplitude variability because the amplitudes ak appear both in the numerator and the

denominator of hk and cancel.

Effect of correlation structure under constant noise entropy

To study the effect of the average level of correlations under the constraint of constant amount of total

noise, we relax the assumption of Poisson-like noise and adjust the neurons’ Fano factors such that the

noise entropy is kept constant. We define

σ2
j (c0) = F (c0)fj . (29)

Note that in this section we write most quantities as a function of c0 as we are interested in their behavior

with varying c0. We can now adjust F (c0) such that the noise entropy remains constant as we vary c0.
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For Gaussian noise, the differential entropy is given by

h(y) = ln
√
(2πe)k|Q|. (30)

In the above formula, the only quantity that depends on c0 is |Q|. Thus, in order to have constant noise

entropy, we need |Q(c0)| = |Q(0)|, where Q(0) is the covariance matrix of an independent population of

neurons (c0 = 0). We can write for the determinant |Q| = |S|2 · |R| = |V| · |R|, where S = Diag (σ) is the

diagonal matrix containing the standard deviations and V = Diag
(
σ

2
)
. For the independent population,

we have Q(0) = V(0). Writing the determinants as functions of c0 and requiring constant entropy, we

obtain

|V(0)| = F (c0)
n|V(0)| · |R(c0)|. (31)

Solving for the Fano factor F (c0) results in

F (c0) = |R(c0)|−1/n =

(
n−1∏

k=0

r̃k

)−1/n

, (32)

which is the inverse of the geometric mean of the Fourier coefficients r̃k of the correlation structure.

Applying this constant entropy constraint and considering the limit limit of large populations (n →

∞), we find for the dependence of Jmean on c0

lim
n→∞

〈Jmean|c0 > 0〉
〈Jmean|c0 = 0〉 = lim

n→∞

µ2Jhom
mean +

1
nF (c0)

∑
j q

2
j

∑
k

1
r̃k∑

j q
2
j

= κ. (33)

As before (Eq. 21) Jhom
mean saturates to a finite value and therefore the first term in the numerator does

not play a role. For the second term note that for large populations, F (c0) → 1
1−c0

and 1
n

∑
k

1
r̃k

→ 1
1−c0

,

which leads to the above result.

Maximum likelihood estimation

Under a Gaussian noise model, the log-likelihood function is

l(θ) =
n

2
log(2π) +

1

2
log |Q(θ)|+ 1

2
(y − f(θ))TQ(θ)−1(y − f(θ)) (34)
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Using the fact that Q(θ) = S(θ)RS(θ), we can rewrite the terms that depend on θ as

log |Q(θ)| = log |R|+ 2 log |S(θ)|

= log |R|+ 2

n−1∑

k=0

log σk(θ) (35)

and

(y − f(θ))TQ(θ)−1(y − f(θ)) = (y − f(θ))TS(θ)−1R−1S(θ)−1(y − f(θ))

=
n−1∑

k=0

|z̃k(θ)|2
r̃k

, (36)

where we have defined z(θ) = S(θ)−1(y − f(θ)). Combining all steps and dropping terms that do not

depend on θ, we arrive at

l(θ) ∼
n−1∑

k=0

log σk(θ) +
1

2

n−1∑

k=0

|z̃k(θ)|2
r̃k

. (37)

With the additional assumption of Poisson-like noise (i. e. σ2
k(θ) = fk(θ)) and using the same diagonal-

ization of the quadratic forms as above, we obtain for the first and second derivatives

l′(θ) =
1

2

n−1∑

k=0

f ′

k(θ)

fk(θ)
+

n−1∑

k=0

z̃∗k(θ)z̃
′

k(θ)

r̃k
(38)

and

l′′(θ) =
1

2

n−1∑

k=0

f ′′

k (θ)fk(θ)− f ′

k(θ)
2

f2
k (θ)

+

n−1∑

k=0

z̃′k(θ)
∗z̃′k(θ) + z̃∗k(θ)z̃

′′

k (θ)

r̃k
(39)

Here, z̃′k is the kth component of the discrete Fourier transform of the first derivative of z(θ) with respect

to θ.

