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Abstract

Credit risk is one of the largest risks facing a bank and following the Basel regulations,
banks are expected to hold capital to protect themselves against credit risk. This thesis
aims to evaluate models to calculate the capital requirement for credit concentration risk
and compare them to the models suggested by Finansinspektionen.

Credit concentration risk can be split into name and sector concentration and two models
are evaluated for each type of concentration risk. For both name and sector concentration
a Full Monte Carlo method is implemented but as this is a time consuming method, alter-
native methods are suggested. For name concentration risk the alternative method splits
the portfolio into two sub-portfolios and treats only one of the portfolios as if it contains
any name concentration risk. The proposed method for sector concentration builds on
the multi-factor Merton model and gives an analytical solution. Each pair of models is
tested on separate sets of simulated portfolios containing varying degrees of name respec-
tive sector concentration. Both methods assessing name concentration perform well but
as the alternative method is faster, this is to be preferred. None of the methods are in
perfect agreement with the results of the methods of Finansinspektionen and although this
does not necessarily indicate that the models are faulty one should investigate the reasons
behind the differing results before continuing with any of the methods. When testing the
sector concentration the alternative method appears to be the preferable one but as both
methods differ greatly from the results of Finansinspektionen none of the methods should
be used before considering the reasons for the large deviations in results.

Keywords: Credit concentration risk, name concentration, sector concentration, Monte
Carlo, capital requirement, Partial Portfolio Approach, Pykhtin , Multi factor adjustment
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A summary of all abbreviations used throughout the thesis.

AHI Adjusted Herfindahl Index

ASRF Asymptotic Single Risk Factor

BCBS Basel Committee on Banking Supervision

CMC Crude Monte Carlo

EAD Exposure At Default

EL Expected Loss

FI Finansinspektionen

FMC Full Monte Carlo

HI Herfindahl Index

IRB Internal Ratings Based

IS Importance Sampling

LGD Loss Given Default

MC Monte Carlo

PD Probability of Default

PPA Partial Portfolio Approach

UL Unexpected Loss

VaR Value at Risk
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Chapter 1

Introduction

1.1 Background

As one of the core businesses of banks today is to supply the market with various forms
of credit, it follows that proper management of the risks associated with the practice is of
importance. Credit risk, the risk that a borrower defaults on its obligation towards the
bank, is one of the greatest risk facing a bank and banks are therefore required to hold
capital as protection against this type of risk (Hull, 2012). The capital requirements are
regulated in the Basel Capital Accords. The Capital Accords are only broad supervisory
standards but incorporated into European Union law and hence the capital requirements
apply to all Swedish banks as well as all other banks within the European Union.

When calculating capital requirements for a credit portfolio, the credit concentration risk
needs to be considered. Concentration risk in a bank’s credit portfolio arises mainly from
two types of imperfect diversification, name and sector concentration (BCBS, 2006). Name
concentration occurs when there are large exposures to individual borrowers so that the
idiosyncratic risk is not perfectly diversified. Sector concentration arises when there are
several sectors correlated with each other, meaning that the financial well being of two
obligors can be correlated depending on which sector these obligors belong to (Grippa and
Gornicka, 2016). The Basel Committee on Banking Supervision found that nine out of
the thirteen analyzed banking crises were affected by risk concentration (BCBS, 2004a)
and states that risk concentration is arguably the single most important cause of major
problems in banks (BCBS, 2004b). Hence the subject of how to correctly assess the con-
centration risk is of great importance.

The capital requirements of concentration risk are not covered under Pillar 1 of the Basel
Framework. Instead banks are expected to compensate for the concentration risk by set-
ting aside capital buffers based on their own estimates, which are then assessed by financial
supervisors under Pillar 2 (BCBS, 2004b). For Swedish banks the supervisory authority is
Finansinspektionen (FI). FI has proposed methods for estimation of both name and sec-
tor concentration risk. However banks with permission from FI can use their own models
to estimate the risk as long as these models are approved by FI (Finansinspektionen, 2014).

The ability to correctly estimate the level of risk is highly important to banks. If the
bank holds too little capital it will not be protected in the case of a large default. On the
other hand, if too much capital is held the bank can lose investment opportunities. The
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models used to calculate the risk can therefore have a large impact as they will determine
how much capital needs to be held. The models proposed by FI are straight forward to
use but as the models are the same regardless of bank it can be to the bank’s advantage
to use its own models and estimation of variables. This allows a bank to better estimate
the bank specific risk level and specify the capital requirement based on the bank’s own
characteristics.

1.2 Problem formulation

The aim of this thesis is to use different kind of techniques for assessing credit concen-
tration risk and compare these for different portfolios. Models for both name and sector
concentration will be studied. The models need to be in agreement with the requirements
decided by the supervisory authority. For Swedish banks this is FI. Furthermore the thesis
aims to give an insight to the regulatory works that governs how credit risk is currently
handled as well as the theory concerning credit concentration risk.

1.3 Chapter Outline

The chapter outline of the thesis is presented below.

Chapter 2: The chapter introduces the main variables considered when modeling credit
risk as well as the theory related to concentration risk that is needed for the thesis.
The subject of concentration risk is presented further. The chapter also includes an
introduction to the regulatory works of the Basel Committee on Banking Supervision.

Chapter 3: The theory behind the technical solutions used in this thesis is presented in
this chapter. The following chapters rely heavily on the theory presented here.

Chapter 4: As a benchmark, the models considered by Finansinspektionen are used and
these models are presented here. The models considered are the ones used by FI to
calculate capital requirements for name and sector concentration.

Chapter 5: The approaches considered in the thesis when calculating capital require-
ments for name concentration risk are presented in this chapter. Both the theory
behind the methods as well as the implementation are described.

Chapter 6: The 6th chapter has much the same contents as the 5th but this chapter
considers the models for sector concentration.

Chapter 7: Chapter 7 presents the data used when testing the models presented in chap-
ter 5 and 6. The data is simulated and the main concepts and assumptions behind
the simulations are presented.

Chapter 8: The methods presented in chapter 5 and 6 are evaluated on the portfolios
presented in chapter 7 and the results are given in this chapter.

Chapter 9: Chapter 9 discusses the results of chapter 8 and gives suggestions for further
research.

Chapter 10: The final chapter gives a short summary of the thesis and conclusions drawn
by the authors.
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Chapter 2

Credit risk - theory and
regulations

Credit risk describes the risk that a counterparty defaults, meaning that the they are not
able to make their payment in time. Banks are required to hold capital for this type of
risk, which is specified in the Basel accords’ Pillar 1 (Hull, 2012). The method considered
for the credit risk capital requirement in Pillar 1 does not take into account the risk
that arises from concentration of exposures in the portfolio (Grippa and Gornicka, 2016).
Basel II states that ”A risk concentration is any single exposure or group of exposures with
the potential to produce losses large enough (relative to a bank’s capital, total assets, or
overall risk level) to threaten a bank’s health or ability to maintain its core operations”
(BCBS, 2004b). Basel II further states that credit concentration risk is an important
factor behind major bank problems and that it needs to be considered when calculating
the capital requirements required for credit risk (BCBS, 2004b). In this chapter two
subgroups of credit concentration risk, name and sector risk concentration, are presented.
Before this is possible the Basel regulations need to be presented closer as well as the
mathematical models that the credit risk capital requirement is based on. The chapter
also includes an introduction to the risk measures required to measure credit risk.

2.1 BCBS and the Basel Accords

The Basel Committee on Banking Supervision (henceforth called BCBS) was founded in
1974 by the central bank Governors of the Group of Ten countries (BCBS, 1999). Fol-
lowing in the serious disturbances in the international currency and banking markets the
BCBS was established to enhance financial stability by improving the quality of the bank-
ing supervision worldwide, and to serve as a forum for regular cooperation between its
member countries on banking supervisory matters. Since its inception the BCBS has
expanded its members from G10 to 45 institutions from 28 jurisdictions (BCBS, 1999).
Furthermore, they have devised three major global publications of the accords on capital
adequacy which are commonly known as Basel I, Basel II and Basel III.

Basel Capital Accord, Basel I, was published in 1988 and covered only credit risk (BCBS,
1999). The goal was to set minimum capital requirements for commercial banks as a buffer
against financial losses. It called for minimum ratio of capital to risk-weighted assets of
8%. The primary objective was to promote the safety and soundness of the global financial
system. Uniform minimum standards also created a level playing field for internationally
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active banks, which was the secondary objective. The Amendment to Capital Accord to
incorporate market risk was issued in 1996 to incorporate a capital requirement for market
risks.

The New Capital Framework, Basel II, was released in 2004 and consisted of three pillars
(BCBS, 2004b). The First Pillar specifies minimum capital requirements, which aim to
cover credit, market and operational risk. The Second Pillar is a supervisory review of
an institutions capital adequacy and internal assessment process. The Third Pillar covers
the disclosure requirement used as a lever to strengthen market discipline and encourage
sound banking practices.

Basel III builds on Basel II and contains, in addition to stronger capital requirements,
two new capital buffers to strengthen the banks’ abilities to resist losses and to lower the
probability for new financial crises. The implementation of Basel III started in 2013 and
will gradually continue until 2019.

The Basel Committee formulates broad supervisory standards but its conclusions do not
have legal force (BCBS, 2016). However the European Union has incorporated the Basel
rules into EU law through regulations and directives making them into national law in
all member States, including Sweden (European Banking Authority, 2010). Finansinspek-
tionen is the regulatory body in Sweden that monitors the companies on the Swedish
financial market (Finansinspektionen, 2017). It is FI’s responsibility to supervise that the
Basel regulations are complied with.

2.2 Risk measures

Probability of Default

In BCBS (2004b) the probability of default (PD) is described as the probability that a
counterparty defaults within one year. The PD will take values between 0-100%, where
0% indicates no probability of default while 100% indicates default. However the Basel
framework states that the lowest possible PD to be assigned for bank or corporate expo-
sures is 0.03%. As a default event can be defined in many ways the definition of BCBS
(2004b) is presented. The Basel framework defines a default event to have happened if
one or both of the two events listed below has transpired:

1. It is considered unlikely, by the bank, that the counterparty will be able to repay
the credit obligations the counterparty has to the bank.

2. It has been more than 90 days since the loan expired and the counterparty has still
to make the payment.

Exposure at Default

The total exposure a bank has towards an obligor is defined as the Exposure at Default
(EAD). The EAD is given as the sum of the obligors debt to the bank and is therefore
given in the corresponding currency (Bluhm, Overbeck, and Wagner, 2016).

Loss Given Default

The Loss Given Default (LGD) can be described as the part of the exposure that is not
recoverable in the case that the obligor defaults. In the case of default it can still be
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possible for the bank to recover some of the losses and the LGD is therefore given as a
fraction of the total exposure towards each obligor. As LGD is given as a fraction it can
take values between 0%, meaning that the bank can recover all losses, and 100%, mean-
ing that the LGD is the full exposure towards the obligor. However in some cases the
LGD can take a value larger than 100%. This can happen due to costs that arise when
the bank tries to recover part of the loss. If the recovery attempt fails, meaning that if
no part of the loss can be recovered, the LGD will be larger than the EAD (Hibbeln, 2010).

In this thesis LGD will be seen, in most cases, as a known quantity or, in some cases,
as a random variable. To distinguish between these two cases LGD will be used for the
case when the loss given default is seen as known while the random variable will be called

˜LGD. We also define E[ ˜LGD] = µLGD and V [ ˜LGD] = σ2
LGD.

Expected Loss

The Expected Loss (EL) is, as indicated by the name, the loss that a bank can expect
given the risk measures of the exposures in the bank portfolios. The EL of one portfolio
is calculated, using the previous defined risk measures, according to,

EL =
N∑
i

EADi · LGDi · PDi. (2.1)

Here i indicates the index of each obligor in the portfolio and N is the total number
of obligors in the portfolio (Hibbeln, 2010). Throughout the thesis we assume that the
portfolio is sorted according to EAD so that EAD(1) ≥ EAD(2) ≥ · · · ≥ EAD(N).

Value at Risk

Given that the loss l has the distribution function FLoss(l), the Value at Risk (VaR) given
confidence level α is defined as (Bluhm, Overbeck, and Wagner, 2016)

V aRα = inf{l : FLoss(l) ≥ α}. (2.2)

This means that the V aRα is the loss that will not be exceeded in 100 · α% of the cases.
For credit risk measures α is often set to 0.999 as the bank is interested in protecting itself
from large losses.
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Unexpected Loss

Figure 2.1: The Unexpected Loss is calculated as the difference between
the VaR and the EL. The blue line represents a simulated loss distribution.

The Unexpected Loss (UL) is calculated as the difference between the VaR and the EL,
as illustrated in figure 2.1 and seen in the equation below,

ULα = V aRα − EL = V aRα −
∑
i

EADi · LGDi · PDi. (2.3)

The expected loss should be expected by the bank and should therefore be covered by
for example the pricing of the bank’s products. The UL however needs to be covered
by capital held by the bank that covers the difference between the VaR of a ”worst case
scenario” and the EL (Hull, 2012).

2.3 The Asymptotic Single Risk Factor model

The Asymptotic Single Risk Factor (ASRF) is a model based on the work of Vasicek (1987)
and Merton (1973). In the Merton model an obligor will default if at maturity the value
of the obligor’s assets is smaller than the payment due. If the asset value process is given
by A(t) at time t and the debt is B, the obligor will default at maturity T if

A(T ) < B. (2.4)

The model proposed by Vasicek (1987) states that the asset value of obligor i can be
described by a geometric Brownian motion with drift µi and volatility σi according to

dAi = µiAidt+ σiAidYi, (2.5)
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where Yi is the Brownian motion driving the asset return of obligor i. This differential
equation gives that

lnAi(T ) = lnAi(0) + (µi −
1

2
σ2
i )T + σi

√
TΦi, (2.6)

where Φi ∈ N(0, 1). Using equation 2.6 and the assumption that default occurs if the
asset value is below Bi, the PD for obligor i is found as

PDi = P (Ai(T ) < Bi)

= P (lnAi(0) + µiT −
1

2
σ2
i T + σi

√
TYi < lnBi)

= P

(
Yi <

lnBi − lnAi(0)− µiT + 1
2σ

2
i T

σi
√
T

)
= N(ci), (2.7)

whereN(·) is the cumulative normal distribution function and ci =
lnBi−lnAi(0)−µiT+ 1

2
σ2
i T

σi
√
T

.

