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How to reduce computation time in ABC?

πε(θ|yobs) ∝ π(θ) `(z|θ) 1
{
d(z, yobs) ≤ ε

}
What is time consuming?

I simulations from the model

What is inefficient with acceptation-rejection algorithm?

I Sending θ’s everywhere with prior distribution

I Difficult to get a simulated z near the observed yobs

The idea

I Avoid the many rejected simulations when θ ∼ prior

I If parameter θ ∼ posterior: easier to have d(z, yobs) small

=⇒ Introduce a temporal dimension (Sequential techniques
with T iterations) to learn gradually the posterior
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Sequential algorithms
Litterature

(1) ABC-Partial Rejection Control (PRC)
of Sisson, Fan and Tanaka (PNAS 2007, 2009)

(2) ABC-Population Monte Carlo (PMC)
of Beaumont, Cornuet, Marin and Robert (Biometrika 2009)

(3) Parallel sequential ABC
of Toni, Welch, Strelkowa, Ipsen and Stumpf (JRSI, 2009)

(4) ABC-Sequential Monte Carlo (SMC)
of Del Moral, Doucet and Jasra (2009)

(5) Drovandi and Pettitt (Biometrics, 2011)

Main difficulty: How to choose the tolerance thresholds
ε1 ≥ · · · ≥ εT

over T iterations?

None of them are really satisfactory!
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ABC-Sequential Monte Carlo sampler

Assume: ε1 ≥ · · · ≥ εT are fixed

At each iteration 1 ≤ t ≤ T

I from a sample of (θ
(t)
i , z

(t)
i ) (i = 1, . . .N)

distributed according to πεt (·|yobs)

(1) pick one of them which satisfies d(z
(t)
i , yobs) ≤ εt+1

(2) move it according to a MCMC kernel πεt+1(·|yobs)-invariant

I return to step (1) until we end with a new sample of size N:

(θ
(t+1)
i , z

(t+1)
i ) (i = 1, . . .N)

distributed according to πεt+1

New adaptive scheme

I how to choose ε1 ≥ ε2 ≥ · · · ≥ εT ?

I calibrated for time saving
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An ABC–Hastings-Metropolis
πεt+1

(·|yobs)-invariant
Assume: prior = uniform on Θprior.

Let θt ∼ πεt+1(·|yobs) and

(R-W) Draw θ̃ ∼ N (θt ,Σ), z̃|θ̃ ∼ `(z|θ̃)

(A-R) Set θt+1 =

{
θ̃ if d(z̃, y) ≤ εt+1, and θ̃ is in Θprior

θt otherwise.

Proposition (Majoram et al., 2003)

Then, whatever Σ, θt+1 ∼ πεt+1(·|yobs)

Notation

I average acceptance probability

ρt+1 := Pπεt+1 (·|yobs)

(
θt 6= θt+1

)
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Iteration t: from εt to εt+1

Input:
(
θt
i , z

t
i

)
, i = 1, . . . ,N distributed according to πεt (·|yobs)

I Order the sample: d(zt1, yobs) ≤ · · · ≤ d(ztN , yobs)

I Acception-Rejection: a proportion α = αt+1 is kept
and set εt+1 = d(ztαN , yobs)

I Copying: duplicate to get a sample of size N

I MCMC: Apply one step of the Markov Chain
and set ρ̂t+1 = proportion of accepted movements

Two pitfalls
αt+1 too small =⇒ ρ̂t+1 ≈ 0 =⇒ too many duplications
αt+1 too large =⇒ εt+1 too large =⇒ too many iterations

Trade-off: αt+1 is adapted on the 1st copy s.t. αt+1 + ρt+1 = 1
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Adaptive scheme

Sample at time t

Ordering 

Rejected 

α=1/5

Accepted

Copy # 1      Copy # 2      Copy # 3     Copy # 4        Copy # 5 

Resampling

(θ, x )                                                                     

R WR W R WR W R W R W  R W

Sample at time t+1

ρA R A R A R A R A R

Calibration
Increase α from 1/L to 1 by 1/L

Compute on copy ] 1

I εt+1 = d(z
(t)
[αN], yobs)

I proposed (θ̃i , zi )’s

I ρt+1 =proportion of pairs that have
moved during MCMC

Until α + ρt+1 ≥ 1.

When α increases,
• Old copy ]1 is nested into the new one
• Many of the proposed (θ̃i , zi )
are already computed

At the end
Apply MCMC on the other copies
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                      Rejected 
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Initialization and stopping rule

Get a first rough approximation of the posterior

Draw many pairs (θi , zi ) from π(θ)`(z|θ)
until var(kept) � var(prior)

where var(kept) = variance of the N closest to yobs

Warning
When it is impossible, prior ≈ posterior
−→ stop there and do not run the sequential algorithm!

Stop rule of the sequential algorithm
stop at time T when
average acceptance probability in H-M: ρT ≤ 0.1
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Illustration in population genetics

Invasion of Europa by the honeybee

Hence, a coalescence process
on each branch of the
following scenario:
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Efficiency on the illustration
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Time factor =

Numb. of simu. in classical ABC

Numb. of simu in our proposal

with

I equal final tolerance threshold

I equal (effective) sample size
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The End

Any questions ?
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Calibration of Σ in MCMC

Remember: prior = uniform on Θprior.

Let θt
j ∼ πεt+1(·|yobs) and

(R-W) Draw θ̃ ∼ N (θt
j ,Σt), z̃|θ̃ ∼ `(z|θ̃)

(A-R) Set θt+1
j =

{
θ̃ if d(z̃, y) ≤ εt+1, and θ̃ is in Θprior

θt otherwise.

(1) Compute Σprior, variance of prior distr.

(2) Find β such that Pθ∼π

(
N (θ, βΣprior ) ∈ Θprior

)
≈ 0.6

Then, Σt = β × Var (θt
j )
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