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Abstract

This paper is a comparative study of different approaches to using a Discrete

Time Micro-structure model. By using the three filtering techniques Extended

Kalman, Unscented Kalman and Bootstrap Particle, the hidden variables; ex-

cess demand and market liquidity, were estimated and used in an asset allocation

strategy that invested in the asset when the excess demand as estimated as posi-

tive, due to the assumption that positive excess demand would make the price go

up. Two different strategies were used—one based on threshold values of excess

demand and one binary approach simply using the sign of the excess demand—to

try to outperform a passive allocation strategy on 12 different stock indices. They

were then evaluated in terms of average daily returns and market timing. The

results showed favourable average daily returns for the Extended and Unscented

Kalman filtering techniques using both kinds of strategies, though none of the re-

sults were statistically significant at the 5% confidence level. The Bootstrap Par-

ticle was deemed generally unreliable. The market timing tests rejected the null

hypothesis of no market ability for most data sets using all three filtering tech-

niques, with the two Kalman filters yielding the best results. Nothing was con-

cluded about which filtering technique was superior, though the study indicates

that Kalman filtering techniques can be used successfully in many cases while the

Bootstrap Particle filter as used in this thesis is not reliable. The threshold-based

strategy got slightly worse results in general than those of the binary approach,

but this was tested without taking transaction costs into account.
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1 Introduction

The dynamics behind asset prices has been studied for centuries, with the concept of

technical analysis, or price prediction, being an ancient field of study (Lo and Hasan-

hodzic, 2011, p. 2). One common conception is that asset prices follow random walk

processes (Fama, 1965). This is in line with the efficient market hypothesis, which ba-

sically stipulates that any inequality in information between traders is already incor-

porated into the price, and therefore cannot be predicted (Malkiel, 2003). Numerous

attempts have been made to challenge this, for example by modeling asset prices as dy-

namic models dependent on different factors, or as augoregressive processes (Brooks,

2014, p. 614). A lot of traders today use technical analysis to predict the future prices

and beat the market by buying when they believe the price will go up and selling when

they think it is going down. They often base the price speculation on mathematical cal-

culations of historical data such as the ”head and shoulders”-method that looks for spe-

cific shapes of the price curve, or predicting the price as moving average processes (Lo

and Hasanhodzic, 2011, p. viii). All these models are, in one way or another, challeng-

ing the random walk perspective.

With the increasing popularity of models from mathematical statistics, physics and

engineering in the field of economics and finance, models working with filtering tech-

niques from signal processing have become more common in the practical field of port-

folio management (Drakakis, 2009). These methods, such as the Kalman filter or the

particle filter, have been shown to yield promising results when applied in financial

fields such as asset allocation strategies (Peng et al., 2016).

Another common conception is that of supply and demand as determinants of asset

price—the notion that the market price can be derived from the intersection between

the supply and demand curves, representing how much the market is ready to supply a

good given a specific price and how much the market demands to buy the good at that

price (Varian, 2010, p. 293). According to this theory, all deviations from this equllib-

rium, i.e. when the excess demand is non-zero, will lead to a price change until a new

equilibrium is reached. Since market supply and demand are both generally unobserv-

able variables for a traded asset, these models are mostly used as a theoretical frame-

work rather than applied practically in trading strategies.

Based on a model proposed by Bouchaud and Cont (1998), Peng et al. (2003) cre-

ated the Discrete Time Micro-structure model meant to closely model the price P as

a nonlinear function. The model proposes that the price change depends on the unob-

served variables excess demand φ and (inverse of) marked depth λ, a variable first intro-

duced by Kyle (1985) meant to represent how much the price changes as an effect of the

excess demand. The variable φ decides the sign of the price change and, together with

the strictly positive λ, its magnitude. Peng et al. (2003) used this model and its state
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space representation (see appendix A for a short introduction of state space representa-

tion), with the hidden variables estimated using a Kalman filter and model parameters

estimated using maximum likelihood parameters, in a asset allocation strategy, or port-

folio strategy. The strategy based its prediction of the future price on its estimate of

the excess demand variable φ—investing more when the excess demand was estimated

positive and vice versa. Since the Discrete Time Micro-structure model—more thor-

oughly described in section 2.1—is non-linear, an Extended Kalman filter was used as a

mean of linearization. The asset in this case was the currency pair USD/JPY, and Peng

et al. (2003) managed to outperform a passive strategy in terms of gross return, even

though no test was conducted for the significance of the portfolio performance.

Another student at Lund university, Strömberg (2006), later managed to reconstruct

the results of Peng et al. (2003) on the two currency pairs SEK/USD and DKK/USD.

A few other following studies have also been made to evaluate and develop the micro

structure model, such as using local linearization to estimate the continuous version of

the model, denoted the Continous Time Micro-structure model (Peng et al., 2005) or

adding stochastic jumps (Peng et al., 2015).

Peng et al. (2016) recently argued that there were possible bias problems in using

maximum likelihood parameter estimation on a discrete time model with estimated

state variables, and therefore reformulated the Discrete Time Micro-structure model

as a Self-organizing State Space type model—meaning a model able to estimate its own

parameters—and applied it to an equivalent portfolio management strategy on Chinese

index stocks using a Bootstrap Particle filter for estimation.

All articles Peng et al. (2003), Peng et al. (2005), Peng et al. (2015) and Peng et al.

(2016) as well as the student paper Strömberg (2006) concluded that a portfolio strat-

egy based on the different formulations of the model as introduced by Peng et al. (2003),

using different filtering techniques are able to beat a passive strategy in terms of gross

return, and the strategies are shown to accurately avoid price declines by allocating less

money in the studied asset. This shows great promise in hidden state-form models for

asset price prediction, and these kinds of models deserve more testing and evaluation.

Peng et al. (2016) did not, however, explore any additional portfolio strategies for the

same model formulation, nor did they compare the strategies application in different

data sets. They also didn’t test the excess returns in terms of statistical significance,

nor did any tests of market timing, i.e. the ability to successfully enter and exit the

market based on forecasts of returns—basically what the portfolio strategies aim to do.

This kind of comparative study is performed in this thesis.

Unobserved variables in nonlinear state space models, such as the ones in the Dis-

crete Time Micro-structure model described by Peng et al. (2003), have to be estimated

using some kind of filtering technique to be useful in practice. Linear models are opti-

mally recursively reconstructed, in a mean square error sense, using a linear Kalman fil-
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ter (Jakobsson, 2013, p. 291), but nonlinear models like the ones mentioned above call

for some kind of approximate filter. These filters all come with different strengths and

weaknesses. Peng et al. (2016) discusses this and points out some problems using the

Extended Kalman filter as done by Peng et al. (2003), such as a possibly biased max-

imum likelihood parameter estimation. To estimate the parameters and states, they

consequently use a Bootstrap Particle filter instead, using a Self-organizing State Space

formulation of the model. It is, however, not proven that this is the optimal filter tech-

nique for the model, even though Peng et al. (2016) got good results on one data set.

There is reason to believe that other filters might also perform well or even better in

portfolio strategy applications. One problem with the Self-organizing space state for-

mulation of the Discrete Time Micro-structure model approach described by Peng et al.

(2016) is that while it claims to estimate the model parameters using the particle fil-

ter, it relies on good initial distributions. Peng et al. (2016) suggests retrieving these

from maximum likelihood estimation, why it could therefore be argued that the method

doesn’t really get around the problem of possibly erroneous initial parameter values.

One filter that Peng et al. (2016) has not tested is the Unscented Kalman filter,

meant to be computationally less demanding than the particle filter, while retaining

the ability to estimate the transition density of the hidden state rather than the tran-

sition function, by using a number of carefully chosen sample points (Wan and van der

Merwe, 2000). While this model would also require parameters to be estimated using

maximum likelihood as done in Peng et al. (2003), it could still be argued that the filter

could suit this model well. Hence, the Unscented Kalman filter has been tested as an

alternative filtering technique in this thesis.

This thesis is built mainly on the research of Peng et al. (2003) and the Discrete

Time Micro-structure model, and applies some of the theory and method from the men-

tioned studies to make a comparative study of different filtering techniques and portfo-

lio strategies, and search for more evidence regarding the application strength of these

types of models. The two previously studied filters Extended Kalman and Bootstrap

Particle were examined as well as the previously unstudied Unscented Kalman filter.

The filters were used to estimate the current state of excess demand φ and take strate-

gic portfolio actions accordingly, in the same manner as Peng et al. (2003). Also a new,

simpler, kind of portfolio strategy without threshold values for φ was used based on the

same estimated data of excess demand φ, but simply allocating all the money in the as-

set when φ > 0 and none when φ < 0, to more aggressively react on predicted future

price declines. The filters and strategies were applied to price data from a number of

stock indices, meant to represent market portfolios as suggested by Peng et al. (2016),

and evaluated in order to determinate which filter, and which strategy, yielded the high-

est average daily return as well as which one has the best market timing, i.e. ability to

accurately forecast when to invest in the market and when not to, using predictions of
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future returns. While these portfolio strategies’ strength lies in timing their asset allo-

cation with the market, no such tests seems to have been performed earlier.

The thesis means to contribute to this field of study by more thoroughly evaluating

the different approaches of applying the Discrete Time Micro-structure model to port-

folio strategies, by applying a number of filtering techniques and strategies to a series

of data sets. The data sets in question are 12 stock indices from around the world. The

main purpose is to test if the DTMS framework can be of use in portfolio management

by testing the null hypotheses that portfolios built on the model assumptions and ap-

plication do not yield significantly higher returns than a passive portfolio, and that they

lack ability to time their asset allocation with market returns. Another purpose is to

deduce whether or not there is one superior strategy when it comes to filtering tech-

nique and asset allocation approach, as well as to examine in what kind of markets the

strategies work well and what markets they do not. Since the thesis does not claim to

prove whether or not the real dynamics behind price changes really follow the Discrete

Time Micro-structure model, its goal is rather to test if such model assumptions can

be of use in portfolio strategy applications. It is difficult, if not impossible, to actu-

ally prove what dynamics determine price changes in an asset, but trying to estimate

variables that can not be observed may still prove useful in trading, risk management

and crisis prevention. In a broader perspective, these kinds of models can be applied in

many areas of finance—for both private investors wanting a successful trading strategy,

and for evaluating future risk by predicting price declines.

