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Abstract

We apply Tlusty’s information-theoretic analysis of
the genetic code to the glycome, using a cognitive
paradigm in which external information sources con-
strain and tune the glycan code error network, in the
context of available metabolic energy. The resulting
dynamic model suggests the possibility of observing
spontaneous symmetry breaking of the glycan code
as a function of metabolic energy intensity. These ef-
fects may be currently present, or embedded in evo-
lutionary trajectory, recording large-scale ecosystem
resilience shifts in energy availability such as the aer-
obic transition.
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tortion manifold, spontaneous symmetry breaking.

1 Introduction

Glycomics is the study of the glycans and glycoconjugates –
loosely, carbohydrates – produced by a cell or organism un-
der specific conditions (e.g., Hart and Copeland, 2010). The
glycome – the general body of such substances – is not well
characterized. Mian and Rose (2011), for example, write that

Superficially, the paucity of information- and
coding-theoretic studies of carbohydrates can be ex-
plained by glycomics being a less mature field than
genomics or proteonics... A deeper explanation is
the more complex and dynamic nature of the gly-
come – the entire complement of carbohydrates... of
an organism or a cell... Communication theoretic
studies of the glycome and the [glycan code], the
complex information conveyed by glycans and gly-
coconjugates, would increase understanding of the
major events in macroevolution and extant molecu-
lar biology. For example, the biological communica-
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tion mediated by glycans underlies diverse molecu-
lar, cellular, and tissue functions and plays critical
roles in development, health and disease.

Tlusty (2007, 2008) examines the production of amino acids
from codons using an information-theoretic formulation based
on application of topological methods to a network error anal-
ysis, an approach that can be used to illuminate something of
the difficulties currently facing glycomics.

Wallace (2010a, b) has, in fact, applied Tlusty’s methods
to models of protein folding, and we will, in some measure,
extend that work to the glycome. The fundamental problem,
however, is that both gene coding for amino acids, and many
processes of protein folding, can be described as deterministic-
but-for-errors. As Anfinsen (1973) has shown, an amino acid
‘string’ for a structured protein carries within it the informa-
tion needed for correct folding, at least at near-zero aqueous
concentrations of metabolites. The Hecht group (e.g., Hecht
et al., 2004; Kim and Hecht, 2006) has shown that the famous
protein α-helices and β-sheets are simply ‘coded’ by strings
of alternating hydrophobic and hydrophilic amino acids hav-
ing the digital signal forms 101100100110... and 101010101...
respectively, where 1 indicates polar and 0 non-polar amino
acid. The α-helix thus has a 3.6 residue/turn pattern, and the
β-sheets alternate. Any polar/non-polar amino acids will suf-
fice, although folding rates will vary greatly, and this permits
application of Tlusty’s error analysis. Glycans are different,
as Hart and Copeland (2010) explain:

Unlike nucleic acids and proteins, glycan struc-
tures are not hard-wired into the genome, depending
upon a template for their synthesis. Rather, the gly-
can structures that end up on a polypeptide or lipid
result from the concerted actions of highly specific
glycosyltransferases... which are in turn dependent
upon [a multiplicity of other processes]... Therefore,
the glycoforms of a glycoprotein depend on many
factors directly tied to both gene expression and cel-
lular metabolism.
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Elsewhere we have explored a cognitive paradigm for gene
expression for signaling by environmental and developmental
effects that turn genes on or off (Wallace and Wallace, 2008,
2009, 2010). Here we will extend that work to the glycome,
recognizing that a broad class of cognitive processes can be
represented in terms of ‘dual’ information sources, permitting
generalization of Tlusty’s methods via the tools of network
information theory. We begin with a brief recapitulation of
Tlusty’s work, state the ‘central problem’ of glycomics from
that perspective, and describe a strategy of theoretical attack
loosely based on the rate distortion manifold work of Glaze-
brook and Wallace (2009).

2 Tlusty’s stochastic topology

Tlusty (2007) describes the genetic code in terms of an error-
network of equivalent and nearly-equivalent codons:

The maximum [of a particular information-
theory-based Morse Function] determines a single
contiguous domain where a certain amino acid is
encoded... Thus every mode [of the network] cor-
responds to an amino acid and the number of modes
is the number of amino acids. This compact orga-
nization is advantageous because misreading of one
codon as another codon within the same domain has
no deleterious impact. For example, if the code has
two amino acids, it is evident that the error-load of
an arrangement where there are two large contigu-
ous regions, each coding for a different amino acid,
is much smaller than a ‘checkerboard’ arrangement
of the amino acids.

