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Text: Summary Paragraph 

 

Early embryogenesis involves a series of dynamic processes, many of which are currently 

not well described or understood. Aneuploidy and aneuploid mosaicism, a mixture of aneuploid 

and euploid cells within one embryo, in early embryonic development are principal causes of 

developmental failure.1,2  Here we show that human embryos demonstrate a significant rate of 

genetic correction of aneuploidy, or “genetic normalization” when cultured from the cleavage 

stage on day 3 (Cleavage) to the blastocyst stage on day 5 (Blastocyst) using routine in vitro 

fertilization (IVF) laboratory conditions.  One hundred and twenty-six human Cleavage stage 

embryos were evaluated for clinically indicated preimplantation genetic screening (PGS). Sixty-

four of these embryos were found to be aneuploid following Cleavage stage embryo biopsy and 

single nucleotide polymorphism (SNP) 23 chromosome molecular karyotype (microarray). Of 

these, 25 survived to the Blastocyst stage of development and repeat microarray evaluation was 

performed. The inner cell mass (ICM), containing cells destined to form the fetus, and the 

trophectoderm (TE), containing cells destined to form the placenta were evaluated. Sixteen of 25 

embryos (64%) [95% CI: 44-80%]) possessed diploid karyotypes in both the ICM and TE cell 

populations.  An additional three Blastocyst stage embryos showed genetic correction of the TE 

but not the ICM and one Blastocyst stage embryo showed the reverse. Mosaicism (exceeding 

5%), was not detected in any of the ICM and TE samples analyzed. Recognizing that genetic 

normalization may occur in developing human embryos has important implications for stem cell 

biology, preimplantation and developmental genetics, embryology, and reproductive medicine. 
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Text: Body 

Spontaneous miscarriages in human pregnancies have been well documented to be associated 

with chromosomal aneuploidy. 1, 2  In an attempt to minimize rates of aneuploidy in high risk 

pregnancies, single cells can be biopsied from early embryos and tested for their chromosome 

complement prior to uterine transfer. 3 This procedure, termed PGS, is generally performed on 

polar bodies or 1-2 totipotent blastomere cells biopsied from Cleavage stage embryos. 3 The 

traditional modality for evaluating the chromosomal makeup of these cells has been by 

fluorescence in situ hybridization (FISH) of 5-12 chromosomes.3  

 

Despite initial success, data have failed to demonstrate that PGS by FISH on Cleavage stage 

embryos improve pregnancy outcomes and the delivery of healthy babies. 4,5  Consequently, this 

approach has not become the recommended standard of care. 4,5  Potential reasons for the lack of 

demonstrated clinical benefit from karyotyping Cleavage stage embryos using FISH 

methodologies could be due to damage caused to the developing embryo during biopsy, testing 

of only a subset of chromosomes, or the presence of aneuploid mosaicism within the Cleavage 

stage embryo. Indeed, studies have documented aneuploid mosaicism rates of between 17%-50% 

in Cleavage stage embryos.6,7  

 

Since 2007, comparative genomic hybridization (CGH) of metaphase chromosomes, real-time 

polymerase chain reaction (PCR), or microarray platforms using single nucleotide polymorphism 

(SNP) or CGH have been introduced to simultaneously evaluate all 23 pairs of chromosomes. 

8,9,10,11  Use of 23 chromosome aneuploidy screening has been used to select embryos for uterine 

transfer with significant improvement in clinical pregnancy rates when compared to FISH 

methods that evaluate only between 5 and 12 chromosomes. 3, 11, 12, 13, 14 Recently, the 
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aforementioned technologies have been employed to evaluate Blastocyst stage TE cells without 

disturbing the ICM, with additional improvement in clinical pregnancy rates over testing at the 

Cleavage stage. 3, 11, 12, 13, 14  

 

PGS using 23 chromosome microarrays shows that aneuploidy is more commonly diagnosed 

when the biopsy is performed at the Cleavage stage compared to the Blastocyst stage. 15 The 

observation that cells derived from Blastocyst embryos have lower rates of aneuploidy than cells 

from Cleavage embryos is intriguing, especially given the well documented rate of confined 

placental aneuploid mosiacism observed following clinically performed chorionic villous 

sampling (CVS).16 These observations taken collectively led us to hypothesize that aneuploid 

cells within a mosaic Cleavage stage embryo are preferentially allocated to the TE during 

Blastocyst differentiation, resulting in genomic normalization of the ICM: the future euploid 

fetus.  

