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Abstract. Artificial neural networks are, again, on the rise. The de-
creasing costs of computing power and the availability of big data together
with advancements of neural network theory have made this possible. In
this thesis, LSTM (long short-term memory) recurrent neural networks are
used in order to perform financial time series forecasting on return data
of three stock indices. The indices are S&P 500 in the US, Bovespa 50
in Brazil and OMX 30 in Sweden. The results show that the outputs of
the LSTM networks are very similar to those of a conventional time se-
ries model, namely an ARMA(1,1)-GJRGARCH(1,1), when a regression
approach is taken. However, they outperform the time series model with
regards to direction of change classification. The thesis shows significant
results for direction of change classification for the small Swedish market,
and insignificant results for the large US market and the emerging Brazilian
market. When a trading strategy is implemented based on the direction of
change, a deep LSTM network vastly outperforms the time series model.
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Glossary

Artificial neural network · · · A numerical approximation method.

Activation function · · · A function that is wrapped around a node
(neuron) in a neural network. The choice of this function(s) dictates
in large parts what properties a network will exhibit.

Backpropagation · · · An algorithm which calculates the derivatives
of the error function of the network.

Batch · · · The training data is divided into batches. Theoretically one
can feed all the training data into a network at once, but practically it
is limited to the computer’s memory.

Deep network · · · Artificial neural network with multiple hidden lay-
ers, i.e. more adjustable parameters/higher degrees of freedom.

Deep learning · · · Machine learning with deep networks.

Epoch · · · Passing the input data through the network and optimizing
the weights once, is one epoch.

Error function · · · E(y, t), where y is the output of the network
and t is some target value. Minimizing the error function is equal to
training the network. An example of an error function is mean squared
error, MSE = 1

n

∑n
i=1(yi − ti)2.

Feedforward network · · · A simple network structure. Input data is
fed into the network in one end, processed by the network and comes
out as output in the other end.

Hidden layers · · · The network layers between the input layer and
the output layer. They are called hidden layers because they are not
directly observed, unlike the input and output layer.

Learning rate · · · The rate at which an optimization algorithm trav-
els forward in order to find a minimum or maximum.

LSTM network · · · A recurrent network structure which identifies
autoregressive properties in the data of arbitrary length.



3

Machine learning · · · Methods in which an algorithm learns, i.e. op-
timizes parameters, in order to perform a task.

Network training · · · Optimizing the adjustable parameters of a neu-
ral network.

Non-convex optimization · · · Optimizing functions which are non-
convex. When numerically optimizing non-convex functions there is no
guarantee that one arrives at the global minimum/maximum. Thus,
programming algorithms for these type of problems require some thought.

Recurrent neural network · · · This network structure is different
from a feedforward structure. Data is reprocessed by the hidden layers
within the network.

Regularization · · · A term used in machine learning to describe the
process of preventing over-fitting of the training data.

Weights (w) & biases (b) · · · These are the adjustable parameters
of a neural network. One can think of them as k and m in y = kx+m.
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Abbreviations

AI · · · Artificial intelligence.

ANN or NN · · · Artificial neural network.

API · · · Application programming interface.

ARMA · · · Autoregressive moving average.

EHM · · · Efficient market hypothesis.

GARCH · · · Generalized autoregressive conditional heteroskedastic-
ity.

GJR-GARCH · · · Glosten-Jagannathan-Runkle GARCH.

LSTM · · · Long short-term memory.
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1. Introduction

Artificial neural networks (NN) is a timely subject. This
method emulates the brain’s way of thinking. It has its
input neurons, which feed the neural network with de-
scriptors values, the hidden layers that weight and mix
the incoming signals, and an output layer with neurons
predicting the calibrated response values.

This was written in my father’s PhD thesis Quantitative Structure-
Retention Relationships of Diastereomers in Reveres-Phase Liquid Chro-
matography in 1993. Although the information in the quote still holds
true, and the core structure of a neural network is as described, ex-
tensive advances have been seen in the subject since. New areas of
application have also arisen. With higher computing power and high
level APIs, deep learning1 is now possible in a way it has never been
before.

In this thesis forecasting of financial returns series will be investi-
gated through a comparison of LSTM (long short-term memory) re-
current neural network models and conventional state of the art finan-
cial econometric models. Accurately forecasting financial time series is
notoriously hard, due to its obvious reasons. However, evaluating the
weak form of the efficient market hypothesis with a new and highly
nonlinear method, such as LSTM’s, is interesting.

From here on the terms artificial neural network, neural network,
neural net, ANN, NN, network etcetera will be used interchangeably.

1.1. Artificial neural networks. Artificial neural networks had its
name from mathematicians trying to build a model mimicking the neu-
ral activity in a brain. In 1943 a quite famous article named A Logical
Calculus of the Ideas Immanent in Nervous Activity was written. The
article discussed the first properties that were later to be coined artifi-
cial neural networks. In 1962, Rosenblatt presented single layer neural
networks with threshold activation functions2. These are essentially
feedforward neural networks which will be explained later (section 3.2
and 3.3), however they use a specific activation function. During this

1Deep learning refers to the training of neural network with multiple hidden layers.
2An activation function is wrapped around each node (neuron) in the network, g(·)
in equation (3) is an example of this.
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time neural networks where interesting from a biological and mathe-
matical perspective, but had little practical use since computing power
was expensive and unavailable. One of the interesting discoveries was
the universal approximation theorem proven by (e.g.) Cybenko (1989).
Cybenko proved that a single hidden layer neural network, given the
sigmoid activation function, could approximate any continuous func-
tion arbitrary well. This result was quite restrictive since the sigmoid
function was assumed. Hornik (1991) was able to prove the theorem
for an arbitrary bounded activation function.