We evaluated the maximum likelihood estimator for homogeneous and heterogeneous populations. We

used Newton’s method to numerically find the maximum likelihood estimate θ̂. For the heterogeneous

populations, the neurons’ amplitudes ak were drawn from a lognormal distribution with mean 1 and

variance adjusted manually such that it resulted in κ = 0.25. All parameters for tuning functions and

correlations were defined as above. For each population size (min. 32, max. 4096 neurons) we generated

4096 realizations of heterogeneous populations. The error of the MLE was evaluated at m = 32 regularly

spaced stimulus values θk = 2πk/m for 64 random samples drawn from a normal distribution with mean

f(θ) and covariance Q(θ). Squared errors (θ̂− θ)2 for all populations (of equal size), stimuli, and samples
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were averaged to calculate the mean squared error, the inverse of which was taken as the efficiency of the

maximum likelihood estimator.

Optimal linear decoding

For linear decoding it is convenient to rewrite the stimulus as a vector x = [cos(θ), sin(θ)]T on the unit

circle. The direction θ is easily recovered from x via θ = atan2(x2, x1). The optimal linear estimator is

defined as the linear estimator minimizing the mean squared error
〈
(x̂− x)2

〉
. It minimizes the mean

squared error for any kind of noise distribution (Salinas and Abbott, 1994; no Gaussian assumption is

necessary) and its weights are given by

w = QxyQ
−1
yy , (40)

where Qyy is the response covariance matrix over all stimuli,

Qyy =

∫

θ

[
f̄(θ)f̄ (θ)T +Q(θ)

]
dθ, (41)

where f̄(θ) = f(θ) −
∫
θ
f(θ)dθ, and Qxy is the cross-covariance between stimulus x and neural response

y, given by

Qxy =

∫

θ

x(θ)f̄ (θ)Tdθ. (42)

We numerically estimated bias, variance, and mean squared error of the optimal linear estimator at

m = 32 different stimulus values θk = 2πk/m. For each population size (min. 64, max. 4096 neurons) we

generated 8192 realizations of heterogeneous populations with the same parameters as defined above.
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Results

We consider a simple model in which n neurons encode a one-dimensional circular stimulus (e. g. direction

of motion) through bell-shaped tuning functions (for details on the model, see Methods). We introduce

heterogeneity in the population by allowing the neurons to have different peak firing rates (amplitudes, aj)

but identical tuning widths. The degree of heterogeneity is controlled by the amount of variability in the

amplitudes, controlled by the parameter κ = Var
[√

aj
]
. Setting κ = 0 results in a homogeneous population

where all neurons have identical tuning curves. Setting κ > 0 results in a heterogeneous population

(amplitude variability model). We set κ = 0.25 as determined from a dataset of 408 orientation tuning

curves of neurons recorded in macaque primary visual cortex (Ecker et al., 2010). We further assume

that the noise correlation between two neurons depends only on their difference in preferred direction

(limited range structure) and that neurons’ variances are Poisson-like (i. e. the variances are equal to the

mean firing rates). In our model, the level of correlations is controlled by c0, the correlation coefficient of

two neurons with identical preferred directions. The relation of c0 to the average level of correlations 〈r〉

depends on the decay constant in the correlation structure (Fig. 1C). For the set of parameters we used,

〈r〉 is approximately 0.3 · c0. Our choice of parameterization by c0 is motivated by the fact that for large

populations it is the more relevant quantity compared with the average correlations.

Although we have to choose a specific set of parameters for the figures, our results hold more generally,

as long as both tuning curves and correlation structure do not change as a function of the population

size and are sufficiently smooth and slowly varying.

Dependence of Fisher information on population size

To quantify the accuracy of a population code, we calculate the Fisher information, J , which under the

assumption of Gaussian noise can be written as the sum of two terms,

J = Jmean + Jcov. (43)

Jmean can be thought of as the information that is encoded in the average population activity while Jcov

is the information contained in the variances and covariances.