The ASRF approach builds on this definition of PDi and the asset value process together
with two assumptions. The first assumption states that the portfolio is infinitely granu-
lar, meaning that the number of obligors is large enough so that the idiosyncratic risk is
diversified away. The second assumption is that there is a single common systematic risk
factor that influences the creditworthiness of all obligors (Hibbeln, 2010).

The standardized asset return using the ASRF approach can be stated as

Yi = wiX +
√

1− w2
i ξi, (2.8)

where X is the single systematic risk factor, ξi is the idiosyncratic risk factor and wi is
the factor loadings of obligor i. The factor loadings are calculated as

wi =
√
ρi, (2.9)

where ρi is the asset correlation with the systematic risk factor for obligor i. The sys-
tematic and the idiosyncratic risk factors are both standard normal distributed but they
are not correlated. Furthermore the idiosyncratic factors are uncorrelated for different
obligors, that is E[ξiξj ] = 0 for i 6= j (Grippa and Gornicka, 2016).

As stated in equation 2.7 default will occur if the asset return is smaller than ci. The
probability of default conditional on the systematic risk factor can now be expressed as

PD(X = x) = P (Yi < ci|X = x)

= P (wiX +
√

1− w2
i ξi < ci|X = x)

= P (wiX +
√

1− w2
i ξi < N−1(PDi)|X = x)

= P (wix+
√

1− w2
i ξi < N−1(PDi))

= P (ξi <
N−1(PDi)− wix√

1− w2
i

)

= N

(
N−1(PDi)− wix√

1− w2
i

)
. (2.10)
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The obligors in the portfolio are mutually independent and the ASRF assumes an infinitely
granular portfolio, which makes it possible to estimate the VaR by using equation 2.10 to
write the conditional PDi. The VaR can therefore be calculated as,

V aRi = PDi(X = x) · LGDi · EADi = N

(
N−1(PDi)− wix√

1− w2
i

)
· LGDi · EADi. (2.11)

The capital requirement for the entire portfolio can now be calculated as the difference
between the sum over all N obligors of the expected loss for obligors in the portfolio and
the unconditional expected loss ELi = PDi · LGDi · EADi. As the attentive reader will
notice, this is the UL defined previously in this section. The UL can thus be calculated as
(Grippa and Gornicka, 2016),

ULα =
N∑
i=1

(V aRiα − ELi). (2.12)

2.4 Internal Ratings-Based Approach

The Basel II regulations state that required credit risk capital can be calculated using two
methods. The first, called the standardised approach, will use external approximations of
the needed risk measures while the second approach, the Internal Ratings Based (IRB),
allows the bank to use internal approximations of the risk measures (BCBS, 2004b). How-
ever, before adapting the IRB approach, a bank needs clearance from financial supervisors.
If a bank is cleared to use the IRB approach the risk measures to be supplied are PD,
LGD, EAD and the effective maturity M (BCBS, 2004b, par. 211). The IRB approach is
based on finding the VaR for the 99.9% confidence level and using this to find the UL. To
calculate the VaR the ASRF approach is used, and the assumptions made on this model
are assumed to be fulfilled. The UL can be calculated using equation 2.12 (Hull, 2012).

For some cases Basel II assumes that there is a relationship between the probability of
default and the correlation ρ. These cases are exposures of the type corporate, sovereign
and bank. The correlation for a corporate with an annual turnover above 50 million euro
is calculated as

ρi = 0.12 · 1− exp(−50 · PDi)

1− exp(−50)
+ 0.24 ·

(
1− 1− exp(−50 · PDi)

1− exp(−50)

)
. (2.13)

The factor loadings of obligor i can then be calculated using equation 2.9.

A bank also needs to make a maturity adjustment to account for events that might occur
for maturities longer than one year, for example a decline in credit rating. This adjustment
for maturity M is calculated as,

MA =
1 + (M − 2.5)b

1− 1.5b
. (2.14)

The constant b =
(
0.11852− 0.05478 · ln(PD)

)2
and for M = 1 the maturity adjustment

equals 1 as well.

When a bank has chosen, and been given clearance, to use the IRB-approach there are two
possible methods. One is the Foundation IRB where banks are expected to provide their
internal estimations of the probability of default for their borrowing grades. All other
relevant risk measures comes from measures estimated by the supervisor (BCBS, 2004b).
The other method is the Advanced IRB. For this method the bank should provide their
own estimations or calculations for all necessary risk measures (BCBS, 2004b).
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2.5 Credit concentration risk

The ASRF model in Pillar 1 gives the capital requirement for credit risk but it does not
state what happens if the assumptions of the model are not met. A portfolio that does
not fulfill the assumptions of the ASRF model is said to contain credit risk concentration,
which is not considered in the credit risk capital requirements of Pillar 1 (Grippa and
Gornicka, 2016). However the Basel accords state in Pillar 2 that concentration risk
needs to be considered when calculating the capital requirement of credit risk (BCBS,
2004b). Below the two subgroups of credit concentration risk considered in this thesis are
presented.

2.5.1 Name concentration risk

Name concentration risk arises when the size of the portfolio is small or the exposure to
a few individual borrowers is large compared to the total exposure of the portfolio. This
violates one of the assumptions of the ASRF model, which states that the portfolio should
be infinitely granular. A bank can have portfolios large enough to assume that the risk is
diversified away in accordance with the assumptions made in the ASRF, but in many cases
name concentration is present in a portfolio. If this concentration risk is not considered it
can lead to an understatement of the capital requirement (Grippa and Gornicka, 2016).

2.5.2 Sector concentration risk

The second subgroup of concentration risk is sector risk. This type of risk stems from
portfolio groups that have a common underlying risk factor (Hibbeln, 2010). This leads
to imperfectly correlated groups, or sectors, and it violates the second assumption of the
ASRF model, which states that the model assumes a single systematic risk factor (Grippa
and Gornicka, 2016). Industry concentration relates to sectors that can be defined by a
specific industry while geographical concentration can contain both region and country
specific sectors (Hibbeln, 2010). The capital needed for sector concentration risk will
depend on the correlation between the sectors’ underlying risk factors. A high correlation
between two risk factors will lead to a higher capital requirement while a low correlation
can be seen as a hedge and will therefore lead to a lower capital requirement.





11

Chapter 3

Mathematical Theory

This chapter will present the reader with the main theory needed for understanding the
methods used later in this thesis. While the previous chapter focused on the theory and
workings of credit risk, this chapter includes the additional mathematical theory necessary
for this thesis. The theory is presented within the thesis limitations and the interested
reader is referred to the sources for a more extensive presentation.

3.1 Monte Carlo

The main idea behind Monte Carlo (MC) simulation is to give an estimate of the expected
value of a certain function of a random variable, that is, for the r.v. X, estimate the value
E[h(X)]. Given that X has the density function f , the expected value can be calculated
as,

E[h(X)] =

∫
h(x)f(x)dx (3.1)

Before introducing the MC estimator the law of large numbers is presented as found in
Ross (2014),

Theorem 3.1.1 (Law of large numbers). Let X1, X2, ... be a sequence of independent
random variables having a common disitribution, and let E[Xi] = µ. Then with probability
1,

X1 +X2 + ...+Xn

n
→ µ, as n→∞.

The Monte Carlo estimator of the expected value in equation (3.1) is calculated as

µMC =
1

N

N∑
i=1

h(X), (3.2)

and by the law of large numbers, µMC → µ as N → ∞. Using this, fairly complicated
values can be estimated as long as they can be rewritten as the expectation in equation
(3.1). The variance of the Monte Carlo estimator becomes

σ2
MC =

1

N − 1

N∑
i=1

(
h(X)− µMC

)2

. (3.3)

The variance will decrease as N increases. This implies that for some cases a large number
of steps are required before the Monte Carlo expectation converges towards the real value
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and the computational burden might prove very heavy (Givens and Hoeting, 2013). Monte
Carlo simulation performed without any variance reducing technique is often referred to
as Crude Monte Carlo (CMC).

3.1.1 Monte Carlo simulation for estimating risk quantiles

When using CMC to estimate a quantile of a distribution the approach is slightly different
than the one described above. Looking at the definition of VaR in equation 2.2, the
CMC approach to estimate this quantile is to replace the unknown distribution function
FLoss(l) with an empirical distribution F̂Loss(l). The empirical function is found as the
step function

F̂Loss(l) =
1

SMC

SMC∑
i=1

1{Li≤l}, (3.4)

where SMC is the number of MC steps and 1{Li≤l} is the indicator function taking value
1 if Li ≤ l and 0 otherwise (Brereton, Chan, and Kroese, 2013). In Brereton, Chan, and
Kroese (2013) the following description of the algorithm implemented to estimate the VaR
at level α is presented:

Algorithm to estimate VaR

1. Generate an iid sample L1, ..., LN

2. Order the sample from smallest to largest as L(1) ≤ ... ≤ L(N)

3. Return the quantile estimator q̂α = L(dα·SMCe)

3.2 Importance Sampling

As seen in equation (3.3) the variance of the MC estimator decreases as the number of
steps increase. However using a large number of steps can be computationally burdensome
and in the case of estimating a quantile a large number of steps will be necessary. As the
quantile represents an extreme event, it naturally does not occur often and a large num-
ber of simulations will be needed to find a converging estimation of the quantile. If the
number of steps needs to be reduced or a rare event is to be estimated, variance reducing
techniques can be implemented. These are important tools to reduce the number of steps
without loosing measurement accuracy. One such technique is Importance Sampling (IS).
IS uses an importance sampling distribution so that samples that have a low probability
in the target distribution function now become sampled more frequently. To compensate
for shifting the distribution, importance weights are introduced. The use of IS can be
helpful when the sought for value is a rare event in the distribution function (Givens and
Hoeting, 2013).

The idea behind IS is to rewrite the expectation in (3.1) as

E[h(X)] =

∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)
g(x)dx, (3.5)

where g(x) is the IS distribution. By letting ω(x) = f(x)
g(x) one sees that equation (3.5)

becomes the expectation of h(X) if X1:SMC
are iid observations generated from the distri-

bution function g(x). The estimated expected value now becomes
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µ̂IS =
1

SMC

SMC∑
i=1

h(Xi)ω(Xi). (3.6)

The factor ω(X) is the previously mentioned importance weight that compensates for
drawing X from the IS distribution. Just as for CMC, the IS estimator will converge
towards the target expected value as the number of simulation steps grows large. However,
some caution should be taken when choosing g(x). By choosing f(X)/g(X) in such a way
that the fraction is large only when h(X) is small, a relatively small variance is ensured
(Givens and Hoeting, 2013).

3.2.1 Importance sampling for estimating risk quantiles

The theory devoted to efficient Monte Carlo methods for rare events has mainly been
developed in the context of estimating rare-event probabilities of the form l = P(S(X) > γ)
for some real-valued function S, threshold γ and random vectorX. Glynn (1996) suggested
an importance sampling approach to quantile estimation. The CMC estimator of the
empirical distribution function is replaced with the IS estimator

F̂ ISLoss(l) = 1− 1

N

N∑
i=1

W (Li)1{Li>l}, (3.7)

where the {Li} are drawn from the IS density g and W (l) = fLoss(l)/gLoss(l) is the
likelihood ratio. The estimator suggested by Glynn (1996) focuses on the right tail of the
distribution, making it suitable in the case of VaR estimations. The reader is referred
to the article for a motivation of the focus of the estimator. The IS VaR estimator then
becomes

V aRISα = inf{l : F̂ ISLoss(l) ≥ α}. (3.8)

If g is chosen such that draws from the right tail of L happen more frequently, the estimator
could provide considerably better performance than the CMC estimator. Brereton, Chan,
and Kroese (2013) suggest that a good choice of g is the density g that minimizes the
variance of

l̂IS =
1

N

N∑
i=1

W (Li)1{Li>V aRα}, (3.9)

where the {Li} are drawn from g. This is the standard IS estimator for

l = P(L > V aRα). (3.10)

A disadvantage to this method is that the computation of l̂IS involves V aRα which is
the unknown quantity we seek to estimate. However the IS estimator for VaR is able to
provide large efficiency gains even when the initial estimate of V aRα is quite inaccurate.
A rough estimate of V aRα is easy obtained by an initial simulation using CMC. Another
problem of this method is that importance sampling cannot be applied directly to {Li}
as the density fLoss is usually unknown. Instead we seek to represent L as a function
of a random vector X with known density fx to which we can apply importance sam-
pling. So, the main idea is to first calculate an initial estimate of V aRα, denoted V̂ aRα,
and then to find an appropriate importance sampling density for estimating P(L > V̂ aRα).

Glasserman and Li (2005) suggest an approach to find an appropriate importance sampling
density and the following method is based on the their article. They propose two methods
to reduce the variance when estimating a tail event. The first is exponential twisting of
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the conditional default probabilities and the second is exponential twisting followed by
applying IS to the systematic risk factor. The aim of the exponential twisting is to twist
the conditional probability of default PDi(x) towards larger values in order to achieve a
low variance estimator of a tail probability (Glasserman and Li, 2005). The tail probability
is written as P (L > Lα), where L as usual is the loss and Lα is a large loss in the tail of
the loss distribution. The exponential twisting assumes that all obligors are independent
and that there exists a default indicator Di, which will take value 1 if there is default and
0 otherwise. By replacing the PDi with new probabilities Qi the likelihood ratio relating
the new distribution of the default indicator to the old one becomes

LR =

N∏
i=1

(
PDi

Qi

)Di(1− PDi

1−Qi

)1−Di
. (3.11)

The tail probability can now be written as an expectation using the new probabilities Qi
according to

P (L > Lα) = EQ[1{L>Lα}LR]. (3.12)

This means that the estimator of P (L > Lα) is unbiased if the default indicators are
sampled using the new default probabilities. Given that ci = LGDi ·EADi, the suggested
exponential twisting is written as

Qi =
PDie

θci

1 + PDi(eθci − 1)
. (3.13)

As can be seen in equation 3.13 these new probabilities will only be larger than the previous
PDi if θ > 0. Using the new probabilities the LR in equation 3.11 simplifies to

LR = exp(−θL+ Ψ(θ)), (3.14)

where Ψ(θ) = log(E[eθL]) =
∑N

i=1 log(1 + PDi(e
θci − 1)). The unbiased estimator of

P (L > Lα) can thus be found as E[1{L>Lα}e
θL+Ψ(θ)]. However, θ still needs to be decided.