During the last twenty years neural networks have had an enormous
advancement in a variety of fields. The most distinguishable areas
have been within traditional machine learning (such as classification
and data analysis) and AI (artificial intelligence). A large number of
APIs for neural network applications have been developed for numer-
ous computer languages, one example is Google’s Tensorflow. This in
combination with the rapid development of computing power have led
to the use of neural networks in our everyday life. One can see the use
of neural nets when using Google translate, a huge number of mobile
phone applications (e.g. apps with facial recognition), or reading about
self driving cars.

1.2. Neural networks within finance. Neural nets have been ap-
plied within finance for a long time. Twenty years ago networks with
feedforward structure and often only one hidden layer were used (Fad-
lalla & Lin 2001). These networks outperformed the simple linear re-
gressions and some traditional statistical methods because of the non-
linear nature of financial data and the networks abilities to see through
distorted data. Applications were, e.g., found within forecasting of T-
bills, asset management, portfolio selection and fraud detection. Since
neural nets have the ability to heavily generalize the structure of the
input data it has been shown to be robust when measuring bankruptcy
risk. Other areas of application are e.g. bond rating, risk management,
financial forecasting and stock market prediction (Johnson & Whinston
1994).

Several deep learning studies have been made during the last years
with applications within finance and financial econometrics. The major
reason for this is the same as the reason why neural networks are fre-
quently used within other fields at the moment - data has grown larger
and computing power has become more accessible. Neural network
models have also been seen in trading lately. Although quantitative
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trading firms keep their algorithms secret there are platforms such as
Kaggle 3 and Quantopian 4 where quantitative trading is discussed and
practiced.

1.3. Purpose. The rise of sophisticated sequential5 neural network
models give reason to again investigate the Efficient Market Hypoth-
esis (EHM). Can these models, with their high degree of nonlinearity,
utilize historical data in order to predict market returns? Furthermore,
do the methods perform differently on different (e.g. large, emerging
and small) markets?

The purpose of this thesis is to investigate the weak form of the
Efficient Market Hypothesis (EMH) on the American, Brazilian and
Swedish stock markets using both conventional time series modeling
and highly nonlinear recurrent neural network modeling.

Questions that will be answered:

• Can the American, Brazilian or Swedish stock market returns
be predicted using LSTM’s?
• Can the directions of the market returns be predicted using

LSTM’s?
• Can LSTM neural nets compete with conventional time series

models?
• Is predictability of market returns different for America, Brazil

and Sweden?
• Is it possible to build a successful financial trading strategy

based on LSTM network prediction?

1.4. Some related research. Gencay (1996) and Gencay & Stengos
(1998) examine how simple feedforward networks performs compared
to an ARMA(1,1)-GARCH(1,1) model. They use moving-average in-
dicators as inputs into the networks. Furthermore, they claim that
the networks perform better than the ARMA(1,1)-GARCH(1,1) model
when adopting buy/sell strategies. Both articles use daily Dow Jones

3https://www.kaggle.com/
4https://www.quantopian.com/
5Sequential modeling takes time into consideration.

https://www.kaggle.com/
https://www.quantopian.com/
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Industrial Average Index data between 1963 and 1988.6

Enke (2005) uses a feedforward neural network model together with
a data mining7 framework in order to investigate predicting power of
the input variables. He shows that given the right inputs a neural
network model outperforms a buy and hold strategy. Qiu, Song and
Akagi (2016) investigates the same problem but also how the result dif-
fers with different optimization methods. However most research uses
neural nets of feedforward architecture Maknickiene et al. (2011) is
one example where they use recurrent networks for financial analysis.
Rutkauskas (2010) is another example where LSTM networks are used
to find a model for asset return prediction.

Because accurately predicting stock market returns is challenging a
more simple binary classification method is often used. This is called
direction of change forecasting, and tries to predict the direction of the
market rather than the direction and magnitude. An interesting paper
is Christoffersen et al. (2006) where they investigate the link between
sign forecasting and the conditional variance, mean, skewness and kur-
tosis8. More often, than investigating returns, are papers investigating
the volatility of market returns which is easier to predict. For example
see Mantri, Gahan & Nayak 2010 and Hu & Tsoukalas 1999.

1.4.1. Thesis positioning. There are little research done on the fore-
casting of stock market returns and direction of change using long
short-term memory (LSTM) recurrent neural networks. Although,
LSTM’s have been around since 1997 they have recently become pop-
ular because of the new AI wave, and the availability of programming
interfaces that can handle them. In this thesis two different LSTM
models, with two different activation functions, yielding four different
models are used on three different datasets which exhibits different mar-
ket characteristics. Thus, the experiment will yield interdisciplinary
results regarding classic financial empirics, such as application of the

6Using data that is old, i.e. before the evolution of big data and modern technology,
might alter the relevance of a significant result.
7Methods of discovering patterns in large datasets.
8Christoffersen et al. (2006) investigates direction of change forecasting based on
conditional variance, mean, skewness and kurtosis. They verify that higher order
moments are an important factor for sign forecasting. This is an interesting result
since neural networks take all factors concerning the empirical distribution into
account. The more unusual relationships not described by regular models the better
is the relative performance of an NN.
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efficient market hypothesis (section 2.2) and advanced modern machine
learning.

1.5. Thesis outline. Section 2 covers some financial theory needed for
the empirical analysis. Section 3 discusses the mathematical concepts
which are in the core of the neural network models and some time series
econometrics. Section 4 describes the empirical experiment and shows
its results. In section 5 the results are discussed and in section 6 some
final conclusions are drawn.