The rest of the paper is outlined as follows: Section 2, Theory, describes the pre-

vious research and theory used in the study. First, the Discrete Time Micro-structure

model as described by Peng et al. (2003) is introduced, derived and explained, followed

by the derivation of the Self-organizing space state-formulation of the same model from

Peng et al. (2016). Then, the different filtering technique applications are described us-

ing the methodology of Jakobsson (2013), Wan and van der Merwe (2000) and Doucet

et al. (2001) in order to to explain how Peng’s model formulations can actually be esti-

mated. Section 2.3 deals with the two different parameter estimation approaches that

can be applied on the DTMS model using the above mentioned filtering techniques.

Then, the portfolio strategy introduced by (Peng et al., 2003) is described, followed

by measures of portfolio performance to be used in the comparative study. Section 3,

Method, describes how the study was performed in terms of algorithms for model esti-

mation, as well as which portfolio strategies was used. The data sets used for testing

portfolio performance are also introduced here, as well as the comparison procedure

used to evaluate the different strategies’ performance. Section 4, Results, contains the

results from the tests described in 3 Method. Section 5, Discussion, concludes the re-

port by evaluating the results seen in 4, Results, discussing what these imply and sug-

gesting future research on the topic.
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2 Theory

2.1 The Discrete Time Micro-structure model

The Discrete Time Micro-structure model, henceforth denoted DTMS, was introduced

by Peng et al. (2003). By arguing that it is necessary to deal with the dynamics of fi-

nancial markets in many perspectives, a phenomenological model proposed by Bouchaud

and Cont (1998) is used to follow the asset price dynamics. In that model,, Pt is the as-

set price with change described by

dPt = λφt dt, (2.1)

λ is the inverse of the marked depth, which is defined as the excess demand needed to

push the price up by one unit (Bouchaud and Cont, 1998). The λ-variable has a clear

connection to the work of Kyle (1985), who introduced ”Kyle’s λ”, a common measure

of market liquidity. Kyle (1985) also defined 1
λ

as the market depth, but defined the

market depth as trade volume needed to change the price with one unit, while here it is

the excess demand needed to change the price with one unit. However, both formula-

tions of λ follow the same intuition of being a quantification of the price elasticity. φ is

the excess demand for the asset,

φt = φ+
t − φ−t , (2.2)

where φ+
t is the market demand and φ−t is the market supply. The idea behind the

model is that a positive φt means a overvalued asset, which leads to an increased price,

whereas a negative φt means it is undervalued, pushing the price down. The magnitude

of the price change due to the market excess demand depends on the market depth,

here quantified by parameter λ. The point is that a low market depth, i.e. a high value

of λ, will make excess demand increase the price heavily, while a high depth means

a small price change is sufficient to absorb the demand. Since this is merely an ab-

stract model describing how one observable variable, Pt, is affected by two unobservable

ones, φt and λ, the latter two have to be estimated to make the model useful in predict-

ing market prices and or taking trading decisions. Therefore, Peng et al. (2003) uses a

model proposed by Iino and Ozaki (2000), where Pt, φt and λ are described as continu-

ous autoregressive processes

dPt = λtφt + λt dW1,t (2.3)

dφt = (α1 + β1φt−1) + γ1 dW2,t (2.4)
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dlogλt = (α2 + β2 log λt−1) dt+ γ2 dW3,t (2.5)

where W1,t, W2,t and W3,t are independent Wiener processes and αi, βi and γi for i =

{1, 2} are constant parameters. The goal of the model is to use filtering techniques to

estimate the unobservable variables λt and φt. Note that the variable λt has also been

added as a factor to the Wiener process in equation 2.3, to take the connection between

market liquidity and price volatility into account. The DTMS model is then derived by

Peng et al. (2003) by using Euler’s discrete time approximation of equations 2.3-2.5 and

can be described by

Pk = Pk−1 + λk−1φk−1 + γ3λk−1ξ1,k (2.6)

φk = α1 + (1 + β1)φk−1 + γ1ξ2,k (2.7)

log λ2k = α2 + (1 + β2) log λ2k−1 + γ2ξ3,k (2.8)

where ξi,k for i = {1, 2, 3} are independent standard gaussian white noise processes.

Here, the parameter γ3 has also been added to more closely model the relationship be-

tween market liquidity and asset price volatility. Note that this makes the price volatil-

ity become similar to that of the EGARCH model where the logarithmized volatility of

the price follows a autoregressive process (Nelson, 1991). A simulated data set of the

variables can be seen in figure 1. The variables of the DTMS model can be estimated

using a number of techniques such as the Kalman filter (Peng et al., 2003) or the Boot-

strap Particle filter (Peng et al., 2016). The theory behind these estimation methods

are described in sections 2.2.1 and 2.2.2.

2.1.1 State space representation

To estimate the DTMS model variables using Kalman filtering as described in section

2.2.1, it has to be reformulated as a state space equation model with state-observability.

For an introduction to state space-models, see appendix A. Peng et al. (2003) defines

the hidden state vector

Xk =
[
Pk φk log λ2k

]T
(2.9)

and the observation vector of outputs

Yk =
[
Pk ∆P ∗k

]T
(2.10)

which follow processes

Xk+1 = A (Xk|Θ)Xk + ek+1 (2.11)
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Figure 1: Simulated data from the DTMS model

and

Yk = C (Xk|Θ)Xk +wk (2.12)

where

ek+1 ∼ N (0,Se (Xk|Θ)) (2.13)

wk ∼ N (0,Sw) (2.14)

A (Xk|Θ) =

 1 λk 0
α1

Pk
1 + β1 0

α2

Pk
0 1 + β2

 (2.15)

C (Xk|Θ) =

[
1 0 0
δ
Pk

0 1

]
(2.16)

Se (Xk|Θ) =

 γ23λ
2
k 0 0

0 γ21 0

0 0 γ22

 (2.17)

Sw =

[
σ2
1 0

0 σ2
2

]
(2.18)

and Θ is a parameter vector consisting of {α1, α2, β1, β2, γ1, γ2, γ3}. The variables σ1

and σ2 in matrix Sw are constants. The observable variable ∆P ∗k in equation 2.10 is
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added to make this model state-observable, i.e. making the state vector Xk estimatable

(Jakobsson, 2013, p. 284) as suggested by Peng et al. (2003) and represents conditional

variance. It is derived by first taking the square of both sides of equation 2.3 and ignor-

ing higher order terms, yielding

(dPt)
2 = λ2t dt (2.19)

which discretized and logarithmized becomes

log (Pk+1 − Pk)2 ≈ log λ2k. (2.20)

Since (Pk+1 − Pk) may be negative, the problem of logarithmizing zeros may arise. Fuller

(1996) therefore suggests using the approximation

log (Pk+1 − Pk)2 ≈ log
(
(Pk+1 − Pk)2 + ησ2

P

)
− ησ2

P

(Pk+1 − Pk)2 + ησ2
P

= ∆P ∗k+1 (2.21)

where η is a constant set to η = 0.2 and σ2
P is the sample variance of the asset price.

The parameter δ has been added in matrix C (Xk|Θ) in equation 2.16 to adjust for the

bias from the approximations in 2.20 and 2.21. The parameter vector Θ can be esti-

mated using, for example, maximum likelihood estimation (Peng et al., 2003).

2.1.2 Self-organizing State Space representation

The Self-organizing State Space model, henceforth denoted SOSS, was introduced by

Kitagawa (1998), where ”self-organizing” refers to the model’s property to estimate its

own parameters without the need of out-of-the-loop parameter estimation such as maxi-

mum likelihood. Peng et al. (2016) used a SOSS model reformulation of DTMS to more

accurately estimate it in terms of predicting future market behaviour using current ex-

cess demand estimations, φ̂k|k. First, the state space model described in equations 2.11

and 2.12 is rewritten in a generalized form

Xk+1 = f (Xk, ek+1,Θ) (2.22)

Yk = h (Xk,wk,Θ) . (2.23)

A Bootstrap Particle filter, described in 2.2.2 could then be used to estimate the states,

but the sampling error could make the maximum likelihood estimation of the parame-

ters Θ biased, if not a big amount particles are used, which would require a lot of com-

putational power (Peng et al., 2016). To get around this problem, and to not use max-

imum likelihood estimation on a possibly biased estimate, the parameters are instead
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included in the state to make them estimateable in the filter rather than outside of it.

Zk =

[
Xk

Θ

]
(2.24)

is introduced by Peng et al. (2016), as well as transition functions

Zk+1 =

[
f (Xk, ek+1,Θ)

Θ

]
(2.25)

Yk = H (Zk,wk,Θ) = h (Xk,wk,Θ) . (2.26)

In this model formulation, the variables Xk and Yk follow multivariate Gaussian distri-

butions

Xk+1 ∼ N (A (Xk|Θ)Xk,Se (Xk|Θ)) (2.27)

Yk ∼ N (C (Xk|Θ)Xk,Sw) (2.28)

while Θ is still a constant vector of parameters. Using this, the states and parameters

can be estimated together recursively at every time step using probability densities

derived from the DTMS model and a Bootstrap Particle filter as described in section

2.2.2.

