Efficient learning in
 Approximate Bayesian Computation

Mohammed Sedki, Pierre Pudlo

Université Montpellier 2

ABC in London: May 5th 2011

How to reduce computation time in ABC ?

$$
\pi_{\varepsilon}\left(\boldsymbol{\theta} \mid \mathbf{y}_{\text {obs }}\right) \propto \pi(\boldsymbol{\theta}) \ell(\mathbf{z} \mid \boldsymbol{\theta}) \mathbf{1}\left\{d\left(\mathbf{z}, \mathbf{y}_{\text {obs }}\right) \leq \varepsilon\right\}
$$

What is time consuming?

- simulations from the model

What is inefficient with acceptation-rejection algorithm?

- Sending $\boldsymbol{\theta}$'s everywhere with prior distribution
- Difficult to get a simulated \mathbf{z} near the observed $\mathbf{y}_{\text {obs }}$

The idea

- Avoid the many rejected simulations when $\boldsymbol{\theta} \sim$ prior
- If parameter $\boldsymbol{\theta} \sim$ posterior: easier to have $d\left(\mathbf{z}, \mathbf{y}_{\text {obs }}\right)$ small
\Longrightarrow Introduce a temporal dimension (Sequential techniques with T iterations) to learn gradually the posterior

Sequential algorithms

Litterature

(1) ABC-Partial Rejection Control (PRC) of Sisson, Fan and Tanaka (PNAS 2007, 2009)
(2) ABC-Population Monte Carlo (PMC) of Beaumont, Cornuet, Marin and Robert (Biometrika 2009)
(3) Parallel sequential ABC of Toni, Welch, Strelkowa, Ipsen and Stumpf (JRSI, 2009)
(4) ABC-Sequential Monte Carlo (SMC) of Del Moral, Doucet and Jasra (2009)
(5) Drovandi and Pettitt (Biometrics, 2011)

Main difficulty: How to choose the tolerance thresholds

$$
\varepsilon_{1} \geq \cdots \geq \varepsilon_{T}
$$

```
over T iterations?
```


None of them are really satisfactory!

Precedings : doi:10.1038/npre.2011.5962.1 : Posted 13 May

Iteration t : from ε_{t} to ε_{t+1}

Input: $\left(\boldsymbol{\theta}_{i}^{t}, \mathbf{z}_{i}^{t}\right), i=1, \ldots, N$ distributed according to $\pi_{\varepsilon_{t}}\left(\cdot \mid \mathbf{y}_{\text {obs }}\right)$

- Order the sample: $d\left(\mathbf{z}_{1}^{t}, \mathbf{y}_{\text {obs }}\right) \leq \cdots \leq d\left(\mathbf{z}_{N}^{t}, \mathbf{y}_{\text {obs }}\right)$
- Acception-Rejection: a proportion $\alpha=\alpha_{t+1}$ is kept and set $\varepsilon_{t+1}=d\left(\mathbf{z}_{\alpha N}^{t}, \mathbf{y}_{\text {obs }}\right)$
- Copying: duplicate to get a sample of size N
- MCMC: Apply one step of the Markov Chain and set $\hat{\rho}_{t+1}=$ proportion of accepted movements

Two pitfalls

α_{t+1} too small $\Longrightarrow \hat{\rho}_{t+1} \approx 0 \quad$ too many duplications α_{t+1} too large $\Longrightarrow \varepsilon_{t+1}$ too large \Longrightarrow too many iterations

Trade-off: α_{t+1} is adapted on the $1^{\text {st }}$ copy s.t. $\alpha_{t+1}+\rho_{t+1}=1$

Adaptive scheme

Calibration

Increase α from $1 / L$ to 1 by $1 / L$
Compute on copy $\sharp 1$
$>\varepsilon_{t+1}=d\left(\mathbf{z}_{[\alpha N]}^{(t)}, \mathbf{y}_{\text {obs }}\right)$
$\Rightarrow \operatorname{proposed}\left(\widetilde{\boldsymbol{\theta}}_{i}, \mathbf{z}_{i}\right)$'s

- $\rho_{t+1}=$ proportion of pairs that have moved during MCMC

Until $\alpha+\rho_{t+1} \geq 1$.

When α increases,

- Old copy $\sharp 1$ is nested into the new one
- Many of the proposed $\left(\widetilde{\boldsymbol{\theta}}_{i}, \mathbf{z}_{i}\right)$ are already computed

Adaptive scheme

Calibration

Increase α from $1 / L$ to 1 by $1 / L$
Compute on copy $\sharp 1$
$>\varepsilon_{t+1}=d\left(\mathbf{z}_{[\alpha N]}^{(t)}, \mathbf{y}_{\text {obs }}\right)$
$\Rightarrow \operatorname{proposed}\left(\widetilde{\boldsymbol{\theta}}_{i}, \mathbf{z}_{i}\right)$'s

- $\rho_{t+1}=$ proportion of pairs that have moved during MCMC

Until $\alpha+\rho_{t+1} \geq 1$.

When α increases,

- Old copy $\sharp 1$ is nested into the new one
- Many of the proposed $\left(\widetilde{\boldsymbol{\theta}}_{i}, \mathbf{z}_{i}\right)$ are already computed

At the end

Apply MCMC on the other copies

Get a first rough approximation of the posterior
Draw many pairs $\left(\boldsymbol{\theta}_{i}, \mathbf{z}_{\boldsymbol{i}}\right)$ from $\pi(\boldsymbol{\theta}) \ell(\mathbf{z} \mid \boldsymbol{\theta})$
until $\quad \operatorname{var}($ kept $) \ll \operatorname{var}($ prior $)$
where $\quad \operatorname{var}($ kept $)=$ variance of the N closest to $\mathbf{y}_{\text {obs }}$

Initialization and stopping rule

```
Get a first rough approximation of the posterior
Draw many pairs ( }\mp@subsup{\boldsymbol{0}}{\boldsymbol{i}}{},\mp@subsup{\mathbf{z}}{\boldsymbol{i}}{})\mathrm{ from }\pi(\boldsymbol{0})\ell(\mathbf{z}|\boldsymbol{0}
until var(kept)<<var(prior)
where var(kept) = variance of the N closest to yobs
```


Warning

```
When it is impossible, prior \(\approx\) posterior
\(\longrightarrow\) stop there and do not run the sequential algorithm!
```


Initialization and stopping rule

Get a first rough approximation of the posterior

```
Draw many pairs \(\left(\boldsymbol{\theta}_{i}, \mathbf{z}_{i}\right)\) from \(\pi(\boldsymbol{\theta}) \ell(\mathbf{z} \mid \boldsymbol{\theta})\)
until \(\quad \operatorname{var}(k e p t) \ll \operatorname{var}(\) prior \()\)
where \(\quad \operatorname{var}(\) kept \()=\) variance of the \(N\) closest to \(y_{\text {obs }}\)
```


Warning

```
When it is impossible, prior \(\approx\) posterior \(\longrightarrow\) stop there and do not run the sequential algorithm!
```


Stop rule of the sequential algorithm

```
stop at time \(T\) when
average acceptance probability in \(\mathrm{H}-\mathrm{M}: \rho_{T} \leq 0.1\)
```


Precedings : doi:10.1038/npre.2011.5962.1 : Posted 13 May
$\sum_{\Gamma}^{\text {© }} \quad$ The End

