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a b s t r a c t

In this work, we study the parallel-in-time iterative solution of coupled flow and ge-
omechanics in porous media, modelled by a two-field formulation of Biot’s equations. In
particular, we propose a new version of the fixed-stress splitting method, which has been
widely used as solution method of these problems. This new approach forgets about the
sequential nature of the temporal variable and considers the time direction as a further
direction for parallelization. Themethod is partially parallel-in-time.We present a rigorous
convergence analysis of themethod and numerical experiments to demonstrate the robust
behaviour of the algorithm.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The coupled poroelastic equations describe the behaviour of fluid-saturated porous materials undergoing deformation.
Such coupling has been intensively investigated, starting from the pioneering one-dimensional work of Terzaghi [1], which
was extended to a more general three-dimensional theory by Biot [2,3]. Biot’s model was originally developed to study
geophysical applications such as reservoir geomechanics, however, nowadays it is widely used in the modelling of many
applications in a great variety of fields, ranging from geomechanics and petroleum engineering, to biomechanics or food
processing. There is a vast literature on Biot’s equations and the existence, uniqueness, and regularity of their solutions, see
Showalter [4], Phillips and Wheeler [5] and the references therein.

Reliable numerical methods for solving poroelastic problems are needed for the accurate solution of multi-physics
phenomena appearing in different application areas. In particular, the solution of the large linear systems of equations arising
from the discretization of Biot’smodel is themost consuming part when real simulations are performed. For this reason, a lot
of effort has been made in the last years to design efficient solution methods for these problems. Two different approaches
can be adopted, the so-called monolithic or fully coupled methods and the iterative coupling methods. The monolithic
approach consists of solving the linear system simultaneously for all the unknowns. The challenge here, is the design of
efficient preconditioners to accelerate the convergence of Krylov subspace methods and the design of efficient smoothers
in a multigrid framework. Recent advances in both directions can be found in [6–9] and the references therein. These
methods usually provide unconditional stability and convergence. Iterative coupling methods, however, solve sequentially
the equations for fluid flow and geomechanics, at each time step, until a converged solution within a prescribed tolerance is
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achieved. They offer several attractive features as their flexibility, for example, since they allow to link two different codes
for fluid flow and geomechanics for solving the coupled poroelastic problems. The most used iterative coupling methods
are the drained and undrained splits, which solve the mechanical problem first, and the fixed-strain and fixed-stress splits,
which on the contrary solve the flow problem first [10–12].

Among iterative coupling schemes, the fixed-stress splitting method is the most widely used. This sequential-implicit
method basically consists of solving the flow problem first fixing the volumetric mean total stress, and then the mechanics
part is solved from the values obtained at the previous flow step. In the last years, a lot of research has been done on this
method. The unconditional stability of the fixed-stress splitting method is shown in [11] using a von Neumann analysis. In
addition, stability and convergence of the fixed-stress splitting method have been rigorously established in [13]. Recently,
in [14] the authors have proven the convergence of the fixed-stress splitmethod in energy norm for heterogeneous problems.
Estimates for the case of themultirate iterative coupling scheme are obtained in [15],wheremultiple finer time steps for flow
are taken within one coarse mechanics time step, exploiting the different time scales for the mechanics and flow problems.
In [16], the convergence of this method is demonstrated in the fully discrete case when space–time finite element methods
are used. In [17], the authors present a very interesting approach which consists of re-interpreting the fixed-stress splitting
scheme as a preconditioned-Richardson iteration with a particular block-triangular preconditioning operator. Recently,
in [18] an inexact version of the fixed-stress splitting scheme has been successfully proposed as smoother in a geometric
multigrid framework, which provides an efficient monolithic solver for Biot’s problem. Finally, we mention that the fixed-
stress splittingwas recently applied to a non-linear poromechanicsmodel in [19] and to consolidation of unsaturated porous
media in [20].

All the previously mentioned algorithms are based on a time-marching approach, in which each time step is solved after
the other in a sequentialmanner, and therefore they donot allow the parallelization of the temporal variable. Parallel-in-time
integration methods, however, are receiving a lot of interest nowadays because of the advent of massively parallel systems
with thousands of threads, permitting to reduce drastically the computing time [21]. There are various different methods
introducing concurrency along the temporal dimension. The most well-known time-parallelization methods include the
parallel full approximation scheme in space and time (PFASST) [22], the Parareal method [23], the Multigrid Reduction in
Time algorithm (MGRIT) [24], the Space–time Multigrid method (STMG) [25], and the Space–time concurrent multigrid
waveform relaxation (WRMG) with cyclic reduction [26,27]. Due to the mixed elliptic–parabolic structure of Biot’s problem,
the development of parallel-in-time algorithms is not intuitive.

