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Abstract
Background: Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-
based combination therapy (ACT). The impact of different drug choices and implementation strategies is uncertain. Data
from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of
drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is
a powerful predictive tool for exploring the impact of these strategies quantitatively.

Methods: A comprehensive model was constructed incorporating important epidemiological and biological factors of
human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and
parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative
measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance
in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on
ACT deployment.

Results: The model predicts robustly that in low transmission settings drug resistance spreads faster than in high
transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission
settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect
decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high
transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug
level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by
controlling presumptive drug use and avoiding the use of combination therapies containing drugs with mismatched half-
lives, together with reducing malaria transmission through vector control measures.

Conclusion: This paper has demonstrated the use of a comprehensive mathematical model to describe malaria
transmission and the spread of drug resistance. The model is strongly linked to the empirical evidence obtained from
extensive data available from various sources. This model can be a useful tool to inform the design of treatment policies,
particularly at a time when ACT has been endorsed by WHO as first-line treatment for falciparum malaria worldwide.
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Background
For the past half-century, the malaria parasites of humans
have been under tremendous selection pressure to evolve
mechanisms of resistance to the prevailing anti-malarial
drugs. Chloroquine and, increasingly, sulphadoxine-
pyrimethamine (SP), have become largely ineffective as
monotherapy for the treatment of Plasmodium falciparum
malaria in much of the world. The World Health Organi-
zation (WHO) now recommends artemisinin-based com-
bination therapy (ACT) as first-line treatment for all
falciparum malaria in endemic areas [1].

The artemisinin-based combinations are efficacious, rap-
idly acting, well-tolerated and safe. They are available in
various formulations, which are generally given over three
days. The various forms of ACT are effective against both
asexual and early sexual parasite stages [2], and, thereby,
reduce transmissibility [3,4]. The contribution of reduced
transmissibility of individual treated infections to overall
transmission depends on the proportion of transmissible
infections that are treated and the degree of 'saturation' in
the transmission dynamics. So far, substantial in-vivo
resistance to artemisinin derivatives has not yet been con-
firmed, and stable resistance has been very difficult to pro-
duce in the laboratory [5]. As for any combination
therapy, which involves two effective drugs from different
classes, both component drugs protect each other from
the development of drug resistance, whilst present at
effective concentrations. This should prolong their useful
lifespan provided that the individual components are not
widely available as monotherapies [6].

Although malaria-endemic countries are switching to ACT
with increasing momentum, even at prices as low as US$1
per dose, it is still too costly for communities and govern-
ments in poorer countries (5 – 10 times higher than the
prices of chloroquine or SP in Africa [7]). Doubts have
been raised about the actual operational effectiveness of
ACT when implemented in "real-life" situations, where
infrastructures are weak, access to health care is poor, and
there is widespread inappropriate use of anti-malarial
drugs [8]. Although providing easy access to very low cost
ACT in the private sector or free ACT in the public sector
may achieve this aim, it has to be balanced against the
costs and risks of the widespread use of such combina-
tions. In particular, if artemisinins are used on their own
and not in co-formulation with an effective partner drug,
then there is a much greater risk of drug resistance arising
to this precious class of drugs. Questions remain about the
choice of combination therapy and timing of policy
change. Finally, an important additional benefit of ACT in
low-transmission areas is the potential ability to reduce
malaria transmission and thus the incidence of malaria.
Enthusiasm for the deployment of ACT in high transmis-
sion settings is tempered by the expectation that this

deployment is less likely to translate into reduced malaria
incidence in these settings.

In the current study, a comprehensive mathematical
model describing malaria transmission and evolution of
anti-malarial drug resistance is constructed to answer the
questions on treatment strategies focusing on the deploy-
ment of ACT in different transmission settings.

Methods
Modeling transmission dynamics and the spread of anti-
malarial drug resistance
The development of drug resistance is a two-step process,
the de novo or the initial emergence of resistance, and its
subsequent spread. Resistance spreads because of the
higher reproductive rate of resistance infections in the
presence of anti-malarial drugs. In this paper, the focus is
on modeling the spread of resistance assuming that drug
resistance has already emerged among the human popu-
lation. Combinations prevent resistance by preventing de
novo emergence. Modeling the de novo emergence of drug
resistance is discussed elsewhere [9,10].

