Efficient learning in Approximate Bayesian Computation

Mohammed Sedki, Pierre Pudlo

Université Montpellier 2

ABC in London: May 5th 2011

(日) (個) (目) (目) (目) (目)

Efficient learning in Approximate Bayesian Computation

Mohammed Sedki, Pierre Pudlo

Université Montpellier 2

ABC in London: May 5th 2011

How to reduce computation time in ABC?

$$\pi_arepsilon(oldsymbol{ heta}|\mathbf{y}_{\mathsf{obs}}) \propto \pi(oldsymbol{ heta})\,\ell(\mathsf{z}|oldsymbol{ heta})\,\mathbf{1}ig\{d(\mathsf{z},\mathsf{y}_{\mathsf{obs}}) \leq arepsilonig\}$$

What is time consuming?

simulations from the model

What is **inefficient** with acceptation-rejection algorithm?

- Sending θ 's everywhere with prior distribution
- Difficult to get a simulated z near the observed y_{obs}

The idea

- Avoid the many rejected simulations when $\theta \sim$ prior
- If parameter $\theta \sim$ posterior: easier to have $d(\mathbf{z}, \mathbf{y}_{obs})$ small

Introduce a temporal dimension (Sequential techniques with T iterations) to learn gradually the posterior

Sequential algorithms

Litterature

- (1) ABC-Partial Rejection Control (PRC)
 - of Sisson, Fan and Tanaka (PNAS 2007, 2009)
- (2) ABC-Population Monte Carlo (PMC)
 - of Beaumont, Cornuet, Marin and Robert (Biometrika 2009)
- (3) Parallel sequential ABC
 - of Toni, Welch, Strelkowa, Ipsen and Stumpf (JRSI, 2009)
- (4) ABC-Sequential Monte Carlo (SMC) of Del Moral, Doucet and Jasra (2009)
- (5) Drovandi and Pettitt (*Biometrics*, 2011)

Main difficulty: How to choose the tolerance thresholds

 $\varepsilon_1 \geq \cdots \geq \varepsilon_T$

over T iterations?

None of them are really satisfactory!

ABC-Sequential Monte Carlo sampler

Assume: $\varepsilon_1 \geq \cdots \geq \varepsilon_T$ are fixed

At each iteration $1 \leq t \leq T$

- From a sample of (θ^(t)_i, z^(t)_i) (i = 1,...N) distributed according to π_{εt}(·|y_{obs})
- (1) pick one of them which satisfies $d(\mathbf{z}_i^{(t)}, \mathbf{y}_{obs}) \leq \varepsilon_{t+1}$
- (2) move it according to a MCMC kernel $\pi_{\varepsilon_{t+1}}(\cdot|\mathbf{y}_{\text{obs}})$ -invariant
 - return to step (1) until we end with a new sample of size N: (θ_i^(t+1), z_i^(t+1)) (i = 1,...N) distributed according to π_{εt+1}

New adaptive scheme

- how to choose $\varepsilon_1 \geq \varepsilon_2 \geq \cdots \geq \varepsilon_T$?
- calibrated for time saving

ABC-Sequential Monte Carlo sampler

Assume: $\varepsilon_1 \geq \cdots \geq \varepsilon_T$ are fixed

At each iteration $1 \leq t \leq T$

- From a sample of (θ^(t)_i, z^(t)_i) (i = 1,...N) distributed according to π_{εt}(·|y_{obs})
- (1) pick one of them which satisfies $d(\mathbf{z}_i^{(t)}, \mathbf{y}_{\text{obs}}) \leq \varepsilon_{t+1}$
- (2) move it according to a MCMC kernel $\pi_{\varepsilon_{t+1}}(\cdot|\mathbf{y}_{\text{obs}})\text{-invariant}$
 - return to step (1) until we end with a new sample of size N: (θ_i^(t+1), z_i^(t+1)) (i = 1,...N) distributed according to π_{εt+1}

New adaptive scheme

- how to choose $\varepsilon_1 \geq \varepsilon_2 \geq \cdots \geq \varepsilon_T$?
- calibrated for time saving

An ABC–Hastings-Metropolis $\pi_{\varepsilon_{t+1}}(\cdot | \mathbf{y}_{obs})$ -invariant

Assume: prior = uniform on Θ_{prior} .