In the present work, we introduce a very simple version of the fixed-stress splitting method for the poroelasticity
problem which is partially parallel-in-time. We further show rigorously its convergence. Techniques similar with the ones
from [13,14,16] are used. For completeness, in Section 3, we include a new proof for the convergence of the fixed-stress
splitting algorithm in the semi-discrete case. The theoretical results are sustained by numerical computations. Moreover, a
fully parallel-in-time version of the presented method is introduced.

The remainder of the paper is organized as follows. In Section 2we briefly introduce the poroelasticitymodel and present
the considered finite element discretizations. Section 3 is devoted to the description of the classical fixed-stress splitting
algorithm. In Section 4, the partially parallel-in-time new approach based on the fixed-stress splitting algorithm is presented
and its convergence analysis is derived. Section 5 illustrates the robustness of the proposed parallel-in-time fixed-stress
splitting method through two numerical experiments. Finally, some conclusions are drawn in Section 6.

2. Mathematical model and discretization

The equations describing poroelastic flow and deformation are derived from the principles of fluid mass conservation
and the balance of forces on the porous matrix. More concretely, according to Biot’s theory [2,3], and assumingΩ a bounded
open subset of Rd, d ∈ {2, 3}, with regular boundary Γ , the consolidation process must satisfy on the space–time domain
Ω × (0, T ] the following system of partial differential equations:

equilibrium equation: −div σ′ + α∇ p = ρg,

constitutive equation: σ′ = 2Gε(u) + λ div(u)I,
compatibility condition: ε(u) =

1
2 (∇u + ∇ut ),

Darcy’s law: q = −
1
µf

K
(
∇p − ρf g

)
,

continuity equation: ∂
∂t

(
1
β
p + α∇ · u

)
+ ∇ · q = f ,

(1)

where I is the identity tensor, u is the displacement vector, p is the pore pressure, σ′ and ε are the effective stress and strain
tensors for the porous medium, g is the gravity vector, q is the percolation velocity of the fluid relative to the soil, µf is the
fluid viscosity and K is the absolute permeability tensor. The Lamé coefficients, λ and G, can be also expressed in terms of
Young’s modulus E and the Poisson’s ratio ν as λ = Eν/((1 − 2ν)(1 + ν)) and G = E/(2 + 2ν). The bulk density ρ is related
to the densities of the solid (ρs) and fluid (ρf ) phases as ρ = φρf + (1− φ)ρs, where φ is the porosity. β is the Biot modulus
and α is the Biot coefficient given by α = 1 − Kb/Ks, where Kb is the drained bulk modulus, and Ks is the bulk modulus of
the solid phase.
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If considering the displacements of the solid matrix u and the pressure of the fluid p as primary variables, we obtain the
so-called two-field formulation of the Biot’s consolidation model. With this idea in mind, the mathematical model (1) can
be rewritten as

− div σ′ + α∇p = ρg, σ′ = 2G ε(u) + λ div(u)I, (2)
∂

∂t

(
1
β
p + α∇ · u

)
− ∇ ·

(
1
µf

K
(
∇p − ρf g

))
= f . (3)

The most important feature of this mathematical model is that the equations are strongly coupled. Here, the Biot parameter
α plays the role of coupling parameter between these equations. In order to ensure the existence and uniqueness of solution,
we must supplement the system with appropriate boundary and initial conditions. For instance,

p = 0, on Γp and
K
µf

(
∇p − ρf g

)
· n = 0, on Γq,

u = 0, on Γu and σ′ n = 0, on Γt ,

(4)

where n is the unit outward normal to the boundary, Γp ∪ Γq = Γt ∪ Γu = Γ , and Γp ∩ Γq = Γt ∩ Γu = ∅ with Γp, Γq, Γu
and Γt subsets of Γ having non null measure. For the initial time, t = 0, the following condition is fulfilled(

1
β
p + α∇ · u

)
(x, 0) = 0, x ∈ Ω. (5)

Results about existence and uniqueness of the solution of the Biot’s model (2)–(3) with initial condition (5) can be found in
the works by Showalter [4] and Zenisek [28].

2.1. Semi-discretization in space

To introduce the spatial discretization of the Biot model, we choose the finite element method. We define the standard
Sobolev spaces V = {u ∈ (H1(Ω))d | u|Γu = 0}, and Q = {p ∈ H1(Ω) | p|Γp = 0}, with H1(Ω) denoting the Hilbert subspace
of L2(Ω) of functions with first weak derivatives in L2(Ω). Then, we introduce the variational formulation for the two-field
formulation of the Biot’s model as follows: Find (u(t), p(t)) ∈ C1([0, T ];V ) × C1([0, T ];Q ) such that

a(u(t), v) − α(p(t), div v) = (ρg, v), ∀ v ∈ V , t ∈ (0, T ], (6)

α(div ∂tu(t), q)+
1
β
(∂tp(t), q)+b(p(t), q) = (f , q)

+(Kµ−1
f ρf g, ∇q), ∀q ∈ Q , t ∈ (0, T ], (7)

where (·, ·) is the standard inner product in the space L2(Ω), and the bilinear forms a(·, ·) and b(·, ·) are given as

a(u, v) = 2G
∫

Ω

ε(u) : ε(v) dΩ + λ

∫
Ω

div u div v dΩ,

b(p, q) =

∫
Ω

K
µf

∇p · ∇q dΩ.