Transmission and anti-malarial drug resistance are mod-
eled on an age-structured population-based model, where
the size and age-structure of the human population were
assumed to be constant over time and based on an average
African age-structure http://esa.un.org/unpp. A stochastic
component of new imported infections (migrant) is
added to the model making it more realistic.

The dynamic of mosquito population was summarized
into vectorial capacities (VC) and estimated from several
epidemiological studies. It is assumed that all humans are
equally attractive to biting mosquitoes. Malaria is trans-
mitted when a susceptible human is bitten by an infected
Anopheline mosquito. The rate at which a susceptible per-
son becomes infected or the inoculation rate is a function
of contact rate with infective mosquitoes and level of host
susceptibility, based on the formula given by Dietz [11]
(see equation 1, Additional File 1). By assuming that all
mosquito biting vectors are equally susceptible, human
infectiousness to mosquitoes is determined solely by the
gametocyte density in humans with a non-linear relation-
ship shown from the malariatherapy study by Jeffery and
Eyles [12] (see equation 5, Additional File 1). Human
infectiousness can be estimated as the model handles
malaria like a "macro" parasite by quantifying the density
of infection in the human host. The in-vivo effect of drugs
on parasite density can be measured, allowing quantifica-
tion of the pharmacodynamic properties of anti-malarial
drugs [13]. The average gametocytaemia depends directly
on the average parasite biomass by age group and the esti-
mated gametocyte switch rate (i.e. probability that an
asexual parasite develops to a sexual parasite). For sim-
Page 2 of 12
(page number not for citation purposes)

http://esa.un.org/unpp


Malaria Journal 2008, 7:229 http://www.malariajournal.com/content/7/1/229
plicity, the gametocyte switching rate (GSR) was assumed
to be uniform among asexual parasites and infections, but
vary among anti-malarial drugs, and between primary and
recrudescent infections.

The dynamic in human mainly consists of the develop-
ment of immunity by age and transmission intensity.
Making the model data-driven, the parameters for immu-
nity functions and malaria infection in the human host
(asymptomatic, symptomatic and recrudescent infec-
tions) were obtained from clinical, laboratory and epide-
miological studies. Appropriate curve fitting including
multiple linear and non-linear regressions was fitted to
different data from age-stratified epidemiological studies
in areas with different transmission intensities to derive
immunity functions of age and EIR (Additional File 2).
Stepwise selection using the Akaike Information Criterion
(AIC) was used to identify the best fit in the case of non-
nested functions and the maximum-likelihood ratio test
was used for nested functions. These relationships repre-
sent the acquisition of immunity to malaria by age and
frequency of malaria exposures. Different facets of malaria
immunity are incorporated into this model i.e. reducing
host susceptibility to infection [14,15], reducing the level
of (largely asymptomatic) parasitaemia in infected people
[16,17], reducing the likelihood of fever and other symp-
toms in infected patients [18-20], reducing the treatment
failure rate for a particular level of anti-malarial drug
resistance [21-26], and increasing the recovery rate of an
established infection i.e. shortening the duration of infec-
tion [27-29] (Table S7, Additional File 2). Some immu-
nity functions were not measured directly from
epidemiological studies (i.e. host susceptibility, duration
of infections and treatment failure), so a normalized func-
tion of age-stratified parasite density was used to estimate
the relationship between age and host susceptibility and
between age and duration of infections by specifying ini-
tially the "maximum host susceptibility" in a non-
immune person and the "maximum duration" of treated
and untreated infections. The host susceptibility and the
duration of infection for any given age group in any trans-
mission intensity setting are then determined by the shape
of the immunity curve. As the shape of the age effect on
treatment failure is similar to the relationship between age
and severe malaria [21], the same technique to the nor-
malized function of age-stratified risk of severe malaria is
applied to adjust the treatment failure rates for any given
age group in any transmission intensity setting. The max-
imum value of duration of infection and the maximum
value of treatment failure are dependent on treatment
type, drug resistance, and likelihood of patient adherence
to therapy. Adherence is incorporated in the model by
adjusting down the expected failure rates of treated infec-
tions. Multiple recrudescences are treated as one continu-
ous recrudescence, and overall infectiousness is calculated

from the area under the gametocyte-time curve (AUC-
gam). Multiple infections in an individual or "superinfec-
tion" is not considered in this model.

The population with selective residual anti-malarial drug
concentrations focused on this model is the proportion
with concentrations in the blood which prevent establish-
ment of new drug sensitive infections but allow establish-
ment of resistant infections. This proportion of
population was based on published literature (equation 6
– 7, Additional File 1).