 

This study evaluated embryos from clinically indicated PGS cases, using 23 chromosome 

microarrays, with biopsy performed at the Cleavage stage of development. All embryos were 

then cultured using standard IVF conditions to allow development to the Blastocyst stage. 

Blastocyst embryos that had aneuploid PGS results at the Cleavage stage were then dissected 

into TE and ICM cell populations.  Immunocytochemistry using anti-oct3/4 to identify the ICM 

17 and anti-cdx2 to identify the TE cells 18 confirmed that the ICM and TE samples contained the 

appropriate cell type. The TE and ICM DNA samples were then independently amplified and 

evaluated via microarray.  Details are provided in the Methods Section. 
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Twelve patients were enrolled (average maternal age of 37 years with a range of 21-44) and 126 

Cleavage stage embryos were evaluated. Approximately 270,000 to 285,000 SNPs were 

genotyped per sample analyzed to generate a molecular karyotype. (Fig. 1) The microarray 

fluorescence hybridization efficiency and the genotype SNP call rate (the ability to detect 

specific alleles within a chromosome) exceeded 90% for all Cleavage stage embryos and 99% 

for all Blastocyst (ICM and TE) samples.  

 

Of 62 Cleavage stage embryos with euploid karyotypes, 43 (69.4%) developed to the Blastocyst 

stage.  A euploid karyotype obtained at the Cleavage stage was predictive of progression to the 

Blastocyst stage with a positive predictive value of 69.4% [95% CI: 57-79%] and a negative 

predictive value of 60.9% [95% CI: 49-72%]. Embryos that developed to Blastocysts with a 

corresponding molecular euploid karyotype were clinically considered for transfer or 

cryopreservation and therefore could not be subjected to further molecular karyotypic evaluation. 

Only 25 of 64 (39.1%) embryos with an aneuploid karyotype at the Cleavage stage progressed to 

the Blastocyst stage. This is significantly less than progressed to the Blastocyst stage with 

euploid karyotypes at Cleavage stage biopsy (p=.0007 by Fisher’s exact test). Intriguingly, 16 of 

the 25 (64%) Blastocyst embryos showed euploid karyotypes in both the ICM and TE.  Four 

(16%) embryos had euploid-aneuploid discordance between the ICM and TE. Only 5 (20%) 

Blastocyst stage embryos demonstrated aneuploid karyotypes in both the ICM and TE. Of note, 

for all embryos evaluated, the karyotypes at the Cleavage stage differed from the corresponding 

karyotypes of the ICM and TE obtained from the Blastocyst stage. (Table 1, Fig. 2)  

 

Aneuploidy for chromosomes 1 through 12 was common at the Cleavage stage, occurring in 17 

of the 25 abnormal embryos. However, in only 3 of these 17 embryos, did these abnormalities 
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persist in the TE or ICM at the Blastocyst stage.  Aneuploidy for chromosomes 1-12  are among  

the least frequently found in routine karyotypes from spontaneous abortion products of 

conception.   

 

Mosaicism was not observed in any of the ICM or TE samples evaluated [95% CI: 0-16% for 

each sample]. (Fig. 1) However, our microarray analysis is unable to detect mosaicism at levels 

below 5% (See Methods Section). Therefore, our results can not completely discount the 

possibility of low levels of mosaicism below this detection threshold.  