2. Financial theory

When performing a quantitative analysis of empirical nature, the
understanding of the data is of high importance. In this part some
financial theory is presented in order to clarify the empirical method-
ology later. Section 2.1 is discussing stylized facts about univariate
return series and 2.2 is discussing the EMH (efficient market hypothe-
sis).

2.1. Stylized facts of univariate return series. When looking at
the study of empirical finance and more specifically empirical finance
using financial returns data, it is clear that there are some general sta-
tistical properties of these time series. Campbell et al. (1997) is one
example discussing several properties. Referring to Rama Cont (2000)
one can summarize a set of stylized facts regarding univariate return
series,

• No linear autocorrelation.
• Slow decay of linear autocorrelation of absolute returns.
• Heavy tails.
• Larger tail for losses than for positive returns.
• The shape of the distribution changes through time.
• Volatility clustering.
• Conditional heavy-tails (even after adjusting for volatility clus-

tering).
• Leverage effect. Volatility is negatively correlated with returns.
• Correlation between trading volume and volatility.

When modeling financial returns one has to take into account the
distributional characteristics of the data. Fitting financial return data
under a normal i.i.d.9 assumption is usually not best practice. Taking

9Independent and identically distributed.
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into account the autoregressive properties of the underlying error vari-
ance is usually good practice. Hence, this is highly important when
choosing time series models representing the data. However, when
modeling data using neural nets one does not need to take any distri-
butional assumptions into account, given that the practitioner knowns
how to analyze the output. This is due to the general way in which a
neural net learns the empirical distribution of the training data.

2.2. Efficient market hypothesis. The EMH argues that markets
are efficient, which means that all available information is reflected in
the prices of assets. The issues of predicting prices and the EMH has
been widely researched. Martin Sewell refers back to the mathemati-
cians of Italy in the 16th century (Martin Sewell 2011). If one does
not look back quite as long, but rather to the 1970’s, a classical paper
written by Eugene Fama is found. He defines a market with respect
to some information set to be efficient if the prices fully reflects that
information set (Fama 1970).

Looking at Roberts (1967), we see three different types of efficiencies:
weak, semistrong and strong. These are defined with respect to the
information set, where the weak form refers to an information set which
consists of historical data. The semistrong form of efficiency refers to
the information set including all public information. In the definition
of the strong form of market efficiency the information set consists of
all information known to any market participant. Thus, this thesis is
concerned with the weak form of the EMH.

3. Mathematical background

The mathematical background is introduced with the universal ap-
proximation theorem in section 3.1. The theorem is followed by descrip-
tions of single- and multi-layer feedforward neural networks, in sections
3.2 and 3.3. Neural network training is discussed in 3.4. A short sec-
tion on regularization is presented in 3.5, followed by recurrent neural
networks in 3.6. The last section, 3.7, is concerned with some time
series econometrics. The notation in the mathematical background is
based on Bishop (1995) and Enders (2015).

3.1. Universal approximation theorem. There are several versions
of the universal approximation theorem. All saying that a single hidden
layer feedforward network with an arbitrary number of hidden nodes
can approximate any given continuous function under some assump-
tions. However, each version have slightly different assumptions. One
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of the first versions of the theorem was proven by Cybenko (1989).
Cybenko proved the theorem for the sigmoid function as activation
function. Later, Hornik (1991) showed that the theorem holds for an
arbitrary function given some assumptions. One of Horniks assump-
tions was that the activation function needed to be bounded, which
e.g. prohibits the ReLU (rectified linear unit function) to be used. 10

Sonoda & Murata (2015) investigated the theorem for an unbounded
function, since the ReLU function is cutting edge within deep learning,
and indeed showed that the theorem still holds for unbounded func-
tions.

One compact version of the theorem is found in Haykin (1998) and
builds upon Hornik’s findings,

Universal approximation theorem. Let ϕ(·) be a bounded, and
monotone-increasing continuous function. Let ID denote the D-dimensional
unit hypercube [0, 1]D. The space of continuous functions on ID is de-
noted by C(ID). Then, given any function f ∈ C(ID) and ε > 0,
there exist an integer M and sets of real constants, αj, bj, wij, where
j = 1, ...,M and i = 1, ..., D such that we may define

(1) F (x1, ..., xD) =
M∑
j=1

αjϕ

(
D∑
i=1

wijxi + bj

)

as an approximate realization of the function f(·); that is,

(2) |F (x1, ..., xD)− f(x1, ..., xD)| < ε

for all x1, x2, ..., xD that lie in the input space.

10The ReLU function, defined as f(x) = max(0, x) has become an important ac-
tivation function within deep networks. The reason for this is its derivative which
is either 0 or 1. Other popular activation functions, such as the sigmoid function
s(x) = 1

1+e−x , has derivative close to zero for small and large values of x. Because
the optimization consists of multiplication of several derivatives due to backprop-
agation (section 3.4) a problem known as vanishing gradient present itself when
multiplying many small derivative together. However this problem is non-existing
using the ReLU function, thereof its popularity.
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3.2. Single-layer feedforward networks. Consider the following equa-
tion describing a single layer network,

(3) yk = g

(
D∑
i=0

wixi

)
where yk is the output, g(·) is an activation function, xi is input and

wi is its corresponding weights. x0 = 1 which consequently makes w0 a
bias parameter. This means that by setting x0 = 1 a bias parameter is
added, one can compare this to the b in y = ax + b. These biases are,
like the rest of the weights, adjustable parameters within the network.

With some imagination one could think of the activation function,
g(·), as giving equation (3) different characteristics. If g(·) takes the
from of a simple linear function11, equation (3) simply becomes a linear
regression. If g is the binary function given by,

(4) g(a) =

{
1 if a > 0

0 otherwise

equation (3) becomes a classifier of the type Perceptron. If g(·) in-
stead takes the form of the non-linear logistic sigmoid function12 it
becomes a logistic regression.