The difficulty in evaluating the Fisher information for large populations of neurons lies in inverting the

n×n covariance matrix. Following the approach of Sompolinsky and coworkers (Sompolinsky et al., 2001;

Shamir and Sompolinsky, 2006), we obtained an analytic expression for this inverse in our model, leading

to an expression for the Fisher information that is considerably easier to study, even for populations with
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Figure 2. A. Fisher information as a function of population size in a homogeneous population of
neurons (black line: independent population, colored lines: correlated populations, see legend in panel
C). B. Same as in A but for heterogeneous population of neurons (κ = 0.25). C. Fisher information
relative to independent population (J/Jindep) for a homogeneous population. D. Same as in C but for
heterogeneous population of neurons.

tens of thousands of neurons (for details, see Methods, Fig. 1, Eqs. 14 and 22).

We first study how the Fisher information depends on the number of neurons in the population. This

question has been addressed by a number of authors who reported different results (Abbott and Dayan,

1999; Sompolinsky et al., 2001; Wilke and Eurich, 2002; Shamir and Sompolinsky, 2006). The appar-

ent discrepancy arises from subtle differences in the assumptions that were made about the population

activity, such as for instance the noise model (additive vs. Poisson-like). In the following we provide a

comprehensive treatment of this problem using our framework that includes most of the previous studies

as special cases.

Fig. 2 shows the total Fisher information, J , as a function of the population size while Fig. 3 splits J

into its two components, Jmean and Jcov. For homogeneous populations the total Fisher information grows

with increasing population size and does not saturate to a finite bound, even in the presence of limited

range correlations (Fig. 2A; Wilke and Eurich, 2002). This is because the second term, Jcov, increases

linearly with n (Fig. 3A) if the neurons’ variances are stimulus-dependent (a property of Poisson-like

noise). In contrast, Jmean saturates to a finite value if neurons are correlated (Fig. 3A; Sompolinsky et al.,

2001). Interestingly, for independent neurons with Poisson-like noise, the degree of amplitude variability

does not affect the Fisher information (compare the black lines in Fig. 2A and B; Methods, Eq. 20).
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Figure 3. Relative contributions of Jmean and Jcov. Panels are analogous to Fig. 2. Solid lines
represent Jmean; dashed lines represent Jcov. Colors represent different levels of correlation (see legend
in panel C). A. Jmean and Jcov as a function of population size in a homogeneous population of
neurons. B. Same as in A but for heterogeneous population of neurons (κ = 0.25). C. Jmean and Jcov
for a homogeneous population relative to the total Fisher information of an independent population. D.
Same as in C but for heterogeneous population of neurons.

If neurons are correlated, however, the total Fisher information is generally higher for heterogeneous

populations than for homogeneous ones (compare Fig. 2A and B). Responsible for this difference is

Jmean, which no longer saturates in the presence of correlations if neurons have heterogeneous tuning

functions (Fig. 3B; Eq. 17). In contrast, Jcov is unaffected by heterogeneity (dashed lines in Fig. 3).

In summary, the Fisher information saturates to a finite bound only if the neurons’ variances do not

depend on the stimulus and all neurons have identical tuning curves. If one of these two conditions is not

satisfied the Fisher information increases linearly with the population size. While for large homogeneous

populations it is dominated by Jcov (Fig. 3C), most of the information in a heterogeneous population is

contributed by Jmean (Fig. 3D).

Dependence of Fisher information on magnitude of correlations

We now investigate how the magnitude of noise correlations affects the accuracy of a population code.

Generally, small limited range correlations decrease the accuracy compared with the independent case,

consistent with previous reports (Zohary et al., 1994; Abbott and Dayan, 1999; Sompolinsky et al., 2001;

Wilke and Eurich, 2002). While in homogeneous populations this detrimental effect becomes stronger with

increasing correlations (Fig. 2C), in heterogeneous populations it is both non-monotonic and population-
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Figure 4. A. Relative Jmean as a function of correlation strength (c0) in a homogeneous population of
neurons (different colors indicate population sizes). B. Same as in A but for heterogeneous population
of neurons (κ = 0.25). C. Relative Jcov in homogeneous population. D. Relative Jcov in heterogeneous
population.

size dependent (Fig. 2D). These differences between homogeneous and heterogeneous populations are

exclusively due to differences in Jmean, as Jcov is independent of both the degree of heterogeneity and the

level of correlations (Fig. 3, dashed lines).

