

Department of Automatic Control

Evaluating motion capture as a means
of system identification of a quadcopter

Martin Ottenklev

MSc Thesis
TFRT-6058
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2018 by Martin Ottenklev. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2018

Abstract

This thesis describes the method of identifying unknown parameters that affect the
dynamics of a given quadcopter, also known as grey box system identification. This
was primarily done utilising an inertial measurement unit and a motion capture
camera system. A system of equations describes the dynamics of the quadcopter,
and was later coupled with data gathered while flying, in order to use different
methods of system identification. As quadcopters are unstable, the first task was
to design a stabilising regulator, making stable flight possible, and thus gathering
flight data.

A few parameters regarding motor dynamics were evaluated via simple experi-
ments with tools including a tachometer, a scale and a microphone.
When it comes to flight dynamics, the first method of identification was to use a
prediction error method which, given data regarding input signals, output signals
and a mathematical model, tries to evaluate unknown parameters by minimising the
error between state measurements and estimated states based on the earlier men-
tioned model, in each timestep. This method proved to be unsuccessful, for reasons
partly unknown, and was later changed for a method utilising an extended Kalman
filter, which gave more reliable results. Possible explanations to this phenomena
may include that the Kalman filter implemented beforehand in the camera system
may need to be retuned and that the aforementioned mathematical model needs to
be reevaluated.
Estimated parameter values works well with the model, but that is not so say that
there is not room for improvement.

3

Acknowledgements

First I would like to thank Erik Ekelund for his enthusiasm, never-ending patience,
words of “encouragement” and his actual words of encouragement. I am of course
also grateful for the support of my supervisor at LTH, Anders Robertsson and my
supervisor at SAAB Dynamics, Kristoffer Bergman.

Everyone I’ve had the pleasure of meeting during my time at SAAB to make
this a memorable experience, and Torbjörn Crona for giving me the opportunity to
carry out this project.

Last but not least I would like to thank Jonas Carlsson, without whom I would
not have gotten a foot in at SAAB in the first place.

5

Contents

1. Introduction 9
1.1 Background . 9
1.2 Problem formulation . 9
1.3 Objectives . 10
1.4 Related work . 10
1.5 Limitations . 10
1.6 Thesis structure . 10

2. Quadcopter platform 11
2.1 Hardware . 12
2.2 Software . 14
2.3 Euler angles and body frame coordinates 14
2.4 Quadcopter modelling . 15
2.5 Ground effect . 17
2.6 Manual flight modes . 18

3. Programming 19
3.1 ROS . 19
3.2 Robotics cape . 19
3.3 Program structure . 21

4. Model estimation and parameter identification 23
4.1 Motor dynamics . 23
4.2 Data collection . 29
4.3 Prediction error method (PEM) 31
4.4 Extended Kalman Filter (EKF) 52
4.5 Parameter estimation using an EKF 53

5. Control design 68
5.1 PID control . 68
5.2 Implementation aspects of PID 68

6. Conclusions and discussion 71
7. Future work 72

7

Contents

A. Notations and abbreviations 73
Bibliography 74

8

1
Introduction

This thesis details the work regarding system identification and control implementa-
tion on a quadcopter platform provided by SAAB Dynamics. The following chapter
aims to provide an overview of the project.

1.1 Background

Unmanned aerial vehicles (UAV’s) have rapidly increased in popularity over the last
years, both in civil use as well as in various military operations. Different config-
urations provide a wide range of specifications that may be used for operations in
dangerous environments, search and rescue missions and inspection of places that
might be difficult to reach. The type of UAV to be examined was a so called multi-
copter with four rotors (also known as a quadcopter). A similar platform has been
subject to two previous master’s theses, [Kugelberg, 2016] and [Reizenstein, 2017].
Slight configurations has been made since then in order to increase the performance
in terms of motor power, range and battery time.

1.2 Problem formulation

In order to design high performing controllers, it is of utmost importance to be aware
of how the system behaves, which is what system identification aims to achieve.
As the versatility of UAV’s has gotten more attention, a lot of research has been
conducted in the field, such as [Landry, 2015] and [Förster, 2015].
Quadcopters lack any form of natural stabilising element. This combined with the
fact that they are underactuated, meaning in this case that they have more degrees
of freedom (DOF) than control inputs (6 DOF’s, 4 control inputs), results in good
software control algorithms being a necessity in order to control them.

9

Chapter 1. Introduction

1.3 Objectives

The most prominent task of this thesis was to perform system identification on the
quadcopter by different means, mostly by using a motion capture camera system.
Pre-existing PID-controllers were to be retuned such that they perform well not only
close to hovering, but over a wider range of flight behaviour.

1.4 Related work

Previous work has been focused on estimating the platform dynamics close to hover
in order to implement angle controller, [Kugelberg, 2016] and position and trajec-
tory control using PID and LQ regulation, [Reizenstein, 2017].

1.5 Limitations

Hardware and most of the software was provided for by SAAB Dynamics. As no
time has been spent working on hardware, reasoning for different hardware choices
will not be discussed in depth. Experiments were conducted by a human operator,
imposing limitations on the arbitrariness of the input.
It was assumed that the quadcopter dynamics are highly non-linear. As quadcopters
are unstable by default, it was not possible to control it using open-loop control, that
is to say without some form of regulator.

1.6 Thesis structure

This thesis is divided into 7 chapters. Chapter 2 describes the platform of use, how it
is modelled in a mathematical sense, software, hardware and different flight modes
to be configured. Thereafter follows Chapter 3, which briefly discusses a little bit
more about the software and the program structure used for operating the quad-
copter and gathering flight data.
Chapter 4 contains information about system identification theory and what meth-
ods were used to perform it, along with its results. This is followed by Chapter 5,
which provides an insight in control theory, its implementation and how to design it
for operable flight of the platform.
Chapter 6 discusses some final conclusions regarding different experiments, their
results and hardships, and how they might be overcome. Finally, Chapter 7 details
possible future work that might be of interest on the quadcopter, both within the
fields that this thesis has touched, and in entirely new ones.

10

2
Quadcopter platform

The quadcopter can be seen in Figure 2.1.

Figure 2.1 The quadcopter platform used in the thesis. The microcomputer can be
found inside the green protective case. As the case was not equipped with any form
of locking mechanism a bit of duct tape came in handy.

11

Chapter 2. Quadcopter platform

2.1 Hardware

Installed hardware is found in Table 2.1

Table 2.1 Hardware present in the quadcopter platform along with performance
and purpose for each part.

BeagleBone Blue
The main computer performing most of the calculations was a BeagleBone
Blue, which is a microcomputer with a 1 GHz ARM Cortex-A8 processor.
IMU
The IMU (Inertial Measurement Unit) was used for measuring acceleration,
angles and angular velocities.
Satellite Receiver
OrangeRx R110x is a satellite receiver meant to extend the range between the
quadcopter and the remote as well as increasing the link robustness.
Motors
Four Luminier FX2206-13 2000 KV brushless motors were used to provide
thrust. The KV rating of a brushless motor is the so called motor velocity con-
stant, measured in RPM per volt. 2000 KV means that the angular rate will
equal 2000 RPM per supplied volt.
Propellers
Rotors used have a diameter of 5 inches (≈ 12.7 centimetres), with a pitch
of 3 inches (≈ 7.6 centimetres), and 3 blades each. Generally, more blades,
longer blades and larger pitch all results in more thrust, torque and turbulence
[Droneomega propeller guide]. As flight dynamics depend on these factors the
same type of propellers have been used throughout the entire thesis (although
in some cases of varying colours).
ESC
Each motor is controlled and powered by an Electronic Speed Controller
(ESC).