This is done be recalling why the IS is used, to reduce the variance. Reducing the variance
is equivalent to minimizing the second moment of the estimator, which is written as

Eθ[1{L>Lα}e
−2θL+2Ψ(θ)], (3.15)

where Eθ[·] indicates that the expected value is found using θ to calculate the twisted
probabilities. The second order moment is difficult to minimize and Glasserman and Li
therefore suggest to minimize the upper bound, which is e−2θLα+2Ψ(θ). To minimize the
upper bound, θLα −Ψ(θ) is maximized for θ ≥ 0. As Ψ(θ) is strictly convex the solution
becomes

θ =

{
Unique solution to Ψ′(θ) = Lα, Lα > Ψ′(0)

0, x ≤ Ψ′(0).
(3.16)

When θ has been found the twisting can be done and the new probabilities of default are
found.

The second method presented here to reduce the variance suggests to combine the expo-
nential twisting explained above with applying IS to the systematic risk factors. As the
theory of the exponential twisting has already been explained the following section will
focus on the IS for the systematic factors. To motivate their approach, Glasserman and
Li conclude that the variance of the estimator p̂ of the tail probability P (L > Lα) can be
divided according to,
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V [p̂] = E[V [p̂|X]] + V [E[p̂|X]]. (3.17)

The vector X contains S systematic risk factors, L is the loss and Lα signifies a tail event,
that is a large loss. By applying the exponential twisting the conditional variance V [p̂|X]
in equation 3.17 becomes small, which indicates that the focus in order to reduce the
variance of the estimator should be on the term V [E[p̂|X]], when applying the IS to the
systematic risk factors. As E[p̂|X] = P (L > Lα|X) the sought for IS distribution should
be chosen such that it reduces the variances when estimating the integral of P (L > Lα|X).
In Glasserman and Li the suggested distribution is a function proportional to

X 7→ P (L > Lα|X = x)e−x
Tx/2. (3.18)

However, in order to normalize this function we need to divide by the probability P (L >
Lα). As this is the sought for probability this function is not suitable to use as IS distri-
bution. Instead a normal distribution with the same mode as the optimal density above
is suggested. The mode µ can be found as the maximization of 3.18 according to

µ = max
x

P (L > Lα|X = x)e−x
Tx/2. (3.19)

By finding x that maximizes the expression above, the means of the normal distribution
proposed as the IS density to be applied to the systematic risk factors are found. However,
it is not always straight forward to find the exact solution to 3.19 and Glasserman and
Li propose several ways of simplifying the problem through further approximation. This
thesis utilizes the constant approximation that suggests to replace the loss L by E[L|X =
x] and the tail probability P (L > Lα|X = x) with the indicator function 1{E[L|X=x]>Lα}.
The problem in 3.19 can thus be rewritten as

µ = min
x
xTx (3.20)

s.t E[L|X = x] > Lα. (3.21)

Note that E[L|X = x] =
∑

i PDi(x) ·EADi ·LGDi, which is inserted in the condition of
the minimization problem. To restate the problem, µ will be found as the minimization
w.r.t. x of xTx, conditional on

∑
i PDi(x) · EADi · LGDi > Lα. When this problem

has been solved and µ attained, the systematic risk factors X can now be drawn from
N(µ, I). To compensate for the shifted distribution, the estimator of the tail probability
becomes

1{L>Lα}e
−µTX+µTµ/2, (3.22)

where the added term e−µ
TX+µTµ/2 is the likelihood ratio relating the density of the shifted

distribution to the original standard normal distribution (Glasserman and Li, 2005).

3.3 Cholesky decomposition

Cholesky decomposition is a method for writing a matrix as a product of another matrix
and its transpose. The definitions needed are stated below before stating the theorem for
the Cholesky decomposition.

Definition 3.3.1. A matrix A = [aij ] ∈Mn is Hermitian if A = A∗.

Definition 3.3.2. A Hermitian matrix A ∈ Mn is positive definite if x∗Ax > 0 for all
non-zero x ∈ Cn. It is positive semidefinite if x∗Ax ≥ 0 for all nonzero x ∈ Cn.
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Theorem 3.3.1 (Cholesky decomposition). Let A ∈Mn be Hermitian. Then A is positive
semidefinite (respectively, positive definite) if and only if there is a lower triangular matrix
L ∈ Mn with non-negative (respectively, positive) diagonal entries such that A = LL∗. If
A is positive definite, L is unique.

For the proof of the theorem and more theory on Cholesky decomposition we refer to Horn
and Johnson (2012).

The following theorem builds upon the Cholesky decomposition and will be needed later
in this thesis when the models for sector concentration are presented.

Theorem 3.3.2. Let ε be a random vector with identically independent normally dis-
tributed elements and let L be the matrix in the Cholesky decomposition of a hermitian
positive semidefinite matrix A. Then Lε will be random variables with zero mean and unit
variance but where the internal correlations of the random variables will be equal to the
matrix A.

The proof can be seen in equation 3.23 below,

var[Lε] = E[(Lε)(Lε)∗]− E[Lε]E[Lε]∗

= E[(Lε)(Lε)∗]− LE[ε]E[ε∗]L∗

= E[Lεε∗L∗]

= LE[εε∗]L∗

= LL∗

= A.

(3.23)

3.4 A series expansion for the bivariate normal integral

The bivariate cumulative normal distribution function is defined as

N2(x, y, ρ) =

∫ x

−∞

∫ y

−∞
n2(u, v, ρ)dudv, (3.24)

where the bivariate normal density is given by

n2(u, v, ρ) =
1

2π
√

1− ρ2
exp

(
− 1

2

u2 − 2ρuv + v2

1− ρ2

)
. (3.25)

The tetrachoric series is a standard procedure for calculating the bivariate normal distri-
bution function (Vasicek, 1998)

N2(x, y, ρ) = N(x)N(y) + n(x)n(y)
∞∑
k=0

1

(k + 1)!
Hek(x)Hek(y)ρk+1, (3.26)

where N(·) is the cumulative normal distribution function, n(·) is the normal density
function and

Hek(x) =

[k/2]∑
i=o

k!

i!(k − 2i)!
(−1)i2−ixk−2i, (3.27)

are the Hermite polynomials.

It should be noted that the tetrachoric series in equation 3.26 converges only slighter faster
than a geometric series with quotient ρ and is therefore not very practical to use when ρ is
large in absolute value. An alternative series that converges approximately as a geometric
series with quotient (1− ρ2) is given in Vasicek (1998).
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Chapter 4

Credit concentration risk under FI

As previously stated, the capital requirement for credit risk calculated under Pillar 1 does
not take credit concentration risk into account. Instead concentration risk is considered
when calculating the capital requirement in Pillar 2. One of many tasks of the Swedish
FI is to control that banks consider the credit concentration risk and as a part of this
FI has proposed their own models to be used for calculating the capital requirement for
concentration risk (Finansinspektionen, 2014).

4.1 Name concentration risk under FI

FI proposes two methods to calculate the capital requirement for name concentration risk;
both will be presented below. The first method is for banks using the standardized ap-
proach to calculate the capital requirement for credit risk while the second method is for
banks using the IRB approach. The second method is more finely calibrated than the first
method but requires more extensive data material, which firms using the Standardized
approach cannot be assumed to be able to provide.

The first method, the standardized approach, uses the Herfindahl index of the 30 largest
exposures (Finansinspektionen, 2014). Given that EADi is the i:th largest exposure, the
Herfindahl index can be calculated as

HIname =
30∑
i=1

σ2
i , (4.1)

where σi is the fraction of exposure i and the total exposure for the 30 largest exposures

σi =
EADi∑30
j=1EADj

. (4.2)

In order to take into account how large the proportion of the 30 largest exposures are of
the entire portfolio the Adjusted Herfindahl (AHI) index is used by FI. For a portfolio of
totally N exposures this measure is found according to

AHI = HIname ·
∑30

i=1EADi∑N
i=1EADi

. (4.3)



18 Chapter 4. Credit concentration risk under FI

Finally, FI uses the AHI to calculate the captial requirment pSAname as a percentage of the
credit risk capital requirement of pillar 1 and the formula is given as (Finansinspektionen,
2014),

pSAname = 9(1− exp(−18 ·AHI)). (4.4)

The second approach to calculate the capital requirement for name concentration risk
is based on the results from Gordy and Lütkebohmert (2013). The model proposed is
formulated in the CreditRisk+ framework, a credit risk model that assumes a gamma
distribution for the systematic risk factor (Gordy and Lütkebohmert, 2013). FI does not
use the full expression found in Gordy and Lütkebohmert but rather a simplified version.
The capital requirement is calculated using the following equation,

pGLname =
100

2K2

N∑
i=1

s2
i (0.25 + 0.75LGDi) · (4, 83(Ki +Ri)−Ki). (4.5)

The total number of exposures are N and LGDi is the loss given default of the i:th expo-
sure. The rest of the parameters in equation (4.5) are presented below. The exposure at
default for the i:th exposure is EADi, ELi is the expected loss and ULi is the unexpected
loss for the i:th exposure (Finansinspektionen, 2014).

Ri =
ELi
EADi

Ki =
ULi
EADi

K =

∑N
i=1 ULi∑N
i=1EADi

si =
EADi∑N
i=1EADi

.

The capital requirement for name concentration pGLname is again given as a percentage of
the capital requirements for credit risk under Pillar 1.

4.2 Sector concentration risk under FI

The second concentration risk considered is sector concentration which FI divides into
industry and geographical concentration. For industry concentration the systematic risk
factor is industry specific, meaning that obligors belonging to the same industry sector will
share a common systematic risk factor. The same is true for geographical sector concen-
tration but the risk factors will now be common for the obligors in the same geographical
sectors.

To find the capital requirement for industry concentration risk, FI uses the HI calcu-
lated for the 12 industry sectors considered by FI. These sectors are: credit institutions;
housing loans; other lending to households; real estate activities; commerce; hotels and
restaurants; construction; manufacturing; transportation; forestry and agriculture; other
service activities; and other corporate lending. The method to find the HI is much the
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same as described above in the case of name concentration. However there are some im-
portant differences, the summarization is in this case done over the twelve industry sectors
for a slightly different σi. The HI for industries is thus written as,

HIind =

12∑
i=1

σ2
i , (4.6)

where σi this time is found as the total exposure to sector i divided by the total exposure
of the entire portfolio. This means that σi indicates the share sector i has in the portfolio.
Given the HIind, the capital requirement is then calculated as

pind = 8(1− exp(−5 ·HI1.5
ind)). (4.7)

To find the capital requirement for geographical sector concentration risk the same kind
of calculation as for industry concentration is applied by FI. The Herfindahl index is
calculated as in equation 4.6 but the sectors are now decided by the geographical regions
defined by FI. The capital requirement is found as

pgeo = 8(1− exp(−2HI1.7
geo)). (4.8)

The 16 geographical sectors considered by FI are Sweden, Norway, Denmark, Finland,
Estonia, Latvia, Lithuania, Germany, Poland, Great Brittain, rest of Europe, Russia,
Japan, North America and other countries.
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Chapter 5

Methods for measuring Name
concentration

While FI uses the methods presented in Chapter 4, a bank may choose internal methods
to calculate the required capital for concentration risk. By allowing internal methods
it is possible for a bank to customize the calculations to the bank’s specific risks and
conditions. However, FI states that internal models are often complicated and can give
rise to an increased model risk and that the result from an internal method should not
differ too much from the result of FI’s method (Finansinspektionen, 2014). In this chapter
two suggestions on alternative methods to calculate name concentration risk capital are
presented.

5.1 Full Monte Carlo

The first method chosen is the Full Monte Carlo (FMC) building on the theory presented
in section 3.1 and 3.2. The value to be estimated is the VaR at a 99.9% level and following
the theory of using MC to estimate a quantile, the loss is to be represented by an empirical
loss distribution. To reduce the variance and find a converging estimation of the VaR the
IS-approach suggested by Glasserman and Li (2005) is implemented. The theory of the IS
is presented in a vectorized form but in the case of risk estimation for name concentration
there is only one systematic risk factor. The steps presented below are followed when
implementing the FMC method:

• Implement the IS according to section 3 and find a suitable µ. The IS is applied
only to the systematic risk factor and the exponential twisting is therefore not im-
plemented.

• Draw the idiosyncratic risk factors ξi from a standard normal distribution and the
systematic risk factor X from a normal distribution with mean µ and unit variance.

• The asset return Yi is calculated for each obligor according to equation 2.8.

• The calculated asset return is compared to the PD threshold specified for each
obligor. Default occurs if Yi < ci is true and as can be seen in equation 2.7,
ci = N−1(PDi). The loss for the defaulting obligors is calculated as LGDi · EADi.
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The total loss is calculated as the sum of all individual losses, that is

Loss =
M∑
i=1

LGDi · EADi · 1{Yi<N−1(PDi)}. (5.1)

• To account for shifting in the distribution of the systematic risk factor, the VaR is
found in equation 3.8 using α = 99.9%. The UL is then given from equation 2.12.

5.2 Partial Portfolio Approach

This section describes the Partial Portfolio Approach (PPA) suggested by Grippa and
Gornicka (2016). It is very similar to the method suggested by Higo (2006) and in this
thesis features of both models will be implemented. The main idea of the PPA is to give
an estimation of the VaR that is not to computationally heavy but that at the same time
addresses the fact that real life portfolios are not infinitely granular. This is done by
splitting the portfolio into two separate sub-portfolios. The first portfolio, henceforth re-
ferred to as portfolio A, is based on the M largest exposures and will require a granularity
adjustment. The second sub-portfolio, henceforth referred to as portfolio B, is the rest
of the exposures in the portfolio and is assumed to be diversified. The authors justify
this division by arguing that the granularity adjustment is the most important for the
largest exposures. By dividing the portfolio in this way the simulations that are extra
computationally heavy will be performed only for the M largest exposures belonging to
portfolio A instead of the entire portfolio.