2.2 Filtering techniques

2.2.1 The Kalman filter

The Kalman filter was introduced by Kalman (1960). It is a commonly used filter in

signal processing and mathematical statistics. The following section does not aim to ex-

plain the derivation of the Kalman filter, but to shortly describe the estimation method

using terminology and explanations from Jakobsson (2013). A linear state space rep-

resentation of a discrete dynamic system with observable m-dimensional measurement

vector Yk and unobservable n-dimensional state vector Xk is described as

Xk = A (Θ)Xk−1 + ek (2.29)

Yk = C (Θ)Xk +wk. (2.30)

The matrices A (Θ) and C (Θ) are (n× n)- and (m×m)-matrices dependent on a set

of known parameters Θ and

ek ∼ N (0,Se) (2.31)

wk ∼ N (0,Sw) (2.32)
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(Jakobsson, 2013, p. 293). The system is assumed to be asymptotically stable. The op-

timal prediction of the state vector Xk+l in terms of mean square errors, l steps into

the future is given by

X̂k+l = E
{
Xk+l|Y k

}
(2.33)

where Y k =
[
Y1 Y2 . . . Yk

]
is a matrix containing all observations of Y up to and

including point k (Jakobsson, 2013, p. 290). The optimal current state reconstruction is

given by

X̂k|k = E
{
Xk|Y k

}
= X̂k|k−1 +KkΓk (2.34)

where the Kalman gain K is given by

Kk = Sx,yk|k−1

[
Sy,yk|k−1

]−1
(2.35)

and the prediction error is given by

Γk = Yk − Ŷk|k−1 (2.36)

using the covariances

Sx,yk|k−1 = C
{
Xk,Yk|Y k−1} (2.37)

Sy,yk|k−1 = V
{
Yk|Y k−1} (2.38)

(Jakobsson, 2013, p. 292). The point of the Kalman gain is to be a factor that is higher

the less tolerant the system is to accepting prediction errors and lower the more toler-

ant it is. It is therefore formed by looking at the covariance between state and observa-

tion Sx,yk|k−1 as well as the inverse of autocovariance of the observation Sy,y. The logic

behind this is that the higher the covariance between the state and observation, the

more accurate one would expect the prediction to be, while a high autocovariance in

the observation could explain big prediction errors simply as stemming from high vari-

ance noise term realizations, making it plausible not to change the state estimate dras-

tically. The covariance for the state reconstruction error, Sx,xk|k , can then be calculated

as

Sx,xk|k = Sx,xk|k−1 −KkS
y,y
k|k−1K

T
k . (2.39)

Then, by using equations 2.29 and 2.30, the optimal linear reconstruction X̂k|k can be

computed as

X̂k|k = X̂k|k−1 +KkΓk (2.40)

using the observation prediction error

Γk =
(
Yk −C (Θ) X̂k|k−1

)
(2.41)

13



and the Kalman gain

Kk = Sx,xk|k−1C (Θ)
[
Sy,yk|k−1

]−1
(2.42)

and the one step prediction X̂k+1|k can be computed as

X̂k+1|k = A (Θ) X̂k|k (2.43)

(Jakobsson, 2013, p. 293). The covariance matrices can be computed as

Sx,xk|k = Sx,xk|k−1 −KkS
y,y
k|k−1K

T
k = (I −KkC (Θ))Sx,xk|k−1, (2.44)

Sx,xk+1|k = A (Θ)Sx,xk|kA (Θ)T + Se, (2.45)

and

Sy,yk|k = C (Θ)Sx,xk+1|kC (Θ)T + Sw. (2.46)

As initial conditions X̂0|0 and Sx,x1|0 , some arbitrary but well suited values should be cho-

sen, preferably as sample mean and covariances from previous realizations (Jakobsson,

2013, p. 294). A simple example of Kalman filter application on a linear problem, from

Jakobsson (2013), can be seen in appendix A.2.

2.2.1.1 The Extended Kalman filter

If the state space representation of a system is not linear, equations 2.29 and 2.30 are

not sufficient and can be replaced by equations

Xk+1 = F (Xk,Θ, ek) (2.47)

Yk = H (Xk,Θ,wk) (2.48)

where F (X,Θ) and H (X,Θ) are possibly non-linear multivariate functions (Wan

and van der Merwe, 2000). By using Taylor expansion of the functions F (X,Θ) and

H (X,Θ), the first order approximation of equations 2.47 and 2.48 can be made using

equations 2.29 and 2.30 but with A and C replaced with the Jacobians

A =
∂F (X,Θ, ek)

∂X

∣∣∣∣
X=X̂k|k

(2.49)

C =
∂H (X,Θ,wk)

∂X

∣∣∣∣
X=X̂k|k

(2.50)

The reconstruction X̂k|k and the one step prediction X̂k+1|k can then be calculated us-

ing the Kalman filtering algorithm described in section 2.2.1, but replacing equation
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2.41 with

Γk = Yk −H
(
X̂k|k−1,Θ,0

)
(2.51)

and equation 2.43 with

X̂k+1|k = F
(
X̂k|k,Θ,0

)
(2.52)

respectively, and replacing the matrices A and C with their Jacobian counterparts from

equations 2.49 and 2.50 respectively in the other algorithm equations (Wan and van der

Merwe, 2000). Note that this is not necessarily the optimal reconstruction of the state

variable Xk, while the Kalman filter in the linear case is (Jakobsson, 2013). This is due

to the fact that the Extended Kalman Filter estimates the nonlinear step-wise transi-

tion function as a linear function using the Jacobian as a transition matrix (Wan and

van der Merwe, 2000). The point of this linearization is to capture the true conditional

mean of the transition distribution, making it a ”first order-linarization”, which may

lead to large errors in the true posterior mean and covariance of the state variable (Wan

and van der Merwe, 2000). For the algorithm of estimating the states of the DTMS

model using an Extended Kalman filter, see algorithm 1 on page 24.

2.2.1.2 The Unscented Kalman filter

To cope with the possible issues of the Extended Kalman filter linearization, the Un-

scented Kalman filter was introduced by Wan and van der Merwe (2000). By using a

number of sample points, the goal of the filter is to capture the true mean and covari-

ance of the system with accuracy up to the 2nd order and avoid computing Jacobians

(Wan and van der Merwe, 2000). The unscented transform of the state variable Xk|k

in the system described by equations 2.47 and 2.48 is done by creating a (n× (2n+ 1))

matrix χk|k with columns i

χi,k|k =


X̂k|k, i = 1

X̂k|k +
√

(n+ η)
(√

Sx,xk|k )
)
i

i = 2, . . . , n+ 1

X̂k|k −
√

(n+ η)
(√

Sx,xk|k

)
i

i = n+ 2, . . . , 2n+ 1.

(2.53)

η = µ2 (n+ κ) − n is a scaling parameter with µ set to a small value and κ is a sec-

ondary scaling parameter usually set to 0.
(√
Sx,x

)
i

denotes the i:th column of the ma-

trix square root of Sx,x computed using lower triangular Cholesky factorization (Wan

and van der Merwe, 2000). This gives a matrix χ with every column representing its

own estimate of X̂k|k. The χ matrix can then be transitioned to the next time step

χk+1|k = F
(
χk|k,Θ,0

)
(2.54)
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and used to predict the future state Xk+1 as the weighted mean

X̂k+1|k =
2n+1∑
i=1

Wm
i χk+1|k, (2.55)

with weights

Wm
i =

{
η

n+η
i = 1

1
2(n+η)

i = 2, . . . , 2n+ 1.
(2.56)

(Wan and van der Merwe, 2000). Each column gets its own estimate of Yk+1|k, collected

in matrix Υk+1|k as

Υk+1|k = H
(
χk|k,Θ,0

)
(2.57)

and Yk+1|k can be estimated as a weighted mean

Ŷk+1|k =
2n+1∑
i=1

Wm
i Υi,k+1|k (2.58)

(Wan and van der Merwe, 2000). The covariance matrices are estimated as

Sx,xk|k−1 =
2n+1∑
i=1

W c
i

(
χi,k+1|k − X̂k+1|k

)(
χi,k+1|k − X̂k+1|k

)T
+ Se (2.59)

Sy,yk|k−1 =
2n+1∑
i=1

W c
i

(
Υi,k+1|k − Ŷk+1|k

)(
Υi,k+1|k − Ŷk+1|k

)T
+ Sw (2.60)

Sx,yk|k−1 =
2n+1∑
i=1

W c
i

(
χi,k+1|k − X̂k+1|k

)(
Υi,k+1|k − Ŷk+1|k

)T
(2.61)

with weights

W c
i =

{
η

n+η
+ (1− µ2 + ν) i = 1

1
2(n+η)

i = 2, . . . , 2n+ 1
(2.62)

where ν is used to incorporate prior knowledge of the distribution of X. For Gaussian

distributions, ν = 2 is optimal (Wan and van der Merwe, 2000). The point here is to es-

timate the covariances without using the jacobians A and C, and instead use the sam-

ple points that are based on prior covariance and state estimates. The Kalman gain is

then calculated as

Kk = Sx,yk|k−1

[
Sy,yk|k−1

]−1
, (2.63)

after which the current state variable

X̂k|k = X̂k|k−1 +KkΓk (2.64)
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and its covariance

Sx,xk|k = Sx,xk|k−1 −KkS
y,y
k|k−1K

T
k (2.65)

are updated (Wan and van der Merwe, 2000). The point of the Unscented Kalman

filter is to estimate higher order statistics than the Extended Kalman filter by using

the different values of the columns in χ. This is done to avoid the linearization of the

Extended Kalman filter and based on the assumption that it is easier to estimate the

probability density than to estimate the transition function Wan and van der Merwe

(2000). The Unscented Kalman filter tries to do this without needing the computational

power of a particle filter (Wan and van der Merwe, 2000). For the algorithm of estimat-

ing the states of the DTMS model using an Unscented Kalman filter, see algorithm 2 on

page 25.

2.2.2 The Bootstrap Particle filter

The particle filter has grown in popularity in estimation of hidden state variables in

the last few years and has shown a number of efficient applications in different fields

of science (Peng et al., 2016). While the filter can seem quite simple, its derivation

can be tedious and this section simply means to go through the basics of using a boot-

strap particle filter—meaning a particle filter using sequential importance resampling

as will be described soon—for hidden state estimation. For a more thorough derivation

and explanation of particle filters and their application in finance, see Lindström et al.

