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The transduction and processing of physical information is becoming important in a

range of research fields, from the design of materials and virtual environments to the dynamics

of cellular microenvironments. Previous approaches such as morphological computation/soft

robotics, neuromechanics, and embodiment have provided valuable insight. This work

approaches haptic, proprioception, and artificial physical sensing as all part of the same subject.

In this presentation, three design criteria for applying physical intelligence to engineering

applications will be presented.

These criteria have several properties in common, which inspires two types of end-

effector model: stochastic (based on a spring) and deterministic (based on a piezomechanical

array). The generalized behavior and output dynamics of these models can be described as

three findings summarized from previous work. In conclusion, future directions for modeling

neural control using a neuromorphic approach will be discussed.

Abstract
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An increasing number of technological applications, from
controlling virtual worlds to creating artificial organs, require
intelligent physical control that meets several criteria

Research that combines materials, “physical” perception, and intelligent control may
provide a useful tool for an emerging frontier of engineering and medicine

Telerobotics

Cellular Microenvironments

Smart Materials

Immersive Virtual Worlds

Introduction

Nano Micro Humans LandscapesScale-appropriate 
applications

Scale-appropriate 
applications

Scale-appropriate 
applications

Scale-appropriate 
applications
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Embodiment

* the entire body (along with the brain) is essential for action (movement-
related behaviors)

* coupling between neural circuits and morphological effectors essential

Morphological Computation/Soft Robotics

* computation, information processing done at periphery of nervous
system

* scaling of muscle power, limbs, effectors to neural control networks

Neuromechanics

* what is the relationship between neural circuits and movement-related
parts of the body?

* mechanical parameters (surface reaction forces, gravity, hydrodynamic
drag) essential to movement behavior

Alternate Approaches/Inspiration
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Must be closely integrated with or mimic physiological
functions (movement, neuromuscular function, touch)

Reinterpret existing literature in these areas as “physical” intelligence

Physical control performs not only functions such as prediction and pattern recognition,
but also adaptation to extreme/repeated stimuli and self-repair

* objects at different scales (e.g. microdevices, body sensor networks, appliances)

* how do we compute physical inputs? Analogous to a nervous and/or biological system?

* beyond neural networks or other approaches to integrating physiological systems with a
self-adapting autonomous intelligence

Microdevices

Body sensor networks

Smart Appliances

Criterion #1

Control problem: How do
we embody physical objects,
systems with autonomous
intelligence?
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A strategy for understanding the structure of surfaces both
commonly and uncommonly encountered.

Surface properties include both the texture of objects and reaction forces from objects and
the environment in general.

Surface and effector properties:
* physical intelligence operates on and is
shaped by surface properties

Morphology alone: morphology used to
locomote over, explore surface – no way to
retain information

Nervous System alone: nervous system can
sense surface properties - no way to transduce
signal

Morphology + Nervous System: transduce,
retain information, and predict response

Criterion #2

Uncommon surfaces: non-Newtonian 

fluid (left), gelatinous (right)

Effector  composition: electroactive gripper 

(left); compliant polymers such as flexicomb 

(middle), Nokia’s morph cellphone (right)
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Exception-handling “spiky” or “bursty” environmental
inputs.

* boundaries between material phases (e.g.
liquid, solid)

* rare events, temporal fluctuations

To truly understand the nature of intelligent control requires us to consider non
Gaussian-noise present in environmental stimuli. Why is this important?

* surfaces are uneven, proprioception
requires temporal summation

Necessary components:
* neural coding at level of controller

* set-theoretic model of environment
(sensory-reachable volume approach)

Criterion #3
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How are the reactive properties of materials and physical
sensory systems characterized by intelligent control?