To characterize the effect of varying the magnitude of correlations, we quantified Jmean of a correlated

population relative to the total Fisher information of an independent population. We refer to this quantity

(Jmean/Jindep) as the relative Jmean. While in homogeneous populations the relative Jmean decreases with

increasing n and increasing correlations (Fig. 4A), in the presence of tuning curve variability a higher

level of limited range correlations can also increase Jmean substantially, in particular if the population is

large (Fig. 4B).

There are two regimes for the effect of changes in correlation strength: one in which reducing correlation

improves and one in which it impairs the performance. Which of the two applies to a given population

code depends on whether correlations are smaller or larger than the minimum in the curves in Fig. 4B.

We term this value the maximally detrimental correlation strength cmin. If correlations are below cmin

decreasing them further improves the population code. In this regime, which we refer to as the low-

correlation regime, the behavior is similar to that of homogeneous populations. In the high-correlation

regime, in contrast, increasing the correlation strength improves the population code. The value of cmin

is inversely related to the population size and decreases with O(1/
√
n) (Fig. 5). For large populations, it

converges to zero and, hence, increasing correlations is almost always advantageous. In particular, in the
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Figure 5. Maximally detrimental level of correlations, cmin. This is the minimum of the curves
in Fig. 4B. Inset: The inverse of cmin is proportional to

√
n, i. e. cmin decreases as O(1/

√
n).

Figure 6. Asymptotic (large n limit) Fisher information relative to independent
population. A. Relative Jmean (black line: homogeneous population; colored lines: degree of
heterogeneity, κ). Asymptotically, increased correlations always increase encoding accuracy (unless the
neurons are independent). B. Relative Jcov is unaffected by heterogeneity in our model.

large n limit the value of Jmean relative to the independent case is given by (see Methods, Eq. 21)

〈Jmean|c0 > 0〉
〈Jmean|c0 = 0〉 → κ

1− c0
. (44)

Thus, asymptotically the relative performance only depends on the correlation coefficient of two neurons

with identical preferred orientations, c0, and the degree of heterogeneity, κ. The more heterogeneous a

population is, the higher Jmean becomes (Fig. 6). However, it should be noted that Jmean cannot be

increased arbitrarily by simply increasing the heterogeneity, κ, because the amplitudes aj are constrained

to be positive, have an average of 1, and neurons have a maximum possible firing rate due to biophysical

constraints. At the same time the value κ = 0.25 that we used for the above figures is likely to be an

underestimate because in real neural populations sources of heterogeneity other than amplitudes exist.

We explore this issue further below.
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Figure 7. Maximum-likelihood estimator (MLE) attains the Cramér-Rao bound. A.
Efficiency of MLE relative to Fisher information for homogeneous population of neurons. Colors
indicate different levels of correlation. B. As in A but for heterogeneous population.

Maximum likelihood estimator attains Cramér-Rao bound

One potential caveat that has to be addressed when using Fisher information is that it provides only a

bound (the Cramér-Rao bound) on the accuracy of a population code. Unfortunately, under some condi-

tions potentially relevant for neural coding this bound is not tight, which means there exists no estimator

that achieves this performance (Bethge et al., 2002; Berens et al., 2011). If certain assumptions are placed

on the statistics of population activity (e. g. independent and identically distributed samples), the max-

imum likelihood estimator can be proven to converge (for large n) to the Cramér-Rao bound. However,

under the conditions studied here, the responses are neither independent nor identically distributed and

we do not know whether and how fast the bound is attained. Thus, it is unclear whether comparing Fisher

information under different conditions (such as different levels of correlation or different amounts of het-

erogeneity) can provide insights into the accuracy of population codes because comparing loose upper

bounds is meaningless. To address this problem, we additionally evaluated the efficiency of the maximum

likelihood estimator numerically (for details, see Methods). For both, homogeneous and heterogeneous

populations it attains the Cramér-Rao bound very quickly (Fig. 7), even in the case of non-identical and

non-independent samples. Interestingly, for homogeneous populations, the rate of convergence depends

more on the level of correlations than for heterogeneous populations (Fig. 7). More importantly, for both

types of population models, the performance of the maximum likelihood estimator is within 5% of the