 

There are several plausible explanations that could account for the dramatically different genetic 

observations seen between Cleavage and Blastocyst stage embryos in this study. Some posit that 

cytogenetic correction results from the stochastic loss of the extra chromosome, i.e.: trisomy 

rescue, or the active allocation of aneuploid cells to the TE during early embryogenesis. 19 These 

mechanisms do not explain our results as many of the corrected aneuploidies involved multiple 

chromosomes that would be unlikely to have been rectified with simple mechanisms such as 

single chromosome rescue. Furthermore, mosaicism was not observed in any of the TE samples 

evaluated.  

 

Plausible explanations for the genetic normalization observed in this study must account for the 

fate of aneuploid cells within the Cleavage stage embryo. It remains possible that a small number 

of aneuploid cells are preferentially relegated to the TE resulting in low level mosaicism below 

our detection threshold of 5% (See Methods Section). However, the proportion of detected 

aneuploidy in the TE was lower (rather than higher) compared to the ICM cell populations. As 

mosaicism is known to exist in Cleavage stage embryos,6,7 it is also possible that the removal of 
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the only abnormal cell from the mosaic embryo at Cleavage stage leaves only euploid cells 

behind. However, if only 1 cell in a Cleavage stage embryo were aneuploid, the chance of 

repeatedly removing only this cell from multiple embryos is exceedingly low. Indeed, our data 

shows that Cleavage stage embryos, diagnosed via a single cell molecular karyotype, as euploid 

progressed to the Blastocyst stage at a rate of 69.4% compared with only 39.1% of aneuploid 

embryos. It is possible that some level of mosaicism is common among developing embryos. 

One could postulate that low levels of mosaicism translate into a higher rate of development to 

the blastocyst stage. Our data could be consistent with this hypothesis given that, if mosaicism 

was present in many of the embryos evaluated, one would be more likely to have an aneuploid 

cell obtained during biopsy compared to embryos with higher levels of euploidy.  

 

Our data suggests that a possible mechanism for the embryo correction seen in this study is the 

loss of aneuploid cells within developing mosaic Cleavage stage embryos. Indeed, most of the 

corrections observed would be extremely difficult to rationalize by a mechanism that accounts 

for the correction of multiple chromosomes. Rather, it appears likely that there may exist in early 

human embryonic development a drive toward normalization in which aneuploid cells are 

systematically marginalized. Aneuploid cells within the embryo may undergo apoptosis, thereby 

leaving euploid cells in the surviving Blastocyst stage embryo. In aneuploid cells, genes such as 

those coding for the checkpoint proteins Bub and Mad could initiate apoptotic mechanisms rather 

than those that lead to mitotic cell division. 20 Another possibility, although unlikely, is that 

aneuploid cells may replicate less efficiently than euploid cells resulting in their eventual loss 

within the developing embryo. There could also be as yet unidentified mechanisms that correct 

aneuploidy during early embryologic development. It is also conceivable that correction of 
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aneuploidy in a subset of cells within Cleavage stage embryos is a normal event in early 

embryogenesis.  

 

The concept of embryo normalization has been postulated previously. 21, 22 The results of these 

previous studies have suggested that embryo normalization may exist, however, evidence for this 

has been indirect or incomplete, and therefore inconclusive.  Previous PGS studies, with FISH or 

CGH, on cells obtained from embryo biopsy comparing single cells from Cleavage stage 

embryos versus a few to several TE cells from Blastocyst stage embryos failed to show genetic 

normalization using standard IVF culture conditions. 13, 23, 24  Other studies had significant 

experimental limitations including but not limited to the use of FISH technology that evaluated 

only 9-14 chromosomes, evaluating only a small (less than 10 cells) sample size from developing 

embryos, failing to differentiate the ICM from the TE in evaluating Blastocyst cells, failing to 

discriminate between different stages of embryologic development, and using laboratory 

conditions not representative of standard IVF culture conditions including the use of growth 

factors and the culture of embryos beyond 6 days of development. 21, 22 Our study is the first 

demonstration of genetic normalization between the Cleavage stage and Blastocyst 

differentiation in human embryos by full genomic karyotypic analysis. Our claim is supported by 

recently described time lapse embryologic videography that documents morphologic 

normalization of developing embryos. 25   

 