Finally, the initial condition is given by(
1
β
p(0) + α∇ · u(0), q

)
= 0, ∀ q ∈ L2(Ω). (8)

It is important to consider a finite element pair of spaces V h × Qh satisfying an inf–sup condition. One very simple choice
would be the stabilized P1–P1 scheme firstly introduced in [29] and widely analysed in [30], in which V h consists of the
space of piecewise (with respect to a triangulation T h) linear continuous vector valued functions on Ω and the space Qh
consists of piecewise linear continuous scalar valued functions. Other choices would be P2–P1, that is, piecewise quadratic
continuous vector valued functions for displacements and piecewise linear continuous scalar valued functions for pressure,
widely studied byMurad and Loula [31–33]; or the so-calledMINI element [30] inwhichV h = V l⊕V b, whereV l is the space
of piecewise linear continuous vector valued functions and V b is the space of bubble functions. Discrete inf–sup stability
conditions and convergence results for the stabilized P1–P1 and the MINI element were recently derived in [30].

The semi-discretized problem can be written as follows: Find (uh(t), ph(t)) ∈ C1([0, T ];V h) × C1([0, T ];Qh) such that

a(uh(t), vh)−α(ph(t), div vh)= (ρg, vh), ∀ vh ∈ V h, t ∈ (0, T ], (9)

α(div ∂tuh(t), qh)+
1
β
(∂tph(t), qh)+b(ph(t), qh)= (fh, qh)

+(Kµ−1
f ρf g, ∇qh), ∀qh ∈ Qh, t ∈ (0, T ], (10)
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giving rise to the following fully coupled algebraic/differential equations system,[
0 0
B Mp

][
u̇h

ṗh

]
+

[
A Bt

0 −C

][
uh

ph

]
=

[
gh
f̃h

]
, (11)

where we have denoted u̇h ≡ ∂tuh(t) and ṗh ≡ ∂tph(t).

Remark 1. Wewish to emphasize that the solver based on the fixed-stress splitting method, which we are going to propose
in this work, can be applied to other different discretizations of the problem, for example, mixed finite-elements or finite
volume schemes.

3. The fixed-stress splitting algorithm for the semi-discretized problem

A popular alternative for solving the poroelasticity problem in an iterative manner is the so-called fixed-stress splitting
method. This scheme is based on solving the flow equation by adding the stabilization term L ∂p

∂t on both sides of the equation:(
1
β

+ L
)

∂p
∂t

− ∇ ·

(
1
µf

K
(
∇p − ρf g

))
= f − α

∂

∂t
(∇ · u) + L

∂p
∂t

, (12)

where L is a parameter to fix, and then, the mechanics problem is solved using updated pressure. For more details about the
algorithm and how to fix parameter L, see [11,13,14,16]. Thus, given an initial guess (u0

h(t), p
0
h(t)), the fixed-stress splitting

algorithm gives us a sequence of approximations (ui
h(t), p

i
h(t)), i ≥ 1 as follows:

Step 1: Given (ui−1
h (t), pi−1

h (t)) ∈ C1([0, T ];V h) × C1([0, T ];Qh), find pih(t) ∈ C1([0, T ];Qh) such that

(
1
β

+ L)(∂tpih(t), qh) + b(pih(t), qh) + α(div ∂tui−1
h (t), qh) = L(∂tpi−1

h (t), qh) +

(fh, qh) + (Kµ−1
f ρf g, ∇qh), ∀ qh ∈ Qh, t ∈ (0, T ], and (13)

pih(0) = p0.

Step 2: Given pih(t) ∈ C1([0, T ];Qh), find ui
h(t) ∈ C1([0, T ];V h) such that

a(ui
h(t), vh) = α(pih(t), div vh) + (ρg, vh), ∀ vh ∈ V h, t ∈ (0, T ]. (14)

The algorithm starts with an initial approximation (u0
h(t), p

0
h(t)) defined along the whole time-interval. A natural choice is

to take this approximation constant and equal to the values specified by the initial condition, (u0
h(t), p

0
h(t)) = (u0, p0), t ∈

(0, T ].

3.1. Convergence analysis in the semi-discrete case

Let δui
h(t) = ui

h(t) − ui−1
h (t) and δpih(t) = pih(t) − pi−1

h (t) denote the difference between two successive approximations
for displacements and for pressure, respectively.