(2015). Now, consider the space state model given by equations 2.47 and 2.48. A way

to rephrase this could be that variables Xk and Yk belong to probability distributions

Xk+1 ∼ N (F (Xk,Θ,0) ,Se) (2.66)

Yk ∼ N (H (Xk,Θ,0) ,Sw) . (2.67)

First, M particles, or samples, are initiated as

x
(i)
0|0 = X0|0 (2.68)

for i = 1, . . . , N and some initial estimate X0|0 Doucet et al. (2001). Then, the par-

ticles are transitioned into the next time stem using the transition function F and the

distribution of Xk+1 given in equation 2.66, as random samples from the distribution

x
(i)
k|k−1 ∼ N

(
F
(
x
(i)
k−1|k−1,Θ,0

)
,Se

)
. (2.69)

using some computer randomizer. Each particle now represents an individual estimation

of the state Xk, using the expected value F
(
Xk−1|k−1

)
and the covariance of the state

Se. Then, each particle’s strength in estimating the state can be evaluated using the
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distribution of Yk, giving them importance weights

ω
(i)
k = pN

(
Yk,H

(
x
(i)
k|k−1,Θ,0

)
,Se

)
(2.70)

where pN
(
Y , Ȳ ,Se

)
denotes the probability density function of Y for a Gaussian dis-

tribution with mean Ȳ and covariance matrix Se Doucet et al. (2001). This will give

higher weights to the particles that were better at predicting the current observation Yk

using their particle-specific state observations x
(i)
k|k−1 and lower weights to the ones that

gave inaccurate predictions. By normalizing the weights

w̃
(i)
k =

ω
(i)
k∑M

i=1 ω
(i)
k

(2.71)

and resampling new particles from the present set, with weights representing probabili-

ties, a new set of particles can be sampled from the old ones{
x
(i)
k|k

}
∼
[{
x
(i)
k|k−1, w̃

(i)
k

}]
(2.72)

using the normalized weights as discrete probabilities (Doucet et al., 2001). This means

that particles that were given high weights in the prediction performance evaluation in

equation 2.70 are likely to stay, and be duplicated, in the particle set while those who

performed badly will be left out. The new particles can be used to form the current

state estimate as the average of the resampled particles (Doucet et al., 2001)

X̂k|k =
1

M

M∑
i=1

x
(i)
k|k. (2.73)

The new particles can then be transitioned into the next time step using equation 2.69

again, after which the weighting procedure can be repeated and a new current state

variable estimated. The point of the particle filter is to try to construct a empirical dis-

tribution of the hidden state vector. For a simple example of applying a particle filter,

see appendix A.3. For the algorithm of estimating the states of the DTMS model using

a Bootstrap particle filter, see algorithm 3 on page 27.

2.3 Parameter estimation

In cases where parameters Θ are unknown, such as in the DTMS model described in

2.1, they need to be estimated. (Peng et al., 2016) used two estimation methods, maxi-

mum likelihood and Bootstrap Particle using a Self-organizing State Space formulation

of the DTMS model. Section 2.3.1 deals with maximum likelihood estimation as used

by Peng et al. (2003) for the Extended Kalman filter, but the method is also applica-

18



ble to the Unscented Kalman filter. Section 2.3.2 shortly describes the method of Peng

et al. (2016), estimating the parameters as a part of the Bootstrap Particle filter loop.

2.3.1 Maximum likelihood parameter estimation

Consider the prediction error for Yk,

Γk = Yk − Ŷk|k−1 (2.74)

which is assumed to be a 2-dimensional Gaussian white noise vector and the covariance

matrix Sy,yk|k−1 of observation prediction Ŷk|k−1 = E
{
Yk|Y k−1} where Y k denotes all

observations up to and including Yk−1, Y
k = {Y1,Y2, ...,Yk−1}. Both Γk and Sy,yk|k−1

can be retrieved from every time step of the Extended and Unscented Kalman filters

described in 2.2.1.1 and 2.2.1.2. The joint conditional density function for Γk given all

previous observations Y k−1 is

p
(
Γk|Y k−1) =

1

2π

√∣∣∣Sy,yk|k−1∣∣∣e
− 1

2
ΓTk S

y,y
k|k−1

Γk (2.75)

and the (−2) log-likelihood of equation 2.12 for K observations {Y1, ...,YK} is then de-

rived as

(−2) log p
(
Y K |Θ

)
=

K∑
k=1

{
log
∣∣∣Sy,yk|k−1∣∣∣+ ΓT

k

[
Sy,yk|k−1

]−1
Γk

}
+ 2N log 2π (2.76)

where |·| denotes matrix determinant (Peng et al., 2003). The maximum likelihood esti-

mate of Θ, Θ∗ is then given by

Θ∗ = arg min
Θ

K∑
k=1

{
log
∣∣∣Sy,yk|k−1 (Θ)

∣∣∣+ Γk (Θ)T
[
Sy,yk|k−1 (Θ)

]−1
Γk (Θ)

}
+ 2N log 2π

(2.77)

where Γk and Sy,yk|k−1 are estimated through some filtering technique (Peng et al., 2003),

some of which are described in section 2.2. Peng et al. (2003) suggests estimating the

parameters with the Nelder-Mead method using Matlab, running the filter loop nu-

merous times to find the Θ̂ with the highest likelihood.

2.3.2 Particle filter parameter estimation

In the Self-organizing State Space reformulation of the DTMS model, described in 2.1.2,

the point is to avoid the maximum likelihood estimation performed in 2.3.1 since Peng

et al. (2016) claims that the estimation might be biased due to the errors in the state

estimates X̂K . Instead, the parameter values of Θ is added to the state vector, mak-
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ing their estimation a part of the filtering and estimating them in the same way as the

state Xk using a particle filter. This requires some inital distribution for both Xk and

Θ to start the filter loop, which Peng et al. (2016) suggests achieving from using an Ex-

tended Kalman filter and maximum likelihood estimation prior to initiating the particle

filter.

2.4 Portfolio strategy

Peng et al. (2003) used an Extended Kalman filter to estimate the DTMS models, and

noted that the prediction error of the asset price was basically a white noise process,

while the estimated current excess demand φ̂k|k had a higher autocorrelation, varied

around zero and was much smoother. It was therefore argued that a trading strategy

should be based on φ̂k|k rather than P̂k+1|k, due to the direct effect of previous peri-

ods’ excess demand on price as seen in equation 2.6. Peng et al. (2003) suggests using

a trading strategy that allocates different portions of the portfolio value in the asset de-

pending on different threshold values τ of φ̂k|k. The strategy is described in algorithm

4 on page 28 where a is the portion of the portfolio invested in the asset and Rk is the

asset return at point k. Another way to use φ̂k|k for portfolio could be to assume that

a negative value of φ̂k|k implies declining prices and φ̂k|k implies rising prices, and then

simply invest everything in the portfolio when φ̂k|k > 0 and nothing when φ̂k|k < 0. This

strategy is described in algorithm 5 on page 5.

To find threshold values τ for algorithm 4, Peng et al. (2003) defines a (negative)

asset-valuation function

J (τ ) = −AK (τ ) +
ψ

T

N∑
k=1

∣∣∣∣Ak (τ )−
(
A0 +

k

T
(AK (τ )− A0)

)∣∣∣∣2 (2.78)

where Ak is the portfolio value at point k and ψ is a weighting factor. The first part

of the function is simply the final portfolio value, while the second part is supposed to

take portfolio value fluctuation into account and prefer smoother, less volatile portfolios

(Peng et al., 2003). The weight ψ decides how much focus should be put on either one

of these factors, with a high value preferring less volatile portfolios higher. The optimal

threshold values are then given by

τ ∗ = arg min
τ
J (τ ) (2.79)

which Peng et al. (2003) suggests estimating using Matlab.

20



2.5 Portfolio performance evaluation

There are numerous known methods of evaluatiing the performance of portfolios. The

most intuitive method would be to just look at the gross or expected return of the port-

folio, claiming that the portfolio with the highest returns is the superior one. Many

measures, such as the Sharpe ratio, also take risk into account, often measured using

the sample variance of the returns. In portfolios that choose between investing and not

investing in the market portfolio however, the returns for the strategic portfolios are

between 0 and that of the passive portfolio, meaning sample variance of returns will al-

most always be lower than in a passive strategy, making that comparison less useful.

Another disadvantage of the Sharpe ratio is that it loses its intuition in times of neg-

ative gross return, since negative Sharpe ratios gain from having high volatility. Even

though the comparison of negative Sharpe ratios has been defended by for example

McLeod and Van Vuuren (2004), it is not very intuitive to use in comparison between

portfolios with negative expected returns. Other popular strategies are those including

estimation of the portfolio β, such as the Jensen’s alpha-measure Aragon and Ferson

(2007). These measurements are made mostly for portfolios that have a constant covari-

ance with the market portfolio, and since the strategies in this study clearly has not,

these measurements are also left out. A more intuitive measure in these cases is the av-

erage daily return, shortly described in section 2.5.1.

2.5.1 Average daily return

The average daily return of the portfolios can simply be calculated as the sample mean

R̄p =
1

K

K∑
k=1

Rp,k (2.80)

for K time points, where Rp,k is the portfolio’s return at time point k. It is a very intu-

itive measure as it says how much this portfolio is expected to return every day. To test

if a portfolio strategy can beat the market portfolio with returns Rm,k, a Welch’s t-test

(Welch, 1947) can be conducted as

t =
R̄p − R̄m√
σ̂2
p

Kp
+ σ̂2

m

Km

(2.81)

with σ̂2 being the sample variance. The test statistic t then follows a Student’s t-distribution

with

ν =

(
σ̂2
p

Kp
+ σ̂2

m

Km

)
σ̂4
p

K2
p(Kp−1)

+ σ̂4
m

K2
m(Km−1)

(2.82)
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degrees of freedom. The null hypothesis of the portfolios having the same average re-

turn can then be tested using some significance level of choice.

2.5.2 Market timing

Another aspect that is of interest especially for actively managed portfolios is that of

market timing, i.e. the ability to enter and exit the market at the right time points to

avoid price declines and still benefit from price increases. One way to test this is the

Henriksson-Merton non-parametric test.

2.5.2.1 Henriksson-Merton’s non-parametric market timing test

Henriksson and Merton (1981) present an intuitive way to test market timing. Instead

of estimating any regression models, the test examines the individual daily forecasts

of an investor. Assuming that the investor at every day decides whether to invest in

the market portfolio or keep the money in the bank by forecasting the next days return

Rk+1 and setting the portion of total assets to invest the next day as

ak+1 =

{
1 R̂m,k+1|k > 0

0 R̂m,k+1|k ≤ 0
(2.83)

where 0 ≤ a ≤ 1 and R̂m,k+1|k is today’s forecast of tomorrows market portfolio return.

Henriksson and Merton (1981) then defines the conditional probability of a correct fore-

cast given that Rm,k ≤ 0 as

p1,k = P (ak = 0|Rm,k ≤ 0) (2.84)

1− p1,k = P (ak = 1|Rm,k ≤ 0) (2.85)

and the conditional probability of a correct forecast given that Rm,k > 0 as

p2,k = P (ak = 1|Rm,k > 0) (2.86)

1− p2,k = P (ak = 0|Rm,k > 0) . (2.87)

According to Henriksson and Merton (1981), it is a sufficient condition that p1,k + p2,k =

1 for the investor’s prediction to be of no use, while a optimal forecaster would have

p1,k + p2,k = 1 + 1 = 2 and a forecaster that is always wrong would have p1,k + p2,k = 0.