The genetic normalization observed in this study has significant implications in numerous 

scientific fields. A current challenge within stem cell biology is the high rate of acquired 

aneuploidy that is observed with cell colonies in extended culture. 26, 27, 28, 29 Dissecting the 

mechanism underlying the normalization observed in this study in a stem cell system would be 
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highly useful and may be applied to cell-based therapeutic approaches using stem cells. An 

understanding of such in vitro reparative mechanisms in developing embryos could potentially 

add to current strategies for gene repair and stem cell transplant therapy. These mechanisms 

could also have implications on future therapies in the field of oncology in which aneuploid 

tumor cells experience unregulated growth. Furthermore, our findings could potentially effect 

management of patients undergoing infertility care by reassessing the disposition of abnormal 

Cleavage stage aneuploid embryos. Finally, this data also has important implications for 

preimplantation and developmental genetics, and embryology. 
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Methods Summary 

IRB approval and patient consent was obtained for couples undergoing IVF with PGS. Cleavage 

stage embryos were biopsied using laser or acid tyrodes, and underwent clinical microarray 

analysis.30 Single cells were subjected to a modified multiple displacement amplification 

protocol followed by a second round of whole genome amplification. Approximately 200,000  

ng of amplified DNA was loaded onto Illumina Infinium high-density HumanCytoSNP-12 DNA 

beadchips (Illumina, San Diego, CA) and routine microarray analysis and scanning was 

performed by an Illumina iScan BeadArray reader. Data was analyzed with Illumina 

KaryoStudio and GenomeStudio software. All final molecular karyotypic analyses were 

performed with the reader, the laboratory director, blinded to patient names or controls.  All 

interpretations were repeated four times.   

 

During embryo growth and development between Cleavage stage and Blastocyst stage, all 

embryos remained in a standard commercially available media.  All Blastocyst stage embryos 

with euploid Cleavage stage results either underwent uterine transfer or were cryopreserved for 

later clinical use. Blastocyst stage embryos grown from embryos with aneuploid Cleavage stage 

results underwent surgery to separate the ICM from the TE.  Each cell type was confirmed by 

immunocytochemistry using anti-oct3/4 for the ICM and anti-cdx2 for the TE. An average of 

100 TE cells and a range of 40 ICM cells to the entire ICM cell population were obtained from 

each embryo for microarray analysis. These samples then underwent separate DNA 

amplification, microarray analyses, and scanning as described above. Our laboratory identifies 

mosaic cell populations at a level of 5% (See Methods Section).  
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All coded and de-identified samples were kept by an individual not responsible for molecular 

karyotype interpretation. Molecular data was analyzed in a blinded manner as described above. 

The samples were then de-identified and data tabulated.  Binomial confidence intervals for 

proportions were calculated by the modified Wald method. 
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Text: Methods Section 

 

Details Materials and Methods for the Data Described in this Paper All patients underwent 

standard in vitro fertilization (IVF) and microarray PGS secondary to repeat pregnancy loss 

(RPL) or unexplained infertility. IRB approval was obtained and all couples were consented. All 

agreed to donate their genetically abnormal embryos to research with signed informed consent.  

 

All Cleavage stage embryos were biopsied and underwent clinical microarray analysis. To 

accomplish this, an embryo biopsy was performed either by ZILOS-tk™ laser (Hamilton Thorne 

Biosciences Inc., Beverly, MA) or by acid tyrodes and one cell was removed from each embryo 

for genetic testing.  Each single blastomere was placed into an eppendorf tube of 5 ul 0.2N 

potassium hydroxide (KOH) DNA stabilizing buffer. 

 

All single cells were first subjected to a modified multiple displacement amplification protocol 

using phi 29 DNA polymerase followed by a second round of whole genome amplification. 

Approximately 200,000 ng of amplified DNA was loaded onto Illumina Infinium high-density 

HumanCytoSNP-12 DNA beadchips (Illumina, San Diego, CA) containing 301,232 genetic 

markers and routine microarray analysis and scanning was performed by an Illumina iScan 

BeadArray reader. 