Model simulations and outputs
At the outset, a human population is assumed to have lit-
tle or no exposure to malaria and, therefore, the popula-
tion has no immunity to malaria. Infected mosquitoes
bite randomly and infect humans with drug susceptible
infections i.e. malaria infections initially are all drug-sen-
sitive and symptomatic humans receive only mono-
therapy (drug A). As the population becomes exposed to
malaria and gains some level of immunity, the model
updates the age-stratified immunity of the population
according to the Entomological Inoculation Rate (EIR)
(which varies with VC and the infective human popula-
tion (see equation 8, Additional File 1)), and is allowed to
run until a steady state is reached (Figure 1). A steady state
point is defined as the point at which the number of new
malaria cases (i.e. excluding imported cases) has varied
day to day by less than 1% over a year. Any changes in
malaria prevalence and levels of drug resistance thereafter
can reasonably be assumed to result from introduction of
drug resistance and the impact of the different treatment
strategies. Once the steady state is obtained, the resistance
to drug A is introduced, either as importation of a small
number of resistant infections or by the de novo emergence
of resistance based on available clinical and laboratory
data. At a specified threshold of resistance to drug A
(defined as a model parameter) artemisinin or its deriva-
tives, or a completely new drug can also be introduced
and used in a combination with drug A, or it can be used
as a monotherapy. Resistance can then be tracked for a
specified length of 10 years after steady state to gauge the
impact on model outcomes over time. The model pro-
vides a number of outputs including estimated EIR, pro-
portion of symptomatic infections, proportion of
treatment failure, malaria prevalence and percentage of
resistant infections. Those relevant to policy, the propor-
tion of infections with resistant parasites, the malaria
prevalence, and the incidence of malaria are presented
here. The sensitivity of the model was tested in the four
baseline scenarios (scenario A – D). The details of fixed
and variable parameters with their respective distributions
are given in Tables S1 – S6, Additional File 2. Each sce-
nario is repeatedly run for 5,000 simulations with a
unique set of parameters selected using the Latin Hyper-
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cube Sampling technique (LHS). The Coefficients of Vari-
ation (CVs), which determine the uncertainties of the
model outcomes (Table S9, Additional File 3), and the
Partial Rank Correlation Coefficients (PRCCs), which
identify influential factors, were calculated (Table S10,
Additional File 3). Full technical details can be found in
[30].

Results
Resistance, transmission intensity and ACT coverage
Model consistency and model sensitivity are explored in
four baseline scenarios (low transmission setting with low
ACT coverage (scenario A), low transmission setting with
high ACT coverage (scenario B), high transmission setting
with low ACT coverage (scenario C) and high transmis-
sion with high ACT coverage (scenario D)). The model
consistency is expressed as the Coefficient of Variation
(CV) i.e. the variations in the model outputs given that
there are uncertainties in the input parameter estimated
(Tables S9, Additional File 3). For sensitivity, the Partial
Rank Correlation Coefficient (PRCC) was used to describe
the correlation between the model output to each input
parameter (Tables S10, Additional File 3). ACT coverage is
defined as the proportion of ACT treatments among all
symptomatic treated infections.

In the low transmission setting (EIR < 1), with low ACT
coverage, variations in the estimated prevalence of
malaria stay consistently high over time (CV ~ 90%) after

the steady state is obtained, while the variation in the esti-
mated resistance falls substantially till year 8 (CV ~ 9%)
with resistance approaching fixation at 100% in our 10-
year time horizon. In low transmission settings with high
ACT coverage, the mean prevalence of malaria stays below
1% over 10 years. Migration plays an important role in
sustaining malaria. Without imported cases, malaria is
readily eradicated. Mean resistance increases at a slower
rate than in a low coverage setting, reaching 80% in year
10. Compared to scenario A, variation in the estimated
prevalence is slightly lower (CV ~ 75%) while variation in
the rate of resistance is higher (CV > 30%). This indicates
some levels of uncertainty in the consequences of deploy-
ing a high coverage of ACT on the malaria prevalence and
the rate of resistance. Once resistance to the slowly elimi-
nated partner drug has emerged the spread of drug resist-
ance and the malaria prevalence could be slowed down
only by deploying ACT at a high coverage rate while the
resistance prevalence is still reasonably low.

In the low transmission setting, VC was the most influen-
tial parameter affecting malaria prevalence (PRCC ~ 0.6),
while VC (PRCC ~ 0.7) and the proportion of treated
infections (PRCC ~ 0.4) were the most influential param-
eters affecting the spread of drug resistance.

