

Mark A. Beaumont, Schools of Biological Sciences and Mathematics, The University of Bristol, Bristol, UK

05 April 2011

窤emporal Change in Gene Frequency with Admixture Aim is to infer parameters in a state space model of changes in gene解equency in the presence of admixture.

恚emporal Change in Gene Frequency with Admixture

- Temporally sampled genetic data is quite commonly obtained.
- Changes are usually attributed to genetic drift (a function of the population size).
- However admixture and replacement of populations over time may be confounded with drift.
- This is a major issue for ancient DNA samples

亚portance Sampling, Particles, and MCMC

- Beaumont (Genetics, 2003); GIMH algorithm; using noisy estimates of likelihood obtained from sequential importance sampling in MCMC.
- Becquet and Przeworski (Genome Research, 2007); application of GIMH idea to MCMC-ABC algorithm of Marjoram et al (PNAS, 2003).
- Andrieu and Roberts (Annal. Stat. 2009)Pseudo-marginal method: convergence proofs and generalization of GIMH.
- Andrieu, Doucet, and Holenstein (RSSB, 2010); Particle MCMC
- Peters and Cornebise (RSSB, discussion of A,D,\&H, 2010); ABC and particle MCMC.
dfse a Dirichlet rather than coalescent to model variance in allele Bequencies:
$\stackrel{\overleftarrow{\sigma}}{\sigma} \cdot$ Laval et al., (Genetics, 2003)
- Kitakado et al., (Genetics, 2006)

Fhis does not give the same allele frequency distribution as the coalescent,祭ut for a given $F_{S T}$, the variance is the same (see discussant contributions to Nicholson et al (RSSB, 2002)).

๔
 笞amework for Temporal Model with Admixture (3)

0
0
0
0
0

For frequency vector α_{i} of length K alleles, sampled at time t_{i}, we model跔e change in frequency due to drift over the interval Δt_{i} with effective spze N_{i} as

$\stackrel{\Gamma}{\sim}$	$\alpha_{i} \sim D\left(\phi_{i} \alpha_{(i-1), 1}^{\prime}, \ldots, \phi_{i} \alpha_{(i-1), K}^{\prime}\right)$
	$\phi_{i}=\frac{\exp \left(-\Delta t_{i} / N_{i}\right)}{\left(1-\exp \left(-\Delta t_{i} / N_{i}\right)\right)} .$

The observed frequencies, X_{i} are assumed to be multinomial samples from

Sdmixture is modelled as

$$
\alpha_{i-1}^{\prime}=\left(1-\mu_{i}\right) \alpha_{i-1}+\mu_{i} \beta_{i}
$$

P．he admixing frequencies $\beta_{j},(j=1, \ldots, S)$ ，and the initial α_{0} ，are drawn \＃్రom Dirichlet distributions，parameterized by $F_{i}(i=0, \ldots, S)$ ，and Netapopulation frequency \mathcal{M} ．E．g：

```
\⿳亠丷厂彡
\[
\beta_{1} \sim D\left(\theta_{1} \mathcal{M}_{1}, \ldots, \theta_{1} \mathcal{M}_{K}\right)
\]
\[
\theta_{1}=\frac{1}{F_{1}}-1
\]
```

（Gewall Wright＇s infinite island model）

ते
 FICMC implementation of TMA

$\stackrel{\square}{0}$
\$im is to infer parameters in this model in a Bayesian framework. Ihe likelihood is:

$$
\begin{gathered}
P\left(X_{0} \mid \alpha_{0}\right) P\left(\alpha_{0} \mid F_{0}, \mathcal{M}\right) \\
\times \prod_{i=1}^{S}\left\{P\left(X_{i} \mid \alpha_{i}\right) P\left(\alpha_{i} \mid \alpha_{i-1}, N_{i}, \Delta t_{i}, \mu_{i}, \beta_{i}\right) P\left(\beta_{i} \mid F_{i}, \mathcal{M}\right)\right\}
\end{gathered}
$$

- The $t_{i} \mathrm{~s}$ are known.
- Assume a hierarchical prior on N_{i} (Gaussian on log-scale)
- Assume beta priors on μ_{i} and F_{i}
- Assume Dirichlet prior on \mathcal{M}

Update parameters using Metropolis-Hastings.