Depending on how the activation function, which wraps the linear
expression, is defined, the network is given different characteristics.
This gives an intuition behind the generality of neural networks.

3.2.1. Drawbacks of a single-layer network. Considering a classifica-
tion problem of two classes, a single-layer neural network can only
classify data sets which are linearly separable. This means that one,
in two-dimensions, can draw a line between the classes. This prob-
lem is usually illustrated with the XOR example13. The limitation of a
single-layer network can also be exemplified given a regression example,
in which the dimensionality of the linear expression inside the activa-
tion function is a restriction. In general, single-layer neural networks
are not used in practice, but used to illustrate the concept of NN.

11I.e. the identity function, g(a) = a.
12s(a) = 1

1+e−a .
13Imagine a two-dimensional plane where the points x1 = (0, 1) and x2 = (1, 0)
are categorized by class 1, C1. Likewise, the points y1 = (0, 0) and y2 = (1, 1) are
categorized by class 2, C2. Then there is no line separating the two classes.
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3.3. Multi-layer feedforward networks. Now, consider the follow-
ing equation describing a multi-layer neural network with one hidden
layer,

(5) yk = h

(
M∑
j=0

w
(2)
kj g (aj)

)
where,

(6) aj =
D∑
i=0

w
(1)
ij xi

One can identify that the structure is the same as the single-layer net-
work. One can also identify that equation (5) is in fact equal to equa-
tion (1) in the universal approximation theorem (section 3.1), given
that h is linear. Furthermore, the general difference from a single layer
network is that the output of the inner layer is again multiplied by a
new weight vector and again wrapped in an activation function. Notice
that the output from the first layer is usually non-linear, meaning that
the more layers the network consist of the more complex becomes the
output.

Figure 1 illustrates a network with one hidden layer. xi is input data,
zj = g(aj) is a hidden node, and yk is output. Hence, there are two
layers of adaptive weights that will be optimized, these are represented
by the lines.

3.4. Network training. The network training can be described by
defining an error function, and utilizing backpropagation with gradient
descent. Backpropagation is the method of backwards, through the
network, finding the gradient of the error function. Gradient descent
is simply the numerical method for optimizing the weights.

3.4.1. General derivation of backpropagation. Consider the following
sum,

(7) aj =
∑
i

wjizi

This sum is a representation of a network layer, where wji is the
weights and zi is the input. If zi happens to be the network input it is
called xi, and if it is the network output it is called yi. Now consider,
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Figure 1. Network graph for one hidden layer network.

(8) zj = g(aj)

where the layer is again wrapped by an activation function. In order
to optimize the weights one must define a suitable error function14 and
find its derivatives.

(9) E =
∑
i

En

Furthermore,

(10) En = En(y1, ..., yc)

Now, lets look at the derivative of the error with respect to some
weight. Using the chain rule,

(11)
∂En

∂wji
=
∂En

∂aj

∂aj
∂wji

The first part of the right hand side is known as the delta’s ,

14An usual error function when training regressional neural networks is mean
squared error, MSE = 1

n

∑n
i=1(ŷi − yi)2.



15

(12) δj ≡
∂En

∂aj

The second part of the right hand side of equation (11) clearly be-
comes,

(13)
∂aj
∂wji

= zi

by utilizing equation (7). Lets rewrite (11),

(14)
∂En

∂wji
= δjzi

This means that to evaluate the derivatives of the error function one
only has to multiply the delta’s with the inputs. The delta’s for the
output layer become,

(15) δk ≡
∂En

∂ak
= g′(ak)

∂En

∂yk

The delta’s for the hidden layers are,

(16) δj ≡
∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

Now consider the general algorithm for backpropagation,

(17) δj = g′(aj)
∑
k

wkjδk

The backpropagation formula propagates back through the network
in order to evaluate the gradient. The variation in aj goes through
ak. At a first glance this may seem complicated but the delta’s for the
output layer are known, and one can therefore recursively use the back-
propagation formula (17) to evaluate the gradient for any network of
feedforward structure. Once one batch of the dataset has been fed into
the network and backpropagation has been preformed together with
an optimization algorithm, one epoch is completed. The idea of recur-
sively using the chain rule to solve numerical optimization problems
was first introduced in 1970 by Seppo Linnainmaa (Andreas Griewank
2010).
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3.4.2. Gradient descent. The backpropagation algorithm finds the gra-
dient of the error function, however an algorithm for optimization is
needed. Analytically one would like to find for which set of weights,
w, ∇E = 0. It is not possible to find, w, due to the dimensionality
of the problem. Thus, the gradient descent algorithm is used to come
as close as possible. The method starts with a random weight vector,
w(0), and evaluates the gradient of the error function at that point.
Then the algorithm takes a small step, τ , in the opposite direction of
the gradient, and again evaluates at the new point wτ . This can be
expressed as,

(18) 4wτ = −η∇E|wτ

where η is the learning rate. This simple algorithm has problems
with non-convex optimization, which clearly the training of a neural
network exhibits. However, there are some adjustments such as sto-
chastic gradient descent in order to over come this problem.

3.5. Regularization. Regularization in neural network terminology
refers to the process of regulating network layers in order to prevent
over-fitting. Dropout is the most commonly used regularization method
based on the simple idea that one shoots out (drops out) a percentage
of neurons in each layer, randomly, in order to decrease the degrees
of freedom (adjustable parameters) of the network. Imagine that you
have 1000 observations in your training data, and the network consists
of 1000 nodes. Then, the network can store all input information and
does not need to construct generalized ways to describe the data. If
one takes away half of the nodes in each training step then the network
will not be able to over-fit to the training data and will need to come up
with intelligent ways to describe the data. This is of course beneficial
when trying to forecast out of sample. The dropout method is usually
only used when building deep nets, with a lot of adjustable parameters.