Theorem 1. The fixed-stress splitting method given in (13)–(14) converges for any L ≥
α2

2( 2Gd +λ)
. There holds∫ t

0
∥∂tδpih(s)∥

2 ds ≤
L

( 1
β

+ L)

∫ t

0
∥∂tδpi−1

h (s)∥2 ds. (15)

Proof. We take the time derivative of the difference of two successive iterates of the mechanics equation (14) and test the
resulting equation by vh = ∂tδui−1

h to get

2G(ε(∂tδui
h), ε(∂tδu

i−1
h )) + λ(∇ · ∂tδui

h, ∇ · ∂tδui−1
h ) − α(∂tδpih, ∇ · ∂tδui−1

h ) = 0. (16)

By taking the difference between two successive iterates of the flow Eq. (13) and testing with qh = ∂tδpih, we obtain

1
β

∥∂tδpih∥
2
+ L(∂t (δpih − δpi−1

h ), ∂tδpih) + b(δpih, ∂tδp
i
h) + α(∇ · ∂tδui−1

h , ∂tδpih) = 0. (17)

After summing up Eqs. (16) and (17), and using the identities

(σ , ξ ) =
1
4
∥σ + ξ∥

2
−

1
4
∥σ − ξ∥

2, (σ − ξ, σ ) =
1
2

(
∥σ∥

2
− ∥ξ∥

2
+ ∥σ − ξ∥

2) , (18)

one has
G
2

∥ε(∂tδui
h + ∂tδui−1

h )∥2
+

λ

4
∥∇ · (∂tδui

h + ∂tδui−1
h )∥2

+
1
β

∥∂tδpih∥
2
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+
1
2

d
dt

∥δpih∥
2
B +

L
2
(∥∂tδpih∥

2
− ∥∂tδpi−1

h ∥
2
+ ∥∂tδpih − ∂tδpi−1

h ∥
2)

=
G
2

∥ε(∂tδui
h − ∂tδui−1

h )∥2
+

λ

4
∥∇ · (∂tδui

h − ∂tδui−1
h )∥2. (19)

Next, we consider the time derivative of the difference of two successive iterates of the mechanics equation (14) and test by
vh = ∂tδui

h − ∂tδui−1
h . By applying the Cauchy–Schwarz inequality, it follows

∥∇ · (∂tδui
h − ∂tδui−1

h )∥ ≤
α

2G
d + λ

∥∂tδpih − ∂tδpi−1
h ∥. (20)

Inserting equality (16) into Eq. (19) and by applying Cauchy–Schwarz and (20) inequalities, we obtain

G
2

∥ε(∂tδui
h + ∂tδui−1

h )∥2
+

λ

4
∥∇ · (∂tδui

h + ∂tδui−1
h )∥2

+
1
β

∥∂tδpih∥
2

+
1
2

d
dt

∥δpih∥
2
B +

L
2
(∥∂tδpih∥

2
+ ∥∂tδpih − ∂tδpi−1

h ∥
2)

≤
L
2
∥∂tδpi−1

h ∥
2
+

α2

4( 2Gd + λ)
∥∂tδpih − ∂tδpi−1

h ∥
2.

Discarding the first three positive terms, taking L ≥
α2

2( 2Gd +λ)
, and integrating from 0 to t we finally obtain (15). It implies

that the scheme is a contraction. Following the same technique as in [15], from the contractive property of scheme (13)–(14)
one can establish that it is convergent and show that the converged quantities satisfy the variational formulation of the
semi-discretized problem (9)–(10). This completes the proof. □

Remark 2. It is easy to see that the fixed-stress splitting method in the semi-discrete case is an iterative method based on
a suitable splitting for solving the differential/algebraic equation system (11). In detail, the iterative method can be written
in the form[

0 0
0 (1 + L)Mp

][
u̇i
h

ṗih

]
+

[
A Bt

0 −C

][
ui
h

pih

]
=

[
0 0

−B LMp

][
u̇i−1
h

ṗi−1
h

]
+

[
gh
f̃h

]
. (21)

4. The parallel-in-time fixed-stress splitting algorithm for the fully discretized problem

4.1. Parallel-in-time algorithm

For time discretization we use the backward Euler method on a uniform partition {t0, t1, . . . , tN} of the time interval
(0, T ] with constant time-step size τ , Nτ = T . Then, we have the following fully discrete scheme corresponding to (9)–(10):
For n = 1, 2, . . . ,N , find (un

h, p
n
h) ∈ V h × Qh such that

a(un
h, vh) − α(pnh, div vh) = (ρg, vh), ∀ vh ∈ V h, (22)