This, Tlusty points out (2010), is analogous, but not iden-
tical, to the well-known topological coloring problem: “in the
coding problem one desires maximal similarity in the colors
of neighboring ‘countries’, while in the coloring problem one
must color neighboring countries by different colors”. Af-
ter some development (Tlusty, 2008), the number of possi-
ble amino acids in this scheme is determined by Heawood’s
formula (Ringel and Young, 1968):

chr(γ) = int(
1

2
(7 +

√
1 + 48γ)),

(1)

where chr(γ) is the number of color domains of a surface with
genus γ, and int(x) is the integer value of x.

We note an important fact from Morse Theory (e.g., Mat-
sumoto, 2002):

γ = 1− 1

2
χ,

(2)

where χ is the Euler characteristic of the underlying topo-
logical manifold. For a manifold having a Morse function f ,
χ can be expressed as the alternating sum of the function’s
Morse numbers: The Morse numbers µi(i = 0, 1, ...,m) of f
on the manifold are the number of critical points (df(xc) = 0)
of index i, the number of negative eigenvalues of the matrix
Hi,j = ∂f2/∂xi∂xj . Then χ =

∑m
i=0(−1)iµi.

This holds true for any Morse function on the manifold M .
We reproduce part of Tlusty’s Table 1, showing the topo-

logical limit to the number of amino acids for different codes:

Code # Codons Max. # AA’s
4-base singlets 4 4
3-base doublets 9 7
4-base doublets 16 11
16 codons 32 16
48 codons 48 20
4-base triplets 64 25

This is the fundamental topological decomposition, to
which Morse-theoretic ‘free energy’ functionals, like Tlusty’s,
are to be fit.

Tlusty concludes:

[This] suggests a pathway for the evolution of
the present-day code from simpler codes, driven
by the increasing accuracy of improving transla-
tion machinery. Early translation machinery corre-
sponds to smaller graphs since indiscernible codons
are described by the same vertex. As the accu-
racy improves these codons become discernible and
the corresponding vertex splits. This gives rise to
a larger graph that can accommodate more amino
acids... [P]resent-day translation machinery with a
four-letter code and 48-64 codons (no discrimina-
tion between U and C in the third position) gave
rise to 20-25 amino acids. One may think of future
improvement that will remove the ambiguity in the
third position (64 discernible codons). This is pre-
dicted to enable stable expansion of the code up to
25 amino acids.

Wallace (2010a, b) has applied Tlusty’s approach to the
classification of protein symmetries to derive the underlying
topology of the ‘protein folding code’. Following the seminal
work of Levitt and Chothia (1976), there are four major glob-
ular protein structures: all-α helices, all-β sheets, α/β, α+β,
with obvious definitions. Chou and Maggioria (1998), using
heroic methods on a much larger data set, identify a total of
from 7 to 10 such classes, the majority of which seem fairly
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rare. From the second table, we infer that the normal globu-
lar ‘protein folding code error network’, in Tlusty’s sense, is
essentially a large connected ‘sphere’ – giving the four dom-
inant structures – having one minor, and possibly as many
as three more ‘subminor’ attachment handles in the Morse
Theory sense (Matsumoto, 2002).

γ (# network holes) chr(γ) (# symmetries)
0 4
1 7
2 8
3 9
4 10
5 11

6, 7 12
8, 9 13

3 The glycomic conundrum

Richard Cummings (2009) reviews the major classes of glycan
determinants recognized by glycan-binding proteins – the tips
of carbohydrates on cellular surfaces that are recognized by
other chemical species. These are made up of 2 to 6 linear
monnosaccharides together with their potential side chains
containing other sugars and modifications like sulfonation,
phosphorylation, and acetylation. Glycosaminoglycans com-
prise repeating disaccharide motifs, where a linear sequence of
5 to 6 monosaccharides may be required for recognition. Cum-
mings estimates that glycoproteins and glycolipids may con-
tain a minimum of 3000 glycan determinants, with an addi-
tional minimum of 4000 theoretical polysaccharide sequences
in glycosaminoglycans, say a total of 7-10 thousand glycan de-
terminants. Figure 1 applies Heawood’s formula to the case of
10000 ‘amino acids’: the underlying ‘glycome error code net-
work’ must be a grotesquely complicated topological object
(GCTO), having between 4 and 8 million holes.

The solution to this extraordinary ambiguity is similar to
that of the gene expression problem in general where external
signals guide the timing of turning some tens of thousands of
of genes on and off during development to produce a vast ar-
ray of appropriate phenotypes: incoming information limits
and channels developmental possibilities (Wallace and Wal-
lace, 2008, 2009, 2010).