Let
$$\theta^t \sim \pi_{\varepsilon_{t+1}}(\cdot | \mathbf{y}_{obs})$$
 and
R-W) Draw $\widetilde{\theta} \sim \mathcal{N}(\theta^t, \Sigma)$, $\widetilde{\mathbf{z}} | \widetilde{\theta} \sim \ell(\mathbf{z} | \widetilde{\theta})$
A-R) Set $\theta^{t+1} = \begin{cases} \widetilde{\theta} & \text{if } d(\widetilde{\mathbf{z}}, \mathbf{y}) \leq \varepsilon_{t+1}, \text{ and } \widetilde{\theta} \text{ is in } \Theta_{prior} \\ \theta^t & \text{otherwise.} \end{cases}$

Proposition (Majoram et al., 2003)

Then, whatever Σ , $oldsymbol{ heta}^{t+1} \sim \pi_{arepsilon_{t+1}}(\cdot|\mathbf{y}_{\mathsf{obs}})$

Notation

average acceptance probability

$$\rho_{t+1} := \mathbb{P}_{\pi_{\varepsilon_{t+1}}(\cdot|\mathbf{y}_{obs})} \left(\boldsymbol{\theta}^{t} \neq \boldsymbol{\theta}^{t+1}\right)$$

Precedings : doi:10.1038/npre.2011.5962.1 : Posted 13 May d٦.

・ロン ・雪と ・雨と

æ

Iteration *t*: from ε_t to ε_{t+1}

Input: $(\boldsymbol{\theta}_i^t, \mathbf{z}_i^t)$, i = 1, ..., N distributed according to $\pi_{\varepsilon_t}(\cdot|\mathbf{y}_{obs})$

- ▶ Order the sample: $d(\mathbf{z}_1^t, \mathbf{y}_{obs}) \leq \cdots \leq d(\mathbf{z}_N^t, \mathbf{y}_{obs})$
- ► Acception-Rejection: a proportion α = α_{t+1} is kept and set ε_{t+1} = d(z^t_{αN}, y_{obs})
- Copying: duplicate to get a sample of size N
- ► MCMC: Apply one step of the Markov Chain and set \$\hildsymbol{\chi}_{t+1}\$ = proportion of accepted movements

Two pitfalls

 $\begin{array}{rcl} \alpha_{t+1} \text{ too small} & \Longrightarrow & \hat{\rho}_{t+1} \approx 0 \implies & \text{too many duplications} \\ \alpha_{t+1} \text{ too large} & \Longrightarrow & \varepsilon_{t+1} \text{ too large} \implies & \text{too many iterations} \end{array}$

Trade-off: α_{t+1} is adapted on the 1st copy s.t. $\alpha_{t+1} + \rho_{t+1} = 1$

d)

Adaptive scheme Calibration

Increase α from 1/L to 1 by 1/L

Compute on copy # 1

- $\blacktriangleright \ \varepsilon_{t+1} = d(\mathbf{z}_{[\alpha N]}^{(t)}, \mathbf{y}_{\text{obs}})$
- ▶ proposed $(\tilde{\theta}_i, \mathbf{z}_i)$'s
- ▶ ρ_{t+1} =proportion of pairs that have moved during MCMC

Until $\alpha + \rho_{t+1} \ge 1$.

Adaptive scheme Calibration

Increase α from 1/L to 1 by 1/L

Compute on copy $\ddagger 1$

- $\blacktriangleright \ \varepsilon_{t+1} = d(\mathbf{z}_{[\alpha N]}^{(t)}, \mathbf{y}_{\text{obs}})$
- ▶ proposed $(\tilde{\theta}_i, \mathbf{z}_i)$'s
- ▶ ρ_{t+1} =proportion of pairs that have moved during MCMC

Until $\alpha + \rho_{t+1} \ge 1$.