Since the probabilities p1,k and p2,k are generally not observable, they have to be esti-

mated (Henriksson and Merton, 1981). By defining variable N1 as the number of obser-

vations where Rm,k > 0, N2 as the number of observations where Rm,k ≤ 0, (i.e. N1 +N2

make ut the entire data set), n1 as the number of successful predictions where Rm,k ≤ 0

and n2 as the number of unsuccessful predictions where Rm,k > 0 (i.e. n1 + n2 is the
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number of times the forecaster predicted negative market portfolio returns) (Henriksson

and Merton, 1981). The estimated probabilities of correct forecasts are then

p̂1 =
n1

N1

(2.88)

and

p̂2 = 1− n2

N2

. (2.89)

Under the null hypothesis of no market timing, p1 = p2 = p = 0.5, meaning

p̂ =
n1 + n2

N1 +N2

(2.90)

Since both n1

N1
and n2

N2
have expected value p = 0.5 under the null hypothesis and are

drawn from independent subsamples, only one of them will have to be used as an es-

timate (Henriksson and Merton, 1981). In the rest of this derivation, n1 is used solely.

The probability of the binomially distributed variable n1 getting value n1 = x from a

subsample of N1 drawings is then

P (n1 = x|N1, p) =

(
N1

x

)
px (1− p)N1−x . (2.91)

Henriksson and Merton (1981) then uses Baye’s theorem to form the probability of n1 =

x given N1, N2 and n, which is derived as

P (n1 = x|N1, N2, n) =

(
N1

x

)(
N2

n−x

)(
N
n

) , (2.92)

meaning that n1 follows a hypergeometric distribution (Henriksson and Merton, 1981).

Using the probability mass function of the hypergeometric distribution, the null hypoth-

esis of p1+p2 = 1 versus the alternative hypothesis p1+p2 > 1 can be tested (Henriksson

and Merton, 1981).
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3 Method

The algorithms and tests described below were all executed using Matlab. The code

in its entirety is available upon request.

3.1 Filtering algorithms

3.1.1 Extended Kalman filter

To estimate the DTMS model, described in section 2.1, an Extended Kalman filter, de-

scribed in section 2.2.1.1, was used.

Using the method described in 2.2.1.1, algorithm 1 was used to calculate the one

step prediction X̂k|k−1 = E
{
Xk|Y k−1} and the reconstruction X̂k|k = E

{
Xk|Y k

}
with

stepwise updated matrices A
(
X̂k−1|k−1|Θ

)
, C

(
X̂k−1|k−1|Θ

)
, and Se

(
X̂k−1|k−1|Θ

)
.

Sx,xk|k−1 and Sx,xk|k are the conditional covariance matrices of X̂k|k−1 and X̂k|k respectively.

Note that algorithm 1 requires parameters Θ to be estimated outside of the loop, which

was done by minimizing function 2.77. Parameters δ, Sw, X̂0|0 and Sx,x0|0 were appended

to the Θ-vector in the maximum likelihood estimation as suggested by Peng et al. (2003).

Algorithm 1 Extended Kalman filtering of the DTMS model

Initialize

X̂0|0

Sx,x0|0

for k = 1, . . . , K do
Prediction

X̂k|k−1 = A
(
X̂k−1|k−1|Θ

)
X̂k−1|k−1

Sx,xk|k−1 = A
(
X̂k−1|k−1|Θ

)
Sx,xk−1|k−1A

(
X̂k−1|k−1|Θ

)T
+ Se

(
X̂k−1|k−1|Θ

)
Sy,yk|k−1 = C

(
X̂k−1|k−1|Θ

)
Sx,xk|k−1C

(
X̂k−1|k−1|Θ

)T
+ Sw

Filtering

Kk = Sx,xk|k−1C
(
X̂k−1|k−1|Θ

)T [
Sy,yk|k−1

]T
X̂k|k = X̂k|k−1 +Kk

(
Yk −C

(
X̂k−1|k−1|Θ

)
X̂k|k−1

)
Sx,xk|k =

[
I −KkC

(
X̂k−1|k−1|Θ

)]
Sy,yk|k−1

end

3.1.2 Unscented Kalman filter

To use the Unscented Kalman filter, described in 2.2.1.2, rather than the Extended one

for estimation of the DTMS model, algorithm 2 was used. This algorithm also needed

parameters Θ to be estimated outside of the loop. Once again, parameters δ, Sw, X̂0|0
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and Sx,x0|0 were appended to the Θ-vector in the maximum likelihood estimation as sug-

gested by Peng et al. (2003).

Algorithm 2 Unscented Kalman filtering of the DTMS model

Initialize

X̂0|0

Sx,x0|0

Wm
1 = η

n+η

W c
1 = η

n+η
+ (1− µ2 + ν)

for i = 2, . . . , 2n+ 1 do

W c
i = Wm

i = 1
2(n+η)

end

for k = 1, . . . , K do
Prediction

χ1,k−1|k−1 = X̂k−1|k−1

for i = 2, . . . , n+ 1 do

χi,k−1|k−1 = X̂k−1|k−1 +
√

(n+ η)
(√

Sx,xk−1|k−1

)
i

end

for i = n+ 2, . . . , 2n+ 1 do

χi,k−1|k−1 = X̂k−1|k−1 −
√

(n+ η)
(√

Sx,xk−1|k−1

)
i

end

χk|k−1 = A
(
X̂k−1|k−1|Θ

)
χk−1|k−1

Υk|k−1 = C
(
X̂k−1|k−1|Θ

)
χk−1|k−1

X̂k|k−1 =
∑2n+1

i=1 Wm
i χk|k−1

Ŷk|k−1 =
∑2n+1

i=1 Wm
i Υk|k−1

Sx,xk|k−1 =
∑2n+1

i=1 W c
i

(
χi,k|k−1 − X̂k|k−1

)(
χi,k|k−1 − X̂k|k−1

)T
+ Se

(
X̂k−1|k−1|Θ

)
Sy,yk|k−1 =

∑2n+1
i=1 W c

i

(
Υi,k|k−1 − Ŷk|k−1

)(
Υi,k|k−1 − Ŷk|k−1

)T
+ Sw

Sx,yk|k−1 =
∑2n+1

i=1 W c
i

(
χi,k|k−1 − X̂k|k−1

)(
Υi,k|k−1 − Ŷk|k−1

)T
Filtering

Kk = Sx,yk|k−1

[
Sy,yk|k−1

]−1
X̂k|k = X̂k|k−1 +Kk

(
Yk − Ŷk|k−1

)
Sx,xk|k = Sx,xk|k−1 −KkS

y,y
k|k−1K

T
k

end
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3.1.3 Particle filter

The Bootstrap Particle filter described in section 2.2.2 was used to estimate either the

DTMS model described in section 2.1 with externally estimated parameters Θ or the

SOSS model described in section 2.1.2. Peng et al. (2016) recommends using the SOSS

model in favour of the DTMS model to avoid the possible error of biased maximum

likelihood estimation. It is also argued that the main problem with using the Boot-

strap Particle filter on the SOSS model is that of initial distributions for the parti-

cles. Peng et al. (2016) suggests using a Extended Kalman filtering technique and set-

ting the initial conditions for the new state vector particles ẑ
(i)
0|0 =

[
x̂
(i)
0|0 θ

(i)
0

]T
as

x
(i)
0|0 ∼ N

(
X̂0|0,S

x,x
0|0

)
and θ

(i)
0 ∼ U

(
Θ̂
)

where U denotes the uniform distribution in

an interval close to the estimate Θ̂. The algorithm used for the Bootstrap Particle filter

can be seen in 3. Note that the particles θ(i) do not have a transition function and they

will therefore not be updated particle-wise apart from in the resampling. This means

there will be M different values for Θ̂ in the first time step, and then this number will

reduce in every step.

3.1.3.1 Troubleshooting

There were two main issues with running the Bootstrap Particle filter in the way that

Peng et al. (2016) suggests. One was the fact that the covariance matrix of observa-

tion noise, Sw, was included in the Θ-vector. This gave all particles different values of

S
(i)
w , which was then used to evaluate their prediction performance and therefore im-

portance weight using the probability density function. This led to particles with high

values of S
(i)
w tending to get high weights even if their predictions were poor, due to

the probability density function used to evaluate those particles performances being a

high-variance one. The second issue was that the Extended Kalman filter estimates sug-

gested very low values for Sw, making Matlab often truncate the probability density

function value as 0 for a lot of the particles, and sometimes for all particles, breaking

the filter down completely. Peng et al. (2016) does not mention this possible issue, but

use a uniform interval for the first term in S
(i)
w from 0 to 500 times the Kalman filter

estimate. To get around this problem in this thesis, the value of Sw was instead set as

the same constat value for all particles. The value was chosen as the Kalman filter esti-

mate times some arbitrary factor that completely eliminates the problem with all par-

ticles being given importance weight 0. While this tends to give the particles similar

weights, it should at least give the highest weight to the most accurate prediction and

lower weights for those less accurate. The factor was chosen as the smallest possible

number that mitigated the issue of all zero-weights for every data set individually. This

method, as described in algorithm 3, was used wtith initial distributions based on the

Extended Kalman filter maximum likelihood estimates as uniformly distributed stochas-
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tic variables ∼ U [−min,max] as

αi ∼ U [−|α̂i|, |α̂i|]
βi ∼ U

[
0, β̂i

]
γi ∼ U [0, γ̂i]

δ ∼ U
[
−|δ̂|, |δ̂|

] , (3.1)

with 1000 particles.