 

Data interpretation included the comparison of raw blastomere DNA genotypes to an established 

embryonic cell normalized DNA data set.  Data was analyzed with Illumina GenomeStudio and 

KaryoStudio software. All final molecular karyotypic analysis was performed with the reader, 

the laboratory director, blinded to patient names or controls.  All interpretations were repeated 
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four times.  Clinical reports were generated and transmitted to the appropriate clinicians and 

embryologists.  

 

During embryo growth and development between Cleavage stage and Blastocyst stage following 

oocyte fertilization, all embryos remained in a standard commercially available media.  All 

Blastocyst stage embryos with euploid Cleavage stage results either underwent uterine transfer or 

were cryopreserved. Blastocyst stage embryos grown from aneuploid Cleavage stage embryos 

underwent surgery to separate the ICM from the TE.  An average of 100 TE cells and a range of 

40 ICM cells to the entire ICM cell population were obtained from each embryo and placed in 

separate eppendorf  tubes containing DNA stabilizing buffer (as described above). 

Immunocytochemistry was performed on an aliquot of cells from each tube using anti-oct3/4 to 

confirm the identity of the ICM and anti-cdx2 to confirm the TE cells. DNA amplification, 

microarray analyses and scanning was then performed as described above. Embryos that failed to 

develop to the Blastocyst stage were unable to be analyzed due to high levels of cellular 

fragmentation and embryo degeneration. 

 

All coded and de-identified samples were kept by an individual not responsible for molecular 

karyotype interpretation. The Blastocyst stage ICM and TE microarray interpretations were 

performed blinded to all corresponding patient or embryo information. These interpretations 

were repeated by the same blinded reader four separate times, confirming the integrity of the 

results with all data analyzed. The samples were then de-identified and data tabulated.  Binomial 

confidence intervals for proportions were calculated by the modified Wald method. 
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Detailed Materials and Methods Describing Single Cell Microarray Validation and Clinical 

PGS Results Amplification of DNA from small cell populations, particularly single cells, is 

potentially problematic. Potential sources of laboratory error may be derived though 

imperfections in the amplification process, the microarray experimental protocol, and visual 

interpretation of molecular karyotypic data. Before launching our clinical PGS microarray 

program, our methodology was validated by performing a blinded evaluation that compared 10-

probe FISH results with our 23 chromosome SNP microarray protocol. Following this successful 

validation, we launched our clinical PGS program. We have performed clinical microarray PGS 

on approximately three thousand embryos from over 300 IVF PGS cycles with highly successful 

results. 

 

Development and Validation of Single Cell Microarray Protocol In our development of 

single cell microarray analysis, a DNA amplification protocol was optimized that does not 

include polymerase chain reaction (PCR) technology as this introduces an unacceptable level of 

artifact and compromises diagnostic integrity. We developed our 23 chromosome SNP 

microarray protocol to include a modified multiple displacement amplification using phi 29 

polymerase followed by a whole genome amplification protocol on a single cell. Additionally, 

extensive bioinformatic analysis was used to create an embryonic SNP genotype normalized data 

set. This data set was then compared against clinical samples to identify normal and abnormal 

SNP genotypes in individual embryonic cells.  

 

 Prior to launching our clinical PGS program, after which time the experiments described in this 

manuscript were performed, our laboratory underwent an extensive validation process on 802 
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cells from 110 cleavage stage embryos that were evaluated clinically by 10-probe FISH for PGS. 

30 Aneuploid embryos were then donated to research under informed consent and the remaining 

single cells within the embryos evaluated by 23 chromosome SNP microarray analysis. Analyses 

of blastomeres and cell line controls showed, in many cases, a genomic coverage > 98%, a 

heterozygous allele detection rate > 90% and a microarray detection rate and genotype call rate > 

90%.  A 23 chromosome molecular karyotype was obtained from over 99% of all blastomeres 

and all 31 cell lines. The results from this validation data show that in this cohort of 110 

abnormal embryos by Cleavage stage FISH, the vast majority contained some level of 

mosaicism. This may not be representative of studies conducted with much larger sampling size. 