Cramér-Rao bound for all population sizes greater than 64 neurons. Thus, the bound is sufficiently tight

and the use of Fisher information is well justified.
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Figure 8. Fisher information for other types of tuning curve heterogeneity. A. Random
tuning widths B. Tuning parameters (baseline, amplitude, and width) sampled with replacement from a
dataset of 408 orientation tuning curves from monkey V1.

Other sources of heterogeneity

Another issue that has to be addressed is whether our findings above generalize to other forms of tuning

curve heterogeneity, such as variable widths and baseline firing rates. Because only the amplitude vari-

ability model is analytically tractable, we ran numerical simulations to estimate the Fisher information

for populations with other forms of heterogeneity. First, we varied the tuning widths while keeping all

other parameters constant (Fig. 8A,C). Second, we created populations of neurons by randomly drawing

sets of tuning parameters from a dataset of orientation tuning curves in monkey V1 (Fig. 8B,D). In

both cases the dependence of the Fisher information on the level of correlations is similar to that in the

amplitude variability model. One notable difference is that Jcov is not completely independent of correla-

tion strength if parameters other than tuning amplitude are variable. For moderate levels of correlation,

however, the differences are relatively small.

In the above analysis we assumed that the neurons’ preferred directions are arranged on a regular

grid around the circle. As this is not the case in real neural populations we numerically analyzed the

effect of this assumption on the results presented above. We found that the Fisher information is virtually

unaffected by randomly assigning preferred directions compared to equally spacing them (data not shown).

In addition, in real neural populations not only the tuning curves are heterogeneous but also the

pairwise correlation coefficients. This case has been studied by adding independent Gaussian noise (with

variance σ2) on each correlation coefficient (Wilke and Eurich, 2002; Shamir and Sompolinsky, 2006).
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Figure 9. Changing correlations affects noise entropy. Top row shows marginal distributions;
bottom row shows iso-probability contours (2σ from the mean) of two-dimensional joint distributions.
A. An uncorrelated Gaussian distribution with σ = 1. B. Gaussian distribution with correlation
coefficient r = 0.8 and marginals equal to the distribution in A (σ = 1). Its entropy (which is linearly
related to the area enclosed by the ellipse) is 0.5 bits smaller than that of the distribution in A. C.
Gaussian distribution with the same correlation coefficient and the same entropy as that in A. Its
marginal standard deviation is ≈30% larger (σ = 1.29) as that in A. Note that the ellipse has the same
area as the circle in A.

Unfortunately, if the amount of variance on the correlation coefficients is fixed independent of the pop-

ulation size, the covariance matrix will be valid (positive definite) only up to n ≈ 1/(2σ)2. Thus, as the

population size is increased, from a critical n on, the model will not be valid any more. One solution to

this problem is to scale the variance in the correlation coefficients by 1/n. We simulated this scenario

numerically and found that although it increases the Fisher information by a small constant factor, it

does not affect the results qualitatively (data not shown).

Effect of noise entropy on encoding accuracy

So far we considered the level of correlations a free parameter. We now investigate the implications of

this assumption. In general, increasing correlations between neurons while keeping individual neurons’

variances fixed reduces the noise entropy of the population. Because a lower noise entropy reduces the

variance in most directions, it is likely to improve the encoding. To understand this argument intuitively,

consider the two-neuron toy example shown in Fig. 9. The top row shows the firing rate (marginal)

distribution of each neuron while the bottom row depicts the two-dimensional joint distribution. The

entropy of a normal distribution is closely related to the area enclosed by the one standard deviation ellipse