The steps to implement the PPA are described below but before starting, the number of
exposures in each portfolio needs to be decided. It needs to be taken into account that
there are enough obligors in portfolio A to ensure that the calculated VaR is close to the
VaR for the full portfolio. At the same time, the number of obligors in portfolio A can not
become too large as this will reduce the computational gain. The literature proposes two
different ways of defining the sub-portfolios. Grippa and Gornicka classify as large, thus
belonging to portfolio A, those obligors whose exposure share in the total portfolio is above
a certain threshold. The threshold is chosen between 0 and 100 percent. A threshold at 0%
will put all obligors in the non-granular sub-portfolio A while a threshold at 100% means
that all belong to portfolio B. Thus, the higher the threshold the fewer exposures will be
classified as large. Grippa and Gornicka do not make any general recommendations on
how to choose the threshold. A second suggestion comes from Higo (2006), who proposes
a way of defining the sub-portfolios where the sum of exposure weights in the granular
sub-portfolio B is studied to find a sufficiently fine grained sub-portfolio B,∑N

i=M+1EAD
2
i(∑N

i=1EADi

)2 =

N∑
i=M+1

σ2
i ≈ 0. (5.2)

It is not known how small the sum of exposure weights squared in sub-portfolio B should
be to have an accurate approximation of the VaR of the entire portfolio. The two different
ways of choosing the threshold will be analyzed. The goal is to find a measure that gives
good result for portfolios with different levels of sector concentration. Good results are
defined as results close to the results of a full Monte Carlo simulation but where the num-
ber of exposures in portfolio A is relatively small compared to the number of exposures in
portfolio B.
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Assuming that there are a total of N obligors and M of these are in portfolio A, the PPA
can be implemented in much the same way as for the FMC but with adjustments described
in the implementation steps below:

• As for the FMC, implement the IS according to section 3 and find a suitable µ. The
IS is applied only to the systematic risk factor and the exponential twisting is not
implemented.

• Draw the systematic risk factor X from the distribution N(µ, 1).

• For each exposure in portfolio A draw the idiosyncratic risk factor ξi from a standard
normal distribution.

• The asset return Yi is calculated for each obligor in portfolio A as in equation (2.8).

• The calculated asset return is compared to the PD threshold specified for each
obligor. If Yi < ci is true, meaning that obligor i defaults, the loss for the de-
faulting obligors in portfolio A is calculated as LGDi · EADi. The total loss in
portfolio A is calculated as the sum of all individual losses, that is

LossA =
M∑
i=1

LGDi · EADi · 1{Yi<N−1(PDi)}. (5.3)

• As sub-portfolio B is assumed to be diversified the loss in this portfolio is calculated
as the sum of the conditional expected losses according to

LossB =

N−M∑
i=1

LGDi ·N
[
N−1(PDi)− wi ·X√

1− w2
i

]
· EADi. (5.4)

• The total loss is calculated as

Loss = LossA + LossB. (5.5)

• The VaR is found as in equation 3.8 using α = 99.9%. The UL is then found as in
equation 2.12.

To further increase the speed of the method, Higo (2006) proposes to segment the obligors
in subportfolio B into K ×H homogeneous groups of PDi and wi. Equation 5.4 can then
be rewritten as

LossG =
K∑
k=1

H∑
h=1

N[N−1(PDgroup
k )− wgrouph ·X√

1− (wgrouph )2

] ∑
i∈{k,h}

EADiLGDi

 , (5.6)

where PDgroup
k and wgrouph denote the default probability of group k(k = 1, 2, ...,K) and

the correlation of group h(h = 1, 2, ...,H).
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Chapter 6

Methods for measuring Sector
concentration

In this chapter the models chosen for sector concentration risk are presented. As sec-
tor concentration in a portfolio implies that there are several underlying systematic risk
factors, the multi-factor Merton model is used to implement the chosen methods.

6.1 Multi-factor Merton Model

Consider a portfolio of loans to M distinct borrowers. As before, PDi is the probability
of default for borrower i and default happens when a variable Yi describing the finan-
cial well-being of borrower i falls below a threshold. Assuming that variables {Yi} are
standard normally distributed the default threshold for an individual borrower is given
by N−1(PDi). Borrower i’s standardized asset return depends linearly on S normally
distributed systematic risk factors, Ks (s = 1, ..., S) with a full-rank correlation. Each
borrower has its own specific combination of these factors Xi (known as a composite
factor)

Yi = wiXi +
√

1− w2
i ξi (6.1)

where ξi is the idiosyncratic risk which also has a standard normal distribution.

In the single factor Merton model the correlation structure of each firm is completely
described by the correlation ρ, while in the multi-factor model we distinguish between
inter-sector correlation ρinter and intra-sector correlation ρintra. The correlation between
the systemic risk factors are described by the inter-sector correlation and the intra-sector
correlation characterizes the sensitivity of the asset return to the composite factor.

Assume that the S original correlated systematic factors are decomposed into S indepen-
dent normal systematic factors Zk (k = 1, ..., S). The relation between {Zk} and the
composite factor is given by

Xi =

S∑
k=1

αikZk. (6.2)

To ensure that Xi has unit variance it must hold that
∑S

k=1 α
2
ik = 1. The factor weights

αik may be calculated via Cholesky decomposition of the inter-sector correlation matrix,
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as stated in theorem 3.3.2.

If borrower i defaults, the amount of loss is determined by its loss-given default stochas-
tic variable ˜LGDi with mean µLGDi and standard deviation σLGDi . It is assumed that
{ ˜LGDi} are independent between themselves as well from all other variables in the model.
Portfolio loss L can be written as a sum of individual portfolio losses Li

L =
N∑
i=1

Li =
N∑
i=1

EADi1{Yi≤N−1(PDi)}
˜LGDi (6.3)

where 1{·} is the indicator function. If the portfolio is large enough to be considered
fine-grained the portfolio losses are driven primarily by the systematic factors as the
idiosyncratic risk is diversified away and equation 6.2 can be replaced by the limiting
loss distribution of an infinitely fine-grained portfolio

L∞ = E[L|{Zk}] =

N∑
i=1

EADiµLGDiN
[N−1(PDi)− wi

∑S
k=1 αikZk√

1− w2
i

]
. (6.4)

Equation 6.4 is much simpler than equation 6.2 but Monte Carlo simulation of the sys-
tematic factors is still required when the number of factors is greater than one.

6.2 Implementation of a multi-factor Merton Model

We will implement a version of the multi-factor Merton model where it is assumed that
the asset return of obligor i in sector s can be represented by

Ys,i = wiKs +
√

1− w2
i ξi (6.5)

where Ks is the sector risk factor (with s = 1, ..., S). So the difference from 6.1 is that
instead of having its own specific combination of the systematic risk factors the asset
return of each borrower only depends on one sector factor. In the same way as in 6.2 we
may present the correlated sector risk factors Ks as a combination of independently and
standard normally distributed factors Zk(k = 1, ..., S),

Ks =
S∑
k=1

αs,kZk (6.6)

in which the factor weights αs,k are calculated via a Cholesky decomposition of the inter-
sector correlation matrix. This means that the inter-sector correlation is given as

ρinters,t = Corr(Ks,Kt) =

S∑
k=1

αs,k · αt,k (6.7)

From 6.1 and 6.2 the asset correlation between i in sector s and obligor j in sector t is
given by

Corr(Ys,i, Yt,j) =


1 if s = t and i = j

wi · wj if s = t and i 6= j

wi · wj ·
K∑
k=1

αs,k · αt,k if s 6= t and i 6= j

(6.8)



6.3. Intra-correlations in the multi factor model 27

From our definitions we divided the concentration risk into two parts, name and sector
concentration. Name concentration arises in non-granular portfolios where the idiosyn-
cratic risk cannot be ignored whereas sector concentration arises in portfolios that are not
well diversified across sectors. In this thesis we have divided our methods into models
for calculating an add-on for name concentration and sector concentration respectively,
following the method of FI. Hence for our multi-factor model we are only interested in the
risk coming from the sector distribution and will assume that the portfolio is fine grained
so that the loss can be calculated from 6.4. In each Monte Carlo step then only the sector
factors need to be simulated. If the combined concentration risk arising from both sector
and name concentration are of interest the simulations are easily extended to incorporate
name concentration as well.

As in the case of sub-portfolio B in the PPA method it is possible to rewrite equation
6.4 as follows when the obligors are segmented into S ×K ×H homogeneous groups with
respect to s, PDi and wi.

L∞ =
S∑
s=1

K∑
k=1

H∑
h=1

N[N−1(PDgroup
k )− wgrouph ·Xs√
1− (wgrouph )2

] ∑
i∈{s,k,h}

EADiLGDi

 (6.9)

where again PDgroup
k and wgrouph denote the default probability of group k(k = 1, 2, ...,K)

and the correlation of group h(h = 1, 2, ...,H).

6.3 Intra-correlations in the multi factor model

Special attention needs to be paid to the choice of the intra-correlations in the multi fac-
tor model. In the single factor model a suggestion for the correlation is proposed by the
Basel committee, see equation 2.13. The Basel correlation formula is calibrated on well-
diversified portfolios (BCBS, 2006). This implies that the correlation formula is chosen in
such way that the single-risk factor model leads to a good approximation of the risk based
on the full correlation structure in a multi factor model.

Using the Basel correlation formula for the intra-sector correlations in a multi-factor model
is equivalent to saying that the regulatory capital calculated in Pillar 1 is an upper barrier
of the true risk. The Pillar 1 capital could only be an upper barrier if only one sector exists
or if all sectors are perfectly correlated. In all other cases using the Basel correlations in
a multi factor model will lead to an effect of sector diversification, which leads to a lower
capital requirement compared to under Pillar 1. Cespedes et al. (2006) did the above and
used the Basel correlation in their analysis. Afterwards they recognized the criticism and
mentioned that it should be possible using some scaling for the intra-sector correlations. A
scaling up of the intra-sector correlations is suggested by Hibbeln (2010). Hibbeln found
the following intra-sector correlation to be a good match for portfolios with different
quality distributions:

ρi = 0.185 · 1− exp(−50 · PDi)

1− exp(−50)
+ 0.34 ·

(
1− 1− exp(−50 · PDi)

1− exp(−50)

)
. (6.10)

These new intra-sector correlations will be used for all multi-factor models in this thesis.
For more information of the derivation of this formula we refer to Hibbeln (2010).
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6.4 Pykhtin’s method

In his paper ”Multi-factor adjustment” published in 2004, Michael Pykhtin presents an
analytical method for calculating portfolio VaR in the multi-factor Merton framework. The
target quantity is the quantile at a confidence level q of the portfolio loss L, tq(L). However,
there is no straight forward analytical expression of this quantile in the multi-factor model
and Pykhtin therefore assumes that a random variable L̄ can be constructed. The variable
is constructed in such way that its quantile tq(L̄) can be calculated analytically and is close
enough to tq(L). The loss can then be seen as L = L̄ + U where U is the perturbation.
To describe the scale of the perturbation Pykhtin also introduce a perturbed variable
Lε = L̄+ εU . For high enough confidence levels Martin & Wilde (2002) showed that tq(L)
can be calculated via the Taylor expansion in powers of the perturbation variable ε around
tq(L̄). By keeping terms up to quadratic the quantile can thus be expressed as,

tq(L) = tq(L̄) +
dtq(Lε)

dε

∣∣∣
ε=0

+
1

2

d2tq(Lε)

dε2

∣∣∣
ε=0

(6.11)

The first two derivatives of VaR were derived in Gourieroux, Laurent, and Scaillet (2000).
The first derivative is given by the expectation of the perturbation conditional on L̄ =
tq(L̄):

dtq(Lε)

dε

∣∣∣
ε=0

= E
[
U |L̄ = tq(L̄)

]
(6.12)

while the second derivative is

d2tq(Lε)

dε2

∣∣∣
ε=0

= − 1

fL̄(l)

d

dl
(fL̄(l)V [U |L̄ = l])

∣∣∣
l=tq(L̄)

(6.13)

where fL̄(·) is the probability density function for L̄ and var[U |L̄ = l] is the variance of U
conditional on L̄ = l. For a derivation of the derivative expressions the reader is referred
to Gourieroux, Laurent, and Scaillet (2000).

As equation 6.11 gives an expression to calculate tq(L) the main problem is now to find
a suitable L̄. As the target is to find an analytical expression of tq(L̄), the variable L̄
can not be expressed in the multi-factor model and is therefore defined in the one-factor
framework, via the limiting loss distribution, as

L̄ = l(X̄) =

N∑
i=1

EADiµLGDiPDi(X̄) (6.14)

where PDi(X̄) is the conditional default probability given by

PDi(x) = N

[
N−1(PDi)− aix√

1− a2
i

]
(6.15)

and ai is the effective factor loading for borrower i, X̄ is the single systematic risk factor
and PDi is the unconditional PD for borrower i. The systematic risk factor has a standard
normal distribution. As we are now in the one factor framework there will be only one
systematic risk factor compared to the multiple risk factors in the multi factor framework.
Pykhtin further states that since L̄ is a deterministic monotonically decreasing function
of X̄ it is possible to calculate the quantile of L̄ at level q as the function value at X̄ =
N−1(1− q):

tq(L̄) = l(N−1(1− q)) =
N∑
i=1

EADiµLGDiPDi(N
−1(1− q)). (6.16)
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Using that the derivatives in equations 6.12 and 6.13 are given by expressions conditional
on L̄ = tq(L̄) and that this is equivalent to conditioning on X̄ = N−1(1−q), the derivatives
in equation 6.11 can now be expressed as

dtq(Lε)

dε

∣∣∣
ε=0

= E
[
U
∣∣∣X̄ = N−1(1− q)

]
(6.17)

and
d2tq(Lε)

dε2

∣∣∣
ε=0

= − 1

n(x)

d

dx
n(x)

v(x)

l′(x)

∣∣∣
x=N−1(1−q)

(6.18)

where v(·) is the conditional variance of U defined as v(y) = var[U |X̄ = x], l′(·) is the first
derivative of l(·) and n(·) is the standard normal density, which is the probability density
of X̄.