Propeller specifications
The diameter of a propeller is simply twice the radius, the length from a tip to the
centre of the propeller construction, see Figure 2.2. Definition of pitch is a bit less
intuitive. In theory it is a measure of how far a propeller will move through the
air during a single rotation. In practice this depends on factors such as propeller
material, air density and different measures of efficiency. A simple explanation is
provided here [Droneomega propeller guide]. Looking at the upper part of Figure
2.3, the left screw has a coarser thread, i.e. higher pitch, than the right one. Upon
screwing the screws into a piece of wood the one with the coarser threading would

12

2.1 Hardware

sink more into the wood per revolution. Looking again at Figure 2.3 it is illustrated
that the right hand air plane needs to maintain a higher RPM to travel as far as the
left hand air plane during a fixed period of time.

Figure 2.2 Propeller with a 2.5 inch radius→ 5 inch diameter

Figure 2.3 How propeller pitch affect flight dynamics. Figure source: [How to
choose propeller for a mini quad].

13

Chapter 2. Quadcopter platform

2.2 Software

Installed software can be found in table 2.2

Table 2.2 Software present in the quadcopter.

Debian
The BeagleBone Blue runs Debian, which is a Unix-like open source operating
system.
Robot Operating System (ROS)
ROS is a robotics middleware (a software toolbox for robot software develop-
ment). It comes with a wide variety of useful tools for programming all types
of robots. For a more thorough explanation of how ROS operates, see Chapter
3.
Robotics Cape
Robotics Cape is a toolbox originally developed for the BeagleBone Black,
and it is also compatible with BeagleBone Blue (which is a more recent instal-
ment of microcomputers in the BeagleBoard series). This toolbox adds upon
ROS and provides tools for functionality of IMU, barometer, DC motor control,
Servo, ESC control, DSM radio, GPIO and more.

2.3 Euler angles and body frame coordinates

In aviation it is common practice to use a so called NED (North-East-Down) coor-
dinate system, where the X-axis points forward, the Y-axis points to the right and
the Z-axes points downwards relative to the body frame. Rotations around the axes
are referred to as roll, pitch and yaw respectively. Euler angles φ , θ and ψ may be
used to relate the body frame coordinates to global ones using the rotation matrix

R =

 cθ cψ sφ sθ cψ − sψ cφ sθ sψ + sθ cφ cψ

sψ cθ sφ sθ sψ + cφ cψ sθ sψ cφ − sφ cψ

−sθ sφ cθ cφ cθ

 . (2.1)

Derivatives of the Euler angles can be expressed using angular velocities in the
body fixed frame and a rotational matrix T

T =

 1 sφ tθ cφ tθ
0 cφ −sφ

0 sφ

cθ

cφ

cθ

 . (2.2)

In other words, R describes the relation between linear velocities in the body-fixed
frame to the linear velocities in the inertial frame, whereas T describes the relation
between angular velocities in the body-fixed frame and angular velocities in the
inertial frame [Nilsson, 1998].

14

2.4 Quadcopter modelling

2.4 Quadcopter modelling

2.4.1 Non-linear model
The dynamics of a quadcopter may be modelled as

η̇ = J(η)v (2.3)

ω̇ = I−1(−ω× Iω + τ) (2.4)

, where
η = [x y z φ θ ψ]T (2.5)

denotes position and orientation in the inertial frame, whereas

v = [u v w p q r]T (2.6)

denotes linear and angular velocities in the body-fixed frame of the quadcopter. I is
the moment of inertia matrix

I =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 (2.7)

, ω are the angular velocities

ω =

 p
q
r

 (2.8)

, τ is the body moment

τ =

 τφ

τθ

τψ

 (2.9)

and J(η) is a matrix

J =

[
R(η) 03×3
03×3 T (η)

]
(2.10)

, where 03×3 is a zero matrix of size 3× 3. η and v relate to each other using the
rotational matrices such that ẋ

ẏ
ż

= R(η)

 u
v
w

 (2.11)

and φ̇

θ̇

ψ̇

= T (η)

 p
q
r

 (2.12)

[Thornton and Marion, 2004].

15

Chapter 2. Quadcopter platform

2.4.2 Linear model
It is possible to linearise the quadcopter model around a hovering state, meaning
that the roll and pitch angles, φ and θ , are close to zero. Linearising Equations 2.1
and 2.2 around this point gives

Rlinear =

 cψ −sψ 0
sψ cψ 0
0 0 1

 (2.13)

and

Tlinear =

 1 0 0
0 1 0
0 0 1

 . (2.14)

Resulting kinematic relations between linear and angular velocities of the body
fixed frame with respect to the global frame is then described by

η̇linear =

u · cψ − v · sψ

u · sψ + v · cψ

w
p
q
r

 (2.15)

, which may be compared to Equation 2.3.

2.4.3 Design implementations
A quadcopter has four motors with a rotor each. In order to avoid rotation in the yaw
direction, due to propellers rotating in one direction causing a torque in the other
direction, the setup is usually such that two motors along the diagonal rotate in the
same direction, while neighbouring motors rotate in opposite directions. See Figure
2.4 for coordinate system and rotation of motors.

Control signals from the remote controller are sent as a dsm package to the
BeagleBone. The signals uthrottle, uroll , upitch and uyaw are normalised such that

0≤ uthrottle ≤ 1
−1≤ uroll ≤ 1
−1≤ upitch ≤ 1
−1≤ uyaw ≤ 1. (2.16)

[Kugelberg, 2016] implemented the relation between motor and control signals as
u1
u2
u3
u4

=

1 −1 1 −1
1 −1 −1 1
1 1 −1 −1
1 1 1 1

uthrottle
uroll
upitch
uyaw

16

2.5 Ground effect

1 2

34

X

YZ

p

q
r

Figure 2.4 Rough sketch of the quadcopter platform that shows axes and rotational
directions of the motors.

, and [Reizenstein, 2017] did the same. The configuration of the quadcopter was
slightly different in this thesis. Motors were shifted one step counterclockwise and
rotations were inverted. As a result, the relation between motor signals and control
signals were

u1
u2
u3
u4

=

1 1 1 −1
1 −1 1 1
1 −1 −1 −1
1 1 −1 1

uthrottle
uroll
upitch
uyaw

 . (2.17)

2.5 Ground effect

When rotors are close to the ground they will push the air down into the ground,
causing it to “bounce back”, generating an upwards force acting on the platform.
This effect may be present up to a height of H = 6R, where R is the radius of a rotor

17

Chapter 2. Quadcopter platform

[Bernard et al., 2017]. As this effect is quite non-linear it is difficult to compensate
for. Experiments executed in this thesis were mostly done on such a height that this
effect was negligible.

2.6 Manual flight modes

There were two main modes of flying, angle mode and rate mode (popularly named
self-level mode and acro mode respectively in the quadcopter community).