3.6. Recurrent networks. Recurrent neural networks is a class of
neural networks which can be thought of by the concept of a feedback
loop. When the data has been processed by one of the hidden layers in
the network it is sent back and again processed by that layer together
with the new input. There are several types of recurrent networks de-
pending on how they are structured. One type of recurrent network is
the LSTM (long short-term memory) network which will be discussed
in section 3.6.1.



17

Recurrent neural networks is used when the data is of sequential
nature, for example time series data. If one believes that the data has
some kind of autoregressive structure a recurrent neural network can be
used. One example where recurrent networks are used is within natural
language processing (NLP). Because languages are sequential, the two
sentences Henry has a car and Car has a Henry is not equivalent,
although containing the same words. Hence, the concept of time can
be introduced into artificial neural networks.

3.6.1. Long short-term memory. As mentioned in the section about re-
current neural nets, the LSTM (long short-term memory) network is
of recurrent type. The LSTM network was introduced in 1997 in the
paper Long Short-Term Memory by Hochreiter & Schmidhuber. One
of the advantages with the LSTM model compared to an usual recur-
rent network model is the ability to capture autoregressive structures
of arbitrary lengths. The regular recurrent network needs a prior spec-
ification of how many ’feedback loops ’ that will be present, this is not
required when dealing with LSTM networks.

Instead of regular neural network nodes, a LSTM network consists
of LSTM blocks. Consider the following system of equations,

(19)



ft = g (Wf · [xt, ht−1] + bf )

it = g (Wi · [xt, ht−1] + bi)

ot = g (W0 · [xt, ht−1] + b0)

ct = ft ◦ ct−1 + it ◦ tanh (Wc · [xt, ht−1] + bc)

ht = ot ◦ tanh (ct)

where g(·) is the sigmoid function15, tanh(·)16 is the hyperbolic tan-
gent, xt is the input vector, ht is the output vector, ct is a cell state
vector. W are weights as before and b are biases. ft, it and ot are called
gates of the block. Note that ◦ is not matrix multiplication but the
Schur product, i.e. entry wise product.

This system of equations (19) represent one LSTM block. One can
see the recurrent properties of the block as ht−1, i.e., the output vec-
tor for period t−1, is included in the calculation of the output vector ht.

15g(x) = 1
1+e−x

16tanh(x) = ex−e−x

ex+e−x
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The first gate of the LSTM block, ft is the forget gate. This gate
decided upon which information will be forgotten in the cell state, ct.
Notice how the linear expression is wrapped in a sigmoid function,
which indeed is bounded between 0 and 1. If the optimization sets
ft to 0 the value is forgotten in the calculation. The input gate, it,
regulates what new information will be stored in the cell state. ot is
the output gate. The output vector ht is a combination of the output
gate and the cell state which contains stored information.

The key to understand LSTM networks is to understand the activa-
tion functions. How these functions can help the blocks store and forget
information. The optimization takes care of setting the adjustable pa-
rameters accordingly.

3.7. Time series models. In this part of the Mathematical back-
ground some time series econometrics will be presented. Why? One
may ask. The obvious answer is because a new methodology such as
LSTM recurrent networks, needs to be compared with some already
existing method. In the empirics part an ARMA-GJRGARCH model
will be used. In subsection 3.7.1 the ARMA part of the model will be
introduced and in 3.7.2 the GJRGARCH part will be introduced.

3.7.1. ARMA. If one combines an autoregressive model with p lags,
AR(p), and an moving average model with q lags, MA(q), one obtains
an ARMA(p, q) model.

(20) yt = a0 +

p∑
i=1

aiyt−1 +

q∑
i=0

βiεt−1

Under the assumption that all characteristic roots are in the unit
circle, equation (20) is an ARMA(p, q) process (Enders 2015). Al-
though, regarding financial returns one needs not to worry since they
are generally stationary.

3.7.2. GJRGARCH. Recall the 8th stylized fact in subsection 2.1, the
leverage effect. I.e. volatility is negatively correlated with returns. The
regular GARCH model fail to incorporate this observation. Therefore
the GJRGARCH model is often used when modeling financial returns.
The model was introduced by Glosten et al. (1993) and can be ex-
pressed as,

(21) σ2
t = ω + (α + γIt−1)ε

2
t−1 + βσ2

t−1
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where It−1 is an indicator function,

(22) It−1(εt−1) =

{
εt−1 for εt−1 > 0

0 otherwise

4. Empirics

In section 4.1 the methodology of the experiment is discussed, in 4.2
the datasets are presented. In sections 4.3 and 4.4 the neural network
models and the time series models are presented. 4.5 and 4.6 handle
results and evaluation of the predictions. In section 4.7 the results and
evaluation of two trading strategies are presented.

4.1. Methodology. The empirical methodology is divided into four
parts,

• Regression with LSTM network models. Predicting 1-day ahead
market returns.
• Classification with simple LSTM network models. Predict 1-

day ahead direction of market returns.
• Classification with sophisticated LSTM network models. Pre-

dict 1-day ahead direction of market returns.
• Construction of two trading strategies.

As discussed, forecasting financial returns is nothing easy. Thus one
might not expect grand results from a forecasting model with simple
regression approach, as is in step 1. However, one idea would be to use
the predictions of the forecasting models to classify only the direction
of the market returns, direction of change forecasting. In the second
part of the methodology a simple model is established, which wraps
a sign-function 17 around the regressional outputs of models. In the
third part more sophisticated neural network classification models will
be used. Instead of a linear output the models will have a binary clas-
sification output, discussed in 4.3.1.