As L̄ is defined in the one factor model, L̄ needs to be related to the portfolio loss L defined
in the multi factor framework. This is done by relating the single systematic factor X̄ to
the original systematic factors {Zk}. Pykhtin assumes there is a linear relationship given
by

X̄ =

S∑
k=1

bkZk (6.19)

where the coefficients must satisfy
∑S

k=1 b
2
k = 1 to preserve unit variance of X̄. To

complete the specification of L̄ we need to specify the effective factor loadings {ai} and
the systematic factor coefficients {bk}. In order to specify these coefficients Pykhtin starts
by requiring that L̄ = E[L|X̄]. As Pykhtin states, this condition is intuitively appealing
and it will also guarantee that the first-order term in the Taylor series, given in equation
6.17, vanishes for any confidence level q. To calculate the expected conditional loss, the
composite risk factor for borrower i is represented as

Xi = ρ̄iX̄ +
√

1− ρ̄2
i ηi, (6.20)

where ηi is a standard normal variable independent of the systematic risk factor X̄ and ρ̄i
is the correlation between Xi and X̄ given by

ρ̄i ≡ cor(Xi, X̄) =
S∑
k=1

αikbk, (6.21)

where α is the same as in equation 6.2. With these notations the asset return given by
equation 6.1 can be rewritten as

Yi = wiρ̄iX̄ +
√

1− (wiρ̄i)2ξ, (6.22)

where ξ is a standard normal variable independent of X̄. It then follows that the condi-
tional expectation of L is

E[L|X̄] =
∑

EADi · µLGDi ·N
[N−1(PDi)− wiρ̄iX̄√

1− (wiρ̄i)2

]
. (6.23)

By comparing equation 6.14 with equation 6.23 we see that L̄ = E[L|X̄] if and only if

ai = wiρ̄i = wi

N∑
k=1

αikbk. (6.24)
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Let us now assume that the effective factor loadings {ai} are given by equation 6.24 and
that the first derivative of VaR is zero so that the correction to tq(L̄) is only given by the
second derivative of VaR given in equation 6.18. Unlike the choice of the effective factor
loadings {ai} the choice of {bk} is not critical to the presented method. As {bk} specifies
the zeroth-order term tq(L̄) the method will work with many alternative specifications
as long as they yield tq(L̄) close enough to the unknown target function tq(L). To do
this the ideal solution would be to find a set {bk} that minimizes the difference between
tq(L̄) and tq(L). This is however complicated and Pykhtin gives an easier specification of
{bk}. Pykhtin’s solution builds on that intuitively one would expect the optimal single
risk factor X̄ to have as much correlation as possible with the composite risk factors {Xi}.
Mathematically this translates to the following maximization problem

max
{bk}

(
N∑
i=1

cicor(X̄,Xi)

)
such that

S∑
K=1

b2k = 1 (6.25)

where the condition comes from equation 6.19 to assure unit variance of X̄. By using
equation 6.21 we find that the solution to this maximization problem is given by

bk =
N∑
i=1

(ci/λ)αik (6.26)

where the positive constant λ is the Lagrange multiplier chosen so that {bk} satisfy the
constraint. There is no clear way of choosing the coefficients {ci} and Pykhtin tries several
different specifications but finds the following to be one of the best-performing choices:

ci = EADi · µLGDi ·N

[
N−1(PDi) + wiN

−1(α)√
1− w2

i

]
. (6.27)

To summarize, the loss quantile tq(L) can be expressed analytically, by introducing the
r.v. L̄, as in equation 6.11. However this expression can be simplified as described above
by requiring that L̄ = E[L|X̄], which yields that the quantile can now be expressed as,

tq(L) = tq(L̄) +
1

2

d2tq(Lε)

dε2

∣∣∣
ε=0

. (6.28)

6.4.1 Multi-factor adjustment

The multi-factor adjustment is defined, using equation 6.28, as

∆tq ≡ tq(L)− tq(L̄) =
1

2

d2tq(Lε)

dε2

∣∣∣
ε=0

. (6.29)

By calculating the derivative in equation 6.18 and using the relation n′(x) = −xn(x),
equation 6.29 can be rewritten as

∆tq = − 1

2l′(x)

[
v′(x)− v(x)

(
l′′(x)

l′(x)
+ x

)]∣∣∣∣∣
x=N−1(1−q)

. (6.30)

The first and second derivatives of the function l(x) are obtained by differentiation of
equation 6.14,

l′(x) =
N∑
i=1

EADiµLGDiPD
′
i(x) (6.31)
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and

l′(x) =
N∑
i=1

EADiµLGDiPD
′′
i (x) (6.32)

where PD′i(x) and PD′′i (x) are the first and second order derivatives of the conditional
probability of default. The conditional probability of default is given in equation 6.15 and
the differentiations yield

PD′i(x) = − ai√
1− a2

i

n

[
N−1(PDi)− aix√

1− a2
i

]
(6.33)

and

PD′′i (x) = − a2
i

1− a2
i

N−1(PDi)− aix√
1− a2

i

[
N−1(PDi)− aix√

1− a2
i

]
(6.34)

The derivative of the conditional variance v(x) will only be presented in this report and
the reader is referred to the full article of Pykhtin (2004) for the derivation. Pykhtin
divides v(x) into two parts, one part can be seen as quantifying the difference between the
multi- and single-factor limiting loss distribution and is given by

v∞(x) =
N∑
i=1

N∑
j=1

EADiEADjµLGDiµLGDj[
N2

(
N−1[PDi(x)], N−1[PDj(x)], ρXij

)
− PDi(x)PDj(x)

]
(6.35)

where N2(·, ·, ·) is the bivariate normal cumulative distribution function and ρij is the
element of a correlation matrix used in Pykhtin. The element in row i, column j of the
correlation matrix ρX is given by

ρXij =
rirj

∑S
k=1 αikαjk − aiaj√

(1− a2
i )(1− a2

j )
. (6.36)

The second term of v(x) can be seen as a term describing the effect that a finite number
of obligors will have on the portfolio and is expressed as,

vGA(x) =

N∑
i=1

EAD2
i(

µ2
LGDi

[
PDi(x)−N2

(
N−1

[
PDi(x)

]
, N−1

[
PDi(x)

]
, ρXii

)]
+ σ2

LGDiPDi(x)
)
. (6.37)

The derivatives of equations 6.35 and 6.37 are found as

v′∞(x) = 2
N∑
i=1

N∑
j=1

EADiEADjµLGDiµLGDjPD
′
i(x)[

N

(
N−1[PDj(x)]− ρXijN−1[PDi(x)]√

1−
(
ρXij
)2

)
− PDj(x)

]
(6.38)
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and

v′GA(x) =
N∑
i=1

EAD2
i PD

′
i(x)(

µ2
LGDi

[
1− 2N

(
N−1[PDi(x)]− ρXiiN−1[PDi(x)]√

1−
(
ρXii
)2

)]
+ σ2

LGDi

)
. (6.39)

As vGA(x) describes the effect of the finite number of loan in the portfolio, vGA vanishes
as the number of counterparties N →∞.

By dividing the conditional variance v(x) into the two parts stated above, Pykhtin calcu-
lates the the multi-factor adjustment as ∆tq = ∆t∞q + ∆tGAq . Both parts are calculated
using equation 6.30 but the first uses only v∞ and the second part only vGA. As vGA
can be seen as the granularity adjustment this term does not need to be included if the
portfolio is assumed to be well diversified. Following the discussion in section 6.2 we are
only interested in the add-on corresponding to the sector concentration. Hence we will
calculate the sought for V aR as the quantile tq(L) = tq(L̄) + ∆t∞q using the coefficients
and derivatives found in this section.
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Data

To evaluate our proposed models we will use simulated data to construct plausible loan
portfolios. The simulated portfolios will contain different levels of concentration risk and
have some features similar to those found in real banking portfolios. Different portfolios
will be simulated for testing the models for name and sector concentration. The portfolios
for testing the level of name concentration risk will differ in the distribution of EAD and
the portfolios used to test the models for sector concentration will differ in the distribution
between sectors. All portfolios will have common features and these, together with their
individual characteristics, will be presented in this chapter.

7.1 General characteristics of simulated portfolios

As all portfolios, regardless if they are used to test the models for name or sector concen-
tration, have some common characteristics. These will be presented before separating the
portfolios into name and sector portfolios. The first assumption made is that each portfolio
contains 10 000 counterparties and that each counterparty has only one loan. The size of
the portfolio is selected to operate in the same order of magnitude as any standard bank.
It is reasonable to assume counterparties with a single loan since if a portfolio consists of
counterparties with multiple loans, the loans may be grouped into one loan per counter-
party. For simplicity all counterparties are assumed to be big corporates and all loans are
assumed to have a maturity of one year. This means that the maturity adjustment in equa-
tion 2.14 becomes 1 and will thus not affect the calculation of the IRB capital requirement.

Each counterparty is given a rating from 1 to 7 where 1 is the best, corresponding to a
low probability of default. All counterparties with the same rating are assigned the same
PD, where the PDs reach from 0.03% to 15%. The choice of 0.03% as the lowest value
of PD is based on this being stated as the lowest possible PD in BCBS (2004b). The
distribution between rating classes can be found in figure 7.1. The rating distribution is
chosen in such way that there is a large number of counterparties with a good rating but
there is still enough counterparties in the higher rating classes to make the distribution
somewhat realistic.

There should be a dependence between EAD and PD in a portfolio as it is unlikely that
a counterparty with a high PD is granted a large loan. Instead the counterparties with a
low PD should have a better chance of obtaining a bigger loan. So in the creation of our
portfolios we start by assigning a rating according to the distribution in figure 7.1. The
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Figure 7.1: Rating distribution of simulated portfolios.

next step is then to assign an EAD given the rating and the overall distribution of EAD
for the portfolio that is wished. The EAD distribution of each portfolio will differ and will
be explained more closely in coming sections.

All exposures are given a LGD of 45%, which is based on BCBS (2004b) choosing this
level under the foundation approach for senior claims on corporates. We therefore find
this value for LGD suitable to use for all portfolios.

7.2 Portfolios containing name concentration

To test our models for calculating the name concentration risk we wish to create portfolios
with a varying degree of name concentration. This is done by simulating portfolios with
an increasing number of counterparties with large exposures. To measure the degree
of name concentration the Herfindahl Index is used. Portfolio 1 will have the largest
concentration, meaning that a few counterparties will have large exposures compared to
the rest of the portfolio exposures. The number of large exposures is then increased,
meaning that the name concentration will decrease, and Portfolio 5 will have the lowest
degree of concentration. So the five final portfolios will go from a high concentration to
a lower concentration. Table 7.1 shows the HI for each portfolio and in figure 7.2 the
sorted EAD values for each portfolio are plotted. As can be seen, the EAD is more evenly
distributed for an increasing portfolio number. Apart from the different distribution of
EAD all five portfolios follow the general setup established for the creation of portfolios
in this thesis.
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Figure 7.2: EAD distribution of simulated name portfolios.

HI

Name Portfolio 1 0.0497

Name Portfolio 2 0.0424

Name Portfolio 3 0.0368

Name Portfolio 4 0.0370

Name Portfolio 5 0.0378

Table 7.1: HI of the five simulated name portfolios. The HI is calculated
as defined by FI, that is HI is based on the 30 largest exposures of the

portfolio.

7.3 Portfolios containing sector concentration

7.3.1 Correlation matrices

Before describing the characteristics of the portfolios used to test the models for measuring
sector concentration risk, the correlation matrices for the correlation between sectors are
presented. In chapter 4 the sectors used by FI to calculate measures of industry and sector
concentration risk are presented and ideally these sectors would be used when simulating
portfolios. However, the correlation matrices available are not based on the same sector
division as the one used by FI. The matrices will be referred to as matrix A and matrix B.
Matrix A is defined as a mixture between geographical and industry sectors, for example
Europe Materials, and it is not possible to map the sectors at hand to those sectors used
by FI. As the model used by FI to measure sector concentration risk is based on the sectors
defined by FI it is not possible to apply FI’s models to portfolios simulated with sectors
from the correlation matrix A.

In an attempt to apply the models of FI on the sector portfolios correlation matrix B is
used. The sector division of matrix B does not correspond perfectly to the one defined by
FI for geographical sectors. To compensate for this the simulated portfolios will only con-
tain those sectors that are shared with the geographical sectors of FI. These are Sweden,
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Norway, Finland, Denmark, UK and North America.

The correlation matrices are calculated from publicly available industry/country indices
with data from 1991-01-31 to 2015-11-30.

7.3.2 Characteristics of portfolios

To test the models for measuring the amount of sector concentration we wish to create
portfolios with a varying degree of sector concentration. In contrast to the portfolios used
for name concentration, the EAD distribution will remain the same for all portfolios. The
used EAD distribution will be the same as seen in Portfolio 3 for name concentration.
This choice is based on portfolio 3 not having any extreme EAD distribution. Again HI
is used to measure the degree of concentration in each portfolio but it is now calculated
on a sector level. The portfolios are divided into two subgroups, the first group will be
simulated using the inter-sector correlations of matrix A and the second group will be
simulated using the inter-sector correlations of matrix B, meaning that FI’s methods can
be applied only to the portfolios in the second group.