2.6.1 Angle mode
Angle mode was a flight mode in which the quadcopter aimed to self-level, using
the accelerometer and the gyroscope in the IMU. As the name suggests, the oper-
ator was controlling the angular references using the control sticks on the remote
controller. In yaw however it was the angular velocity (instead of the angle) that was
to be controlled. This as it would feel unnatural to keep a control stick at a constant
position if the pilot were to, for instance, try to align the platform with himself. If
no input beside throttle was provided by the pilot, the quadcopter should try to keep
a zero angle in roll and pitch and an angular velocity of zero around the yaw axis.

2.6.2 Rate mode
In rate mode the pilot control the angular velocities (the rates). The accelerometer
was not used, but the gyroscope on the other hand was. Without input commands
(other than throttle) the quadcopter should try to keep its current attitude. This way
of flying is often used by more experienced pilots when performing more acrobatic
manoeuvres. Just like the reasoning behind controlling yaw rate in angle mode (in-
stead of yaw angle) it might be preferable if the quadcopter does not flip back after
performing a loop, as soon as the pilot lets go of the control stick.

18

3
Programming

This chapter will discuss methods of programming, toolboxes and their implemen-
tations.

3.1 ROS

ROS is not an operating system per definition, but rather a robotics middleware built
to make software development of robots easier. See table 3.1 for some basic ROS
concepts.

3.2 Robotics cape

Developed by Strawson design, robotics cape builds upon ROS and adds a lot of
useful features in order to simplify programming of various robots. It was designed
with the beaglebone black in mind, but it is compatible also with the beaglebone
blue, which was used in this thesis.

19

Chapter 3. Programming

Table 3.1 ROS concepts and usage.

Nodes
Nodes are processes that perform computations such as calculating an optimal
path with respect to time, aiming a laser pointer or performing localisation.
Master
ROS master provides name registration for nodes such that different nodes are
able to find each other and exchange information.
Messages
Communication between nodes is done by passing messages. They support
most standard primitive types such as ints, floats, booleans, strings etc.
Topics
Messages are routed via a transport system using publishers and subscribers.
The topic is a name used to identify the content of the message.
Publishers
A publisher will publish a topic such that a subscriber may listen to it. There
may be several publishers to a single topic and one publisher may publish mul-
tiple topics.
Subscribers
Subscribers listens to topics sent by publishers. Just as there may be several
publisher per topic, there may be several subscribers listening to a single topic.
A single subscriber may also listen to multiple topics.
Services
A service is composed of a request and a response. A providing node offers a
service and a client node uses it by sending a request and waiting for a reply.
Bags
Bags are formats for storing and playback of ROS message data. Bagfiles can
be opened and analysed in matlab.

[ROS - concepts description]

Programming languages that are fully supported by ROS are C++, Python and
Lisp. Experimental libraries are available for a handful other languages such as Java,
Lua, Ruby and R. In this thesis, C++ was used. ROS has a wide variety of tools for
things like plotting data, making GUI’s, data collection and playback of said data.
See table 3.2 for some of the tools that were used in this thesis.

20

3.3 Program structure

Table 3.2 ROS tools and usage.

rosrun
Rosrun is used to run an executable file in an arbitrary package without having
to specify the full pathway to the file.
rosbag
In order to record data from a publisher, rosbag is used. Data is stored at a
specified location in a bagfile. Recorded data may later be played back using
the ros tool rqt_bag. Data may also be transferred to matlab where it is able to
analyse it.
Launch Files
A launch file may specify multiple nodes that will be executed at the same
time. Launch files are executed using the predefined command roslaunch.
rqt_gui
rqt_gui is a tool able of generating a GUI and plotting data. As a GUI it is able
to change control parameters online.

3.3 Program structure

The main script includes predefined functions from both ROS and Robotics Cape
as well as functions written by the author of the thesis. Using Robotics Cape it was
possible to assign functionality such as switching regulator mode, switching flight
mode and arming/disarming the quadcopter using switches on the remote controller.
The main script was heavily interrupt based. Whenever a new signal was sent from
the controller, an exception was caught, and new motor signals were calculated.
See Figure 3.1 for a flowchart describing how the program operated in terms of
computing new control signals and recording in-flight information.

21

Chapter 3. Programming

Main Remote
Controller

Lowpass
filter PWM Rosbag

Send
DSM
data

Recieve
DSM
data

Read
IMU

Recieve
IMU
data

Send
filtered

IMU data

Calculate
motor
signals

Send
motor
signals

Send
measured

states

Recieve
motor
signals

Calculate
PWM
signals

Send to
PWM
board

Recieve
measured

states

Write
to

bagfile

Figure 3.1 Flowchart of program architecture when using a remote controller.

22

4
Model estimation and
parameter identification

System identification is the process of estimating a model of a given system based
on observed input- and output-data over time. Two of the more common models
in the field of system identification are black-box models and grey-box models.
A grey-box model is based on some form of prior knowledge regarding physical
modelling of the system, whereas a black-box model contains no such information.
In this thesis, grey-box modelling will be covered, with the model described by
Equations 2.3 and 2.4 as a starting point. This chapter will discuss some theory of
system identification, chosen methods and some parameter identification.

4.1 Motor dynamics

The quadcopter was equipped with four brushless DC motors. Dynamics of a brush-
less DC motor may be modelled using a first order transfer function on the form

Ω(s) =
K

sTm +1
e−Ls U(s) [rad/s] (4.1)

where K is the static gain, Tm is the time constant and L is the time delay[Fogelberg,
2013],[Chéron et al., 2010]. The time constant depends on factors such as motor
and ESC, whereas time delay mainly occurs in the communication between the
CPU and the ESC:s (usually a few milliseconds). It seemed reasonable to suspect
that the difference in order of magnitude for the two was significant enough for the
model to be approximated without the delay,

Ω(s) =
K

sTm +1
U(s) [rad/s]. (4.2)

4.1.1 Motor thrust
In order to make the motors spin, a PWM signal value was sent to the ESC:s. This
number could take a value in the interval [0.0, 1.0] (for each motor) which was nor-

23

Chapter 4. Model estimation and parameter identification

malised between PWM-lengths 1000µs−2000µs using robotics capes functionality
for PWM signals. The motor itself did not provide any way of measuring the rota-
tional speed for a given PWM command. This could be solved by attaching a bit of
reflective tape to a propeller, sending a PWM signal, and measuring the rotational
velocity using a tachometer. The tachometer had a resolution of 0.1 RPM and was
described as having a precision of ±0.05%. In order to avoid the quadcopter flying
away when doing this experiment, it was placed upside down. One could send the
signal to only one of the motors and prevent it from taking off that way. It was how-
ever theorised that the angular velocity of a given propeller may change depending
on how many motors were activated, and thus all four were turned on for this exper-
iment. It it also worth pointing out that angular velocity may depend on how well
charged the battery is, but that factor was left out for simplicity. As slight variations
may occur between different motors, the experiment was repeated several times for
each motor and an average was calculated. At 50 % of maximum motor power the
thrust was such that the quadcopter was capable of rising very swiftly (had it not
been placed upside down during this particular experiment) and the motors began
emitting a high-pitched noise. Due to these factors, experiments where not done on
higher rotational speeds both due to safety precautions and the fact that a higher
RPM probably would not be necessary for the project. As can be seen in Figure
4.1, the angular velocity was quite linear as a function of normalised throttle within
the working range. Polynomial fits of first and second order were calculated using
a least-square fit method in matlab. The fits may be seen in figure 4.2. The two
polynomial fits were defined as

Ω(uth) = 2738.5 ·uth [rad/s] (4.3)

Ω(uth) =−443.07 ·u2
th +2963.2 ·uth [rad/s]

As may be seen in both in Equation 4.3 and in Figure 4.2, the difference between the
polynomials is very small within the working range. It was thus preferred to use the
first order polynomial in order to achieve a simpler model of the motor dynamics.