(it is linearly related to the logarithm of the area). Fig. 9A shows an uncorrelated reference distribution

with marginal standard deviations of 1. The distribution in Fig. 9B has the same marginal distributions

but a correlation coefficient of 0.8. The entropy of this correlated distribution is approximately 0.5 bits

smaller than that of the uncorrelated distribution with identical marginals. To generate a distribution

that has the same entropy as our reference distribution but a correlation of 0.8, we have to increase the
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Figure 10. Effect of limited range correlations under constant noise entropy. A. Differential
entropy (relative to an independent population and normalized by the number of neurons) as a function
of correlation strength, c0. B. Fano factor necessary to maintain constant noise entropy when increasing
correlation strength. C. Linear Fisher information, Jmean, as a function of population size in
heterogeneous populations with identical noise entropy (identical across different levels of correlation for
the same n). Analogous to Fig. 3B. D. Jmean relative to independent population (as in Fig. 3D).

marginal standard deviations to 1.29 (Fig. 9C).

Because the accuracy of a population code depends on how the signal is encoded relative to the noise, a

lower noise entropy by itself does not necessarily imply an improvement in coding accuracy. For instance,

in the toy example in Fig. 9B the variance along the main diagonal is larger than in the independent case

in Fig. 9A. Therefore, estimating the mean activity of the two neurons is less accurate than, for instance,

their difference. In a heterogeneous population of neurons, the signal encoding is distributed across all

directions (Fig. 1M). Because the Fisher information is the sum over the signal-to-noise ratios in each

frequency component, a reduction in noise entropy should lead to an improvement in coding accuracy in

this case.

To understand how the level of correlations affects the noise entropy in the multi-neuron (high-

dimensional) case, we calculated the noise entropy as a function of the average correlation strength. As c0

approaches 1, the noise entropy diverges to −∞ (Fig. 10A). In other words, there is a subspace in which

the system is effectively noise-free. Any signal in this subspace can be decoded with infinite precision.

This explains why the relative Fisher information diverges as c0 approaches 1 (Fig. 4B).
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Figure 11. Relative Jmean for different correlation strengths under the constraint of constant noise
entropy. A. homogeneous population, κ = 0. B. heterogeneous population, κ = 0.25). Asymptotically
(n → ∞), the relative Jmean converges to κ.

In real neural populations, however, there is a certain amount of independent noise in the system,

due to input noise (e. g. photoreceptors), channel noise (e. g. unreliable synaptic transmission), or other

sources. This noise cannot be removed by any type of encoding. This implies that most models used

in previous studies (including our above model) are not well constrained if the correlation strength is

considered a free parameter because they allow for a degenerate case where the noise entropy becomes

arbitrarily small (by simply increasing the level of correlations until c0 = 1).

To disentangle the effect of the noise correlation structure from that of the noise entropy we here

introduce an additional constraint and fix the noise entropy as the correlations are changed. A convenient

way to do so is to relax the Poisson assumption on the neurons’ variances, such that in the modified

model, the neurons may have Fano factors F 6= 1. For simplicity, we keep the Fano factor constant across

the population and define the neurons’ variances as

σ2
j (θ) = Ffj(θ). (45)

Fig. 10B shows the Fano factors necessary to maintain constant noise entropy when increasing the cor-

relation strength. Changing the Fano factor affects only Jmean but leaves Jcov unchanged. Fig. 10C and

D show Jmean for heterogeneous populations as a function of the population size for different levels of

correlation, analogous to Fig. 3B,D but with identical noise entropy among populations of equal size.

Similar to the results presented above, under the constant entropy constraint there are two regimes for

the effect of correlations. The low-correlation regime applies when populations are small or correlations

are low. In this regime, the noise entropy is very similar to the independent case (Fig. 10A) and, thus,

reducing correlations can lead to a substantial improvement (Fig. 10D and 11B). As before, the critical
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level of correlations that separates the low-correlation regime from the high-correlation regime converges

to zero for increasing population sizes. In the high-correlation regime, the exact level of correlations is

not important if the noise entropy is constant (Fig. 11B). This supports the idea that the improvement

with increased correlations we observed above is due to a reduction of the noise entropy. In the large n

limit the expected value for Jmean of a correlated population is κ times that of an independent population