In the first group four portfolios will be simulated, all with varying sector distribution.
The sector distribution of the first three portfolios is loosely based on the distribution pre-
sented on p. 189 in Hibbeln (2010). The sectors presented there do not perfectly match
the ones in matrix A but can still be used to get a sense of a plausible sector distribu-
tion. Portfolio 1 is the least concentrated and the level of concentration increases up until
Portfolio 4, which has the highest concentration. The counterparties in Portfolio 4 are
distributed only among two sectors. These sectors are the real estate sectors of Sweden
and Europe and this portfolio can therefore be seen as an representation of a real life real
estate portfolio. The sector distribution of the simulated portfolios in the first group can
be seen in figure 7.3 and the HI for each portfolio is found in table 7.2.
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Figure 7.3: Sector distribution of simulated sector portfolios.
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HI

Sector Portfolio 1 0.153

Sector Portfolio 2 0.206

Sector Portfolio 3 0.337

Sector Portfolio 4 0.548

Table 7.2: HI of the four simulated sector portfolios

In the second group all sectors are only geographically defined and this group will therefore
be referred to as the geographical sector portfolios. For the geographical sectors, three
portfolios will be simulated. As mentioned above, the sectors of the simulated geographical
portfolios must conform with those chosen by FI and not all geographical sectors can
therefore be included. The first of the geographical portfolios is the most diversified among
sectors and has a larger share in the Nordic countries as we considered this a more plausible
distribution for a Nordic loan portfolio. The other two geographical portfolios are divided
on only two sectors and will therefore have the same HI. However, the difference between
these portfolios is that Portfolio 2 is divided among two sectors with a relatively low inter-
sector correlation while the sectors of Portfolio 3 have a high inter-sector correlation. The
sector distributions of the geographical portfolios are found in figure 7.4 and the HI is
presented in table 7.3.
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Figure 7.4: Sector distribution of simulated geographical portfolios.
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HI

Geographical Portfolio 1 0.207

Geographical Portfolio 2 0.5

Geographical Portfolio 3 0.5

Table 7.3: HI of the four simulated geographical portfolios
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Chapter 8

Results

This chapter will present the results when applying the methods in previous chapters to
the simulated portfolios described in chapter 7. Both the add-on and the computational
time of each method is presented. The add-on is given as a percentage add-on to the IRB
capital requirement for credit risk under Pillar 1. The results are divided into one section
for each type of concentration risk.

Both types of credit concentration risk will be evaluated using full Monte Carlo simulation
and the importance sampling presented in section 3.2.1. However the exponential twisting
of PD will not be implemented, instead IS is only applied to the systematic risk factors.
This is due to the fact that the exponential twisting will require a new θ in each MC-step,
which becomes quite computationally burdensome. By implementing IS only on the sys-
tematic risk factors we still get a considerable reduction of variance but are only required
to solve for µ one time per simulation.

8.1 Results for name concentration

The results below are the results related to the FMC and the PPA described in section 5.
The results also include those of FI’s method for name concentration, which is presented
in section 4. The number of MC steps is set to 107 as this gives a percentage standard
deviation of 2.26 · 10−4, which is deemed to be small enough.

8.1.1 Choice of M

Before evaluating the PPA on the simulated name portfolios, the number of counterparties
in portfolio A, M , needs to be chosen. Different suggestions, henceforth called patterns,
for defining the size of portfolio A for each proposed method are presented in the tables
8.1 and 8.2. The resulting number of counterparties in portfolio A is found in Appendix A.
The accuracy as well as the computational time is taken into consideration when making
the choice. The method of Higo and the method of Grippa and Gornicka to choose M are
tested, both are presented in section 5.2.
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∑N
i=M+1 w2

i

Pattern 1 5 · 10−6

Pattern 2 10−5

Pattern 3 5 · 10−5

Pattern 4 10−4

Pattern 5 5 · 10−4

Pattern 6 10−3

Table 8.1: Higo: Definition of patterns for the Higo method. M is the
number of obligors in sub-portfolio A.

Threshold (%)

Pattern 1 0.005

Pattern 2 0.01

Pattern 3 0.05

Pattern 4 0.1

Pattern 5 0.3

Pattern 6 0.5

Table 8.2: Grippa and Gornicka: Definition of patterns for the Grippa
and Gornicka method.

In tables A.1 and A.2 it can be seen that the number of obligors in sub-portfolio A differs
between the two methods. Higo’s method puts fewer obligors in sub-portfolio A for the
first patterns but more obligors for the last patterns than Grippa and Gornicka’s method.
The methods have in common that the number of obligors in sub-portfolio A are reduced
for a higher pattern and that the later portfolios have more obligors in sub-portfolio A for
low patterns than the first portfolios.

The computational time for each pattern and portfolio is presented in Appendix A. The
computational time is reduced with M so the computational times will follow the same
structure as the numbers of obligors in sub-portfolio A, also presented in Appendix A.

The percentage deviation from the FMC-VaR is presented in tables 8.3 and 8.4. The de-
viance gets larger for each pattern as more obligors are put in portfolio B. The magnitude
of the deviance is of the same order for all portfolios and for almost all patterns for the
Higo method. With Grippa and Gornicka’s method the size of the deviance varies more
across portfolios. The limit 0.1 is set and all deviances with an absolute value smaller
than the limit are deemed to be small enough. For Higo’s method pattern 1 and 2 give
values smaller than 0.1 for all portfolios. In the case of Grippa and Gornicka’s method the
approved patterns are pattern 1 and 2 for all portfolios. Pattern 3 gives enough accuracy
for the first two portfolios and for portfolio 1 even pattern 4 is accurate enough.
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Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

Pattern 1 -0.0103 -0.0082 -0.0161 -0.0235 -0.0475

Pattern 2 -0.0762 -0.0196 -0.0465 -0.0357 -0.0254

Pattern 3 -0.1275 -0.1350 -0.2042 -0.1253 -0.1401

Pattern 4 -0.1997 -0.3354 -0.2646 -0.3328 -0.3337

Pattern 5 -1.0547 -1.2789 -1.2734 -1.2497 -1.0105

Pattern 6 -1.9592 -2.4524 -1.9530 -1.7621 -1.2369

Table 8.3: Higo: Percentage deviance from the FMC-VaR for all com-
bination of patterns and portfolios. The deviances with an absolute value

below 0.1 are marked in bold font.

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

Pattern 1 -0.0084 -0.0616 -0.0431 0.0097 -0.0168

Pattern 2 -0.0040 -0.0615 -0.0534 -0.0035 0.0077

Pattern 3 -0.0181 -0.1387 -0.2131 -0.3206 -0.4159

Pattern 4 -0.0382 -0.3055 -1.0095 -1.2452 -1.0914

Pattern 5 -1.0845 -2.3914 -1.7488 -1.4275 -1.2543

Pattern 6 -4.1188 -3.0478 -2.0473 -1.7518 -1.3173

Table 8.4: Grippa and Gornicka: Percentage deviance from the FMC-
VaR for all combination of patterns and portfolios. The deviances with an

absolute value below 0.1 are marked in bold font.

The choice of M is discussed further in chapter 9. When testing the PPA on the simulated
portfolios M is chosen according to Higo’s pattern 2 for all portfolios.

8.1.2 Results for name portfolios

Following the previous results the PPA is evaluated on all portfolios using the choice of
M from Higo’s Pattern 2. The method of FI, presented in equation 4.5, is also tested on
the portfolios as well as the FMC.

Add-on Lütkebohmert(%) Time

Portfolio 1 17.7142 < 0.1s

Portfolio 2 9.3920 < 0.1s

Portfolio 3 4.0867 < 0.1s

Portfolio 4 3.2909 < 0.1s

Portfolio 5 2.4853 < 0.1s

Table 8.5: Add-on for name concentration risk calculated using FI’s
method presented together with the calculation time. The add-on is given

as a percentage of the capital requirement for credit risk under Pillar 1.
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Add-on FMC(%) Time

Portfolio 1 12.5138 55 min 47 s

Portfolio 2 5.1200 49 min 42 s

Portfolio 3 1.8159 52 min 18 s

Portfolio 4 0.4643 52 min 3 s

Portfolio 5 0.2731 50 min 23 s

Table 8.6: Add on for name concentration risk calculated using full Monte
Carlos simulations presented together with the calculation time. The add-
on is given as a percentage of the capital requirement for credit risk under

Pillar 1.

By comparing the results from FI’s method (table 8.5) with the result from the FMC
(table 8.6) it is clear that the FMC consistently produces lower results than FI. That
lower concentration gives lower add-ons is true for both methods as the add-on for the
later portfolios is substantially lower than for the first portfolios for both methods.

Add-on PPA(%) Time

Portfolio 1 12.5043 7 min 16 s

Portfolio 2 5.1190 8 min 41 s

Portfolio 3 1.8151 10 min 18 s

Portfolio 4 0.4641 11 min 37 s

Portfolio 5 0.2730 13 min 1 s

Table 8.7: Add-on for name concentration risk calculated using the Partial
Portfolio Approach with pattern 2 presented together with the calculation
time. The add-on is given as a percentage of the capital requirement for

credit risk under Pillar 1.

The goal of PPA is to produce results similar to those of FMC but with a shorter compu-
tational time. The results in table 8.7 agree well with the results from FMC in table 8.6
and the computational time is notably reduced.

8.2 Results for sector concentration

Below the results for the chosen methods to calculate the capital requirement due to sector
concentration risk are presented. The results are divided according to the sector and the
geographical sector portfolios in the same way as in chapter 7. The Pykhtin method is
tested for both type of portfolios and three different versions of the Pykhtin method are
tested. The first method is the one explained in section 6.4 and the second method is
almost the same but utilizes the bivariate approximation in section 3.4. The third version
of Pykhtin uses the grouping in section 6.2. As the bivariate normal distribution becomes
computationally heavy when implemented in MATLAB the bivariate approximation and
the grouping are used to try and reduce the computational time. The approximation will
be implemented using both the five first and the ten first Hermitian polynomials. As stated
in section 3.4 the bivariate normal approximation is not recommended for large values of
the correlation ρXij found in equation 6.36. In order to control that the correlations are in
a range suitable for the approximation, the distribution of the correlations is included.
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8.2.1 Results for sector portfolios

The four portfolios used here are simulated based on correlation matrix A. As previously
discussed, the sector division of this correlation matrix does not agree with the division
of FI and the results are therefore not compared to the method used by FI. The methods
evaluated for the sector portfolios are therefore only the FMC and Pykhtin.

Add-on FMC (%) Time (w/o grouping) Time (w. grouping)

Portfolio 1 2.1507 1h 29 min 7s 7 min 55s

Portfolio 2 12.1489 1h 25 min 35s 8 min 27s

Portfolio 3 24.7369 1h 30 min 31s 7 min 46s

Portfolio 4 30.1344 1h 27 min 20s 8 min 25s

Table 8.8: Add-on for sector concentration risk calculated using full Monte
Carlo simulations presented together with the calculation time for both with
and with out grouping. The add-on is given as a percentage of the capital

requirement for credit risk under Pillar 1.

The results from FMC in table 8.8 are seen as the true results and will be the benchmark
for the other methods. By comparing the time with and without the grouping it is clear
that the grouping of exposures is a very effective way to speed up the calculations. This of
course given that it is possible to group the obligors into a reasonable number of groups.

Add-on Pykhtin (%) Time

Portfolio 1 1.9938 2h 35 min

Portfolio 2 12.1269 2h 34 min

Portfolio 3 24.9256 2h 35 min

Portfolio 4 30.0850 2h 34 min

Table 8.9: Add-on for sector concentration risk calculated using the
Pykhtin method presented together with the calculation time. The add-
on is given as a percentage of the capital requirement for credit risk under

Pillar 1.

The results in table 8.9 agree well with the result from FMC in table 8.8 but the compu-
tational time is longer than for FMC.

5 step approx. 10 step approx.
Add-on(%) Time Add-on(%) Time

Portfolio 1 4.3641 1 min 3s 4.3641 2 min 33s

Portfolio 2 12.8680 0 min 59s 12.8680 2 min 30s

Portfolio 3 25.9929 0 min 55s 25.9929 2 min 29s

Portfolio 4 32.3268 0 min 55s 32.3268 2 min 30s

Table 8.10: Add-on for sector concentration risk calculated using the
Pykhtin method with the 5 step and 10 step bivariate normal approximation
presented together with the calculation time. The add-on is given as a

percentage of the capital requirement for credit risk under Pillar 1.

The first way to try to speed up Pykhtin is to use the bivariate normal approximation in
section 3.4. The results from both the 5 step and 10 step approximation are found in table
8.10. There is no difference in the add-on between the shorter and longer approximation.
The only difference is in the computational time, where the shorter takes less than half the
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time of the longer. Both methods are much faster than the original Pykhtin. However,
comparing the add-on with the add-on from Pykhtin and FMC there is a substantial
deviance for most portfolios where Pykhtin with approximation over-estimates the add-on
in all cases.

Add-on Pykhtin w. grouping (%) Time

Portfolio 1 1.9938 0.84 s

Portfolio 2 12.1269 0.75 s

Portfolio 3 24.9256 0.10 s

Portfolio 4 30.0850 0.02 s

Table 8.11: Add-on for sector concentration risk calculated using the
Pykhtin method with grouping presented together with the calculation time.
The add-on is given as a percentage of the capital requirement for credit

risk under Pillar 1.

Another way to speed up Pykhtin is to group the obligors. The results in table 8.11 are
identical with the results produced by Pykhtin in table 8.9 but with a dramatic decrease
in computational time.
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Figure 8.1: Distribution of the correlation matrix consisting of the ele-
ments ρXij given by equation 6.36. The distribution is given for the four

sector portfolios.

8.2.2 Results for geographical sector portfolios

The geographical sector portfolios are simulated using correlation matrix B and as, op-
posed to previous sector portfolios, these sectors are in agreement with FI’s sectors the
results of FI’s method for geographical sector concentration can now be included. So
the methods evaluated on the geographical sector portfolios are FI’s method, FMC and
Pykhtin.
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Add-on FI (%) Calculation time

Portfolio 1 1.0248 < 0.001s

Portfolio 2 3.6783 < 0.001s

Portfolio 3 3.6787 < 0.001s

Table 8.12: Add-on for sector concentration risk calculated using FI’s
method presented together with the calculation time. The add-on is given

as a percentage of the capital requirement for credit risk under Pillar 1.

The results from FI’s method are found in table 8.12. The more concentrated a portfolio
is the higher the add-on. Portfolio 2 and 3 have the same add-on as the portfolios are
equally concentrated.