4 A cognitive paradigm

To reiterate, the glycoforms of a glycoprotein depend on
many factors directly tied to both gene expression and cellu-
lar metabolism. This suggests the operation of a cellular-level
process of chemical cognition, broadly analogous to the oper-
ation of the immune system as described by Atlan and Cohen
(1998). That is, incoming information ‘farms’ glycoforms, in
the context of metabolic energy intensity. That is, we take
a two-step approach, first examining the effect of incoming
signals, and then of the intensity of metabolic energy being

Figure 1: Heawood’s topological coloring formula: Number
of modes analogous to amino acids vs. number of ‘holes’ in
the underlying error code network. The 10,000 modes repre-
senting glycan determinants require an underlying error code
network with 8.3 million holes.

made available. The argument becomes, not uncharacteristi-
cally, progressively more complicated as constraints increase.

4.1 The dual information source

Cognition – here, the selection of a small part of the GCTO
for actual implementation – involves choice that limits un-
certainty, and thus a broad class of cognitive processes can
be represented by ‘dual’ information sources. The underlying
model, described by one observer as ‘trivial but not unimpor-
tant’, follows Atlan and Cohen (1998) and Wallace (2000).

Cognitive pattern recognition-and-selected response, from
this perspective, proceeds by convoluting an incoming exter-
nal ‘sensory’ signal with an internal ‘ongoing activity’ – which
includes, but is not limited to, some learned or inherited pic-
ture of the world – and, at some point, triggering an appro-
priate action based on a decision that the pattern of sensory
activity requires a response. It is not necessary to specify how
the pattern recognition system is trained, and hence possi-
ble to adopt a ‘weak’ model, applicable regardless of learning
paradigm. Fulfilling Atlan and Cohen’s criterion of meaning-
from-response, it is possible to define a language’s contextual
meaning entirely in terms of system output.

The model, a simplification of the standard neural network,
is as follows.

A pattern of ‘sensory’ input – incorporating feedback from
the external world – is expressed as an ordered sequence
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y0, y1, .... This is mixed in a systematic (but unspecified)
algorithmic manner with internal ‘ongoing’ activity, a se-
quence w0, w1, ..., to create a path of composite signals x =
a0, a1, ..., an, ..., where aj = f(yj , wj) for some function f .
This path is then fed into a highly nonlinear, but other-
wise similarly unspecified, decision oscillator generating an
output h(x) that is an element of one of two (presumably)
disjoint sets B0 and B1. We take B0 ≡ {b0, ..., bk}, B1 ≡
{bk+1, ..., bm}.

Thus the model permits a graded response, supposing that
if h(x) ∈ B0 the pattern is not recognized, and if h(x) ∈ B1

the pattern is recognized and some action bj , k + 1 ≤ j ≤ m
takes place.

This approach is broadly analogous to, but simpler than,
the Hopfield/Hebb stochastic neuron in which series of inputs
yji , i = 1...m from m nearby neurons at time j is convoluted

with ‘weights’ wj
i , i = 1...m, using an inner product aj =

yj · wj =
∑m

i=1 y
j
iw

j
i in the context of a ‘transfer function’

f(yj ·wj) such that the probability of the neuron firing and
having a discrete output zj = 1 is P (zj = 1) = f(yj · wj).
Thus the probability that the neuron does not fire at time j
is 1− f(yj ·wj).

The m values yji constitute ‘sensory activity’ and the m

weights wj
i the ‘ongoing activity’ at time j, with aj = yj ·

wj and x = a0, a1, ...an, .... A little more work leads to a
fairly standard neural network model in which the network is
trained by appropriately varying the w through least squares
or other error minimization feedback.

The principal focus of the simpler model here is the com-
posite paths x that trigger pattern recognition-and-response.
That is, given a fixed initial state a0, such that h(a0) ∈ B0,
we examine all possible subsequent paths x beginning with a0
and leading to the event h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0

for all 0 ≤ j < m, but h(a0, ..., am) ∈ B1. Recall that the yj ,
the ‘sensory’ input convoluted with the internal wj , contains
feedback from the external world, i.e., how well h matches
intent with need.

For each positive integer n let N(n) be the number of gram-
matical and syntactic high probability paths of length n which
begin with some particular a0 having h(a0) ∈ B0 and lead to
the condition h(x) ∈ B1. Call such paths ‘meaningful’ and
assume N(n) to be considerably less than the number of all
possible paths of length n – pattern recognition-and-response
is comparatively rare.