(see Methods, Eq. 33),

〈Jmean|c0 > 0〉
〈Jmean|c0 = 0〉 → κ. (46)

Thus, Jmean depends only on the amount of amplitude variability, κ. It is independent of both the

structure and the magnitude of correlations as none of the parameters of the correlation structure (e. g.

c0 or L) enter the right hand side of Eq. 46.
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Discussion

Many theoretical studies have investigated the effect of noise correlations on encoding accuracy (Snippe

and Koenderink, 1992; Zohary et al., 1994; Abbott and Dayan, 1999; Sompolinsky et al., 2001; Wilke

and Eurich, 2002; Shamir and Sompolinsky, 2004; Shamir and Sompolinsky, 2006; Josic et al., 2009).

One of the main conclusions has been that limited range correlations are detrimental for a population

code compared to independence or other correlation structures (e. g. uniform; Abbott and Dayan, 1999;

Sompolinsky et al., 2001; Wilke and Eurich, 2002). Because of this, it is often assumed that decreasing

correlations improves any population code – as it becomes more similar to the independent case (Zohary

et al., 1994; Abbott and Dayan, 1999; Sompolinsky et al., 2001).

In this paper we showed that these results hold only under the assumption of homogeneous populations

of neurons or very small numbers of neurons. In the range of biologically plausible parameters (heteroge-

neous tuning curves, non-additive noise, thousands of neurons) increasing correlations can substantially

increase the Fisher information (Fig. 4B). This increase in accuracy is mainly due to an overall reduction

of the noise entropy that is associated with stronger correlations. When correlations are increased, the

noise power increases in a few low-frequency Fourier components while it decreases in all higher-frequency

components (it quickly asymptotes to 1 − c0 with increasing frequency; Fig. 1D). Because in homoge-

neous populations the stimulus encoding is confined to the low frequency Fourier components, higher

correlations have detrimental effects. In heterogeneous populations, in contrast, the stimulus encoding

is distributed among all frequencies and the high frequency components have a better signal-to-noise

ratio if correlations are strong. These two mechanisms compete, leading to the non-monotonic correlation

dependence of the Fisher information of heterogeneous populations. As the population size is increased,

the high frequency components dominate because their number grows linearly with the population size.

As a consequence, in the large n case increasing correlations is almost always beneficial while a decrease

is beneficial only for small population sizes and small enough correlations.

This result raises two important questions. First, if higher correlations improve the accuracy why

does the brain not implement a population code with strong correlations? Second, why do experimental

studies find reduced noise correlations under experimental conditions, where an improved population

code is expected (Cohen and Maunsell, 2009; Mitchell et al., 2009; Gutnisky and Dragoi, 2008; Gu et al.,

2011)?

With regard to the first question, we suggest that the level of correlations should not be interpreted

as a free parameter that can be optimized independently while all other parameters, such as tuning

functions and variances, are kept fixed. Under such assumptions increasing the level of correlations to
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the maximum (i. e. c0 = 1) leads to maximum Fisher information (Figs. 4B and 6). The noise power

in the high frequencies vanishes (as it asymptotes to 1 − c0; see Fig. 1D), allowing for effectively noise-

free decoding of any signal that is encoded in these directions. However, in real neural populations the

amount of noise in the response cannot be arbitrarily small because input noise cannot be removed by

processing. Thus, finding the optimal level of correlations under the assumption of fixed tuning functions

and variances leads to a degenerate solution, which is not biologically plausible.

To avoid the noise-free case and better constrain the problem, we also analyzed population codes in

which the total amount of noise (the noise entropy) is kept constant and only the correlation structure

is changed. Our results demonstrate that under this constraint the performance of population codes in

large populations is primarily determined by the amount of heterogeneity in the neurons’ tuning functions

and by the overall noise entropy (Fig. 10D, Eq. 46), while the specific structure of the noise does not

appear to be as important as commonly assumed. Whether the noise entropy is of the same importance

for predicting the accuracy of a population code also for other scenarios not considered explicitly in this

study – such as stimulus dependent (Josic et al., 2009) and heterogeneous correlations, or simultaneous

encoding of multiple stimulus dimensions (Zhang and Sejnowski, 1999) – remains to be investigated.