Add-on FMC (%) Time (w/o grouping) Time (w. grouping)

Portfolio 1 10.0402 1h 26 min 7 min 15s

Portfolio 2 15.7884 1h 30 min 6 min 47s

Portfolio 3 34.2627 1h 27 min 6 min 45s

Table 8.13: Add-on for geographical sector portfolios calculated using full
Monte Carlo simulations presented together with the calculation time. The
add-on is given as a percentage of the capital requirement for credit risk

under Pillar 1.

The add-on from FMC in table 8.13 is much higher than FI’s for all portfolios. The add-on
increases with increasing sector concentration but here portfolio 3 requires a higher add-on
than portfolio 2 even though they are equally concentrated.

Add-on Pykhtin (%) Time

Portfolio 1 9.8846 2h 30 min

Portfolio 2 14.5785 2h 32 min

Portfolio 3 33.9028 2h 30 min

Table 8.14: Add-on for geographical sector portfolios calculated using the
Pykhtin method presented together with the calculation time.

The result from Pykhtin’s method in table 8.14 are compared with the FMC result in
table 8.13. The results agrees well but again Pykhtin is slower than FMC.

5 step approx. 10 step approx.
Add-on(%) Time Add-on(%) Time

Portfolio 1 12.0460 1 min 3s 12.0460 2 min 38s

Portfolio 2 21.8063 0 min 59s 21.8063 2 min 27s

Portfolio 3 35.6295 0 min 58s 35.6295 2 min 30s

Table 8.15: Add-on for geographical sector portfolios calculated using the
Pykhtin method with the 5 step and the 10 step bivariate normal approx-
imation presented together with the calculation time. The add-on is given

as a percentage of the capital requirement for credit risk under Pillar 1.

The results from the Pykhtin with approximation are found in table 8.15. The add-ons
are compared with the add-on calculated using the original Pykhtin method and using the
approximation leads to an over-estimation of the add-on. The error is especially large for
portfolio 2.
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Add-on Pykhtin w. grouping (%) Time

Geo. Portfolio 1 9.8846 0.28 s

Geo. Portfolio 2 14.5785 0.03 s

Geo. Portfolio 3 33.9028 0.03 s

Table 8.16: Add-on for geographical sector portfolios calculated using
the Pykhtin method with grouping presented together with the calculation
time. The add-on is given as a percentage of the capital requirement for

credit risk under Pillar 1.

Pykhtin with grouping again gives the same results, found in table 8.16, as the original
method but to a much shorter computational time.

A general observation to be made is that regardless of method, the results in tables 8.13-
8.16 do not agree with the results of FI in table 8.12. Possible explanations behind this
deviation will be discussed further in the following chapter but it should be noted that the
deviation is large, meaning that the methods studied in this thesis for sector concentration
do not agree with the method of FI.

-0.1 -0.05 0 0.05 0.1 0.15 0.2

Correlation

0

0.5

1

1.5

2

2.5

3

F
re

q
u
e
n
c
y

10
7 Distribution of  for Portfolio 1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Correlation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
re

q
u
e
n
c
y

10
7 Distribution of  for Portfolio 2

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Correlation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

F
re

q
u
e
n
c
y

10
7 Distribution of  for Portfolio 3

Figure 8.2: Distribution of the correlation matrix consisting of the ele-
ments ρXij given by equation 6.36. The distribution is given for the three

geographical sector portfolios.



47

Chapter 9

Discussion

The results of chapter 8 will be discussed in this chapter. The tested methods for name
and sector concentration risk are discussed in two separate sections. A final section gives
some suggestions for further research.

9.1 Name concentration

9.1.1 Choice of M

The idea behind PPA is to divide the portfolio into two sub-portfolios where sub-portfolio
A is non-granular while sub-portfolio B can be seen as infinitely granular. The two ex-
treme cases are that either all exposures are in sub-portfolio A or that all are found in
sub-portfolio B. The case where all exposures are in sub-portfolio A is the same as in the
FMC. The other extreme case, where all exposures are placed in sub-portfolio B, is equal to
the ASRF assumption that there is no idiosyncratic risk and hence no name concentration
in the portfolio. The higher the threshold, the more exposures are put in the sub-portfolio
B and the add-on will approach zero as the portfolio with name concentration becomes
smaller and smaller. Consideration has to be taken in the choice of the threshold as a
too high threshold will result in an underestimation of the true name concentration risk.
There is no risk in choosing a low threshold as this only contributes to a more accurate
estimation. However, we do not wish to choose the threshold too low as a lower threshold
increases the computational time. Thus the choice of cut off point is a trade off between
accuracy and computational time. Although computational time is an important factor
we choose to prioritize the accuracy. A slow method can not do much harm but a method
producing inaccurate capital requirements can be dangerous and should be avoided.

When choosing M , the number of obligors in sub-portfolio A, both the methods described
by Grippa and Gornicka (2016) and Higo (2006) are tested. Since a general choice of M
will be less time consuming than choosing an individual M for each portfolio we wish to
find the M that works for all portfolios. We choose to let all patterns with an absolute
value of the deviation ≤ 0.1 be considered good enough. The choice of 0.1 as a threshold is
based on the standard deviation of the FMC. In table A.2 and A.1 the number of obligors
in sub-portfolio A are found for each portfolio and each patterns. The number varies for
the different portfolios and it seems that the less concentrated the portfolio is the more
exposures are included in portfolio A. When comparing tables 8.4 and 8.3, Higo’s method
gives errors of the same magnitude for each pattern while there is a much greater variation
in the magnitude of the errors for the patterns chosen according to Grippa and Gornicka’s



48 Chapter 9. Discussion

method. It is possible that by using Higo’s method the choice of M can be generalized to
a greater extent than by using Grippa and Gornicka’s method to choose M . We therefore
base our choice on Higo and as can be seen in 8.3, pattern 2 will be used for all portfolios.

9.1.2 Comparison to FI

When comparing the results in table 8.6 and 8.7 to the ones in table 8.5 it is clear that
the methods tested in this thesis consequently produce results lower than the results com-
puted using FI’s method. A large deviation from the results in table 8.5 would indicate
that the method chosen is not suited for the specific type of portfolio. It can be difficult to
state the size of deviation in order for it to be considered large but we believe the results
produced by the FMC and the PPA are good enough. A more experienced person might
have a better insight to how plausible the results are in reference to those of FI but we
believe that although there is a deviation, it is small enough to not dismiss the methods
based only on this. As FI’s method is supposed to suit all Swedish banks it is possible
that portfolios characteristics are not accounted for when using FI. The deviation in re-
sults when comparing FI to the methods presented in this thesis could be due to the FMC
and PPA being able to better capture the individual characteristics of the portfolios. It is
possible that FI’s method lands on the conservative side since FI is likely to believe that
it is more dangerous to underestimate than to overestimate the risk level. By choosing a
different method, which to a larger extent can include specific portfolio characteristics, it
is possible that the capital requirement becomes lower. This does not necessarily mean
that the calculation is wrong but simply that it is more suitable for the specific portfolio
and can better estimate the risk level.

Another possible explanation behind the deviation is the model’s different assumptions
on the distribution of the systematic risk factor. In FI’s model the distribution of the
systematic risk factor is the gamma distribution and in both the FMC and the PPA the
same random variable is assumed to be normally distributed. This model difference can
be a possible explanation as to why the results differ. Depending on the shape of the
gamma distribution it can behave rather differently than the normal distribution and can
lead to different values of the systematic risk factor.

The given reasons for the difference in results are reasons we deem plausible but if none
of these reasons hold and the methods underestimate the capital requirement, this can
be a big problem. By not holding enough capital the bank will be exposed to a large
risk and one could argue that it is preferable to overstate rather than understate the
capital requirement. So before choosing to implement either the FMC or the PPA it is
wise to investigate further if the lowering of capital requirement compared to FI is due to
the methods being able to take the portfolio characteristics into account or if there is an
underlying problem leading to an understatement of capital.

9.1.3 Comparison between FMC and PPA

Tables 8.6 and 8.7 show that the two methods produce similar results. This justifies the
choice of M for the PPA as we expect that a good choice of M should produce the same
result as the FMC. The main goal of the PPA is to reduce the computational time without
loosing accuracy and looking at the tables it is clear that the PPA reduces the computa-
tional time greatly compared to FMC. The PPA does seem to be the preferred method
as it produces accurate results but is faster than the FMC. This indicates that only the
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largest exposures have a significant effect on the level of name concentration.

One possible disadvantage of the PPA is that it requires choosing M for each portfolio.
The basics of the FMC and the PPA are very similar and the implementation should
therefore require about the same time and effort but while the FMC will be ready to use
for all portfolios, the PPA will still require an M . The choice of M is very important as this
will affect both the computational time and the accuracy of the answer. Higo’s method
for choosing M seems to give results with errors of around the same magnitude for the
different portfolios studied here. Although Higo’s method to choose M appears to be the
preferable method in this case the basis is to small to give an universal recommendation
suitable for all types of portfolios.

9.2 Sector concentration

9.2.1 Comparison between FMC and Pykhtin

The two methods chosen for sector concentration risk are the Pykhtin model and the FMC.
To compare these, table 8.8 is compared to tables 8.9-8.11 for the sector portfolios and
table 8.13 with tables 8.14-8.16 for the geographical sector portfolios. In general it can
be said that Pykhtin has one advantage as Pykhtin is an analytical method. The FMC is
not an analytical expression and the FMC estimator will have a variance. This variance
can be reduced but at the cost of computational time as it will require an increase in the
number of MC steps. The result of Pykhtin can not be improved in any similar manner
and the computational time will remain the same, just as the final result. This can be seen
as both negative and positive. As mentioned, an analytical result can be more reliable as
no variance needs to be considered but the computational time of Pykhtin can be trouble-
some. The large computational time is due to the fact that Pykhtin’s method requires the
calculation of a bivariate normal distribution in every combination of obligors, as seen in
equation 6.35 and 6.37. In a portfolio of N obligors, this means N2 calls to the bivariate
normal distribution function. This thesis uses MATLAB, a programing language intended
for numerical computations with matrices, for all calculations. MATLAB is optimized for
working with matrices and is not optimal for cases when regular for-loops are used. This
poses a problem in the implementation of Pykthin as the MATLAB-function mvncdf used
for the calculations of the bivariate normal distribution function can not handle matrix
input in the way that would have been needed in this thesis. Looping over all combinations
of obligors and calling mvncdf takes a long time, much longer than the FMC simulations
do. As the idea behind Pykhtin’s method is to be a faster alternative to FMC simulations
this is a big problem. An alternative could be to change the programming language and
try a language more suited for the necessary calculations.

In order to reduce the computational time this thesis tries two methods to work around
the problem of MATLAB’s function mvncdf. The first is to use an approximation for the
bivariate normal distribution. The approximation is known to work well as long as the
correlations given by equation 6.36 are low. However, looking at the results of Pykhtin
when using the bivariate normal approximation, see tables 8.10 and 8.15, the computa-
tional time is greatly reduced but the results differ from those of Pykhtin without the
approximation. Pykhtin without the approximation is more in agreement with the result
from the FMC simulations. It does not appear to be any improvement when using the ten
step approximation compared to the five step one. The lack of improvement is probably
due to the high number of times, N2, that the answer from the approximations is used
leading to an accumulative effect where the small error from the approximation builds up
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to a large error in the final result. The approximation is not faulty but it is not accurate
enough to suit the need of Pykhtins method. Since the bivariate normal distribution func-
tion is used numerous times the approximation needs to be extremely accurate to not lead
to a large error in the final answer. A more accurate approximation comes at the cost of
higher computational time and as the main goal of Pykhtin is to reduce computational
time, Pykhtin with the approximation does not appear to be the favorable choice.

Another problem when using the approximation for Pykhtin is that the error of the ap-
proximation varies from portfolio to portfolio. Looking at Sector portfolio 2 in table 8.10,
the approximation seems to provide a reasonably accurate answer. On the other hand,
for Geographical sector portfolio 2 in table 8.15, there is a substantial deviation. As
mentioned, the approximation works best for a low absolute value of correlation but no
definition is given for what can be considered a low correlation. Figures 8.1 and 8.2 show
the histograms of the correlation found in equation 6.36. Sector portfolio 2 have a dis-
tribution where the correlations are centered around 0, so most are lower than 0.05 and
almost no correlations exceed 0.1. Looking at figure 8.2, most of the correlations of geo-
graphical portfolio 2 have absolute values around 0.1, with only a few smaller correlations.
This is a likely reason why the approximation performs so differently for the different
portfolios. If the bivariate normal approximation is to be implemented in the Pykhtin
method, close attention needs to be paid to the correlation structure of the portfolio to
make sure that the approximation will be accurate enough. Due to the limitations in this
thesis the validity of the approximation has not been further investigated and no recom-
mendations can be given on how and when the approximation could be suitable to include.

The second method tested in order to reduce the computational time is Pykhtin with
grouping of exposures. As can be seen in tables 8.11 and 8.16 this method appears to
work very well. The results are the same as for the full Pykhtin but the computational
time is greatly reduced. It is faster than Pykhtin with the bivariate normal approximation
and has a better accuracy. Pykhtin with the grouping of exposures does appear to be the
best method in this case. However, it is not always possible to group exposures in the
manner done in this thesis. When simulating the portfolios we assume that all obligors
in the same rating class will be assigned the same PD. This is not necessarily true in the
real world as a bank might have other models to calculate and assign PD and if this is
the case, the grouping of the exposures might not be as efficient. The computational time
of the grouped methods depends on the numbers of groups needed to correctly group the
portfolio, hence on the numbers of sectors, PDs and intra-correlations. As the number
of groups grow, the computational time will go towards the computational time for the
method without grouping. Grouping can probably reduce the computational time in most
cases but maybe not as much as for our simulated portfolios.