In order to evaluate how much thrust was generated at a given angular velocity
the quad was placed upside down on a scale. The choice of putting it upside down
was done to prevent the effect of ground effect. It could also have been possible to
attach the quadcopter to a rack and having it placed at such a height that ground
effect was of no concern. Multiple angular velocity commands were given and and
the resulting mass differentiation was measured. The thrust was then calculated
using F = ∆mg. Results of the experiment is viewed in Figure 4.3. As all four
propeller were mounted during the experiment, the result is an average of each
single motor.

Thrust force as a function of angular velocity is often modelled as a second order
polynomial [Bergman and Ekström, 2014],[Fogelberg, 2013]. As seen in Figure 4.4,
that seemed to be a good estimation also with the platform used in this thesis. One
may also consider the expression for centripetal force, F = mrω2, meaning that the

24

4.1 Motor dynamics

Figure 4.1 Angular velocity depending of normalised throttle. It is quite linear
within the working range.

thrust force is proportional to the square of the angular velocity.
The second and third order polynomials are nearly indistinguishable in the

working range. Thus it was preferred to choose to model the thrust after the sec-
ond order polynomial in order to achieve a simpler model.

Finally, thrust force as a function of angular velocity could be written as stated
in equation 4.4, where the second order polynomial was the one chosen throughout
the thesis to model the motor dynamics.

Second order polynomial (4.4)

T hrust(Ω) = 8.78 ·10−7
Ω

2−8.89 ·10−6
Ω [N]

Third order polynomial

T hrust(Ω) = 9.84 ·10−11
Ω

3 +6.64 ·10−7
Ω

2 +9.46 ·10−5
Ω [N]

4.1.2 Time constant
The time constant describes how long it takes a system to change between two spec-
ified values. This is also referred to as rise time or fall time (depending on whether
the signal is increasing or decreasing). Rise time is defined as the time required to
for the response to rise from x% to y% of its final value [Levine, 2011], where x and
y depends on the damping of the system. In most cases they correspond to 10% and
90% respectively [Orwiler, 1969]. It should have been possible to estimate a time
constant using tachometer from the previous experiment regarding rotational speed

25

Chapter 4. Model estimation and parameter identification

Figure 4.2 Angular velocity as a function of normalised throttle. A first and a sec-
ond order fit is seen. The difference between the two is so small that it is deemed
negligible.

Figure 4.3 Thrust force depending on angular velocity of a motor.

26

4.1 Motor dynamics

Figure 4.4 Thrust force depending on angular velocity for a single motor. Polyno-
mial fits of second and third order are seen together with the test data.

depending on normalised throttle, by evaluating the time required to reach a new
desired angular velocity. This was however not possible as the tachometer lacked
logging functionality. Instead it was noticed that each angular velocity seemed to
emit a distinct pitch. Thus it should be possible to use Fourier transformation and
examine if there were certain dominating frequencies for an arbitrary control sig-
nal [Bergman and Ekström, 2014]. Differences in dominating frequency over time,
during a step response may be seen in figure 4.5. It shows that the rise time is close
to 0.1 seconds.

4.1.3 Motor torque
As motors spin in one direction, they will give rise to an opposing torque in the
other direction. This is the basis on which yaw rotations depends. As per Figure
2.4, motors that are diagonally opposed spin in the same direction. Thus they give
rise to a torque in the same direction (the direction opposite of their rotation). If,
for instance, motors 1 and 3 in Figure 2.4 were to spin a little bit faster than motors
2 and 4, the quadcopter would rotate counterclockwise. This is also evident from
looking at Equation 2.17.

27

Chapter 4. Model estimation and parameter identification

Figure 4.5 Frequency distribution over time when performing during a step re-
sponse.

Figure 4.6 Frequency content plotted with a polynomial fit of the yellow curve.

28

4.2 Data collection

4.2 Data collection

As mentioned in Chapter 3 there is a ROS tool named rosbag. A launchfile which
starts one node for the main script and one node for rosbag was executed. Data
was collected in the flying grounds indoors, using the IMU in the quadcopter and
the available camera system. Information from the camera system was gathered by
placing a few reflective balls on the platform, see figure 4.7, and starting a rosnode
that connects to the cameras [Camera system rosnode]. The rosnode used an ex-
tended Kalman filter (see Section 4.4) to estimate the position, velocity, angles and
angular rates of the quadcopter. Said filter was already implemented before the start
of this thesis.

Figure 4.7 The quadcopter equipped with highly reflective silvery spheres, used
by the camera system to detect objects.

29

Chapter 4. Model estimation and parameter identification

In order to estimate a model of a given system, data sets containing input- and
output-data is required. A data set consisting of N points can be denoted ZN and
defined as

ZN = {yk,uk,ok}N
k=1 (4.5)

where yk is the output, uk is the input, and ok contains all other signals that are
measured. As it is not possible to make ROS sample with a constant sampling
frequency, the data had to be resampled. This was done either with a linear or a
spline interpolation, depending on which yielded the better result.

During test flights it was noted that the motion capture sometimes seemed to
lose track of the quadcopter, which lead to strange measurements such as angular
velocities up to a hundred revolutions per second, angles being constant for short
periods of time, and the quadcopter being perfectly still at times. Figure 4.8 depicts
an example of an unreasonably high angular rate. Due to this, it was determined to
use the IMU as much possible, meaning that angles and angular rates were gathered
from the IMU, whereas the global positions and body frame linear velocities were
gathered using the motion capture system.

Figure 4.8 Example of when the camera measurement was clearly wrong, as it
corresponds to the quadcopter making almost 100 revolutions per second for a while.
Most likely it was a side effect of loosing track of the platform over a short period of
time.

30

4.3 Prediction error method (PEM)

4.3 Prediction error method (PEM)

Prediction error method uses a predictor ŷk(θ) which in the non-linear case may be
written as

ŷk = h(x̂k,uk,θ) (4.6)

where x̂k corresponds to the estimated state vector, uk are the system in-
puts and ŷk(θ) is the predicted model output [Ljung, 1999]. Fitting is done
by minimising a cost function VN(θ ,ZN), where ZN is a data set ZN =
[y(1),u(1),y(2),u(2), ...,y(N),u(N)], such that the estimate θ̂N is defined by the
minimisation of

θ̂N(ZN) = arg min VN(θ ,ZN). (4.7)

4.3.1 Parameter estimation using PEM
In order to use PEM, initial states and initial parameter estimations had to be de-
fined.