Details from this validation data set are available in the supplemental information (SI) section of 

this paper.  

Clinical 23-Chromosome PGS Microarray Data Following this validation study, we launched 

our 23 chromosome SNP microarray clinical PGS program in December of 2009. To date, we 

have performed clinical PGS, generally in patients diagnosed with recurrent pregnancy loss, 

using 23 chromosome SNP microarrays on 2,976 embryos from 317 clinical IVF cycles. 2,704 

(90.8%) of these embryos, derived from 249 (78.5%) IVF cycles, were at Cleavage stage of 

development when biopsy was performed. Conversely, 272 (9.2%) of embryos, derived from 68 

(21.5%) IVF cycles, were at the Blastocyst stage when biopsy was performed. The maternal ages 

were age <35 (20%), age 35-37 (29%), age 38-40 (39%), and age >40 (12%). The clinical 

pregnancy rate per transfer in the Cleavage stage embryo group was 65%. The clinical pregnancy 

rate in the Blastocyst stage embryo group (86%) was significantly higher than the Cleavage stage 

embryo group (p <.05). However, the miscarriage rates were not statistically different between 

the Cleavage stage embryo (9%) and Blastocyst stage embryo (6%) groups.  
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Mosaicism Detection The approximate percentage of monosomic or trisomic cells within a 

mosaic cell population can be determined by evaluating the raw genotype data for each 

chromosome analyzed.  Mosaic monosomy is confirmed when  the log R  ratio shows an 

intermediate reading along the entire length of a chromosome as compared to a cell population 

with all cells missing the tested chromosome.  Additionally, the B allele frequency will shift 

depending upon the percent of the genotype of the remaining allele.  For mosaic trisomies, the 

log R ratio will show an increase in copy number and the B allele frequency will shift depending 

upon the genotype of the remaining allele.  If shifts are observed in the b allele frequency but 

without alterations in the smooth log R ratio, this indicates mosaicism and uniparental disomy. 

Our lab has tested > 40 aneuploid mosaic cell populations and we detect monosomic and / or 

trisomic mosaicism at the level of 5%.  
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Figure Legends 

Figure 1 

Title: 23 Chromosome SNP Microarray 

This figure shows a normal and an abnormal molecular karyotypic sample reading 
using 23 chromosome SNP microarrays.   

1A  shows the normal diploid diagnostic reading obtained from an ICM cell population 
for chromosome #1. Normal AA, AB and BB alleles and a 0 reading for the smooth log 
R ratio is observed. 

1B represents the normal diploid reading of chromosome 12, from a TE cell population. 
Normal AA, AB and BB alleles and a 0 reading for the smooth log R ratio is observed. 

For both 1A and 1B, no shifts are observed in the smooth log R ratio or B allele 
frequency, therefore no mosaicism is identified by our laboratory threshold of 5% of 
cells analyzed (see detailed methods section for a description of mosaicism). 

1C demonstrates X/XX chromosome mosaicism and uniparental disomy from an 
amniocentesis case not included in this study. Evident are shifts in the b allele 
frequency. In this case, no significant shift is observed in the smooth log R ratio, 
indicating uniparental disomy. The diagnosis of this cell population is approximately 
90% X bearing cells and approximately 10% XX bearing cells. This image has been 
included to illustrate our ability to identify low level mosaicism within a cell 
population.  

1D demonstrates a monosomy reading of chromosome 18, from a Cleavage stage 
embryo. A and B alleles are observed without AB alleles represented. A significant 
shift in the smooth log R ratio is observed, consistent with the monosomy karyotype. 