In the high transmission setting (EIR > 100), malaria can-
not be eradicated by anti-malarial treatment of sympto-
matic cases alone because the major transmission

Schematic diagram of the biological model through timeFigure 1
Schematic diagram of the biological model through time. The model progresses from steady state through to the 
introduction of resistance and changes in drug policy.
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reservoir is in asymptomatic persons who do not take
anti-malarial drugs. In the high transmission setting with
low ACT coverage, malaria prevalence increases from 36%
to 44% within 10 years due to the spread of resistance.
Resistance spreads more slowly compared to the low
transmission setting, reaching 80% in year 10. Variation
in estimated prevalence is small (CV < 30%) while varia-
tion in the rate of resistance is consistently high (CV >
45%) compared to estimates in the low transmission set-
ting. Both outcomes and their variations are unaltered by
deploying a high coverage of ACT. Treatment of sympto-
matic infections in the high transmission setting has
much less effect than in the low transmission setting.
Consequently, the spread of drug resistance is driven by
the fraction of the population with some residual anti-
malarial drug in their blood and not by treatment failure.

In the high transmission setting, the parameters influenc-
ing malaria prevalence are the characteristics of the infec-
tion in immune subjects with untreated infections. These
are the parasite biomass (PRCC ~ 0.4), the gametocyte
switch rate (PRCC ~ 0.4) and the duration of infection

(PRCC ~ 0.3). The proportion of residual drug in the pop-
ulation (PRCC ~ 0.9) is the dominant factor driving the
spread of drug resistance in this setting. The strong corre-
lation between the fraction of population with residual
drug concentrations and the levels of resistance from this
model suggests that controlling the use of presumptive
treatment and encouraging the use of combination ther-
apy with matching half-lives to reduce the selective win-
dow would slow the spread of resistance down within this
setting.

Scenario A: Effects on resistance of delaying the policy 
change the ACTs
In the first scenario, the model is used to predict the
impact of varying the timing of switch to a high coverage
(i.e. 85% of all symptomatic treated infections) by com-
bining an artemisinin derivative with a failing partner
drug (e.g. mefloquine), where the timing of the switch is
governed by an observed prevalence of resistance to the
partner drug in low and high transmission settings (Figure
2 and 3).

The model-predicted spread of Mefloquine resistanceFigure 2
The model-predicted spread of SP resistance. The predicted spread of resistance to SP when combined with artesunate 
at different level of resistance. Figure 2A shows the result in low transmission setting and Figure 2B shows the result in high 
transmission setting, assuming 85% coverage of the ACT (SP and artesunate). The dotted line shows the 50% resistance. Each 
curve represents the mean of ten simulations.
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In the low transmission setting, treatment dependent
parameter values are given in Table S8, Additional File 2.
The force driving resistance comes from two sources; the
first is from symptomatic malaria infections failing treat-
ment and the second is exposure of infections to residual
drug taken for presumptive or previous malaria treatment.
More than 85% of all infections are symptomatic and thus
treated. The rate of spread of resistance is faster relatively
to the high transmission setting where treatment failure
was identified to be the main force driving the spread of
resistance. Deploying a high coverage of effective treat-
ment, such as an ACT, when the level of resistance is still
low delays the spread of drug resistance, a result consist-
ent with previous results from simple epidemiological
models [31].

In the high transmission settings, immunity prevents
most acquired infections transmitting (and synergizes
with anti-malarial drugs). Approximately 94% of all infec-
tions are asymptomatic and untreated. In the absence of
anti-malarial treatment, the resistant infections have no
survival advantage over the sensitive ones, and may have
a fitness disadvantage. The main driving force for resist-
ance is created from the selective filter provided by people
carrying low residual concentrations of drugs, which pro-
tect against the establishment of new sensitive infections
but not the resistant ones [32,33]. Without this residual
drug effect, the rate of resistance would be much lower
than shown in Figure 2B. Residual drug levels come
mainly from previous 'presumptive' treatments (normally
for other febrile illness), and are largely unrelated to the
peaks of parasitaemia [9] and are, thereby, assumed to

Delay in the spread of resistance to mefloquineFigure 3
Delay in the spread of resistance to SP. The delay in the development of resistance is measured as the proportional 
increase in time to 50% resistance compared to the continued use of SP as a monotherapy.
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have little or no influence on the de novo resistance selec-
tion probability.