α(div ∂̄tun
h, qh) +

1
β
(∂̄tpnh, qh) + b(pnh, qh) = (f nh , qh) + (Kµ−1

f ρf g, ∇qh), ∀ qh ∈ Qh, (23)

where ∂̄tun
h := (un

h − un−1
h )/τ and ∂̄tpnh := (pnh − pn−1

h )/τ .
We now discuss a partially parallel-in-time version of the fixed-stress splitting method. This algorithm arises in a natural

way from the iterative method (21) by discretizing in time. In this way, given an initial guess {(un,0
h , pn,0h ), n = 0, 1, . . . ,N},

the new fixed-stress splitting algorithm gives us a sequence of approximations {(un,i
h , pn,ih ), n = 0, 1, . . . ,N}, i ≥ 1, as

follows:

Step 1: Let p0,ih = p0, for all i ≥ 0. For i ≥ 1, given {(un,i−1
h , pn,i−1

h ), n = 0, 1, . . . ,N}, find pn,ih ∈ Qh, n = 1, . . . ,N, such that
∀ qh ∈ Qh there holds(

1
β

+ L
)(

pn,ih − pn−1,i
h

τ
, qh

)
+ b(pn,ih , qh) = α

(
div

un,i−1
h − un−1,i−1

h

τ
, qh

)

+L

(
pn,i−1
h − pn−1,i−1

h

τ
, qh

)
+ (f nh , qh) + (Kµ−1

f ρf g, ∇qh). (24)

Step 2: Given pn,ih ∈ Qh, n = 1, . . . ,N, find un,i
h ∈ V h, n = 1, . . . ,N, such that

a(un,i
h , vh) = α(pn,ih , div vh) + (ρg, vh), ∀ vh ∈ V h. (25)
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Remark3. Wewish to emphasize that the proposedmethod is partially parallel-in-time in contrast to the classical sequential
fixed-stress splitting method based on time-stepping. Notice that in the Step 2 of the new algorithm, N − 1 independent
elliptic problems can be easily solved in parallel. Also the flow problem in Step 1 can be solved by using some of the well-
known parallel-in-timemethods for parabolic problemsmentioned in the introduction: PFASST, parareal, WRMG,MGRIT, or
STMG. In this work, however, this step is implemented in a classical (non-parallel) form to keep the implementation simple,
since the aim of this research is to present this new version of the fixed-stress iteration.

Remark 4 (A Fully Parallel-in-time Fixed-stress Scheme). The scheme (24)–(25) can be made fully parallel by replacing
everywhere pn−1,i with pn−1,i−1. The following scheme arises:

Step 1: Let p0,ih = p0, for all i ≥ 0. For i ≥ 1, given {(un,i−1
h , pn,i−1

h ), n = 0, 1, . . . ,N}, find pn,ih ∈ Qh, n = 1, . . . ,N, such that
∀ qh ∈ Qh there holds(

1
β

+ L
)(

pn,ih − pn−1,i−1
h

τ
, qh

)
+ b(pn,ih , qh) = α

(
div

un,i−1
h − un−1,i−1

h

τ
, qh

)

+L

(
pn,i−1
h − pn−1,i−1

h

τ
, qh

)
+ (f nh , qh) + (Kµ−1

f ρf g, ∇qh). (26)

Step 2: Given pn,ih ∈ Qh, n = 1, . . . ,N, find un,i
h ∈ V h, n = 1, . . . ,N, such that

a(un,i
h , vh) = α(pn,ih , div vh) + (ρg, vh), ∀ vh ∈ V h. (27)

The fully parallel-in-time scheme needs for the numerical examples considered more iterations (for the same tuning
parameter) than the partially parallel scheme. A throughout analysis of this second scheme is beyond the aim of this paper.

4.2. Convergence analysis of the partially parallel-in-time scheme

Let δun,i
h = un,i

h − un,i−1
h and δpn,ih = pn,ih − pn,i−1

h denote the difference between two succesive approximations for
displacements and for pressure, respectively.

Theorem 2. The fixed-stress splitting method given in (24)–(25) is convergent for any stabilization parameter L ≥
α2

2( 2Gd +λ)
. There

holds
N∑

n=1

τ∥∂̄tδp
n,i
h ∥

2
≤

L
( 1
β

+ L)

N∑
n=1

τ∥∂̄tδp
n,i−1
h ∥

2. (28)

Proof. Similarly to the proof of Theorem 1, we take the difference of two successive iterates of the mechanics equation
(25) and the flow equation (24), and test the resulting equations by vh = ∂̄tδun,i−1

h and qh = ∂̄tδp
n,i
h respectively to get for

n = 1, 2, . . . ,N,

2G(ε(∂̄tδun,i
h ), ε(∂̄tδun,i−1

h )) + λ(∇ · ∂̄tδun,i
h , ∇ · ∂̄tδun,i−1

h )

−α(∂̄tδp
n,i
h , ∇ · ∂̄tδun,i−1

h ) = 0. (29)

1
β

∥∂̄tδp
n,i
h ∥

2
+ L(∂̄t (δp

n,i
h − δpn,i−1

h ), ∂̄tδp
n,i
h ) + b(δpn,ih , ∂̄tδp

n,i
h )