The essential assumption is that the longitudinal finite limit

H ≡ lim
n→∞

log[N(n)]

n

(3)

both exists and is independent of the path x. Call such a
cognitive process ergodic.

Note that disjoint partition of state space may be possible
according to sets of states which can be connected by mean-
ingful paths from a particular base point, leading to a natural
coset algebra of the system defining a groupoid (e.g., Glaze-
brook and Wallace, 2009).

It is thus possible to define an ergodic information source X
associated with stochastic variates Xj having joint and con-
ditional probabilities P (a0, ..., an) and P (an|a0, ..., an−1) such
that appropriate joint and conditional Shannon uncertainties
may be defined which satisfy the standard relations of the
Shannon-McMillan Theorem (Cover and Thomas, 2006):

H[X] = lim
n→∞

log[N(n)]

n

= lim
n→∞

H[Xn|X0, ..., Xn−1]

= lim
n→∞

H[X0, ..., Xn]

n+ 1
.

(4)

This information source is taken as dual to the ergodic cog-
nitive process.

Recall that the Shannon-McMillan Theorem and its vari-
ants provide ‘laws of large numbers’ that permit definition of
the Shannon uncertainties in terms of cross-sectional sums of
the form H = −

∑
Pk log[Pk], where the Pk constitute a prob-

ability distribution (Ash, 1990; Cover and Thomas, 2006).
Different quasi-languages will be defined by different divi-

sions of the total universe of possible responses into various
pairs of sets B0 and B1. Like the use of different distortion
measures in the Rate Distortion Theorem, however, it seems
obvious that the underlying dynamics will all be qualitatively
similar.

Nonetheless, dividing the full set of possible responses into
the sets B0 and B1 may itself require higher order cogni-
tive decisions by another module or modules, suggesting the
necessity of choice within a more or less broad set of pos-
sible quasi-languages. This would directly reflect the need
to shift gears according to the different challenges faced by
the organism or organic subsystem. A critical problem then
becomes the choice of a normal zero-mode language among
a very large set of possible languages representing accessible
excited states. This is a fundamental matter that mirrors, for
isolated cognitive systems, the resilience arguments applica-
ble to more conventional ecosystems, that is, the possibility
of more than one zero state to a cognitive system. Identifi-
cation of an excited state as the zero mode becomes, then,
a kind of generalized autoimmune disorder that can be trig-
gered by linkage with external ecological information sources
representing various kinds of structured stress.

In sum, meaningful paths – creating an inherent grammar
and syntax of cognitive process – have been defined entirely
in terms of system response, as Atlan and Cohen propose.

4

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
93

2.
1 

: P
os

te
d 

2 
M

ay
 2

01
1



4.2 Network information theory

We reiterate that the central function of the cognitive chem-
ical selection process defined in the section above is to re-
strict the play of the information-theoretic Morse Function,
in Tlusty’s sense, whose modes define the amino acid analogs
of the 10000 glycan determinants.

The essential point is that the dual information source rep-
resenting the cognitive selection of some small zone of the
GCTO is itself acted on by gene expression and metabolic
contexts. Cognitive gene expression, in the sense of Wallace
and Wallace (2008, 2009), can be represented by impinging
dual information sources.

The tool for the action of such external context on the
GCTO selector is network information theory (e.g., Cover and
Thomas, 2006; El Gamal and Kim, 2010).

Given three interacting information sources, Y1, Y2, Z, the
splitting criterion for tripartite jointly typical sequences, tak-
ing Z as an external context, is (Cover and Thomas, 2006, p.
524)

I(Y1;Y2|Z) = H(Z) +H(Y1|Z) +H(Y2|Z)−H(Y1, Y2, Z),

(5)

where H(...|...) and H(..., ..., ...) represent conditional and
joint uncertainties (Ash, 1990; Khinchin, 1957; Cover and
Thomas, 2006).

More complicated multivariate typical sequences receive
much the same treatment (El Gamel and Kim, 2010, p.2-26).
Given a basic set of information sources (X1, ..., Xk) that one
partitions into two ordered sets X(J) and X(J ′), then the
splitting criterion becomes H(X(J)|X(J ′)). Generalization
to a greater number of ordered sets is straightforward.

Then the joint splitting criterion – I,H above – however ex-
pressed as a composite of the underlying information sources
and their interactions, satisfies a relation analogous to equa-
tion (3), where N(n) is the number of high probability jointly
typical paths of length n. The joint splitting criterion is given
as a functional composition of the underlying information
sources and their interactions as affected by the embedding
contextual cognitive information sources indexed by J ′.