The second question raised above was how to reconcile our theoretical results with empirical findings

of reduced correlations (Cohen and Maunsell, 2009; Mitchell et al., 2009; Gutnisky and Dragoi, 2008;

Gu et al., 2011). One possibility is that the size of the population which is read out is small enough to be

in the low-correlation regime. Although we did not assess this in detail by taking into account all relevant

parameters from these studies, Figs. 5 and 8B suggest that the relevant population size would have to be

on the order of at most a few hundred cells. Given the number of cells even in a single cortical column,

this seems rather unlikely.

A second explanation is related to the neural readout mechanism. Because we currently do not know

how information is read out by downstream neurons (or populations thereof), we quantified the maximum

amount of information that can be extracted from the population response. Of course, the effect of

correlations can be different for other, computationally constrained readouts. If, for instance, a linear

readout is assumed, the conclusions would be different. Even though Jmean is often referred to as the

portion of the information that can be read out by linear methods, this notion is problematic – at least

in the framework of stimulus reconstruction considered here. To illustrate this point, we estimated the

performance of the optimal linear estimator (OLE) decoding the activity of a heterogeneous population

of neurons. The efficiency of the OLE does not converge to the inverse of Jmean (Fig. 12A). In addition,

in contrast to the Fisher information and the maximum likelihood estimator, the accuracy of the OLE

does not increase with increased correlations, not even for large population sizes (Fig. 12B). The reason
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Figure 12. Dependence of Optimal Linear Estimator (OLE) on correlations. Heterogeneous
populations (κ = 0.25) are considered. Similar to Fig. 4. Dashed lines: Jmean, solid lines: OLE. Colors
represent different population sizes (see legend in panel B). A. Jmean and the efficiency (inverse of the
mean squared error) of the OLE relative to Jmean of an independent population. B. Zoomed-in version
of A.

for this behavior is the fact that the OLE is a biased estimator, for which the Cramér-Rao bound is

not simply the inverse of the Fisher information but the bias has to be taken into account. Because the

estimator bias depends on the correlations, the dependence of the mean squared error on correlations is

not captured well by the Fisher information. Consequently, if downstream areas are confined to linear

readout mechanisms, reducing pairwise correlations increases the readout accuracy.

Assuming optimal readout, a third possibility is that the improved performance is not exclusively

due to reduced correlations. For instance, under attention Fano factors decrease and firing rates increase

(Cohen and Maunsell, 2009; Mitchell et al., 2009). Although it has been argued that these changes

are small compared with the relative changes in correlation strength and their effect is negligible for

large populations, this argument is problematic. The effect of different factors was assessed using highly

suboptimal pooling rules (Cohen and Maunsell, 2009; Mitchell et al., 2009) and the conclusions derived

from these pooling models do not generalize to other (e. g. optimal) readout mechanisms – as our above

results show. Our analysis suggests an alternative interpretation: the higher firing rates under attention

increase the signal while the reduced Fano factors and correlations indicate the suppression of a common

noise source, which reduces the noise entropy and therefore leads to improved coding accuracy. For

example, if the response of a population of neurons with unit variances and weak correlations (〈r〉 = 0.05)

is confounded by a common noise source with variance 0.05, removing this common noise source reduces

noise correlations from ∼0.1 to ∼0.05 (a 50% change) while reducing the variances from ∼1.05 to 1 (a 5%

change). In this situation, however, the changes in correlations cannot be separated from the changes in

variances and neither of both is more important than the other. In fact, considering each one in isolation

is not meaningful.
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In summary, the notion that reducing correlations leads to a more accurate encoding is not a general

principle but is only true under certain conditions. Assumptions about the size of the population and the

way information is read out can strongly affect the conclusions. For optimal decoding of large populations,

the total amount of noise – as measured by the noise entropy – is more important than the specific noise

correlation structure.
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