Acceleration components in the body fixed coordinate system could be mod-
elled using the second order polynomial in equation 4.4 and some damping factor
from air resistance as u̇

v̇
ẇ

=
T hrust(Ω)

m

 0
0
−1

− Dlinvel

m

 |u|u|v|v
|w|w

+R−1

 0
0
g

 (4.8)

where Dlinvel is a diagonal matrix Du 0 0
0 Dv 0
0 0 Dw

 (4.9)

, which describes damping factors from air resistance in the three dimensions,
which in turn depends on the current velocity. g is the gravitational constant, m is
the quadcopter mass and R is the rotational matrix seen in Equation 2.1. In the body
fixed system, the thrust force was always pointed in negative z-axis direction, thus
the vector [0 0 −1]T .

Studying Equation 4.8 and looking back at equation 2.4, it seemed reasonable
to introduce some dampening terms on angular velocities, such that ṗ

q̇
ṙ

= I−1

−
 p

q
r

× I

 p
q
r

+
 τφ

τθ

τψ

−Dangvel

 p
q
r

 (4.10)

, where Dangvel is a diagonal matrix Dp 0 0
0 Dq 0
0 0 Dr

 . (4.11)

31

Chapter 4. Model estimation and parameter identification

Things of interest to estimate were the elements in the moment of inertia matrix,
how the torque depends on the angular velocities of the propellers and the damp-
ening factors in the matrices Dlinvel and Dangvel . Much like thrust, torque is often
modelled as a second order polynomial depending on the rotor velocity [Månsson
and Stenberg, 2014],[Fogelberg, 2013]. Studying Figure 2.4 and Equation 2.17 it is
reasonable so assume that the components of body moment may be modelled as

τφ = Mφ (Ω
2
1 +Ω

2
4−Ω

2
2−Ω

2
3) (4.12)

τθ = Mθ (Ω
2
1 +Ω

2
2−Ω

2
3−Ω

2
4)

τψ = Mψ(Ω
2
2 +Ω

2
4−Ω

2
1−Ω

2
3)

, where Ωi is the rotor velocity of a given motor, for some constants Mφ ,Mθ ,Mψ ,
as long as the quadcopter is decently symmetrical in its construction. Under other
circumstances it might be more appropriate to introduce one constant per motor per
axis.
As a measure of how well the model fits the data it is possible to study the so called
goodness of fit. This may be evaluated using a normalised root mean square error
(NRMSE), seen in Equation 4.13.

f it = 1−

√
∑

N
k=1(y(k)− ŷ(k))2√

∑
N
k=1(y(k)−

1
N ∑

N
k=1 y(k))2

(4.13)

Using this method, the goodness of fit can range from negative infinity to 100 %.
PEM fits for the non-linear model while flying in angle mode may be seen in Figures
4.9-4.12.

32

4.3 Prediction error method (PEM)

4.9a) X position fit

4.9b) Y position fit

4.9c) Z position fit

Figure 4.9 Fits for global coordinates using PEM method on data gathered while
flying in angle mode. The grey lines are the measurements while the blue lines cor-
responds to the predictions. As is clearly evident the fits were quite poor.

33

Chapter 4. Model estimation and parameter identification

4.10a) Roll angle fit

4.10b) Pitch angle fit

4.10c) Yaw angle fit

Figure 4.10 Fits for angles using PEM method on data gathered while flying in an-
gle mode. Much like the case with the global positions, the fits were not satisfactory.

34

4.3 Prediction error method (PEM)

4.11a) Linear velocity u fit

4.11b) Linear velocity v fit

4.11c) Linear velocity w fit

Figure 4.11 Fits for the linear velocities in the body frame, using PEM method on
data gathered while flying in angle mode.

35

Chapter 4. Model estimation and parameter identification

4.12a) Angular rate p fit

4.12b) Angular rate q fit

4.12c) Angular rate r fit

Figure 4.12 Fits for angular rates in the body system using PEM method on data
gathered while flying in angle mode.

As all fits for experiments executed while flying in angle mode were quite poor,

36

4.3 Prediction error method (PEM)

similar experiments where tried out while flying in rate mode, where the accelerom-
eter is not active. Results may be viewed in Figures 4.13 - 4.16.

37

Chapter 4. Model estimation and parameter identification

4.13a) X position fit

4.13b) Y position fit

4.13c) Z position fit

Figure 4.13 Fits for global coordinates using PEM method on data gathered while
flying in rate mode. Just like when flying in angle mode, the fits were poor.

38

4.3 Prediction error method (PEM)

4.14a) Roll angle fit

4.14b) Pitch angle fit

4.14c) Yaw angle fit

Figure 4.14 Fits for angles using PEM method on data gathered while flying in
rate mode.

39

Chapter 4. Model estimation and parameter identification

4.15a) Linear velocity u fit

4.15b) Linear velocity v fit

4.15c) Linear velocity w fit

Figure 4.15 Fits for the linear velocities in the body frame, using PEM method on
data gathered while flying in rate mode.

40

4.3 Prediction error method (PEM)

4.16a) Angular rate p fit

4.16b) Angular rate q fit

4.16c) Angular rate r fit

Figure 4.16 Fits for angular rates in the body system using PEM method on data
gathered while flying in rate mode.

41

Chapter 4. Model estimation and parameter identification

Since neither of the flight modes gave satisfactory results for the non-linear
model using prediction error method, similar test were made for the linearised
model described in Chapter 2, where the quadcopter is close to a hovering state.
This was firstly done while flying in angle mode. See Figures 4.17 - 4.20. Since the
platform was operated by a human pilot, small oscillations were likely to happen in
all directions. As the linearised model was based on the angles φ and θ being close
to zero, it was reasonable to assume that fits for them would therefore be quite low.

42

4.3 Prediction error method (PEM)

4.17a) X position fit

4.17b) Y position fit

4.17c) Z position fit

Figure 4.17 Fits for global coordinates in the linearised model, using PEM method
on data gathered while flying in angle mode. Fits were clearly quite poor.

43

Chapter 4. Model estimation and parameter identification

4.18a) Roll angle fit

4.18b) Pitch angle fit

4.18c) Yaw angle fit

Figure 4.18 Fits for angles in the linearised model, using PEM method on data
gathered while flying in angle mode.

44

4.3 Prediction error method (PEM)

4.19a) Linear velocity u fit

4.19b) Linear velocity v fit

4.19c) Linear velocity w fit

Figure 4.19 Fits for the linear velocities in the body frame, in the linearised model,
using PEM method on data gathered while flying in angle mode.

45

Chapter 4. Model estimation and parameter identification

4.20a) Angular rate p fit

4.20b) Angular rate q fit

4.20c) Angular rate r fit

Figure 4.20 Fits for angular rates in the body system, in the linearised model, using
PEM method on data gathered while flying in angle mode

Just like the case with the non-linear model, the overall fits were quite poor.

46

4.3 Prediction error method (PEM)

Also here it was decided to try out the experiments also while flying in rate mode.
See Figures 4.21 - 4.24.

47

Chapter 4. Model estimation and parameter identification

4.21a) X position fit

4.21b) Y position fit

4.21c) Z position fit

Figure 4.21 Fits for global coordinates in the linearised model, using PEM method
on data gathered while flying in rate mode. The fits were evidently poor.

48

4.3 Prediction error method (PEM)

4.22a) Roll angle fit

4.22b) Pitch angle fit

4.22c) Yaw angle fit

Figure 4.22 Fits for angles in the linearised model, using PEM method on data
gathered while flying in rate mode.