* materials have global parameters (stiffness, deformability)

* interaction with surfaces (static, dynamic properties) produces inertial, resistive by-
products (nervous system must “match” environment)

* morphology (end-effector) can be scaled (length-wise, overall geometry) to either
minimize or take advantage of these environmental properties

* each end-effector covers a finite space (reachable sensory volume) that determines
the representational “world”. Reach of all effectors at all time points = “universe”

* learning is based on variability of environment and partitioning/connectivity
between neuronal units (structural modular intelligence)

How do these criteria have in 

common?
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Piezomechanical (pressure-sensitive capacitor):

Mechanical Model - Deterministic

Deterministic model:
Spring model provides a graded or binary response
(reaction force to threshold)

On/off response: piezomechanical (e.g.
mechanorheological fluids, mechanoactive
polymers)

Pressure-sensitive media acts as a logic gate

Ʈ = pressure threshold (kPa) Ʈ = pressure threshold (kPa)

Depress surface until pressure 

threshold is reached

When pressure exerted on surface unit , signal 

generated (binary  output , 1 = above threshold)

Pressure inputs to modular nervous 

system

Pressure 

gradient

Cortical

Grid

Neuromuscular

(power) output

Ʈ

time

1

Cortical Grid

Surface Unit Array
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Muscle (dampened spring):

Stochastic model:
spring acts as a logic gate (fuzzy response)

Power-dependent: Power-independent:

Sensed input 

proportional to

produced output

Sensed input not 

proportional to

produced output

K = spring constant

Contraction occurs at

spring constant K, output

is graded

Mechanical Model - Stochastic
How can noise and uncertainty be used to our 

advantage?

Selective lack of control during behavior
(“suspended slinky” condition)

Introduction of a robustness mechanism
(prepare for rare events)

Tight linkage between environment, 

morphology, neural control

Relaxed linkage between environment, 

morphology, neural control

Does this lead to anticipatory response? Compare 
with findings related to environmental state

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

91
0.

1 
: P

os
te

d 
19

 A
pr

 2
01

1



The “physical response” is an ability to match the amount of
power produced with the amount and/or regularity of forces
sensed in the environment.

Matching response between forces sensed and 

forces produced by nervous system in response

When mismatch occurs (due to perturbation),

performance suffers but opens door for adaptation

Scaling of effector length with magnitude of 

environmental forces encountered

Environmental switches (temporal) required to 

induce adaptation (form of supervised learning)

Prediction of local/global physics

at many different spatial scales 

and magnitudes

“Matching” allows for a mimicry of sensorimotor

integration in artificial and hybrid intelligent 

systems

Finding #1
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Switching between surfaces with different properties can
create a exception-handling mechanism related to learning

Experimental setup: hard-soft-hard-soft 

Experimental setup: hard-hard-hard-soft 

Non-anticipatory response (generalized
pseudo-data)

Anticipatory response (generalized pseudo-data)

Finding #2

Switching dynamics observed in systems 

ranging from attentional control to bacterial 

physiology 

Switching between environments allows

for the development of an anticipatory response 

(adaptation – learning related)
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time

time

Transient 
adaptation

Converges to
stable response

Constant switching forces a generalized
response (environment exhibits
maximum entropy)

Unexpected switching forces variation
with local adaptation (response exhibits
maximum itinerance)
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Coupling motion with surface reaction forces provides a
mechanism for learning.

Pendular model: use a pendulum with a chamber at effector

* chamber filled with material in a particular phase (e.g.

liquid, gas, solid)

* when swung, inertial/coriolis forces generated.

* different materials/phases = different dynamics.

* dynamics of environment also vary by radius of

gyration, amplitude of swing.

Discrete dynamical model: use lattice to model of surfaces

(e.g. rubber, ice, wood) with tunable parameters to describe

features

* normal distribution describes each parameter

* what happens to surface properties of material when values

changed to mode region, tails of distribution?

Variable motion + reaction forces =

mechanism for exploration and learning 

in touch, proprioceptive systems

Experimentally realized using 

virtual worlds and robotic 

models

Proprioception

(pendular model)

Touch (discrete 

dynamical model)

Finding #3

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

91
0.

1 
: P

os
te

d 
19

 A
pr

 2
01

1



Requirements (representational): 

Future Work – Neuromorphic CNS

Selective long-range connectivity, scalable

Temporal (distributed) codes at multiple scales

Redundant and complex feature representation

Adaptable to needs of physical system

Neuromorphic Systems:
A solution to modeling the brain that does not involve a neural network

Hierarchical Cortical Grid

Inputs from surface units, actuators (muscles)

to individual cells

Interactions between units (nearest-neighbor,

proportion of non-local connections)

Scalable to n-dimensions (complexity)

Percolation, mean field models = memory

(managed connectivity)

Neuromorphic systems are hardware-oriented 
(deals explicitly with physical computation)
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