In the fourth part of the experiment two trading strategies will be
implemented. These strategies will be based on the classification pre-
dictions, rather than the regression. The first strategy will buy the
stock indices when the models predict positive returns and not be in

17g(R) =

{
1 if R > 0

−1 otherwise
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the market when the models predict negative returns. The second strat-
egy will buy the indices when the models predict a positive outcome
and short18 the indices when the models predict a negative outcome.
Hence, the first model will be less risky since the potential loss is the-
oretically only the invested amount, whereas the theoretical potential
loss of the second strategy is unlimited. In section 4.7 the sophisticated
classification LSTM network will be compared to the time series model
based on these two strategies.

In all parts of the experiment 33% of the data will be saved for
testing, and hence not used in the estimation process. The first part
of the method will be evaluated using the sum of squared residuals,
while the second and third part of the method will be evaluated using
a binomial test. The trading strategies will simply be evaluated by out
of sample return performance compared to a buy and hold position of
the indices.

4.2. Data. In order to investigate the predictability of the American,
Brazilian and Swedish stock exchanges the following indices are used
in the empirical analysis,

• S&P 500 index
• Bovespa 50 index
• OMX 30 index

where daily adjusted closing prices are imported and transformed
into logarithmic returns. Due to reproducibility, simplicity and overall
promotion of open data, the adjusted closing price are imported from
Yahoo!’s finance database. Figure 2 shows a visualization of the return
series of the indices together with histograms for each series. Table 1
and 2 shows a summary of the logarithmic returns, which will be ana-
lyzed.

Normally distributed data is symmetric around the mean, hence the
skewness parameter is 0. The skewness parameters for the S&P 500
index and the OMX index are negative, this means longer negative
tails. The skewness parameter for the Bovespa index is positive imply-
ing longer positive tail. The kurtosis of each series exceeds 3, indicating

18Short selling means that one sells a position without owning the underlying asset.
This can be done with the help of financial derivatives. E.g. if a stock index have
a negative return of 1%, an agent with a short position in that index gains 1%.
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Index Start End N Min. Mean Max.
SP500 2009-01-02 2017-04-28 2095 -0.9727% 0.0063% 1.0289%
Bovespa 2009-01-02 2017-04-28 2076 -0.7751% 0.0026% 0.5930%
OMX 2009-01-02 2017-04-28 2121 -1.2196% 0.0060% 0.9101%

Table 1: Summary of logarithmic returns (S&P 500, Bovespa, OMX).

excess kurtosis compared to the normal distribution. This is in accor-
dance with the 3rd stylized fact in section 2.1, i.e. heavy tails.

Index SD Skewness Kurtosis
SP500 0.0015 -0.2528 8.6935
Bovespa 0.0014 0.0410 4.5570
OMX 0.0019 -0.2234 6.4429

Table 2: Standard deviation and standardized moments of logarithmic
returns (S&P 500, Bovespa, OMX).

4.3. Network models. The theory of model specification within neu-
ral networks is thin, even more so regarding recurrent nets and LSTM’s
for that matter. Most studies are empirically deciding upon the num-
ber of nodes and layers of the networks. Because there are no clear
guide lines it has been decided to test two different LSTM models in
this thesis. One simple model and one deep model.

4.3.1. Single layer LSTM model. The simple LSTM model consists of
one hidden layer with 4 LSTM blocks. In the first part of the method,
regression forecasting, a linear activation function is used for the output
layer 19, in the second part the sign function, and in the third part a
classification activation function is used, softmax,

(23) σ(z)j =
ezj∑K
k=1 e

zk
for j = 1, ..., K

4.3.2. Deep LSTM model. The deep LSTM model consists of 3 hidden
LSTM layers. The first layer has 4 blocks, the second 50, and the third
100 LSTM blocks. Both the second and the third layer is regularized
by a dropout layer which randomly shoots out 50% of all blocks in each
step of the epochs. As in the case of the simple LSTM model a linear
activation function is again used for the output layer in the first part
of the experiment, the sign function in the second part and a softmax
function, equation (23), is used in the third part.

19g(a) = a
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Figure 2. Histograms & plots of return series (S&P
500, Bovespa, OMX).

Note: The dashed lines in the histograms are probability density func-
tions of the normal distribution with means and standard deviations
equal to the means and standard deviations of the corresponding return
series.

4.4. Time series model. In this section a time series model is in-
troduced, which can be used in comparison with the neural networks
models. This is of course important since the conventional way of ana-
lyzing financial time series data is not with neural networks, but rather
with time series models.

So, which comparison model is suitable? Arguably one which is
rather general but takes the stylized facts about the financial return
data into account. It has been decided that because the neural network
model operates on lagged inputs of one time step, so will the time
series model. In order to catch the autoregressive part of the time
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series and the non-symmetric conditional movements of the variance
an ARMA(1,1)-GJRGARCH(1,1)-process is used. 20

4.5. Results. Figure 3 shows the out of sample predictions of the time
series model for each index respectively. By visually investigating the
predictions there seems to be higher variance in the predictions of the
OMX index compared to the other two series. Although the structure
of the predictions are similar, where the model is operating around the
mean.

Figure 3. Forecasts with ARMA-GJRGARCH (S&P
500, Bovespa, OMX). Black indicates the predictions and
grey indicates the true returns.

Figure 4 looks very similar to figure 3, but there are some interesting
differences. When predicting S&P 500 the LSTM model seems to have
captured the two volatility clusters in the middle of the series better.
Although, one cannot say that better capturing the variance necessar-
ily leads to better forecast of the series. Also, the variance of the OMX

20The autoregressive moving average model which controls for GARCH variance of
order (1,1,1,1) is empirically often used. One example is Gencay & Stengos (1998)
where they compare the model to a simple feedforward neural network.
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prediction seems to be uniform with the other predictions, hence not
much more volatile as in figure 3.