+α(∇ · ∂̄tδun,i−1
h , ∂̄tδp

n,i
h ) = 0. (30)

After summing up Eqs. (29) and (30), and using the identities in (18) one has

G
2

∥ε(∂̄tδun,i
h + ∂̄tδun,i−1

h )∥2
+

λ

4
∥∇ · (∂̄tδun,i

h + ∂̄tδun,i−1
h )∥2

+
1
β

∥∂̄tδp
n,i
h ∥

2

+
L
2
(∥∂̄tδp

n,i
h ∥

2
+ ∥∂̄tδp

n,i
h − ∂̄tδp

n,i−1
h ∥

2) +
1
2τ

(∥δpn,ih ∥
2
B + ∥δpn,ih − δpn−1,i

h ∥
2
B)

=
G
2

∥ε(∂̄tδun,i
h − ∂̄tδun,i−1

h )∥2
+

λ

4
∥∇ · (∂̄tδun,i

h − ∂̄tδun,i−1
h )∥2

+
L
2
∥∂̄tδp

n,i−1
h ∥

2
+

1
2τ

∥δpn−1,i
h ∥

2
B. (31)
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Next, we consider the difference of two successive iterates of themechanics equation (25) and test by vh = ∂̄tδun,i
h −∂̄tδun,i−1

h
to get

2G∥ε(∂̄tδun,i
h − ∂̄tδun,i−1

h )∥2
+ λ∥∇ · (∂̄tδun,i

h − ∂̄tδun,i
h )∥2

= α(∂̄tδp
n,i
h − ∂̄tδp

n,i−1
h , ∇ · (∂̄tδun,i

h − ∂̄tδun,i−1
h )). (32)

From this equality, by applying Cauchy–Schwarz inequality, it is easy to see

∥∇ · (∂̄tδun,i
h − ∂̄tδun,i−1

h )∥ ≤
α

2G
d + λ

∥∂̄tδp
n,i
h − ∂̄tδp

n,i−1
h ∥. (33)

Inserting equality (32) into Eq. (31) and by applying Cauchy–Schwarz inequality and (33), we obtain

G
2

∥ε(∂̄tδun,i
h + ∂̄tδun,i−1

h )∥2
+

λ

4
∥∇ · (∂̄tδun,i

h + ∂̄tδun,i−1
h )∥2

+
1
β

∥∂̄tδp
n,i
h ∥

2

+
L
2
(∥∂̄tδp

n,i
h ∥

2
+ ∥∂̄tδp

n,i
h − ∂̄tδp

n,i−1
h ∥

2)+
1
2τ

(∥δpn,ih ∥
2
B+∥δpn,ih − δpn−1,i

h ∥
2
B)

≤
L
2
∥∂̄tδp

n,i−1
h ∥

2
+

1
2τ

∥δpn−1,i
h ∥

2
B +

α2

4( 2Gd + λ)
∥∂̄tδp

n,i
h − ∂̄tδp

n,i−1
h ∥

2.

Discarding positive terms, taking L ≥
α2

2( 2Gd +λ)
, and summing up from n = 1 to N , we finally obtain (28). This implies that the

scheme is a contraction and therefore convergent. This completes the proof. □

Remark 5. Notice that the values of parameter L turn out to be the same as in the classical fixed-stress splitting scheme.

5. Numerical experiments

In this section, we present two numerical experiments with the purpose of illustrating the performance of the partially
parallel-in-time fixed-stress splitting (PFS) method described in Section 4. We compare the PFS method with the classical
fixed-stress splitting (FS), see e.g. [14]. As first test problem, we use Mandel’s problem, which is a well-established 2D
benchmark problemwith a known analytical solution [34,35]. This problem is very often used in the community for verifying
the implementation and the performance of the numerical schemes, see e.g. [5,10,30,36]. As a second test, we use a three-
dimensional problem on a L-shaped domain with time dependent boundary conditions, see e.g. [16,37]. For both numerical
experiments, a stabilized P1–P1 scheme has been used here for spatial discretization. However, we would like to mention
that any stable pair could be considered instead.

The performance of both methods, FS and PFS, is similar if they are running sequentially. One of the main differences
between the two methods, however, is the memory consumption. While FS uses a fixed memory amount independent to
the time step, the PFS uses a memory amount proportional to the number of time steps. This is because PFS requires to store
each variable for all time levels. However, to have access to the variables at every time step allows that several tasks of the
implementation can run in parallel, mainly the solution of the mechanics problem at Eq. (25) for each time level and the
assembly of the right hand sides at each time step.