Looking beyond the computational time of Pykhtin one positive aspect of the method is
that it offers the possibility to have LGD as a distribution and not a set value. This thesis
uses LGD = 0.45 for all simulated portfolios but it is possible to have LGD given as a
variable with a mean and a variance. In Pykhtin this can be handled without significantly
changing the computational time. On the other hand there is no restriction on FMC that
prevents variables being drawn from distributions. However, by needing to draw variables
for each obligor this could add to the computational time of the FMC while for Pykhtin
the mean and variance of the LGD are already part of the expression and do not need to
be simulated. Another possible advantage Pykhtin has over the FMC is that it is possible
to use Pykhtin to calculate both name and sector concentration without significantly in-
creasing the computational time. In section 6.4.1 it is shown that the quantile adjustment
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used in Pykhtin can be split into two parts, one part compensating for the shift from
the multi-factor model to the single-factor model and the other part compensates for the
effect of having a finite number of counterparties in the portfolio. The second part can
be seen as the granularity adjustment and by adding this part to the quantile expression
the name concentration can be calculated in addition. This would not significantly in-
crease the computational time of Pykhtin and if both the name and sector concentration
risk needs to be measured for one portfolio, Pykhtin could be a possible alternative. It
should be remembered that grouping is not possible when calculating the granularity ad-
justment. This should however not lead to a dramatic increase in computational time as
the time consuming steps are for measuring the impact of sector concentration, for which
the grouping may still be used.

9.2.2 Choice of intra-correlations

As explained in section 6.3 the intra-correlations used in this thesis are based on the sugges-
tions of Hibbeln (2010) and can be found in equation 6.10. The choice of intra-correlations
will have a great effect on the resulting capital requirement for sector concentration risk.
For example, also presented in section 6.3, the use of the intra-correlations suggested by
the Basel regulations would give a negative add-on to the Pillar 1 capital requirement in
the case of sector concentration. We have not conducted any trials on our own to deter-
mine how to best calculate the intra-correlations and have based our choice solely on the
recommendation of Hibbeln (2010). We deem this source to be trustworthy but we do
not know how the authors of the book have concluded that this specific formula is the
best for the intra-correlations. It is possible that the intra-correlations are not suitable
for our specific portfolios or that there are other restrictions that we are not aware of that
would eliminate the chosen formula as possible correlations. Another possibility is that
even though the chosen correlations are acceptable there are other ways to calculate the
correlations that take into account circumstances specific to the bank. Regardless of how
the intra-correlations are chosen the choice will greatly affect the final result. In our case
this means that our results could be both higher or lower depending on what correlations
are used.

9.2.3 Comparison to FI

When comparing the results in table 8.12 with the results presented in tables 8.13-8.16 it
is obvious that the results based on the method used by FI do not agree with the results
of the methods used in this thesis. It is possible, as previously discussed for name con-
centration, that the methods of this thesis are better at including portfolio characteristics
and will therefore give a different result than that of FI. However in this case the deviation
is quite large, which indicates that there might be difficulties when comparing the results
of the thesis methods to the result of FI. As previously mentioned the sectors defined by
FI are not the same as the sectors used in this thesis, leading to FI’s method only being
applied to the geographical sectors. As FI’s method is based on and defined for FI’s 16
specific geographical sectors it can be difficult to use this method for sectors defined dif-
ferently. So even if the chosen sectors of the Geographical sector portfolios agree with FI’s
sectors, all the sectors of matrix B do not agree with FI. To be able to apply FI’s method,
the sectors of matrix B might need to be mapped to match those of FI exactly or the for-
mula in equation 4.8 needs to be altered to take into account the new geographical sectors.
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Regardless of the underlying reason it is problematic that the results agree so poorly with
the results of FI. A small difference could be expected but such a large difference can be
an indication that the methods proposed in this thesis are not appropriate to use when
measuring sector concentration risk in a loan portfolio. However, in order to investigate
this fully a sector correlation matrix corresponding perfectly with the sectors of FI would
be needed. Portfolios based on the sectors of FI could then be simulated and the method
proposed by FI could be evaluated without needing to question if the formula is suitable
for the used sectors.

A general problem when it comes to sector concentration is that it is not clear what the
benchmark portfolio should be. When it comes to name concentration an infinitely gran-
ular portfolio is the natural benchmark to measure the name concentration risk relative
the asymptotic single risk factor model. However, for sector concentration there exists no
common definition of a benchmark. As it is not known on what sector-wise well diversified
portfolio the IRB correlations are calibrated on it is difficult to compare the implemented
multi-factor model with the ASRF model as well as with any other model which might be
another reason to the large difference between our implemented multi-factor models and
the model proposed by FI.

All portfolios used in this thesis are corporate portfolios consisting of only big corporates.
Typically the total portfolio of a bank contains other kinds of exposure like retail and
sovereign with the corporate portfolios being only a fraction of the total loan portfolio.
In this theses only the impact of sector concentration on the corporate credit portfolio is
studied. Although the presence of sector concentration might have significant impact on
the capital requirement for the corporate credit portfolio it might have a smaller impact in
terms of a bank’s total credit portfolio. In FI’s model for geographical sector concentration
no regards are taken to the exposure types and the add-on will be the same no matter
the obligors. So the fact that only a subset of a real banking portfolio is studied in this
thesis might be another reason why there is such a big difference between the multi-factor
models and FI’s approach.

The method used by FI is easy to implement as the only input needed is the aggregated
exposures to each sector to be able to calculate HI. The calculated add-on only depends
on how concentrated the portfolio is and does not take the inter-correlation structure in
the portfolio into account. This is a big drawback as the concentration risk is strongly
dependent on the correlations between sectors. A portfolio concentrated in sectors with
high inter-correlations will be riskier than a portfolio concentrated in sectors with lower
inter-correlations. Concentration in sectors with a low inter-correlation may even be seen
as a form of hedge. By not taking the correlation structure into account the model of FI
may both under- and overestimate the sector risk in portfolios. Looking at Geographical
portfolio 2 and 3 FI’s add-ons are identical for both portfolios while the add-on calculated
with the multi factor models is twice as high for Geographical portfolio 3 than for Geo-
graphical portfolio 2. Geographical portfolio 3 is in the multi-factor models seen as riskier
as it is concentrated in two sectors with a higher inter-correlation.

One of the advantages with Pykhtin and the FMC proposed here is that they are not
sector specific. As long as there is a correlation matrix available the methods will work for
any type of sectors. FI has very well defined sectors, which makes their methods specific
to these sectors, while both Pykhtin and FMC can handle any sector division. If the goal
is that the method should be compatible with the method used by FI the sectors will still
need to be mapped to the sectors of FI. However this must not always be the case and it
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can be an advantage to have methods that are independent of the sector division.

The methods implemented in this thesis are more advanced than the method used by FI.
They may capture the risk in a portfolio in a better way but they are more complicated and
require assumptions about the correlation structure. As the correlations can be hard to
estimate and the results are strongly dependent on the assumed correlation structure there
exists a big model risk with the more advanced models. FI’s method on the other hand
might be too simple but it has advantages when it comes to stability and lower model risk.

9.3 Further research

If going forward with the methods presented in this thesis we suggest that some subjects
should be considered first. In the case of Pykhtin, using the grouping works well for the
portfolios simulated in this thesis but the grouping of exposures will not work well for all
types of portfolios. As mentioned it is possible that a bank assigns individual PDs, mean-
ing that the grouping will not be as efficient. If this is the case full Pykhtin or Pykhtin with
approximation are possible alternatives. The main problem with full Pykhtin is that the
computational time becomes large when the method is implemented in MATLAB. A pos-
sible way forward is to implement Pykhtin using a different programming language to try
and speed up the method. If this is not possible or if there is no alternative programming
language suitable for the needs of Pykhtin, some time should be spent trying to speed up
the method. A possible way to approach this is to find a more suitable approximation to
the bivariate normal distribution. Only the approximation presented in section 3.4 was
implemented in this thesis and it is possible there is an approximation that is not as de-
pendent on the value of ρX and would work better for Pykhtin. We believe both of these
approaches are interesting but if there is a possibility to speed up Pykhtin without the ap-
proximation we believe this is to be preferred. Using the approximation adds uncertainty
to the result and it is therefore better to use Pykhtin without the approximation if possible.

Another area that should be examined further before implementing any of the sector con-
centration methods is the choice of the intra-sector correlation. As discussed the choice is
based on the recommendations of Hibbeln (2010) and due to the limitations of this thesis,
we have not examined any alternatives. Further research should be spent trying to find
the optimal intra-sector correlations. The choice of correlations highly effect the resulting
capital requirement and care should be taken before choosing these. If this thesis had
no time constraint we would have liked to spend more time researching the choice of the
intra-sector correlations.

In the case of name concentration, the choice of M for the PPA could be optimized.
Based upon our simulated portfolios Higo’s method for choosing the number of obligors
in sub-portfolio A seems to give consistent results for all studied portfolios. It would be
interesting to investigate this further to see if the same results would hold for a bigger
collection of portfolios.
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Chapter 10

Summary and Conclusions

The aim of this thesis has been to evaluate methods for calculating capital requirements
for name and sector concentration risk and compare them with the methods chosen by FI
for the same calculation. To achieve this; four methods where chosen, two for name and
two for sector concentration risk. The chosen methods were evaluated on simulated loan
portfolios and the capital requirement for each portfolio was calculated as a percentage of
the credit risk capital requirement under Pillar 1.

The models chosen for name concentration were the FMC and the PPA. The PPA is sim-
ilar to the FMC but the portfolio is split into two sub-portfolios. One sub-portfolio is
assumed to be diversified while the other is assumed to contain name concentration and
will require a granularity adjustment. By calculating the granularity adjustment only for
one of the sub-portfolios the computational time can be reduced. To test the methods five
portfolios with a varying degree of name concentration were simulated.

For sector concentration the FMC was used as well as a model suggested by Pykhtin
(2004). Pykhtin suggests an analytical model and the aim when implementing this model
is to find a faster alternative to the FMC. For the sector concentration two sets of portfo-
lios were simulated. The first set contained four portfolios with a varying degree of sector
concentration. The second set contained three portfolios, also with a varying degree of
sector concentration but the sectors used in this set are chosen so that they correspond
to sectors defined by FI. FI’s method could only be applied to the second portfolio set as
the first set contained sectors that did not correspond with FI’s sectors.

The accuracy of the results for the FMC and the PPA were similar but the PPA had
a much shorter computational time once the size of each sub-portfolio had been deter-
mined. Both methods produced lower results than the results of FI. This can be due to
the FMC and the PPA being able to capture the individual characteristics of the portfolio
and therefore lowering the capital requirement or a model mismatch as the methods are
based on different models. However, if the low results are an indication that the methods
do not produce reliable results this should be seen as a serious error as understating of
capital requirements can be a large risk.

For both sets of the sector portfolios Pykhtin’s method and FMC were evaluated. Pykhtin’s
method was implemented in full and as an effort to reduce the computational time
Pykhtin’s method was also implemented using an approximation and by grouping the ex-
posures. The full Pykhtin’s method produced results similar to the FMC but was slower
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than FMC. Pykhtin’s method with the approximation was faster than FMC but produced
results that differed from the FMC. Using the grouping on the full Pykhtin’s method lead
to results matching those of full Pykhtin’s method and reduced the computational time
greatly. The results of Pykhtin’s method and FMC for the second set of sub-portfolios
did not agree with the results of FI. This is not necessarily an indication that the method
is faulty since the sector division is slightly different than that of FI. Furthermore the
FMC and Pykhtin’s method are more complicated methods than FI’s method and require
assumptions on the underlying model. The deviation in results should be considered as a
disadvantage and the reasons behind it considered before moving forward with any of the
methods.

The conclusions of this thesis is that the PPA appears to be a good alternative to FMC
for measuring name concentration. It is equally accurate but as the computational time is
shorter the PPA appears to be the preferable method. Consideration should however be
taken as to how the non-granular portfolio is chosen and how this will affect the total time
of the PPA. For sector concentration Pykhtin’s method with grouped exposures appears
to be the best alternative in this case. It performs similar to FMC and is faster. However,
the computational time will depend on the numbers of groups needed to correctly classify
the portfolio. None of the methods studied agree with the methods of FI and the reasons
behind this should be considered before implementing any of the methods.
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Appendix A

Tables

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

Pattern 1 377 781 1306 1539 1938

Pattern 2 329 623 1083 1406 1748

Pattern 3 238 415 760 1018 1194

Pattern 4 212 352 592 790 858

Pattern 5 139 152 117 92 15

Pattern 6 93 41 8 0 0

Table A.1: Higo: Number of obligors in sub-portfolio A for each combi-
nation of pattern and portfolio.

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

Pattern 1 528 1196 2125 1851 2255

Pattern 2 501 1010 1241 1670 2086

Pattern 3 278 484 724 822 683

Pattern 4 251 358 227 80 25

Pattern 5 133 44 24 15 5

Pattern 6 28 15 5 0 0

Table A.2: Grippa and Gornicka: Number of obligors in sub-portfolio
A for each combination of pattern and portfolio.

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

Pattern 1 7 min 25 s 9 min 43 s 11 min 17 s 12 min 1 s 13 min 59 s

Pattern 2 7 min 16 s 8 min 41 s 10 min 18 s 11 min 37 s 13 min 1 s

Pattern 3 6 min 47 s 7 min 30 s 8 min 54 s 9 min 53 s 10 min 39 s

Pattern 4 6 min 40 s 7 min 14 s 8 min 12 s 8 min 55 s 9 min 13 s

Pattern 5 6 min 21 s 6 min 22 s 6 min 6 s 6 min 3 s 5 min 38 s

Pattern 6 6 min 8 s 5 min 47 s 5 min 35 s 6 min 8 s 6 min 10 s

Table A.3: Higo: Computational time for all combinations of pattern
and portfolio.
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Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

Pattern 1 8 min 7 s 10 min 56 s 14 min 45 s 13 min 36 s 15 min 14 s

Pattern 2 7 min 58 s 10 min 8 s 11 min 7 s 12 min 50 s 14 min 29 s

Pattern 3 7 min 3 s 7 min 56 s 8 min 56 s 9 min 16 s 8 min 41 s

Pattern 4 7 min 3 s 7 min 24 s 6 min 47 s 6 min 8 s 5 min 46 s

Pattern 5 6 min 27 s 5 min 55 s 5 min 46 s 5 min 45 s 5 min 38 s

Pattern 6 5 min 51 s 5 min 44 s 5 min 36 s 6 min 9 s 6 min 10 s

Table A.4: Grippa and Gornicka: Computational time for all combi-
nations of pattern and portfolio.
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