Figure 4. Predictions from LSTM (S&P 500, Bovespa, OMX).

Figure 5 is more similar to figure 4 than figure 3. It captures the
volatility clusters of the S&P series as the simple LSTM model. How-
ever, the predictions seems to be extremely close the mean.

Furthermore, figure 6 and 7 are representing the two dimensional
output of the softmax activation function yielded by the LSTM and
the deep LSTM model. The black lines are representing the estimated
probabilities for positive returns and the grey lines are representing the
estimated probabilities for negative returns.21

Looking at the figures (6 and 7) one can see that both the LSTM
and deep LSTM classifiers always predict positive returns for the S&P
500 series. This is also true for the deep LSTM model regarding the
Bovespa index. Both models are showing a highly non-linear pattern
regarding the predictions of the OMX index.

21A black and grey line add up to 1.



25

Figure 5. Predictions from deep LSTM (S&P 500,
Bovespa, OMX).

4.6. Forecast evaluation. The regression predictions of the three
models looks quite similar. All models have heavily generalized the
parameters in order to perform good out of sample predictions and not
over-fit to the training dataset. Table 3 shows the sum of squared resid-
uals for each model and each dataset.22 The sum of squared residuals
are very similar for the models, although the time series model have
the lowest sum of squared residuals for the S&P 500 index.

Model SP500 Bovespa OMX
ARMA-GJRGARCH 0.0008 0.0015 0.0019
LSTM 0.0009 0.0015 0.0019
Deep LSTM 0.0009 0.0015 0.0019

Table 3: Sum of squared residuals from regressions.

Recall figures 3, 4 and 5, where the forecasts of the indices are shown.
The magnitude is clearly not correct when compared to the true re-
turns. All predictions are very close to the mean value of the series.

22Plots of the residuals are found in the appendix.
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Figure 6. LSTM forecast output. Black indicates
P(R > 0). Grey indicates 1−P(R > 0).

Note: The dashed lines lie at P(R > 0) = 1−P(R > 0).

Hence, in a financial perspective the predictions would be of little use.
However, if the predictions are changed slightly and only the directions
of the predictions are taken into account, can they be of use from a
financial perspective? Yes, if they are able to correctly predict the
market directions.

Table 4 shows the percentage of correct directional predictions of
all models. This includes the time series model, LSTM model and the
deep LSTM model where a sign function is wrapped around the regres-
sion output. It also includes the softmax LSTM and the softmax deep
LSTM which produce classification output. The bold numbers are the
highest correct percentage for each dataset and significant scores of the
binomial test are shown with (*) and (**).

First note that all models on all datasets are predicting the correct
direction with a probability of 50% or higher. However only four pre-
dictions are significant on the out of sample data. For the S&P 500
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Figure 7. Deep LSTM forecast output. Black indicates
P(R > 0). Grey indicates 1−P(R > 0).

Model SP500 Bovespa OMX
ARMA-GJRGARCH 0.5043 0.5255∗ 0.5214
LSTM 0.5188 0.5146 0.5244
Deep LSTM 0.5072 0.5015 0.5287∗

Softmax LSTM 0.5087 0.5000 0.5272∗

Softmax deep LSTM 0.5087 0.5000 0.5530∗∗

(*) significant binomial test at α = 0.90.
(**) significant binomial test at α = 0.95.
H0: p = 50%.

Table 4: Directional prediction (percentage correct).

index no model yields a significant result. Regarding the Bovespa in-
dex only the regular time series model yields a significant results. The
interesting observation is when looking at the OMX index. All models
predict 52% correct or better, and the softmax deep lstm predicts over
55% correct. Note also that the deep LSTM, softmax LSTM and the
softmax deep LSTM shows significant forecasts on the direction of the
OMX index.
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4.7. Trading strategy evaluation. The two trading strategies dis-
cussed in section 4.1 will be evaluated using the classification predic-
tion, on the out of sample data, from the softmax deep LSTM model
and the ARMA-GJRGARCH model. For each index three portfolios
will be presented. The first which is the index, i.e. if one buys the
index and holds it. The second portfolio will represent the first trading
strategy which consists of buying the index when the model predict
positive outcomes and staying out of the market when negative returns
are predicted. The third portfolio represent the second trading strat-
egy, in which one buys the index when the models predict positive
returns and shorts the index when the models predict negative returns.
Each portfolio will be based on the starting value of 1 unit of a given
currency.

Figure 8. Softmax deep LSTM trading strategy.

Figure 8 shows, for each index, the outcomes of the trading strate-
gies based on the softmax deep LSTM model. Recall figure 7, where
the probability output of the model is shown. Here one can see that the
predictions of positive returns for the S&P 500 index and the Bovespa
index are always greater than 0.50. This indicates that the two trading
strategies will be identical to these indices. The reason for this is that
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both strategies buys the index, then the model predict positive returns,
and if the model always predict positive returns then the strategy al-
ways buys index. However, looking at the OMX predictions of figure
7, one can see higher dynamics. This clearly shows when the trading
strategies are evaluated on the OMX data. Here the first strategy per-
forms around 50% better than index and the second strategy performs
over 100% better than index. Remember that the out-of-sample data
is 33% of the dataset, e.g. the testing data for the OMX index consists
of 700 daily observations.

Figure 9 has the exact same structure as figure 8, the difference is
that the ARMA-GJRGARCH model is used in the strategies. The
results are unfortunately not as good as the network model. For the
S&P 500 index both strategies perform worse than the index using the
time series model. For the Brazilian Bovespa index the second strategy
performs worse at the end of the period, although it did perform very
well during the first part. The first strategy did outperform the index in
the first part but, ended up with the same result in the end. Regarding
the OMX index the strategies did worse than the index in the beginning
but outperform the index when looking at the total period.