49

Chapter 4. Model estimation and parameter identification

4.23a) Linear velocity u fit

4.23b) Linear velocity v fit

4.23c) Linear velocity w fit

Figure 4.23 Fits for the linear velocities in the body frame, in the linearised model,
using PEM method on data gathered while flying in rate mode.

50

4.3 Prediction error method (PEM)

4.24a) Angular rate p fit

4.24b) Angular rate q fit

4.24c) Angular rate r fit

Figure 4.24 Fits for angular rates in the body system, in the linearised model, using
PEM method on data gathered while flying in rate mode

It may be argued that fits for the linearised model were better than in the non-

51

Chapter 4. Model estimation and parameter identification

linear case, but not to such a degree that any conclusion about unknown system
variables could be drawn.

4.4 Extended Kalman Filter (EKF)

The extended Kalman filter is the non-linear counterpart to the classical Kalman
filter. Unlike the standard filter, the EKF is not an optimal predictor. Despite this,
and the fact that theoretical support for the EKF is poor, it is widely used [Wan,
2006],[Huang et al., 2008]. In theory it linearises the system around each new work-
ing point, thus making it linear at said point of interest. The filter consists of a pre-
diction part and an update part. The predictive part uses previous state estimations
in order to generate an estimation of the states at the current timestep. The update
phase then combines knowledge about the current prediction and the current obser-
vation to refine the estimation of the states of interest. In discrete time, the algorithm
in its entirety may be represented as

Prediction (4.14)
x̂k|k−1 = f (x̂k−1|k−1,uk)

Pk|k−1 = FkPk−1|k−1FT
k +GkQkGT

k

Update
ỹk = zk−h(x̂k|k−1)

Sk = HkPk|k−1HT
k +Rk

Kk = Pk|k−1HT
k S−1

k

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I−KkHk)Pk|k−1

where

Fk =
∂ f
∂x
|x̂k−1|k−1,uk

Hk =
∂h
∂x
|x̂k|k−1

The different parameters describe insecurities in the model, the measurements, pre-
dicted states according to the model and how good the initial guesses for the system
states are. Matrices Q and R are covariance matrices that correspond to process and
measurement noise respectively. Basically, they tell how much one trusts the model
and the measurements, with higher values in the matrices meaning that there is a lot

52

4.5 Parameter estimation using an EKF

of noise and lower values indicating absence of noise. Finding suitable covariance
matrices is not an exact science, and it may often require a bit of experimentation.

4.5 Parameter estimation using an EKF

Due to the poor fits from the PEM, other means of parameter estimation were ex-
amined. It is possible to use an EKF for estimating unknown parameters [Larsson,
2013], this by extending the state vector such that

x̃k =

[
xk
Γk

]
(4.15)

where Γk are the unknown parameters at time k · dt. The sought parameters may
be found in Equations 2.7, 2.9, 4.9 and 4.11, and Γ may be represented as Γ =
[Ixx Iyy Izz Mφ Mθ Mψ Du Dv Dw Dp Dq Dr]

T . The added parameters were modelled
using constant velocity, see [Gustafsson, 2012], resulting in

x̂k+1(Γ) =

[
f (xk(Γ),uk,Γ)

Γk

]
. (4.16)

There were 12 states in total, but as half of them depended on derivatives of the
other half, there was no need to model their noise separately. I.e. torque affects
angular rates, which in turn affects the angles. Hence there was no need for a model
with separate noises in angular rates and angles, as the noise in the torque estima-
tion would propagate to the angles per default. Thus the Q matrix would be of size
18×18, 6 separate states with noise, plus the 12 parameters to estimate. The matrix
G was of the size 24×18, modelled using constant velocity as aforementioned.

Whereas PEM completely thrusts the model dynamics and the measurements,
the EKF may be tuned such that it estimates both states and sought parameters. As
the sought parameters were mostly constants (drag coefficients may change due to
airflow and a few other parameters, but that effect was deemed negligible in this
thesis), it seemed reasonable to assume that they were “less noisy” than the states.
After some trial and error it was found that matrices

Q = diag(

6︷︸︸︷
1000 ...

12︷ ︸︸ ︷
0.001)

and

R = diag(

3︷ ︸︸ ︷
10︸︷︷︸

camera

...

3︷︸︸︷
1︸︷︷︸

IMU

...

3︷︸︸︷
10︸︷︷︸

camera

...

3︷︸︸︷
1︸︷︷︸

IMU

)

yielded decent results, as may be seen in Figures 4.25 - 4.28.

53

Chapter 4. Model estimation and parameter identification

4.25a) X position fit

4.25b) Y position fit

4.25c) Z position fit

Figure 4.25 Fits for global coordinates in using an EKF. Data gathered while flying
in angle mode. Compared to the fits achieved using the prediction error method, a
significant improvement was noted.

54

4.5 Parameter estimation using an EKF

4.26a) Roll angle fit

4.26b) Pitch angle fit

4.26c) Yaw angle fit

Figure 4.26 Fits for angles using an EKF. Data gathered while flying in angle
mode. Roll and pitch angle estimation were mediocre at best.

55

Chapter 4. Model estimation and parameter identification

4.27a) Linear velocity u fit

4.27b) Linear velocity v fit

4.27c) Linear velocity w fit

Figure 4.27 Fits for the linear velocities in the body frame, using an EKF. Data
gathered while flying in angle mode.

56

4.5 Parameter estimation using an EKF

4.28a) Angular rate p fit

4.28b) Angular rate q fit

4.28c) Angular rate r fit

Figure 4.28 Fits for angular rates using an EKF. Data gathered while flying in
angle mode.

Overall, the EKF approach was much more successful than the PEM. As the

57

Chapter 4. Model estimation and parameter identification

Kalman filter estimates the unknown parameters over time, it naturally means that
they are not constant throughout the process. Estimated values were used in another
data set, but this time the sought parameters were set to constants at the beginning.
The states on the other hand, were still able to be estimated using the filter and the
measurements. See Figures 4.29 - 4.32.

58

4.5 Parameter estimation using an EKF

4.29a) X position fit

4.29b) Y position fit

4.29c) Z position fit

Figure 4.29 Fits for global coordinates when using an EKF with constant parame-
ters.

59

Chapter 4. Model estimation and parameter identification

4.30a) Roll angle fit

4.30b) Pitch angle fit

4.30c) Yaw angle fit

Figure 4.30 Fits for angles using an EKF with constant parameters.

60

4.5 Parameter estimation using an EKF

4.31a) Linear velocity u fit

4.31b) Linear velocity v fit

4.31c) Linear velocity w fit

Figure 4.31 Fits for the linear velocities in the body frame, using an EKF with
constant parameters.

61

Chapter 4. Model estimation and parameter identification

4.32a) Angular rate p fit

4.32b) Angular rate q fit

4.32c) Angular rate r fit

Figure 4.32 Fits for angular rates using an EKF with constant parameters.

62

4.5 Parameter estimation using an EKF

The parameters were found to lie in the vicinity of values found in Table 4.1.

