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Introduction

I I will describe a theoretical analysis of a classical estimation
procedure.

I We consider the asymptotic consistency and normality of a
collection of estimators.

I The analysis is in the context of hidden Markov models
(HMMs).

I The novelty, is that one cannot evaluate the likelihood, nor
has access to an unbiased estimate of it.

Ajay Jasra Estimation of Intractable HMMs

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

95
7.

1 
: P

os
te

d 
13

 M
ay

 2
01

1



Outline
Introduction

Hidden Markov Models
Approximate Bayesian Computation

Noisy ABC
Summary

I The analysis is linked to ABC: it was very nicely discussed by
Christian Robert on his blog:
http://xianblog.wordpress.com/.

I This is via the idea of maximizing an approximation of the
statistical model, motivated by ABC.
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HMMs

I A HMM is a pair of discrete-time processes, {Xk}k≥0 and
{Yk}k≥0.

I The hidden process, {Xk}k≥0, is a Markov chain.
I The observed process {Yk}k≥0 takes values in R

m.

I Given Xk the Yk are independent of
Y0, . . . ,Yk−1;X0, . . . ,Xk−1.

I Many real applications: Bioinformatics, econometrics and
finance.
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Estimation

I Often there is a range of HMMs associated to a vector θ.

I Given Ŷ1, . . . , Ŷn the objective is to find θ
∗ that corresponds

to the HMM which generated the data.

I A standard approach is maximum likelihood estimation
(MLE).
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I The MLE is obtained via maximizing the log-likelihood:

θ̂n = arg supθ∈Θln(θ)

where

ln(θ) :=
1

n
log pθ

(
Ŷ1, . . . , Ŷn

)
=
1

n

n∑

i=1

log pθ(Ŷi |Ŷ1, . . . , Ŷi−1).

I In most cases one can seldom evaluate the likelihood of the
data analytically.
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Example: Known Likelihood

I For example, with k ≥ 1, X0 = 0

Yk = Xk + σ1εk

Xk = Xk−1 + σ2νk

where εk , νk are i.i.d. standard normals.

I Then, θ = (σ1, σ2). The likelihood is Gaussian and the
state-process under-goes a Gaussian Markov transition.
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I In the notation to follow:

gθ(y |x) =
1

σ1
√
2π
exp{−

1

2σ21
(y − x)2}

and

qθ(x , x
′) =

1

σ2
√
2π
exp{−

1

2σ22
(x ′ − x)2}.

I Throughout the talk, the HMM is time-homogeneous.
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I There are a variety of techniques for estimating the likelihood.

I For example, methods using sequential Monte Carlo (SMC) or
Markov chain Monte Carlo.

I The consistency and asymptotic normality of MLEs are
well-understood (see e.g. Cappé et al. (2005) and the
references therein).
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Intractable Likelihoods

I For some applications the conditional density of Yk given Xk
is intractable, this density:
I cannot be evaluated analytically
I there is no unbiased estimator.

I Throughout, I will say intractable likelihood, and this refers to
gθ.

I In this case, the standard methods cannot be applied and it is
the objective to investigate new/existing ideas.
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Some Existing Ideas

I One such approach is the convolution particle filter. We have
found this to inaccurate in practice.

I Indirect inference. This method is likely to be very expensive.

I Approximate Bayesian computation. It provides an
approximation of the true model.

I Note - we will still perform classical inference.
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Approximate Bayesian Computation

I Given the data Ŷ1, . . . , Ŷn one approximates the likelihood
function via

Pθ
(
d
(
Y1, . . . ,Yn; Ŷ1, . . . , Ŷn

)
≤ ε
)

where d(∙; ∙) is a metric and ε > 0 reflects the accuracy of the
approximation.

I Often one uses a summary statistic, which is discussed later
on.
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I We study the approximation

Pθ
(
Y1 ∈ B

ε
Ŷ1
, . . . ,Yn ∈ B

ε
Ŷn

)

where Bεy denotes the ball of radius ε centered around the
point y (see McKinley et al. (2009)).