4.3 Metabolic effects

The final iteration of the argument involves incorporating the
effects of metabolic energy on the cognitive GCTO Tlusty
Morse Function selector, now convoluted through network in-
formation theory with cognitive gene expression dual infor-
mation sources, in the sense of Wallace and Wallace (2008,
2009). We do this in a painfully standard manner. Assume
there is a tunable metabolic energy bottleneck that delivers
a limited intensity of metabolic energy per unit reactor, an

intensive measure M . The usual assumption, following a sim-
ple Gibbs model, is that the probability of H(X(J)|X(J ′)) is
given by an expression

Pr[H] ∝ exp[−H(J |J ′)/M ]∑
J′ exp[−H(J |J ′)/M ]

.

(6)

TheX(J ′) represent the effects of embedding cognitive gene
expression mechanisms, via their dual information sources,
and M that of available cell energy metabolism.

The denominator of this expression is much like the parti-
tion function in statistical physics.

Letting

exp[−F/M ] =
∑
J′

exp[−H(J |J ′)/M ] ≡ Z

(7)

we can define a new Morse Function that is analogous to the
free energy of a simple physical system as

F = −M log[Z].

(8)

Here cognitive gene expression mechanisms and cell energy
metabolism have been combined to dynamically tune the cog-
nitive process that chooses the venue of the Tlusty Morse
Function defining the repertoire of glycan determinants. This
chain of processes is needed to collapse the GCTO onto some-
thing both physiologically manageable and appropriate, an-
other retina-like rate distortion manifold in the sense of Glaze-
brook and Wallace (2009). In effect, the selector has to both
choose and power the subrepertoire, and these are significant
restrictions.

5 Discussion and conclusions

We have, after a long chain of argument, invoked the cognitive
rate distortion manifold of Glazebrook and Wallace (2009) to
dynamically tune and power a glycan code subset according
to the demands of gene expression and metabolic energy, a
glycan fovea, as it were.
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The introduction of a metabolically-driven free energy in
equation (8) carries certain standard implications regarding
punctuated phase transitions.

Landau’s phenomenological theory of phase transitions in
simple physical systems (Landau and Lifshitz, 2007) assumes
that the free energy near criticality can be expanded in a
power series of some ‘order parameter’ φ representing a fun-
damental measurable quantity, that is, a symmetry invariant.
One then writes

F0 =

p(>m)∑
k=m

Akφ
k,

(9)

with A2 ≈ α(T − Tc) sufficiently close to the critical temper-
ature Tc. This mean field approach can be used to describe a
great variety of effects.

Minimization of F0 with respect to the order parameter
yields the average value of φ, < φ >, which is zero above the
critical temperature and non-zero below it. In the absence of
external fields, the second-order transition occurs at T = Tc.

The Landau formalism quickly enters deep topological wa-
ters (e.g., Pettini, 2007, pp. 42-43; Landau and Lifshitz, 2007,
pp. 459-466). The essence of Landau’s insight was that phase
transitions without latent heat – second order transitions –
were usually in the context of a significant symmetry change
in the physical states of a system, with one phase, at higher
temperature, being far more symmetric than the other. A
symmetry is lost in the transition, a phenomenon called spon-
taneous symmetry breaking. The greatest possible set of sym-
metries in a physical system is that of the Hamiltonian de-
scribing its energy states. Usually states accessible at lower
temperatures will lack symmetries available at higher temper-
atures, so that the lower temperature phase is the less sym-
metric: The randomization of higher temperatures ensures
that higher symmetry/energy states will then be accessible to
the system.

Equation (8) suggests that increasing the intensity of avail-
able metabolic energy is a necessary condition for using larger
sections of the GCTO defining the repertoire of glycan deter-
minants, and that the accession to higher ‘symmetries’ within
that repertoire is almost assuredly highly punctuated with in-
creasing energy in a series of discernible phase transitions. An
alternative, less explicit, formulation would simply focus on
the delivery of metabolic energy as determined by an external
information source, restricting the Morse Function to some-
thing like H(J |J ′) above, for which phase transition behavior
would be more difficult to characterize.

The punctuated glycan fovea we postulate should be ob-
servable, either in present systems, or frozen within evolution-
ary trajectory, as ecosystem shifts like the aerobic transition
made available greater intensity of metabolic energy. At the

very least, a search for it provides a principled approach to
functional glycomics likely to yield fundamental advances, if
only disproof of our simple model.
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