Parameter Value Unit
Ixx 0.006 Kgm2

Iyy 0.007 Kgm2

Izz 0.008 Kgm2

Mφ 2 ·10−7 Nm
Mθ 3 ·10−7 Nm
Mψ 10−7 Nm
Du 1 Kg2/m
Dv 1.2 Kg2/m
Dw 2 Kg2/m
Dp 1 Kgm2/rad · s
Dq 1.1 Kgm2/rad · s
Dr 1.2 Kgm2/rad · s

Table 4.1 Estimated parameters using the method with an extended Kalman filter.

For good measure, the parameters were tried out also on a data set where the
quadcopter was close to a hovering state, see Figures 4.33 - 4.36.

63

Chapter 4. Model estimation and parameter identification

4.33a) X position fit

4.33b) Y position fit

4.33c) Z position fit

Figure 4.33 Fits for global coordinates when using an EKF with constant parame-
ters. Flight was close to a hovering state.

64

4.5 Parameter estimation using an EKF

4.34a) Roll angle fit

4.34b) Pitch angle fit

4.34c) Yaw angle fit

Figure 4.34 Fits for angles using an EKF with constant parameters while close to
hovering. As was to be expected, fits for roll and pitch were quite low as the model
was linearised around them both being zero.

65

Chapter 4. Model estimation and parameter identification

4.35a) Linear velocity u fit

4.35b) Linear velocity v fit

4.35c) Linear velocity w fit

Figure 4.35 Fits for the linear velocities in the body frame, using an EKF with
constant parameters.

66

4.5 Parameter estimation using an EKF

4.36a) Angular rate p fit

4.36b) Angular rate q fit

4.36c) Angular rate r fit

Figure 4.36 Fits for angular rates using an EKF with constant parameters.

Aside from the roll and pitch angles, fit for the linearised model were, overall,
quite high.

67

5
Control design

This chapter concerns theory and implementation of regulators used to control the
quadcopter.

5.1 PID control

Simplicity combined with good performance renders PID one of the most common
controller methods. A few different ways of describing it exists. The most usual one
is the parallel form, which may be written as

u(t) = Kpe(t)+Ki

∫ t

t0
e(t)dt +Kd

de(t)
dt

. (5.1)

u(t) is the control signal, e(t) is the control error defined as r(t)−y(t), where r(t) is
the reference output and y(t) is the current output. Kp, Ki, and Kd are the gains for
the proportional, integral and derivative part respectively. As computers do not run
in continuous time, Equation 5.1 needs to be discretized in order to be implemented
on the quadcopter platoform. This leads to

uk = Kpek +Ki

N

∑
j=1

e jTs +Kd
ek− ek−1

Ts
(5.2)

, where the added parameter Ts is the sampling time. Block diagram for a simple
process with a PID regulator is found in Figure 5.1.

5.2 Implementation aspects of PID

A common problem when implementing PID controllers is integral windup. If a
reference of any form for some reason can not be achieved (e.g. heavy wind to one
side), there will be constant errors, causing the integral part of the PID to accu-
mulate. If the reference at a later point can be achieved (e.g. the wind drops) the

68

5.2 Implementation aspects of PID

r ∑ PID Process

-1

yue

Figure 5.1 Block diagram of a simple PID regulator

integral part may have accumulated such that it results in an overshoot. Several
solutions were implemented to prevent this:

• When flying in self-levelling mode the integral parts were not updated until
the throttle was sufficiently high. Otherwise they might build up before even
starting to fly if the platform was not perfectly balanced before take off.

• If the throttle was very low, all integral parts would be set to zero. This way
it was possible to land and take off again without integral parts affecting the
current flight using error measurements from the previous one.

• If a control signal was saturated or if an error was particularly high, the cor-
responding integral part would not be updated.

Control signals in discrete time may be very sharp, resembling square waves. As
these changes happen during a very short time span, the derivative parts of PID
controller may become unreasonably large. High frequency noise, which is com-
mon in most processes, also adds to derivative gain. To avoid these problems it is
possible to apply a first order filter such that the derivative gain does not amplify
high frequency content. With these aspects considered, the PID algorithm will be
represented by

Pk =Kpek

Ik =Ik−1 +KiekTs

Dk =
Kd

Kd +NTsKp
Dk−1 +

KdN
Kd/Kp +NTs

(yk− yk−1) (5.3)

, where N is a design parameter affecting the maximum derivative gain. Suitable
PID configuration will differ depending on if flight is done in angle mode or rate
mode. Parameter values that were found to have good performance can be seen in
Table 5.1.

69

Chapter 5. Control design

Angle mode Rate mode
Roll Pitch r rate p rate q rate r rate

Kp 0.15 0.15 0.1 0.05 0.05 0.1
Ki 0.54 0.54 0.15 0.15 0.15 0.15
Kd 0.006 0.006 0.0 0.0 0.0 0.0
N 5.0 5.0 0.0 0.0 0.0 0.0

Table 5.1 Suitable PID parameters depending on whether flight was performed
using angle mode or rate mode. Both modes control rotational rate around the z-axis.
Yaw angle is never directly regulated. N is zero by default if Kd = 0. Introducing
derivative gain in rates merely lead to oscillations and was thus neglected.

70

6
Conclusions and discussion

System identification of the quadcopter, using motion capture proved to be more
difficult than anticipated, no matter whether a non-linear or a linear model was
used. Reasons as to why the prediction error method provided very poor fits were
not wholly concluded. It might be that the already provided Kalman filter used in
the rosnode when fetching camera data needs to be tuned significantly. As is seen
in Figure 4.8, it seems to suffer from shortcomings from time to time. It may also
be that the mathematical model describing the dynamics of the system needs to be
reevaluated.
The EKF approach proved to be a much more reliable way to go in this project. That
may be because it does not completely trust the state measurements of the camera
system and the IMU, as opposed to the PEM. Results provided in Table 4.1 are
not considered absolute, but they appear to work satisfactory with the model and
measurements.
When the EKF were to estimate the parameters, fits of roll and pitch angles were
decent at best whereas fits of angular rates were excellent. In the experiment where
estimated parameters were set to constants, fits for roll and pitch improved while
fits for angular rate deteriorated. This might be a side effect of the estimations of
torques being the most volatile of the parameters to estimate. It is unclear why the
torques seem to be very difficult to estimate. It may be a side effect of them being
very small, leading way for numerical problems.
PID controllers perform satisfactory both in angle mode as well as in rate mode.

71

7
Future work

At the beginning of this thesis, it was planned that the system identification was to
lead way for trajectory generation and path following. As the hardships of param-
eter estimation began to show, it became clear at a certain point that there would
unfortunately not be enough time left for this to be tried out. It could on the other
hand act as a natural follow-up to this work. In the future it might be useful to try
to estimate more parameters by experiments where camera measurements are not
necessary, if nothing else than to provide a hint such that a harder constraint may
be imposed on the guessing interval. Also, it would most likely be useful to de-
couple the model in order to estimate the drag coefficients. With a height regulator
and an angle regulator it should be possible to go straight forward in one direction
at a constant height and angle until a constant velocity is achieved, and thereafter
calculate the drag coefficients Du and Dv. Similar experiments should be possible
with a regulator for angular rate in order to evaluate the dampening coefficients for
angular rates. Instead of using an extended Kalman filter, it might be worth trying
an unscented Kalman filter, as it may overcome a few of the limitations imposed by
EKF’s.
As of now the code run on the quadcopter is heavily interrupt based. Using threads
and semaphores may help to improve performance.