The schemes were implemented in the open-source software package deal.II [38] configured for multithreading. The
number of threads running in parallel simultaneously can be specified between 1 and 32 in a system of 4 × 8 cores Intel
Xeon 2.7 GHz. In this regard, PFS is set to use one thread to solve the flow problem and up to 32 threads to assemble the
right hand side, impose the boundary conditions, solve the mechanics problem and write the output results at each time
step, while FS is set to use only one thread for the same tasks. In both numerical experiments, we report the absolute wall
time of each method. We would like to mention that all the linear systems are solved by using a direct solver for simplicity
in the implementation. However, a preconditioned conjugate gradient would be a good alternative for the efficient solution
of such systems.

5.1. Test case 1: Mandel’s problem

Mandel’s problem consists of a poroelastic slab of extent 2a in the x-direction, 2b in the y-direction, and infinitely long in
the z-direction, and is sandwiched between two rigid impermeable plates (see Fig. 1a). At time t = 0, a uniform vertical load
of magnitude 2F is applied and an equal, but upward force is applied to the bottom plate. This load is supposed to remain
constant. The domain is free to drain and stress-free at x = ±a. Gravity is neglected.

For the numerical solution, the symmetry of the problem allows us to use a quarter of the physical domain as
computational domain (see Fig. 1b). Moreover, the rigid plate condition is enforced by adding constrained equations so
that vertical displacement uy(b, t) on the top is equal to a known constant value.

The application of a load (2F ) causes an instantaneous and uniform pressure increase throughout the domain [39]; this
is predicted theoretically [34] and it can be used as an initial condition
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Fig. 1. Mandel’s problem.

Table 1
Boundary conditions for Mandel’s problem.
Boundary Flow Mechanics

x = 0 q · n = 0 u · n = 0
y = 0 q · n = 0 u · n = 0
x = a p = 0 σ · n = 0
y = b q · n = 0 σ12 = 0; u · n = uy(b, t)

Table 2
Input parameter for Mandel’s problem.
Symbol Quantity Value Symbol Quantity Value

a Dimension in x 100 m b Dimension in y 10 m
K Permeability 100 D µf Dynamic viscosity 10 cp
α Biot’s constant 1.0 β Biot’s modulus 1.65 × 1010 Pa
ν Poisson’s ratio 0.4 E Young’s modulus 5.94 × 109 Pa
B Skempton coefficient 0.83333 νu Undrained Poisson’s ratio 0.44
c Diffusivity coefficient 46.526 m2/s F Force intensity 6.8 × 108 N/m
hx Grid spacing in x 2.5 m hy Grid spacing in y hx/10
τ Time step 1 s T Total simulation time 32 s

p(x, y, 0) =
FB(1 + vu)

3a
,

u(x, y, 0) =
( Fvux

2G ,
−Fb(1−vu)y

2Ga

)⊤
,

where B is the Skempton coefficient and νu =
3ν+B(1−2ν)
3−B(1−2ν) is the undrained Poisson ratio.

The boundary conditions are specified in Table 1 and the input parameters for Mandel’s problem are listed in Table 2. For
all cases, the following stopping criterion is used ∥δpn,i∥ + ∥δun,i

∥ ≤ 10−8.
In Fig. 2, the numerical and the analytical solutions of Mandel’s problem are depicted for different values of time. There

is a very good match between both solutions for all cases. Moreover, the results demonstrate the Mandel–Cryer effect, first
showing a pressure raise during the first 20 s and then, a sudden dissipation throughout the domain.

The number of iterations for PFS and FS are reported in Fig. 3 for different values of parameter L and various values of ν.
We remark a very similar behaviour of the two methods, with the optimal stabilization parameter L being in this case the
physical one Lphy := α2/

( 2G
d + λ

)
, see e.g. [10,13,14].

We remark that the mesh size and the time step τ do not influence the number of iterations. This can be seen in Table 3,
where we provide the number of iterations for both algorithms, varying the space and time discretization parameters.

Further, Fig. 4 shows the wall time for PFS reported for different mesh sizes and time steps (see Figs. 4a and 4b,
respectively). The figure shows how the wall time decreases proportionally to the number of threads being used. However,
the wall time does not decrease substantially when usingmore than 16 threads because of the sequential tasks that the code
still has to perform (for instance solving the flow problem).

Table 4 shows the wall time for both FS and PFS. Since FS is running sequentially, it is set to use one thread. As expected,
we clearly observe that PFS consumes around 20% of the wall time of FS. Furthermore, the more time steps are considered,
the more this time reduction increases.
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Fig. 2. Comparison of numerical and analytical solutions of the (a) pore pressure and (b) displacements for Mandel’s problem in different times with
ν = 0.2.

Fig. 3. Performance of the splitting schemes PFS and FS for different values of L, τ = 1[s], hx = 2.5 [m]. Both schemes have the same optimum value
Lopt = Lphy .

Table 3
Number of iterations for different values of τ , hx , ν.
ν = 0.49999, hx = 6.25 [m]. ν = 0.499, τ = 0.5 [s].

