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Femporal Change in Gene Frequency with Admixture

i
Bim is to infer parameters in a state space model of changes in gene
quency in the presence of admixture.
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mporal Change in Gene Frequency with Admixture

@ Temporally sampled genetic data is quite commonly obtained.

@ Changes are usually attributed to genetic drift (a function of the
population size).

@ However admixture and replacement of populations over time may be
confounded with drift.

@ This is a major issue for ancient DNA samples
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portance Sampling, Particles, and MCMC

Beaumont (Genetics, 2003); GIMH algorithm; using noisy estimates
of likelihood obtained from sequential importance sampling in MCMC.

Becquet and Przeworski (Genome Research, 2007); application of
GIMH idea to MCMC-ABC algorithm of Marjoram et al (PNAS,
2003).

Andrieu and Roberts (Annal. Stat. 2009)Pseudo-marginal method:
convergence proofs and generalization of GIMH.

Andrieu, Doucet, and Holenstein (RSSB, 2010); Particle MCMC

Peters and Cornebise (RSSB, discussion of A,D,&H, 2010); ABC and
particle MCMC.

recedings : doi:10.1038/npre.2011.5953.1 : Posted 133May
(]

Mark A. Beaumont, Schools of Biological Sci(ABC for Temporally Sampled Genetic Data 05 April 2011 4/25



amework for Temporal Model with Admixture (1)

(g

emporal samples are taken.
Time of ith sample (i =0,...,S).
Difference between time of jth and (j — 1)th sample (j =1,...,5).

.2p11.59588.1 : Posted 13 May
o

<&

Effective population size for jth interval.

npg

Admixture proportion for jth interval.

<

F; Fst of ith admixing population.
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amework for Temporal Model with Admixture (2)

1: Posted 13- May

Yse a Dirichlet rather than coalescent to model variance in allele
fequencies:

g e Laval et al., (Genetics, 2003)

g e Kitakado et al., (Genetics, 2006)

@his does not give the same allele frequency distribution as the coalescent,

&t for a given Fst, the variance is the same (see discussant contributions
& Nicholson et al (RSSB, 2002)).
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amework for Temporal Model with Admixture (3)

Posted 13- May

Fbr frequency vector a; of length K alleles, sampled at time t;, we model
fhe change in frequency due to drift over the interval At; with effective

%e N; as

§ Qj ~ D((bia,(,;l)’lv e 7¢ia2i71)7K)
Where

E— ¢ _ exp(—At,-/N,-) )

§ ! (1 — exp(—At,-/N,-))
ghe observed frequencies, X; are assumed to be multinomial samples from
&
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amework for Temporal Model with Admixture (4)

i

o

e

édmixture is modelled as

= aiy = (1= pi)eio1 + pifBy-

)

[©2]

Phe admixing frequencies (3;, (=1,...,5), and the initial ap, are drawn

fBom Dirichlet distributions, parameterized by F; (i =0,...,S), and
N .
getapopulation frequency M. E.g:

o

<

2 B~ D01 My, ..., 00 M)
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CMC implementation of TMA

sted 13 ay

&im is to infer parameters in this model in a Bayesian framework.
The likelihood is:
™

P(Xo|ao) P(cxo| Fo, M)
X H}gzl {P(Xilaj) P(aj|evj—1, Nj, Atj, i, 5i) P(Bi| Fi, M)}

@ The t;s are known.
@ Assume a hierarchical prior on N; (Gaussian on log-scale)

10.1038/npre.2011.595

: @ Assume beta priors on u; and F;

= @ Assume Dirichlet prior on M

do

{ipdate parameters using Metropolis-Hastings.

Preceding
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pplication to Bryozoan data

58.1 : Posted 1

Data from a freshwater Bryozoan, Cristatella mucedo, studied by
Beth Okamura (NHM, London) and Sophia Ahmed (Roscoff, France).

8 highly polymorphic microsatellite loci genotyped by Sophia Ahmed.

Sampled over 7 time periods.

Gene frequencies change markedly; unlikely to be due to drift.

038/npre.2011.59
© 0

@ Aim is to estimate effective population sizes, admixture proportions,
and Fst of putative admixing populations.

recedings : doi:10.1
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ryozoan data: results with MCMC algorithm
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ryozoan data: results with MCMC algorithm
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ryozoan data: results with MCMC algorithm
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éonvergence of MCMC

Bomparison of runs with likelihood held constant, to check for recovery of
giors.

Bata sampled at 4 time points, 2 loci, 5 alleles each.

gistogram — «; held constant Red line — «; updated Black line — prior
(4.1)

9B

Density
0
.

Mean log N

Precedings : doi:10.1038/npre.2011.5
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article MCMC Implementation of TMA

3.1 : Posted 13 May

i)
&im is to avoid MCMC updates for as, ..., as, but use MCMC for all
ther parameters (including ayg).

each MCMC step, use importance sampling of the «; to compute noisy

elihood estimate, conditioning on all parameter values at that stage in
e MCMC.

Precedings : doi:10.103
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article MCMC Implementation of TMA

hematic Algorithm

3™

For sample point 1:

exp(—At /N
O set ¢ = M'

@ Simulate M particles: oY) ~ g(o{) := D({¢1 + X1 } o).

© Compute importance weight Wl(j) = p(X1|agj))p(ozgj)|a6, ¢1)/q(agj)).
o Set; =1/M> WY

@ For sample points / > 1:

(1) Set ¢,’. ) ) )
@ Simulate M particles: oz,(-J) ~ q(agj)) = D({¢i +X,-}aj.(i)1),
where )
U
ai(i)l = (1 - Ni)a,(i)l + pifi
where agj_)l is sampled from particles at step i — 1 with weight W,-(i)l,
I=1,....M

@ Compute weights etc. as for time step 1.

Set L = P(Xo|ao) [T7-; Li.

Mark A. Beaumont, Schools of Biological Sci(ABC for Temporally Sampled Genetic Data 05 April 2011 17 / 25
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éesults from Particle MCMC

Eace of mean N
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BC and Particle MCMC

11£5953.1 : Posted 13¥ay

otivation is to see whether this approach is feasible and competitive with
rticle MCMC.

eplace importance estimate of L; with proportion of simulated points

at are within tolerance interval.

Precedings : doi:10.1038/ipr
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,§BC and Particle MCMC: application to TMA

I@'plementation

For sample point 1:

ex| At /N
O set ¢; = %f

@ Compute (0,1) weight W) = 1(]X] — X;| < 6).

o Set; =1/M> WY
@ For sample points / > 1:

@ Compute weights etc. as for time step 1.

Set I = P(Xo|awo) T2, Lj

Mark A. Beaumont, Schools of Biological Sci(ABC for Temporally Sampled Genetic Data
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@ Set ¢;.
@ Simulate M particles: a D(¢i '(J))
where )
U
ai(i)l = (1 - Ni)a,(i)l + pifi
where agj_)l is sampled from particles at step i — 1 with weight W
I=1,...,M.

@ Simulate M particles: agj) ~ D(¢p103), X{ ~ Multinom(a(lj)).
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i—1

05 April 2011 21 /25



mmary Statistics

53.1 : Posted 13fay

2@ Allele frequency is used.
ge Compute Q = 1/(K — 1) > (X! — X;)/(Xi + g) for alleles

g i=1..., K.

g@ For threshold R, accept if @ < R.
@o In examples, R =0-3 or 0-4 and g = 1.
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éesults from Particle MCMC
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sults from Particle MCMC with ABC
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