Algorithm 3 Bootstrap particle filtering of the SOSS model

Initialize

for i = 1, . . . ,M do
Sample

x
(i)
0|0 ∼ N

(
X̂0|0,S

x,x
0|0

)
θ
(i)
0 ∼ U

(
Θ̂
)

w
(i)
0 = 1

N

z
(i)
0|0 =

[
x
(i)
0|0 θ

(i)
0

]T
end

for k = 1, . . . , K do
Prediction

for i = 1, . . . ,M do
Sample

x
(i)
k|k−1 ∼ N

(
A
(
x
(i)
k−1|k−1|θ

(i)
k−1

)
x
(i)
k−1|k−1,Se

(
x
(i)
k−1|k−1|θ(i)

))
Weight

ω
(i)
k = pN

(
Yk,C

(
x
(i)
k|k−1

)
,Sw

)
Normalize

for i = 1, . . . ,M do

w̃
(i)
k =

w
(i)
k∑M

i=0 w
(i)
k

end

Resample{
z
(i)
k|k

}
∼
[{[

x
(i)
k|k−1 θ

(i)
k−1

]T
, w̃

(i)
k

}]
Filtering

Zk|k = 1
M

∑N
i=1 z

(i)
k|k

end

end
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3.2 Portfolio strategy

To compare the three different filtering techniques; Extended Kalman, Unscented Kalman

and Bootstrap Particle, the two portfolio strategies described in section 2.4 were used

based on the filter estimates of φ, yielding a total of 6 strategic portfolios. A passive

portfolio that always invested all its money in the relevant asset, i.e. a proxy for tha

market portfolio, was also used as a mean of comparison. The threshold values τ for

the threshold-based strategy were calculated with equation 2.79 with ψ = 1 to evenly

focus on final portfolio value and smoothness. All tests were performed using a initial

investment of 10 units of the local currency.

Algorithm 4 Threshold-based portfolio strategy τ

Initialize

A0

a1 = 1

Trading

for k = 1, . . . , K do
Ak = akRkAk−1 + (1− ak)Ak−1
if φ̂k|k > τ1 then

ak+1 = 1

else

if τ2 < φ̂k|k ≤ τ1 then
ak+1 = 0.8

else

if −τ3 < φ̂k|k ≤ τ2 then
ak+1 = 0.5

else

if −τ4 < φ̂k|k ≤ −τ3 then
ak+1 = 0.2

else
a = 0

end

end

end

end

end

28



Index Abbreviation Country Estimation Testing
1. All Ordinaries Index AOI Australia 2000-2005 2006-2011
2. Deutscher Aktienindex DAX Germany 1999-2006 2007-2014
3. Financial Times Stock

Exchange 100 Index
FTSE The U.K. 1987-1988 1989-1990

4. Hang Seng Index HSI Hong Kong 1997-2000 2001-2004

5. Índice Bolsa de Valores
do Estado de São Paulo

IBOVESPA Brazil 1998-2001 2002-2005

6. Nihon Keizai Shimbun
225 Index

Nikkei Japan 1992-1995 1996-1999

7. OMX Stockholm 30 OMXS30 Sweden 1999-2003 2004-2008
8. Russia Trading System

Index
RTSI Russia 1996-1999 2000-2003

9. Standard & Poor’s Bom-
bay Stock Exchange
Sensitive Index

S&P BSE India 2009-2010 2011-2012

10. Standard & Poor’s 500 S&P500 U.S.A. 2001-2006 2007-2012
11. Shanghai Stock Exchange

Composite Index
SSE China 2007-2011 2012-2016

12. Shenzhen Stock Exchange
Composite Index

SZSE China 1997-2000 2001-2004

Table 1: Stock indices

Algorithm 5 Binary portfolio strategy B

Initialize

A0

a1 = 1

for k = 1, . . . , K do
Ak = akRkAk−1 + (1− ak)Ak−1
if φ̂k|k > 0 then

ak+1 = 1

else
ak+1 = 0

end

end

3.3 Data

The data sets were chosen as stock indices on 12 big markets around the world and can

be seen along with their estimation and testing periods in table 1. They were chosen as

to serve as market portfolios in alignment with Peng et al. (2016), and the same trans-

formation Pk = 100 (log (Zk)) where Zk denotes the closing spot price of the stock in-

dex, was used.
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All data sets were split into two equally long parts, one for estimating parameters

and one for out-of-sample testing. The estimation periods were chosen as time peri-

ods containing at least one clear spike and one clear decline in the asset price as to not

make the estimation biased for either, and to make the models better work with dras-

tically changing markets. The time periods for the different stock indices are different,

since big declines in index prices on one market are likely correlated with declines on

others in the world economy, and therefore same period-tests would probably give simi-

lar results for all indices and not test the strategies properties in different kinds of mar-

kets.

The parameters Θ for the Extended and Unscented Kalman filters were estimated

on the estimation data, as were the initial distribution of z(i) in the Bootstrap Parti-

cle filter. The test data was then be used to evaluate the performance of the portfolio

strategies as described in 3.4.

3.4 Comparison

After running the 7 portfolio strategies on the 12 data sets, their results had to be com-

pared. The most intuitive and simple way would be simply comparing the average daily

return of the portfolio strategies over a test period and comparing it—simply claiming

that the portfolio with the highest expected return has used the best strategy. Since

this is very similar to the the method used in the work of Peng et al. (2003) and Peng

et al. (2016), who compared final asset values, and also allows for the use of a simple t-

test for equal average returns, this was be the main focus of performance evaluation in

this thesis. The null and alternative hypotheses for the daily returns were

H0 : R̄p = R̄m

H1 : R̄p > R̄m

(3.2)

Since the forecasts for the market portfolio returns in the binary strategies is basically

used as

ak+1 =

{
1, R̂m,k+1 > 0

0, R̂m,k+1 ≤ 0
(3.3)

Henriksson-Merton’s non-parametric market time is applicable. Therefore, the three bi-

nary portfolios were tested using the procedure described in 2.5.2.1. Since the threshold-

based strategies can not be tested using the Henriksson-Merton methodology, the bi-

nary strategies served as representatives for their respective filters in the market timing

test. The estimates p̂1, p̂2 and p̂ = p̂1 + p̂2 are presented and hypotheses

H0 : p1 + p2 = 1

H1 : p1 + p2 > 1
(3.4)
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are tested. The values p̂1 and p̂2 are also useful in the analysis of the average daily re-

turns, since they can be examined to see a strategies specific accuracy in predicting pos-

itive or negative returns. A more qualitative examination was also conducted by view-

ing the portfolio value plots through time and looking for instances were the strategic

portfolios successfully avoided significant declines in asset value.

Both tests were beforehand decided to require rejection of the null hypothesis on at

least the 5% confidence level to be deemed statistically significant.
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Figure 2: Estimated state variables using an Extended Kalman filter on the Hang Seng
Index

4 Results

The average daily returns for the portfolios can be seen in table 2. The Extended Kalman

filter is here shortened as EKF, the Unscented Kalman filter as UKF and the Bootstrap

Particle filter as BPF. B denotes the binary strategies while τ denotes the threshold-

based ones. All average daily returns that are less than those of the market portfo-

lio are highlighted in grey. The results for the probability estimates p̂1, p̂2 and p̂ from

Henriksson-Merton’s market timing test can be seen in 3. All values of p̂1 or p̂2 that

were less than 0.5, or values of p̂ what were less than 1 are highlighted in grey. The

best value for every data set is marked with a box. The subscripts ∗, ∗∗ and ∗∗∗ mean

that the null hypothesis was rejected on the 5%, 1% or 0.1% significance levels respec-

tively. The portfolio value plots can be found in figures 4-15 on pages 48-59.

An example of estimated state X̂ variables from the Extended Kalman filter on the

Hang Seng Index can be seen in figure 2, with parameter estimates α1 = 0.0029, α2 =

−0.0003, β1 = −0.12, β2 = −0.0098,γ1 = 0.0369, γ2 = 0.0193, γ3 = 4.2869, δ = 0.7133.
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Passive EKF UKF BPF
τ B τ B τ B

1. AOI −0.17 0.02 0.06 −0.04 0.03 −0.19 −0.24

2. DAX 0.08 0.12 0.21 0.10 0.26 0.04 −0.02

3. FTSE 0.31 0.39 0.48 0.41 0.54 −0.01 0.03

4. HSI −0.15 0.07 0.00 0.03 −0.04 −0.04 0.00

5. IBOVESPA 0.70 0.42 0.55 0.42 0.54 0.37 0.24

6. Nikkei −0.19 −0.03 0.08 −0.05 0.11 −0.15 −0.08

7. OMXS30 −0.09 0.26 0.30 0.28 0.23 −0.32 −0.25

8. RTSI 0.84 0.56 0.42 0.58 0.56 0.12 0.25

9. S&P BSE −0.17 −0.12 −0.17 −0.06 −0.14 −0.19 −0.10

10. S&P 500 −0.12 −0.02 0.00 −0.08 −0.01 −0.11 −0.26

11. SSE 0.19 0.35 0.37 0.38 0.37 0.37 0.32

12. SZSE −0.53 −0.11 −0.09 −0.19 −0.02 −0.39 −0.56

Table 2: Average daily returns Rp,k in h

EKF UKF BPF
p1 p2 p p1 p2 p p1 p2 p

1. AOI 0.55 0.52 1.06∗∗ 0.54 0.52 1.06∗∗ 0.41 0.61 1.02∗

2. DAX 0.25 0.79 1.04∗∗ 0.30 0.74 1.04∗∗ 0.22 0.76 0.98

3. FTSE 0.49 0.57 1.05∗ 0.49 0.59 1.07∗ 0.50 0.56 1.06∗

4. HSI 0.44 0.56 1.00∗ 0.45 0.55 1.00 0.52 0.48 1.00∗∗

5. IBOVESPA 0.43 0.59 1.02∗∗ 0.43 0.59 1.03∗∗ 0.18 0.81 0.99

6. Nikkei 0.72 0.27 1.00 0.75 0.25 1.00 0.64 0.37 1.01∗

7. OMXS30 0.43 0.65 1.08∗∗ 0.36 0.74 1.10∗∗ 0.60 0.36 0.96

8. RTSI 0.49 0.53 1.03∗∗ 0.53 0.51 1.03∗∗ 0.48 0.52 1.00∗∗

9. S&P BSE 0.52 0.44 0.96 0.51 0.45 0.96 0.44 0.55 0.99
10. S&P 500 0.56 0.43 0.99 0.56 0.43 0.99 0.45 0.53 0.98

11. SSE 0.51 0.51 1.02∗∗ 0.50 0.53 1.02∗∗ 0.48 0.55 1.03∗∗

12. SZSE 0.57 0.53 1.10∗∗∗ 0.59 0.52 1.11∗∗∗ 0.64 0.36 1.00∗∗∗

Table 3: Henriksson-Merton’s non-parametric market timing test results
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5 Discussion

The first impression from looking at the average daily returns in table 2 is that all four

portfolios using Kalman filters yield higher returns than the passive strategy for all but

two indices, even though the results are in no case statistically significant. This means

that the comparative study failed to prove that any of the strategies yield statistically

significantly higher returns than the passive strategy, i.e. the null hypothesis of the pas-

sive and strategic portfolios having the same mean daily return can not be rejected in

any data set. Although this means nothing can, from a statistical perspective, be con-

cluded, the positive results of these four strategies are still relevant from in an economi-

cal sense, since the strategic portfolios at least seem to produce higher returns.