Figure 9. ARMA-GJRGARCH trading strategy.
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5. Discussion

• Can the American, Brazilian or Swedish stock market returns
be predicted using LSTM’s?

With regards to the magnitude of the regression forecasts of the in-
dices there seems not to be a good way one can predict the stock market
returns of the markets with LSTM neural nets.

• Can the directions of the stock market returns be predicted
using LSTM’s?
• Is predictability of market returns different between America,

Brazil and Sweden?

The network models were not able to predict the direction of the
S&P 500 or Bovespa index with significant result, but three out of four
network models did significant predictions on the Swedish OMX index.
There is no way of understanding exactly why a neural network model
acts the way it does since the parameter space is simply too large. What
one can understand is that the network model trains on a dataset, tries
to generalize the training, and then predict on an out of sample set.
One thought would be that the OMX data has the most similarities
between the training and test data. Nevertheless, the results show that
the direction of the Swedish market seems to be predictable, whereas
the direction of the American and the Brazilian seems not to.

• Can LSTM neural nets compete with conventional time series
models?

The simple answer is yes. All the results show that the sequential
modeling of a LSTM net is sufficiently sophisticated to yield equal or
better result than the famous ARMA-GJRGARCH. Machine learning
algorithms for financial and econometric analysis are on the rise, and
has been for a long time. These results validates the continuation of
that.

• Is it possible to build a successful financial trading strategy
based on LSTM network prediction?



31

A trading strategy based on the regression forecasts would not be
advisable. However, a trading strategy based on the directional analy-
sis of a softmax LSTM network might be advisable. As seen in figure
8 the outcomes of the trading strategies are atleast as good as each in-
dex. Especially good is the performance on the Swedish market, where
the strategies outperforms the market with around 50% and 100% re-
spectively. This is of course a spectacular result, which was achieved
by consistently better than average prediction and compounding effects
over 700 days. As mentioned, the only thing one can be completely sure
of is that the model, regarding the OMX index, was able to generalize
a pattern that was applicable on the out of sample data. This does not
mean that the strategy will work in the future. However, there might
be a structure to the smaller Swedish market allowing the model to
make these predictions and this needs to be further investigated.

Regarding building a real world trading strategy much more testing
would of course be needed. An empirical model specification test would
be necessary, where a lot more than two models is tested. In order to
improve the model one would want to evaluate and potentially add
other input variables, other than exclusively historical returns. Other
input variables could be economic indicators such as inflation or other
financial data such as exchange rates or other stock market data.

6. Concluding remarks

In this thesis it has been shown how LSTM neural networks can be
used in order to predict financial returns series, both with a regression
approach and a classification approach. It seems to be possible to pre-
dict the directions of the Swedish stock market, while it seems not to
be possible to predict the US and Brazilian stock market directions.
This suggests that the weak form of the efficient market hypothesis
does not hold for the Swedish market, while it holds for the US and
the Brazilian markets.

These findings may suggest that the American and the Brazilian
markets are more data driven compared to the Swedish market. Thus
utilize historical data to a higher degree within financial analysis.

The EMH can only be empirically tested, which means that the
testing is dependent upon the empirical methodology. LSTM neural
network modeling is not a common way of analyzing financial returns.
It could well be that the Swedish market has not yet been influenced
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by neural network modeling to the same degree as the markets which
seems to be efficient.

Another suggestion that may explain the fact that the Swedish mar-
ket seems predictable is purely numerical. It is possible that there
are local or global minimums that further reduce the error function
of the LSTM networks for the American and the Brazilian markets,
although not found with the standard optimization algorithms. This
would create the illusion of efficiency of these markets.
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8. Appendix

8.1. Numerical packages. In this thesis Tensorflow, Keras, Rugarch
and NetworkX have been used. A short description of the libraries
follows in the subsequent subsections.

8.1.1. Tensorflow & Keras. Tensorflow is a library for tensor, i.e. mul-
tidimensional arrays, manipulation which has a lot of machine learning
functions build in, e.g. neural network training. It was initially re-
leased by Google Brain Team in 2015.23

Keras is a high level API running on top of either Deeplearning4j,
Tensorflow or Theano.24

8.1.2. Rugarch package. There are several R-packages that can han-
dle time series and GARCH modeling. A few examples are: Rugarch,
fGarch, tseries, bayesGARCH, betategarch, dynamo, and rgarch. In
this thesis the Rugarch package is used, mostly due to previous experi-
ence and recommendations. The Rugarch package is well known in the
R-community. It is said to have to most sophisticated optimization,
due to its hybrid method.

A full description of the Rugarch package can be found at the r-
projects website.25

The author of the Rugarch package, Alexios Ghalanos, has also a
blog.26

8.1.3. NetworkX. Python package NetworkX was used to create the
network model (figure 1 ).27

8.2. Regression residuals. Figures 10-12 show the residuals from the
regression modeling of the time series model, the LSTM model and the
deep LSTM model.

23https://www.tensorflow.org/
24https://keras.io/
25https://cran.r-project.org/web/packages/rugarch/index.html
26http://unstarched.net/
27https://networkx.github.io/

https://www.tensorflow.org/
https://keras.io/
https://cran.r-project.org/web/packages/rugarch/index.html
http://unstarched.net/
https://networkx.github.io/
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Figure 10. Residuals from ARMA-GJRGARCH (S&P
500, Bovespa, OMX).

Figure 11. Residuals from LSTM (S&P 500, Bovespa, OMX).
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Figure 12. Residuals from deep LSTM (S&P 500,
Bovespa, OMX).
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