72

A
Notations and abbreviations

Notations

Notation Description
[x y z] Inertial frame coordinates

[φ θ ψ] Euler angles, roll, pitch and yaw
[u v w] Linear velocities in boxy-fixed frame
[p q r] Angular velocities in boxy-fixed frame

ux Control signal for x
[cx sx tx] cosine(x), sine(x) and tangent(x)

x̂ estimate value of x

Abbreviations

Abbreviation Description
PID Proportional, Integral, Derivative
ESC Electronic Speed Controller
NED North-East-Down (coordinate system)
IMU Inertial Measurement Unit
ROS Robot operating System
GUI Graphical User Interface
SISO Single Input Single Output
MIMO Multiple Input Multiple Output

73

Bibliography

Bergman, K. and J. Ekström (2014). Modeling, Estimation and Attitude Control
of an Octorotor Using PID and L1 Adaptive Control Techniques. URL:http:
//www.diva-portal.org/smash/get/diva2:725353/FULLTEXT01.pdf.
MA thesis. Linköping University.

Bernard, D. D. C., F. Riccardi, M. Giurato, and M. Lovera (2017). A dynamic anal-
ysis of ground effect for a quadrotor platform. Polytechnic university of Milan.

Camera system rosnode. Accessed 2018-04-12. URL: URL : \url{https : / /
github.com/KumarRobotics/motion_capture_system}.

Chéron, C., A. Dennis, V. Semerjyan, and C. YangQuan (2010). A multifunctional
hil testbed for multirotor vtol uav actuator. Published in International confer-
ence on mechatronics and embedded systems and applications.

Droneomega propeller guide. Accessed 2018-05-23. URL: URL:\url{http://
www.droneomega.com/quadcopter-propeller/}.

Fogelberg, J. (2013). Navigation and Autonomous Control of a Hexacopter in In-
door Environments. URL:http://lup.lub.lu.se/luur/download?func=
downloadFile&recordOId=4359940&fileOId=4359943. MA thesis. Lund
University.

Förster, J. (2015). System identification of the Crazyflie 2.0 nano quadrocopter.
URL: http : / / mikehamer . info / assets / papers / Crazyflie %
20Modelling.pdf. Eidgenössische Technishe Hochschule Zürich.

Gustafsson, F. (2012). Statistical sensor fusion - second edition. Studentlitteratur
AB. ISBN: 978-91-44-07732-1.

How to choose propeller for a mini quad. Accessed 2018-05-31. URL: URL :
\url{https://oscarliang.com/choose-propellers-mini-quad/}.

Huang, G., A. Mourikis, and S. Roumeliotis (2008). Analysis and improvement of
the consistency of extended kalman filter based slam.

Kugelberg, I. (2016). Black-box modeling and attitude control of a quadcopter.
URL: https://liu.diva- portal.org/smash/get/diva2:908582/
FULLTEXT02.pdf. MA thesis. Linköping University.

74

http://www.diva-portal.org/smash/get/diva2:725353/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:725353/FULLTEXT01.pdf
URL: \url{https://github.com/KumarRobotics/motion_capture_system}
URL: \url{https://github.com/KumarRobotics/motion_capture_system}
URL: \url{http://www.droneomega.com/quadcopter-propeller/}
URL: \url{http://www.droneomega.com/quadcopter-propeller/}
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=4359940&fileOId=4359943
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=4359940&fileOId=4359943
http://mikehamer.info/assets/papers/Crazyflie%20Modelling.pdf
http://mikehamer.info/assets/papers/Crazyflie%20Modelling.pdf
URL: \url{https://oscarliang.com/choose-propellers-mini-quad/}
URL: \url{https://oscarliang.com/choose-propellers-mini-quad/}
https://liu.diva-portal.org/smash/get/diva2:908582/FULLTEXT02.pdf
https://liu.diva-portal.org/smash/get/diva2:908582/FULLTEXT02.pdf

Bibliography

Landry, B. (2015). Planning and control for quadrotor flight through cluttered en-
vironments. URL:http://groups.csail.mit.edu/robotics-center/
public_papers/Landry15.pdf. MA thesis. Massachusetts Institute of Tech-
nology.

Larsson, R. (2013). System Identification of Flight Mechanical Characteristics.
URL:http : / / liu . diva - portal . org / smash / get / diva2 : 622859 /
FULLTEXT01.pdf. PhD thesis. Linköping University.

Levine, W. S. (2011). Control system fundamentals - Second edition. Taylor and
Francis group. ISBN: 978-1-4200-7363-8.

Ljung, L. (1999). System Identification: Theory for the user, second edition. Prentice
Hall. ISBN: 0-13-881640-9.

Månsson, C. and D. Stenberg (2014). Model-based design development and control
of a wind resistant multirotor uav. Accessed 2018-05-29, URL: http://lup.
lub.lu.se/luur/download?func=downloadFile&recordOId=4610294&
fileOId=4610297.

Nilsson, R. (1998). Flight stability and automatic control - second edition.
McGraw-Hill. ISBN: 0-07-115838-3.

Orwiler, B. (1969). Oscilloscope vertical amplifiers. Tektronix.
Reizenstein, A. (2017). Position and trajectory control of a quadcopter using PID

and LQ controllers. URL: https://liu.diva-portal.org/smash/get/
diva2:1129641/FULLTEXT01.pdf. MA thesis. Linköping University.

ROS - concepts description. Accessed 2018-02-07. URL: URL : \url{http : / /
wiki.ros.org/ROS/Concepts}.

Thornton, S. and J. Marion (2004). Classical dynamics of particles and systems -
fifth edition. Brooks/Cole, Thomson learning. ISBN: 0-534-40896-6.

Wan, E. (2006). Sigma-point filters: an overview with applications to integrated
navigation and vision assisted control.

75

http://groups.csail.mit.edu/robotics-center/public_papers/Landry15.pdf
http://groups.csail.mit.edu/robotics-center/public_papers/Landry15.pdf
http://liu.diva-portal.org/smash/get/diva2:622859/FULLTEXT01.pdf
http://liu.diva-portal.org/smash/get/diva2:622859/FULLTEXT01.pdf
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=4610294&fileOId=4610297
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=4610294&fileOId=4610297
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=4610294&fileOId=4610297
https://liu.diva-portal.org/smash/get/diva2:1129641/FULLTEXT01.pdf
https://liu.diva-portal.org/smash/get/diva2:1129641/FULLTEXT01.pdf
URL: \url{http://wiki.ros.org/ROS/Concepts}
URL: \url{http://wiki.ros.org/ROS/Concepts}

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Introduction
	Background
	Problem formulation
	Objectives
	Related work
	Limitations
	Thesis structure

	Quadcopter platform
	Hardware
	Software
	Euler angles and body frame coordinates
	Quadcopter modelling
	Ground effect
	Manual flight modes

	Programming
	ROS
	Robotics cape
	Program structure

	Model estimation and parameter identification
	Motor dynamics
	Data collection
	Prediction error method (PEM)
	Extended Kalman Filter (EKF)
	Parameter estimation using an EKF

	Control design
	PID control
	Implementation aspects of PID

	Conclusions and discussion
	Future work
	Notations and abbreviations
	Bibliography
	Blank Page