\sum_{π}^{∞} onverogence of MCM

O्లomparison of runs with likelihood held constant, to check for recovery of宛iors.
Qata sampled at 4 time points, 2 loci, 5 alleles each.
Histogram - α_{i} held constant Red line - α_{i} updated Black line - prior成 $(4,1)$
Precedings : doi:10.1038/npre.2011.5

危article MCMC Implementation of TMA
pəlsod：L＇Es
Rim is to avoid MCMC updates for $\alpha_{1}, \ldots, \alpha_{S}$ ，but use MCMC for all － ther parameters（including α_{0} ）．
At each MCMC step，use importance sampling of the α_{i} to compute noisy炎elihood estimate，conditioning on all parameter values at that stage in硇e MCMC．

佥article MCMC Implementation of TMA

Şhematic Algorithm

(1) For sample point 1 :
(1) set $\phi_{1}=\frac{\exp \left(-\Delta t_{1} / N_{1}\right)}{\left(1-\exp \left(-\Delta t_{1} / N_{1}\right)\right)}$.
(2) Simulate M particles: $\alpha_{1}^{(j)} \sim q\left(\alpha_{1}^{(j)}\right):=D\left(\left\{\phi_{1}+X_{1}\right\} \alpha_{0}^{\prime}\right)$.
(3) Compute importance weight $W_{1}^{(j)}=p\left(X_{1} \mid \alpha_{1}^{(j)}\right) p\left(\alpha_{1}^{(j)} \mid \alpha_{0}^{\prime}, \phi_{1}\right) / q\left(\alpha_{1}^{(j)}\right)$.
(Set $\tilde{L}_{1}=1 / M \sum W_{1}^{(j)}$.
For sample points $i>1$:
(1) Set ϕ_{i}.
(2 Simulate M particles: $\alpha_{i}^{(j)} \sim q\left(\alpha_{i}^{(j)}\right):=D\left(\left\{\phi_{i}+X_{i}\right\} \alpha_{i-1}^{(j)}\right)$, where
$\alpha_{i-1}^{\prime(j)}=\left(1-\mu_{i}\right) \alpha_{i-1}^{(j)}+\mu_{i} \beta_{i}$
where $\alpha_{i-1}^{(j)}$ is sampled from particles at step $i-1$ with weight $W_{i-1}^{(I)}$, $I=1, \ldots, M$
(3) Compute weights etc. as for time step 1 .

薢esults from Particle MCMC

Tyace of mean N

GIMH algorithm

$\stackrel{\stackrel{\rightharpoonup}{e}}{\text { Be } B C}$ and Particle MCMC: application to TMA

高plementation

(1) set $\phi_{1}=\frac{\exp \left(-\Delta t_{1} / N_{1}\right)}{\left(1-\exp \left(-\Delta t_{1} / N_{1}\right)\right)}$.
(2) Simulate M particles: $\alpha_{1}^{(j)} \sim D\left(\phi_{1} \alpha_{0}^{\prime}\right), X_{1}^{\prime} \sim \operatorname{Multinom}\left(\alpha_{1}^{(j)}\right)$.
(3) Compute $(0,1)$ weight $W_{1}^{(j)}=I\left(\left|X_{1}^{\prime}-X_{1}\right|<\delta\right)$.
(9) Set $\tilde{L}_{1}=1 / M \sum W_{1}^{(j)}$.

For sample points $i>1$:
(1) Set ϕ_{i}.
(2) Simulate M particles: $\alpha_{i}^{(j)} \sim D\left(\phi_{i} \alpha_{i-1}^{\prime(j)}\right)$, where
$\alpha_{i-1}^{\prime(j)}=\left(1-\mu_{i}\right) \alpha_{i-1}^{(j)}+\mu_{i} \beta_{i}$
where $\alpha_{i-1}^{(j)}$ is sampled from particles at step $i-1$ with weight $W_{i-1}^{(I)}$, $I=1, \ldots, M$.
(3) Compute weights etc. as for time step 1 .

Set $\tilde{L}=P\left(X_{0} \mid \alpha_{0}\right) \prod_{i=1}^{S} \tilde{L}_{i}$.

ㄷ(2) Compute $Q=1 /(K-1) \sum\left(X_{i}^{\prime}-X_{i}\right) /\left(X_{i}+g\right)$ for alleles $i=1, \ldots, K$.
(3) For threshold R, accept if $Q<R$.

In examples, $R=0.3$ or 0.4 and $g=1$.

愿cknowledgments

麇eth Okamura Sophia Ahmed