Combining an artemisinin with a drug to which resistance
has arisen delays the spread of resistance in the low trans-
mission setting (Figure 2A), but this delay decreases expo-
nentially the later the switch is made to the ACT (Figure
3A). By contrast, in the high transmission setting, varying
the time to switch to the ACT has only a small impact on
delaying the spread of resistance (Figure 2B and 3B).

Scenario B: Effects on artemisinin resistance of different 
levels of ACT coverage
In this scenario, it is assumed that the monotherapy is the
artemisinin and that drug resistance emerges to the artem-
isinin compound, rather than to the partner drug in an
ACT (e.g. either piperaquine or lumefantrine), which is
assumed to remain effective (see Table S8, Additional File

2). This simulates the current scenario in places such as
Cambodia, where artesunate monotherapy use is wide-
spread [34]. It is assumed that the switch to the combina-
tion therapy is made when the resistance to artemisinin is
as low as 1% (Figure 4). If the switch is made very early,
when there are still very few cases of drug resistance, then
the higher the coverage with the ACT, the greater is the
delay in the spread of resistance. At coverage rates of >
80%, the level of resistance to the artemisinin does not
reach 50% within the time span of 10 years. In general,
the impact of ACT deployment on malaria incidence and
prevalence is as expected. By deploying ACTs at a high
coverage, the prevalence of malaria can be kept at a very
low level over time (0.5%) and incidence is less than 50
cases per year, indeed in the model eradication is only pre-
vented by the influx of malaria in immigrants (Figure 5).
Similar to the first scenario, the impact of ACT in the high
transmission setting is much less.

The spread of artemisinin resistance at different levels of ACT coverageFigure 4
The spread of artemisinin resistance at different levels of ACT coverage. Figure 4A shows the spread of artemisinin 
resistance at varying levels of ACT coverage from 0% (i.e. use of artemisinin monotherapy) to 100% use of ACTs. Each line 
represents the mean of ten simulations. The dotted line shows the 50% resistance level. Figure 4B shows the delay in resist-
ance measured as the increase in the time to 50% resistance (t50) compared with the t50 when using artemisinin monotherapy. 
The dotted line represents an extrapolation of the curve when the resistance does not reach 50% within the 12-year time-
frame.
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The model shows that deploying ACT in a high transmis-
sion setting has a small impact on the spread of resistance
and malaria prevalence. However, as one of the model
outcomes, treatment failure in both low and high trans-
mission settings can be sustained to a low level by deploy-
ing high ACT coverage (25% of recrudescence compared
with 10% when deploying high ACT coverage at year 10).
In order to make an impact on malaria transmission and
resistance, vector control strategies need to be applied to
reduce the VC. Reduction in the transmission intensity
results in fewer infections, which, as host immunity
declines, are more likely to be symptomatic and eventu-
ally this makes malaria control by drugs more effective.

Discussion
A mathematical model always represents a simplified ver-
sion of the true biological system. Complexity is traded
against robustness. Malaria modeling has proven to be a

useful tool for predicting the potential consequences of
malaria control strategies [11,35]. In this paper, a model
of suitable complexity to include all important features of
malaria transmission and the spread of anti-malarial drug
resistance in P. falciparum has been developed. The simi-
larities between this and a prior simulation model by
Cross are pronounced [36]. Both models looked far
beyond the host population to the parasite and vector
populations, however, this model has been modified to
have the dynamic system for transmission and acquisition
of host immunity (Figure 6).

The model predicts rapid spread of drug resistance in low
transmission settings, and slower spread in high transmis-
sion settings. This is consistent with epidemiological
observations. In low transmission settings a higher pro-
portion of potentially transmissible infections are
exposed to anti-malarial drugs and lower immunity

Change in malaria prevalence and incidence at different rates of coverage with ACTFigure 5
Change in malaria prevalence and incidence at different rates of coverage with ACT.
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increases the individual probability of treatment failure
and transmission of resistant parasites. This prediction is
also agreed by previous models [37-41]. The analysis in
some of these models, however, pointed to the ecological
explanation. For example, Koella and Antia (2003)
described the maintaining low level of chloroqine resist-
ance until the mid-70s could be due to the cost of resist-
ance [41]. Similarly, in Klein et al. (2008), it was suggested
that high level of clinical immunity create ecological ref-
uge for drug-sensitive parasites. This implied that resist-
ance is relatively easier to spread in a low transmission
setting compared to a high transmission setting [40]. In
low transmission settings, the spread of drug resistance
can be slowed by combination treatments in which two or
more effective drugs, which do not share resistance mech-
anisms, are combined. ACT is currently the combination
of choice. This switch to combination treatment needs to
be made early in the evolution of drug resistance with
high rates of coverage (> 80%) if the full benefits in terms
of delaying resistance are to be realized. This is the case