Even though these four portfolios oftentimes yield negative returns, those returns

are not as negative as the ones for the passive strategy. In a lot of cases, they are able

to get positive average returns even in periods of financial decline—for example in the

OMXS30 index where some of them all get big positive returns as compared to the

−0.09h daily loss of the passive strategy. The IBOVESPA and RTSI indices both had

test periods of very strong growth, with the passive portfolios having average daily re-

turns 0.70h and 0.84h respectively and it seems that the strategic portfolios were

not able to successfully follow the price upwards. Considering that the portfolios can

never get a daily return of more than the passive portfolio, the DTMS-based portfolios

strength contra the passive portfolio should be to avoid declines, while in times of fi-

nancial posititvity they can—at best—tie with the passive portfolio. It therefore makes

sense that they fail to outperform the passive portfolio in these two indices, since that

would require them to very accurately pinpoint the few days of negative returns in the

growth period. However, their actual average returns in these two periods are not very

impressive as they are much lower than the passive one, making it reasonable to suspect

that they consistently underestimate the excess demand in these two indices. Looking

at the probabilities in table 3 can, however, not confirm this, since both binary portfo-

lios based on Kalman filters have values of p̂2 > 0.5, meaning they were able to predict

positive returns more often than they were unable. In the portfolio value plots in figures

8 and 11 it seems as if the excess return of the passive portfolio mostly come from short

periods of very high positive returns that the strategic portfolios miss out on, explain-

ing why they got lower average returns even though they had reasonable market tim-

ing. The Unscented Kalman filter using a binary asset allocation strategy actually has

a higher portfolio value than the passive portfolio during the big financial peak of the

series. When comparing the two, the Unscented Kalman filter yields the higher return

in 6 of the data sets, compared to the Extended Kalman filter’s 4. The binary strate-

gies also seem to slightly outperform the threshold-based ones in terms of yielding high

returns.
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The particle filter performs worse in general. It is inefficient in most on the indices,

rarely outperforming the passive portfolio, and never beating the Kalman filter-based

portfolios. In the DAX data set, the binary particle filter portfolio has a negative return

even though the passive portfolio has a positive return. It seems as if the particle filter

has a tendency to severely underestimate the excess demand and stay out of potentially

growing markets for long periods of time, see for example figures 6 and 10. This is also

true for 7 out of 12 data sets in terms of market timing, where p̂1 is less than 0.5, and

sometimes as low as around 0.2. It is not obvious where the source of this issue lies, but

it might be connected to the high values of the observation covariance matrix chosen

for the filter. The high values could have excessively smoothed out the particle weights,

basically making the resampling not update the particles and thus simply keeping the

same particles—that possibly underestimated the excess demand initially—for long time

periods. This is something that could be examined more closely in future studies, and

since this result contradicts that of Peng et al. (2016), it would be unfair to rule all for-

mulations of particle filters out for trading applications.

As for the Henriksson-Merton test for market timing the results are similar to those

from average returns but not identical. Here, a lot of the portfolios show statistical sig-

nificance in correctly forecasting the next day market portfolio return, even when they

were not able to achieve significantly higher returns. The null hypothesis of no market

timing can be rejected for the Extended Kalman filter in 9 out of 12 data sets, for the

Unscented Kalman filter in 8 of the data sets and for the Bootstrap Particle filter in 7

of the data sets. It is once again the two Kalman filters that prevail, but the particle

filter is not as inefficient in market timing as it seems to be in yielding returns. The Ex-

tended Kalman filter shows significant market timing in the most data sets, but the Un-

scented Kalman filter gets the highest value of p̂ in the most data sets. In a a statistical

perspective, the Extended Kalman filter should be deemed the most efficient while in it

is plausible to beliebe that the Unscented Kalman filter is a good, and sometimes bet-

ter, option. The particle filter is able to get p̂-values that are significantly higher than

1 in 7 data sets. This result is quite confusing as it doesn’t fit well with the results in

returns, but at least gives some hope to the filter. It should however be noted that it is

the filter with the worst results in terms of market timing in general.

An interesting thing to note is that the values p̂1 are more often less than 0.5 than

the values of p̂2 for all the portfolios. This implies that the filters are better at success-

fully predicting positive returns than negative ones. For example in the DAX data set,

all the three portfolios have values of p̂1 around 0.2−0.3. It is not very easy to spot this

in figure 5, but it seems as if the portfolios make prediction errors on a lot of small de-

clines while successfully avoiding the two big ones in 2008 and 2011—leading to a high

return but a low p̂1. This also leads to the p̂1 giving a different implication than the av-

erage daily returns in terms of what strategic portfolio is the most efficient, since the
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Henriksson-Merton test does not take return magnitude into account.

It is also worth noting that none of the portfolios using the Extended or Unscented

Kalman filter manage to get p̂ > 1 in the S&P BSE and S&P 500 data sets even though

they both yield higher returns than the passive portfolios. This seems to have to do

with an inability to correctly forecast positive returns, something that can be seen in

figures 12 and 13 where the market portfolio tends to get very volatile at times, with

high negative returns following high positive ones, and the two strategic portfolios in

question staying out of the market in these times. While this seems like a sensible strat-

egy for avoiding too much risk and getting better returns overall, it also means missing

out on days of positive returns.

When it comes to the more qualitative study of the plots the results are similar.

The Unscented and Extended Kalman filters seem to be able to avoid price declines ac-

curately in most cases, with the binary strategies being slightly more quick to adapt in

big crisises. However, most of the portfolios take a few days to adjust to severe declines,

meaning they follow the market down at first before they exit, as can be seen clearly

in for example 5, 6 and 7. Oftentimes they also re-allocate the assets into the market

portfolio too quickly and have to exit again, giving rise to a ”stair-shaped” price de-

cline as seen clearly in for example figures 7 or 8. In other times the portfolios instead

take on a very careful strategy and do not re-invest in the market portfolio until after a

very long time after a crisis, see for example on the Nikkei index in figure 9. This also

gets the portfolios very low values of p̂2, since they miss a lot of positive returns, while

p̂1 gets very high due to this over-pessimistic behaviour. It is unclear why any of these

things happen, but one fault might lie in the parameter estimation. Since the testing

periods sometimes differed a lot from the period where the parameters where estimated,

the predictions might be badly adjusted for different times. While this problem is diffi-

cult to get past, since no one in practice would know anything about the testing period

when doing the estimation, it should be possible to mitigate using longer estimation pe-

riods or recursively updated parameters. Though recursively updated parameters was

one of the reasons to use the particle filters, it didn’t live up to expectations in that

sense. Instead, perhaps a Dual Kalman filter, i.e. two filters running in parallel with

one estimating state and one estimating parameters, could be useful.

One suspicion that arose during the thesis process was that the DTMS model would

overimply autocorrelation in the returns, conflicting too much with the random walk

hypothesis. Due to the structure of the price dynamics, where returns depend on the

autoregressive process of excess φ, the DTMS model might claim that the autocorrela-

tion in the returns is significant while in the real data it is not. Even though this thesis

is not meant to actually deduce whether or not the DTMS model is correct per se, it

should be of concern for anyone seeking to to apply the model in portfolio strategies—

no matter how good your filter is, it is improbable that any application will be success-
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Figure 3: Autocorrelation of simulated and real data returns

ful if the underlying model specification is erroneous—and might have been a source to

all the non-significant results in average daily returns. To just briefly address this prob-

lem, some price data was simulated as in figure 1, and the autocorrelation of its returns

was compared to those of real data. This was examined in a lot of simulation runs and

all the data sets, and the conclusion was, if anything, that the DTMS model rather un-

der -implies the autocorrelation, since some data sets, especially those with big declines

or peaks, showed significant autocorrelation in the returns for a few lags while the sim-

ulated data rarely did. An example of autocorrelations for simulated and real data can

be seen in figure 3, where the simulated data is the same as the one in figure 1 and the

real data is from the RTSI data set.

5.1 Conclusion

None of the strategies based on the DTMS model were able to produce returns that

were significantly higher than those of the passive strategy, why the null hypothesis of

the mean return being the same for the strategic and passive portfolios could not be

rejected. However, using some filtering techniques, i.e. The Extended and Unscented

formulations of the Kalman filter, the returns were in general higher than those of the

passive strategy in most cases, excluding times of very high financial growth, though

the lack of statistical significance makes it difficult to actually conclude this. The com-
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parative study was unable to prove anything regarding the returns of these strategies,

while the results imply, but do not prove, that they can produce higher returns than a

passive strategy.

As for market timing, all filtering techniques Extended Kalman, Unscented Kalman

and Bootstrap Particle were able to reject the null hypothesis of no market timing abil-

ity in 9, 8 and 7 of the data sets respectively. This shows great promise in the strategies

and their ability to forecast returns, even though it was not sufficient to produce statis-

tically significantly higher returns than a passive portfolio.

When it comes to choice of filtering technique, there are indications that the Un-

scented Kalman filter works better in terms of average daily returns. However, these

results were not by any significant margin, why it is difficult to conclude which one of

the filters is to prefer. In terms of market timing, the Extended Kalman filter rejected

the null hypothesis of no market timing ability in one more data set that the Unscented

Kalman filter, but got lower values for the market timing measure in most data sets

where they were both significant. It is therefore difficult to conclude which of the filters

is preferable, though once again they both outperform the Bootstrap particle filter. It

should also be noted in the Extended Kalman filte’s favour that it slightly less demand-

ing in terms of computational power.

In terms of which strategy to use for asset allocation based on estimated excess de-

mand, the binary strategy produces seemingly higher returns in most data sets. The

difference is, however, not too apparent, why the threshold-based version might be more

useful when taking transaction costs into account.