τ [s] PFS FS hx [m] PFS FS

1.000 2 2.10 12.5000 3 3.20
0.500 2 2.03 6.2500 3 3.20
0.250 2 2.02 3.1250 3 3.19
0.125 2 2.01 1.5625 3 3.19

5.2. Test case 2: Poroelastic L-shaped problem

The second numerical example is taken from [16,37]. It consists of a poroelastic L-shaped domain Ω ⊂ R3 (see Fig. 5),
with the long and short edges in the x and y-direction being 1 [m] and 0.5 [m] respectively and an extrusion of 0.5 [m] in the
z-direction. The boundary conditions, numerical solution and input parameters are shown in Figs. 5–6 and Table 5. Gravity
is neglected.

The number of iterations for the PFS method and the classical FS method are reported in Fig. 7 for different values of
parameters L and ν. The methods show again a very similar behaviour.
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Fig. 4. Wall time for different discretization parameters in space and time (first test).

Table 4
Wall time of FS/PFS for different time step sizes; hx = 6.25 [m].

τ [s] 1.0 0.5 0.25 0.125 0.0625

Method # Threads Wall time [s]
FS 1 43.3 78.6 146.0 281.0 499.0
PFS 1 48.0 85.7 160.0 316.0 574.0

2 27.3 47.8 86.1 179.0 298.0
4 17.8 28.0 50.9 109.0 191.0
8 11.2 19.9 37.4 72.8 115.0

16 13.6 20.5 31.1 63.5 97.7
32 10.8 19.7 33.3 63.1 92.9

Fig. 5. L-shaped domain and boundary conditions (symmetric in the z-direction).

Weremark again that themesh size and the time stepdonot influence thenumber of iterations. This canbe seen in Table 6,
where we provide the number of iterations for both algorithms, varying the space and time discretization parameters.

Fig. 8 shows the wall time of PFS for different time steps and mesh sizes. Again, we observe that as the number of time
steps increases the more threads are used the more the PFS reduces the wall time. In Table 7 we report the wall time of FS
vs. PFS, observing a similar behaviour as in the first experiment.
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Fig. 6. Numerical solutions at t = 0.26 and ν = 0.4, L = Lphy .

Table 5
Input parameters for L-shaped problem.
Symbol Quantity Value Symbol Quantity Value

K Permeability 1000 mD µf Dynamic viscosity 10 cp
α Biot’s constant 0.9 β Biot’s modulus 100 × 109 Pa
ν Poisson’s ratio 0.4 E Young’s modulus 100 × 109 Pa
h Grid spacing 1/25 m F Traction force constant 10 × 109 Pa
τ Time step 0.01 s T Total simulation time 0.5 s

Fig. 7. Performance of the splitting schemes PFS and FS for different values of L, τ = 0.02 [s], h = 0.03125 [m], Lopt =
Lphy
2 .

Table 6
Number of iterations for different values of τ , h, ν.
ν = 0.49999, h = 0.125 [m]. ν = 0.499, τ = 0.02 [s].

τ [s] PFS FS h [m] PFS FS

0.050 2 2.80 0.25000 3 3.82
0.020 2 2.84 0.12500 3 3.80
0.010 2 2.94 0.06250 3 3.78
0.005 2 2.97 0.03125 3 3.78
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Fig. 8. Wall time for different discretization parameters in space and time (second test).

Table 7
Wall time in seconds of FS/PFS for different time step sizes; h = 0.0625 [m].

τ [s] 0.02 0.01 0.005 0.0025 0.00125

Method # Trheats Wall time [s]
FS 1 10.6 17.1 31.2 63.6 115.0
PFS 1 11.5 19.2 35.5 68.7 136.0

2 8.5 12.1 22.3 44.1 86.4
4 7.2 11.7 17.9 30.2 57.4
8 7.1 8.7 14.7 21.6 39.6

16 5.7 7.6 11.9 19.3 29.1
32 6.5 6.2 11.0 16.3 26.4

6. Conclusions

We considered the quasi-static Biot model in the two-field formulation and presented a new fixed-stress type splitting
method for solving it. The main benefit of the newmethod is that the mechanics can be solved in a parallel-in-time manner.
We have rigorously analysed the convergence of the proposed method. If the stabilization term L is chosen big enough, the
method is shown to be convergent. The theoretical results are indicating a similar behaviour with the classical fixed-stress
splitting method (in terms of convergence rate and stabilization parameter size). We further performed numerical tests by
using two well-known benchmark problems. The numerical results confirm the theoretical findings. We observe that the
new scheme PFS is very efficient (around 20% of the wall time of FS). Nevertheless, the parallel implementation has still to
be optimized. A combination of the new scheme with a parallel algorithm for solving the flow (like e.g. PFASST, parareal,
WRMG, MGRIT, or STMG) would substantially increase the efficiency.
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