Figure 2 

Title: Development of Evaluated Embryos 

This figure accounts for fate of all of the embryos included in the study. Molecular 
karyotypes were obtained at the Cleavage stage for all embryos. Cleavage stage 
embryos with a euploid diagnosis that progressed to the Blastocyst stage were not 
subjected to further biopsy or intervention and were available for uterine transfer or 
cryopreservation. Cleavage stage embryos with an aneuploid diagnosis that progressed 
to the Blastocyst stage underwent embryo surgery at which point repeated molecular 
karyotypes were obtained from the ICM and TE cell populations. 
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Table 1: Human Embryo Correction from Cleavage to Blastocyst Stage 
 

Embryo # Cleavage Stage ICM from Blastocyst TE from Blastocyst 

1 48, XX, +9, +16 46,XX 46,XX 
2 69, XXY 46, XY 46, XY 
3 47, XY, +22 46, XY 46, XY 
4 45, XX, -9 69, XXX 46, XX 
5 49, XX, +4, +9, +17 46, XX 46, XX 
6 45, XX, -15 46, XX 46, XX 
7 36, XX, -1, -4, -7, -8, -10, -

11, -15, -16, -18, -19 
46, XX 46, XX 

8 48, XX, +16, +20 47, XX,+16 47, XX,+16 
9 49, X, +1, +2, +3, +4, +5, 

+6, +8, -9, +10, +12, +15, -
16, -19, -20, -21, -22 

46, XX 46, XX 

10 49, XXY, +1, +3, +4, -6, -
9, +10, +11, -13, -15, +21 

47, XY,+22 47, XY,+22 

11 52, XXX, +4, +7, +8, +12, 
+14 

57, XXX,+1,+2,+3,+5, +6, +8, 
+10, +11, +12, +16 

46, XX 

12 48, XX, +8, +9 46, XX 46, XX 
13 48, XY, +15, +17 47, XY, +15 47, XY, +15 
14 48, XX, +1, -8, +21, +22 46, XX 46, XX 
15 49, XX, +3, +9, +18 45, XX, -22 45, XX, -22 
16 48, XX, +9, +22 46, XX 46, XX 
17 50, XY, +1, +8, +16, +18 46, XY 46, XY 
18 63, XXY, +1, +2, +3, +4, 

+6, +7, +8, +10, +11, +12, 
+13, +14, +16, +17, +18, 

+20 

62, XY, +1, +2, +3, +4, +6, 
+7, +9, +10, +11, +12, +13, 

+14, +15, +17, +18, +20 

46, XY 

19 48, XY, +16, +22 45, XY, -16 45, XY, -16 
20 47, XX, +17 46, XX 46, XX 
21 48, XX, +1, +2 46, XX 46, XX 
22 50, XX, +1, +2. +5, +22 46, XX 46, XX 
23 48, XY, +3, +19 46, XY 46, XY 
24 47, XX, +13 46, XX 46, XX 
25 47, XY, +21 46, XY 45, XY, -21 

 
This table shows the karyotypes of all cleavage stage blastomere cells and their 

corresponding blastocyst stage TE and ICM. The euploid karyotypes are shaded in 

Grey. The aneuploid karyotypes are unshaded.  
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A) Euploid Chromosome 1
[Blastocyst Stage: ICM]

B) Euploid Chromosome 12
[Blastocyst Stage: TE]

C) X/XX Mosaicism
[Taken from Amniocytes-
Not from this Data Set]

Figure 1

23-Chromosome SNP Microarray 

D) Monosomy Chromosome 18
[Cleavage Stage]

 
 
 

126 Cleavage 
Stage Human 

Embryos
From 12 Patients

62 (49.2%) Euploid
Cleavage Stage

64 (50.8%) Aneuploid
Cleavage Stage

43 (69.4%) 
Developed to 

Blastocyst Stage

19 (30.6%) 
Developmentally 

Arrested and 
Discarded

25 (39.1%) 
Developed to 

Blastocyst Stage

39 (60.9) 
Developmentally 

Arrested and 
Discarded

16 (64%) Euploid
ICM and TE

5 (20%) 
Aneuploid ICM 

and TE

1 (4%) Euploid
ICM and 

Aneuploid TE

3 (12%) Euploid
TE and 

Aneuploid ICM

Pregnancy Rate 
of (59.7%)

Figure 2

Development of Evaluated Embryos
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