It is evident from the study that the Bootstrap Particle filter, as used in this thesis,

is unreliable. It was rarely of use in portfolio strategy, no matter whether the threshold-

based or binary strategy was used, even though it oftentimes had significant market

timing. Since this contradicts the results of Peng et al. (2016), there is reason to be-

lieve that the alteration of the method, i.e. moving the measurement variance out of

the sample particles and increasing it by a factor, was not successful. It is however clear

that the application as used in this thesis is not to recommend for any investor.

In terms of in which kinds of markets the models worked and in which not, the strate-

gic portfolios generally yielded higher returns than the passive portfolio in periods in-

cluding at least one big decline, such as the 2008 financial crisis, while in times of finan-

cial positivity and generally rising markets, they performed worse. As for market tim-

ing, no specific type of market seemed to give different results, as the strategies man-

aged to reject the null hypothesis in both rising and falling markets in some cases and

not in others.
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5.2 Suggested further studies

The Self-organizing State Space model, as used in this thesis, did not perform as well

as one could have expected after reading Peng et al. (2016). It seems like this filter is

sensitive to inital conditions and alterations in the algorithm, and more studies that

closely examine the effect of these could be of use. Other ways to mitigate the issue of

the particles having different covariance matrices for the importance weighting could

also be of use.

Another interesting result is that the binary strategy often outperformed the threshold-

based one in terms of high returns. This result could be tested further, especially when

considering transaction costs, which are bound to be higher for the binary strategy.

The maximum likelihood parameter estimation, as proposed by Peng et al. (2003)

and used in this thesis, was questioned by Peng et al. (2016), but in this thesis the

strategic portfolios using maximum likelihood performed better than the ones using

the Bootstrap Particle filter. There are other ways to carry out this estimation, such

as dual Kalman filters, where two filters run parallel to each other. One filter estimates

state and the other estimates parameters. This could also prove effective and be an in-

teresting topic of study.

The threshold-based portfolio uses different values of φ̂ to decide how much should

be allocated in the risky portfolio. Due to the dynamics of price as described in equa-

tion 2.6, it seems peculiar to base it solely on the φ̂-value, since the same excess de-

mand can cause very different price changes depending on the value of λ. Therefore,

these threshold-based strategies could possibly benefit from using the estimate λ̂ too,

something that could quite easily be tested.

The autocorrelation in returns seemed to be higher in the real data than in data

simulated using the DTMS model formulation, though this was not tested using any

significance test. Therefore, the DTMS model could benefit from adding parameters to

the price estimate Pk that would increase the autocorrelation in returns—such as a two

step lagged price Pk−2.
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Appendices

A State space representation

A state is described by (Brogan, 1991, p. 72) as a complete summary of the status of

a system. The state of a system can be described at any time point k as a vector of n

variables Xk = [X1,kX2,k . . . Xn,k], called the state variables (Brogan, 1991, p. 72). The

state of the system then transitions step-wise through time using the transition function

F as Xk+1 = F (Xk , ek+1), or in a simple linear case, Xk+1 = AXk + ek+1 for a

(n× n)-matrix of parameters A (Brogan, 1991, p. 77) and noise term ek+1 ∼ N (0,Se)

for some covariance matrix Se.

Then introduce an output, or observation, vector Yk = [Y1,kY2,k . . . Ym,k] of m vari-

ables that all depend on the current state of the system as Yk = H (Xk,wk) for some

vector valued function H or the simple linear system described by Yk = CXk + wk

where C is a (m× n) matrix of parameters and noise term wk ∼ N (0,Sw) for some

covariance matrix Sw (Brogan, 1991, p. 78). The system can then be described in its

entirety as

Xk+1 = AXk + ek+1 (A.1)

Yk = CXk +wk+1 (A.2)

ek+1 ∼ N (0,Se) (A.3)

wk ∼ N (0,Se) (A.4)

(Brogan, 1991, p. 79). For more complex systems, it might be impossible to write the

system equations in this linear form, while in other systems it is possible by making the

matrices A and C depend on time and or the current state or measurement vectors Xk

and Yk.

State observability is a property of such a system as the one described above where

Xk can be estimated, and is closely connected to the number of state- and observation

variables (Jakobsson, 2013, p. 284). For example, a system with one observed variable

and 10 state variables is in general not observable.

Since Xk is generally not observeable, some filtering technique has to be used to

estimate the current and future states of the system, and through that predict future

output Yk+1

A.1 Space state representation example

Consider the growth of two different plants 1 and 2, denoted G1 and G2 respectively.

The growth of these specific plants is dependent on three things—the current outside
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temperature T , the level of rain R and the amount of healthy minerals in the ground

m. The growth at time point k can be calculated using the functions

G1,k = c1,1 + c1,2Tk + c1,3Rk + c1,4mk + w1,k (A.5)

G2,k = c2,1 + c2,2Tk + c2,3Rk + c2,4mk + w1,k (A.6)

for noise terms w1,k ∼ N
(
0, σ2

w,1

)
and w2,k ∼ N

(
0, σ2

w,2

)
. The variables T , R and m

follow processes

Tk+1 = Wk + e1,k+1 (A.7)

Rk+1 = a1,1 + a1,2Tk + e2,k+1 (A.8)

hk+1 = a3,1 + a3,2Tk + a3,4hk + e3,k+1 (A.9)

with noise terms e1,k ∼ N
(
0, σ2

e,1

)
, e2,k ∼ N

(
0, σ2

e,2

)
and e3,k ∼ N

(
0, σ2

e,3

)
. By intro-

ducing matrices

A =

 a1,1 a1,2 0 0

1 0 0 0

a3,1 a3,1 0 a3,4

 (A.10)

and

C =

[
c1,1 c1,2 c1,3 c1,4

c2,1 c2,2 c2,3 c3,4

]
(A.11)

the system can then be formulated using its state space representation

Xk+1 = AXk + ek (A.12)

Yk = CXk +wk (A.13)

for state vector

Xk =
[

1 Tk Rk mk

]T
, (A.14)

observation vector

Yk =
[
G1,k G2,k

]T
, (A.15)

and noise vectors ek ∼ N (0,Se) and wk ∼ N (0,Sw) with covariance matrices

Se =


0 0 0 0

0 σ2
e,1 0 0

0 0 σ2
e,2 0

0 0 0 σ2
e,3

 (A.16)

Sw =

[
σ2
w,1 0

0 σ2
w,2

]
. (A.17)
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The state of the system can then be estimated using the observations and filtering tech-

niques such as the Kalman filter.

A.2 Kalman filter example

Consider the following example of Kalman filter usage from Jakobsson (2013). The un-

known constant

xk = xk−1 (A.18)

has measurements corrupted as

yk = xk + wk (A.19)

with observation noise term wk ∼ N (0, σ2
w). The space state representation of this can,

for clarification, be written as

Xk = AXk−1 (A.20)

Yk = CXk +wk (A.21)

where Xk = xk, Yk = yk, A = C = 1 and wk = wk. The optimal linear reconstruction

of xk is then

x̂k|k = x̂k|k−1 +Kk

(
yk − x̂k|k−1

)
(A.22)

and since the covariance of x here is constant,

Sx,xk+1|k = Sx,xk|k = σ2
x,k (A.23)

and the conditional covariance of y is

Sy,yk+1|k = Sx,xk+1|k + σ2
w = σ2

x,k + σ2. (A.24)

Given initial estimates x0 and Sx,x1|0 = σ2
x,0, then

σ2
x,1 =

σ2
x,0(

1+
σ2x,0

σ2w

)
σ2
x,2 =

σ2
x,1(

1+
σ2x,1

σ2w

) =
σ2
x,0(

1+2
σ2x,0

σ2w

)
...

σ2
x,k =

σ2
x,0(

1+k
σ2x,0

σ2w

)
(A.25)

leading to

Kk =
1(

k + σ2
w

σ2
x,0

) (A.26)
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which gives the state estimate

x̂k|k = x̂k|k−1 +
1(

k + σ2
w

σ2
x,0

) (yk − x̂k|k−1) . (A.27)

Then, consider there is no prior knowledge about the value of x, why σ2
x,0 is set as high

as possible, leading to

lim
σ2
x,0→∞

Kk =
1

k
(A.28)

making the state estimate

x̂k|k = x̂k|k−1 +
1

k

(
yk − x̂k|k−1

)
(A.29)

which is the same as a recursive formulation of the sample mean

x̂k|k =
1

k

k∑
k=1

yk (A.30)

which is the estimator most commonly used for such an estimation where the observa-

tion is corrupted by a zero-mean white noise process.

A.3 Bootstrap particle filter example

Consider a random walk process

xk+1 = xk + ek (A.31)

which is observed with a measurement noise as

yk = xk + wk (A.32)

where ek ∼ N (0, σ2
e) and wk ∼ N (0, σ2

w) for known variances σ2. Now, make a first

estimation guess xk|k and sample 100 particles

x
(i)
k+1|k ∼ N

(
xk|k, σ

2
e

)
. (A.33)

Some of these particles probably go in the right direction, and get values fairly close to

the actual value of xk+1, while others end up inaccurate. To tackle this, evaluate their

accuracy using the probability density function for y and give them weights

ω
(i)
k+1 = pN

(
y1, x

(i)
k+1|k, σ

2
w

)
(A.34)

where pN (y, ȳ, σ2) means the probability density function or y given mean ȳ and vari-

ance σ2. Now, particles who ended up close to the true state xk should have gotten
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higher weights than those far away from it. Now, normalize the weights

w̃
(i)
k+1 =

ω
(i)
k+1∑M

i=1 ω
(i)
k+1

(A.35)

and sample a new set of particles from the old ones, with the normalized weights as dis-

crete probabilities of every specific particle being chosen{
x
(i)
k+1|k+1

}
∼
[{
x
(i)
k+1|k, w̃

(i)
k+1

]}
(A.36)

yielding a set of particle hopefully all pretty close to the current state xk+1. Form the

current estimate as the sample mean

x̂k+1|k+1 =
1

M

M∑
i=1

x
(i)
k+1|k+1. (A.37)

Repeat the process for every time step to follow the state using the particles estimate,

and reevaluate the weights for every observation yk.

B Portfolio value plots
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