whether the monotherapy to which resistance arises is an
artemisinin derivative, or a non-artemisinin drug. The
structure of this model allows many other policy relevant
questions related to malaria control (vector controls, drug
adherence and intermittent presumptive treatments, etc.)
to be addressed. However, as a population based model,
the ability to assess the effects of individual variation and
the incorporation of important pharmacokinetic and
pharmacodynamic variables is limited.

In low transmission settings, increasing ACT coverage is
essential if the dramatic effects on malaria incidence
observed recently in north-west Thailand, KwaZulu Natal
and Zanzibar are to be extended to other areas [42,43].
Plasmodium falciparum malaria can be eliminated,
although micro-heterogeneities in transmission intensity
in remote areas will often ensure a protracted "end-game".
The impact of ACT on drug resistance in high transmis-
sion intensity settings is limited because the majority of
population is immune, many infections are asympto-

Schematic diagram of how immunity influences age-stratified likelihoods in the biological modelFigure 6
Schematic diagram of how immunity influences age-stratified likelihoods in the biological model.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

S

S

R

R

S

Inoculation rate R

S

R

S

R

S

“Infectiousness”

R=resistant to drug A

Asymptomatic

Symptomatic

Not infected Infected Monotherapy
(drug A)

Combination 
therapy   

(drug AB)

Cure

Fail

Cure

Fail

Parasite 
density

S=sensitive to drug A S

R

Not treated

Age-stratified 
susceptibility 

(Im2)

R

S

R

S

Vector
factors

Age-stratified 
probability of 
symptomatic 
attack (Im1)

Age-stratified 
risk of treatment 

failure (Im3)

Age-stratified 
parasite density 

(Im2)

Age-stratified 
duration of 

infection (Im2)

S

R

Page 9 of 12
(page number not for citation purposes)



Malaria Journal 2008, 7:229 http://www.malariajournal.com/content/7/1/229
matic, and therefore a smaller proportion of the infections
are treated. An important weakness in the understanding
of the epidemiology of malaria is the relative contribution
of asymptomatic and symptomatic infections to transmis-
sion. The smaller the contribution of asymptomatic infec-
tions, the greater is the effect of ACT in slowing resistance
spread. The main force driving the spread of drug resist-
ance in these circumstances is the chemoprophylactic
effect of presumptive therapy, which provides a selective
filter for resistant parasites. The model also predicts that at
low transmission intensities malaria transmission is read-
ily eradicated without the continued influx of infected
migrants. This has important implications for eliminating
malaria [44,45].

The question of whether it is possible to reduce malaria
transmission sufficiently to eliminate malaria eventually
in high malaria transmission areas remains unresolved
[8]. In high transmission settings, this model predicts that
high ACT coverage alone cannot reduce malaria transmis-
sion unless it is used together with vector-control meas-
ures i.e. use of insecticides and deployment of insecticide-
treated bed nets (ITN) and other materials to reduce the
force of infection. To overcome the obstacles to high cov-
erage of the un-affordability and un-availability of ACT, it
has been argued persuasively that provision of global sub-
sidies for co-formulated ACT must be provided at the top
of the distribution chain. This would facilitate considera-
bly the flow of drugs down to the end users through the
existing public and private sector distribution pathways,
with the ultimate objective of making effective anti-malar-
ial treatments available and affordable even to the poorest
people [46]. Stabilizing demand for ACT would also cre-
ate incentives for ACT production, resulting in lower
prices [7].

Conclusion
A major obstacle to achieving the benefits of high cover-
age is the current cost of the drugs. The outputs provided
by this model constitute a strong argument for a global
subsidy to make ACT generally available and affordable in
endemic areas. In addition, other interventions to reduce
malaria transmission and to control usage of anti-malarial
drugs may be required for slowing down the spread of
drug resistance in high transmission intensity settings.

The spread of resistant parasites presents a very real public
health risk and, in the absence of surveillance data, data-
driven theoretical models provide the best information to
assist policy making. This relatively complex model of
malaria transmission and drug resistance provides a good
framework for further development of the model to guide
decision-making of other public health policies.
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