When α increases,

• Old copy $\sharp 1$ is nested into the new one

• Many of the proposed $(\hat{\theta}_i, \mathbf{z}_i)$

are already computed

Adaptive scheme Calibration

Increase α from 1/L to 1 by 1/L

Compute on copy $\ddagger 1$

- $\blacktriangleright \ \varepsilon_{t+1} = d(\mathbf{z}_{[\alpha N]}^{(t)}, \mathbf{y}_{\text{obs}})$
- ▶ proposed $(\tilde{\theta}_i, \mathbf{z}_i)$'s
- ▶ ρ_{t+1} =proportion of pairs that have moved during MCMC

Until $\alpha + \rho_{t+1} \ge 1$.

When α increases,

- \bullet Old copy $\sharp 1$ is nested into the new one
- Many of the proposed $(\hat{\theta}_i, \mathbf{z}_i)$ are already computed

At the end

Apply MCMC on the other copies

Initialization and stopping rule

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Get a first rough approximation of the posterior

```
Draw many pairs (\theta_i, \mathbf{z}_i) from \pi(\theta)\ell(\mathbf{z}|\theta)
until var(kept) \ll var(prior)
```

where $var(kept) = variance of the N closest to <math>\mathbf{y}_{obs}$

Initialization and stopping rule

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Get a first rough approximation of the posterior

```
Draw many pairs (\theta_i, \mathbf{z}_i) from \pi(\theta)\ell(\mathbf{z}|\theta)
until var(kept) \ll var(prior)
```

where $var(kept) = variance of the N closest to <math>\mathbf{y}_{obs}$

Warning

When it is impossible, prior pprox posterior

 \longrightarrow stop there and do not run the sequential algorithm!

Initialization and stopping rule

Get a first rough approximation of the posterior

```
Draw many pairs (\theta_i, \mathbf{z}_i) from \pi(\theta)\ell(\mathbf{z}|\theta)
until var(kept) \ll var(prior)
```

where $var(kept) = variance of the N closest to <math>y_{obs}$

Warning

When it is impossible, prior pprox posterior

 \longrightarrow stop there and do not run the sequential algorithm!

Stop rule of the sequential algorithm

stop at time T when

average acceptance probability in H-M: $\rho_{T} \leq 0.1$

Illustration in population genetics

Invasion of Europa by the honeybee

gHence, a coalescence proces Son each branch of the Mollowing scenario:

Efficiency on the illustration

Time factor =

Numb. of simu. in classical ABC Numb. of simu in our proposal

with

equal final tolerance threshold

イロト イポト イヨト イヨト

æ

equal (effective) sample size

Precedings : doi:10.1038/npre.2011.5962.1 : Posted 13 May d)

The End

・ロン ・雪と ・雨と

æ

The End

・ロ・・聞・・ ほ・・ きょう

æ

Any questions ?

Precedings : doi:10.1038/npre.2011.5962.1 : Posted 13 May

d)

Calibration of Σ in MCMC

<ロ> (四) (四) (三) (三) (三)

Remember: prior = uniform on Θ_{prior} .

Let
$$\theta_j^t \sim \pi_{\varepsilon_{t+1}}(\cdot | \mathbf{y}_{obs})$$
 and
R-W) Draw $\widetilde{\theta} \sim \mathcal{N}(\theta_j^t, \Sigma_t)$, $\widetilde{\mathbf{z}} | \widetilde{\theta} \sim \ell(\mathbf{z} | \widetilde{\theta})$
(A-R) Set $\theta_j^{t+1} = \begin{cases} \widetilde{\theta} & \text{if } d(\widetilde{\mathbf{z}}, \mathbf{y}) \leq \varepsilon_{t+1}, \text{ and } \widetilde{\theta} \text{ is in } \Theta_{\text{prior}} \\ \theta^t & \text{otherwise.} \end{cases}$

(1) Compute Σ_{prior} , variance of prior distr. (2) Find β such that $\mathbb{P}_{\theta \sim \pi} \left(\mathscr{N}(\theta, \beta \Sigma_{\text{prior}}) \in \Theta_{\text{prior}} \right) \approx 0.6$ Then, $\Sigma_t = \beta \times \text{Var}(\theta_j^t)$