I That is:

∫ n∏

i=1

IBε
Ŷi

(yi )gθ(yi |xi )qθ(xi−1, xi )ν(dy1:n)π0(dx0)μ(dx1:n).
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I It is shown in Jasra et al. (2011) that the approximation, as ε
falls, converges to the true model.

I This approach retains the Markovian structure.

I This facilitates simpler MCMC and SMC implementation
(which we do not discuss)).

I Only requires one to sample the likelihood but not to evaluate
it.
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I We provide a justification of an ABC MLE similar to MLE via
asymptotic consistency.

I Our approach is based on the fact that the ABC MLE is MLE
using the likelihoods of a collection of perturbed HMMs.

I This implies that the ABC MLE should inherit its behaviour
from MLE.

I We also consider a noisy variant with results concerning the
asymptotic behaviour of the MLE.
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I We establish that the ABC MLE has an asymptotic bias. This
can be made small by choosing ε small.

I We show that a noisy ABC MLE is asymptotically consistent
and has an asymptotic Fisher information matrix less than
that of MLE.

I Thus, it is shown that the noisy ABC suffers from a relative
loss of information and hence statistical efficiency.

I As ε ↓ 0 the Fisher information of the noisy ABC MLE
converges to that of the MLE.
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I The key to our analysis is that

Pθ
(
d
(
Y1, . . . ,Yn; Ŷ1, . . . , Ŷn

)
≤ ε
)
∝

∫

X n+1

[ n∏

k=1

qθ(xk−1, xk)g
ε
θ(Ŷk |xk)

]

π0(dx0)μ(dx1:n)

where {qθ, gθ} are the original densities and

g εθ(y |x) =
1

ν
(
Bεy
)
∫

Bεy

gθ(y
′|x) ν(dy ′).
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Estimation

I Given ε > 0 and data Ŷ1, . . . , Ŷn, estimate θ
∗ with

θ̂εn = arg sup
θ∈Θ
pεθ

(
Ŷ1, . . . , Ŷn

)

where the function pεθ (y1, . . . , yn) is the likelihood function of
the perturbed HMM.
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Results

I As ε ↓ 0, we show that the ABC MLE converges to the MLE.
I Moreover, under some additional assumptions, the rate of
decrease of the bias is linear in ε.

I These results are to be expected as, clearly, we are dealing
with an approximation.
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I Given ε > 0 and data Ŷ1, . . . , Ŷn estimate θ
∗ with

θ̃εn = arg sup
θ∈Θ
pεθ

(
Ŷ1 + εẐ1, . . . , Ŷn + εẐn

)
(1)

where
I pεθ (y1, . . . , yn) is the likelihood function for the perturbed
HMM

I Ẑ1, . . . , Ẑn are i.i.d. samples from UB10 [the uniform distribution
on the unit ball at the origin].
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I The parameter estimator in (1) is equivalent to the parameter
estimator given by

θ̃εn = arg sup
θ∈Θ

Pθ
(
Y ε1 ∈ B

ε
Ŷ1+εẐ1

, . . . ,Y εn ∈ B
ε
Ŷn+εẐn

)
.

I That is, the ABC approximation with perturbed observations.
This is also described by Fearnhead & Prangle (2010).
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I We have proved that the noisy MLE is asymptotically
consistent and normal.

I In addition, that the asymptotic variance is strictly greater
than the MLE.

I As ε ↓ 0, we show that the variance of the noisy ABC MLE
converges to the MLE quadratically.
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Kernels

I In many scenarios ABC approximations are constructed via:

∫ [ n∏

k=1

qθ(xk−1, xk)φ

(
Ŷk − yk
ε

)

gθ(yk |xk)

]

π0(dx0)μ(dx1:n)ν(dy1:n)

where φ is a probability density.

I It is possible to prove all the previous results, under some
assumptions on φ.

I It is also possible to prove the results when one uses summary
statistics.
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Summary

I In this talk I have presented a theoretical justification for an
ABC approximation of HMMs with intractable likelihoods.

I Asymptotic bias of the ABC MLE has been discussed.

I A noisy ABC method has been introduced.

I The noisy ABC MLE is asymptotically consistent.

I The theory extends to kernels and summary statistics.
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