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Abstract

Here we present a solution for debugging compilers that use abstract-syntax
trees as their internal structure. The solution focuses on capturing one specific
state of the compilation process, and should not be confused with the more
known step-by-step debugging. The goal is to visualize the current state of the
abstract-syntax tree and present its data to the user in an intuitive and interac-
tive way. We believe that deeper understanding of an abstract-syntax tree, and
bugs in its structure, can be achieved by visualization of the tree. Few such
debuggers exist today however, but with this master thesis we aim to fill this
gap.

The main feature of the developed tool DrAST is the ability to visualize the
abstract-syntax tree. It is also possible to filter the tree, so that only nodes of
interest are visualized, while the rest are gathered in what we call clusters. Fur-
ther, DrAST can display attributes, draw references between nodes, calculate
parameterized attributes and is built for further extension.

DrAST mainly debugs compilers created in the attribute-grammar-based
system JastAdd. By the use of Java reflection and annotations from the JastAdd
system, the debugger is able to extract the abstract-syntax tree from a compiler
without knowing the specific grammar.

In short, DrAST provides a new solution in compiler debugging which can
be of use for both students and professionals.

Keywords: debugger, compiler, reflection, Java, JastAdd, attribute grammar, visual-
ization, interactive
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Chapter 1
Introduction

This chapter will introduce and summarize different parts of this report, with a focus on
the problem, method and result of the project.

1.1 Problem description
Today a lot of programming languages are being developed. These include not only the
General-Purpose Languages (GPLs) like Java and python, but also a lot of domain-specific
languages (DSLs). A certain DSL generally only work for a specific, narrowed down do-
main. Developing a DSL can be challenging and time consuming. This is where debug-
ging tools can assist the developer.

Figure 1.1: The code a=2 can be described as an AST. The Bind-
ing (=) will point at the variable (a) and the value (2).

When compiling any kind of code, the code needs to be represented in a data structure.
A widely used structure is the abstract syntax tree (AST). It is basically a tree structure
where every node is a word or a token, parsed from some code being compiled. Figure 1.1
illustrates how the code a=2 is represented in an AST. The Binding (=) has two children,
the variable (a) and the value (2). Figure 1.2 shows an overview of how code that is
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1. Introduction

compiled will result in an AST. This figure will be extended with more details throughout
the report. The main subject of this report includes how to represent this type of structures
in a meaningful way to help the developer.

During the compiling process of a program, there is a phase called the semantic analy-
sis that controls if the constructed syntax structure follows the laws of the language and to
see if the structure has any real meaning. This usually includes type checking and scope
analysis, for example single declaration of a variable. Attribute grammars [16] is a method
that is useful in this phase. Attribute grammars are a way of adding attributes to nodes in
the AST, and describe how they are calculated. Adding attributes to the AST nodes also
enables different kinds of analyses, in order to find both errors in and other interesting
behaviours of a program. Examples of questions that can be answered with the help of
attribute grammars are whether there are several nodes with the same ID and how many
children a certain node type has.

However, to our knowledge, today there are few attribute grammar debuggers for AST
implementations like the one described above. One could think of many features in such
a debugger, but the main feature would be to visualize the AST and its current attribute
values. However, developers are today usually forced to find their own solution to visualize
how AST nodes and their attributes are connected. This could include writing on paper or
writing print methods for the AST nodes, which can become cumbersome when a project
grows. Also, to detect different bugs in the language structure the developer needs to write
extensive test suites for the attributes. Another problem with the lack of user friendly
interactive visualization tools is introducing someone new to a project with an extensive
AST. This can be a bit overwhelming at first, where there might not be a quick way to get
an overview of the project’s AST structure.

Especially projects with large language structures can suffer from this. An example of
this is the java compiler ExtendJ [9], which currently contains about 250 - 260 node types.
A Java file, with 350 lines of code, compiled with ExtendJ can result in an AST with 650
nodes, or 61 000 if we include its library files.

All the above described issues would be less tiresome and time consuming for devel-
opers if there was a way to easily visualize the resulting AST, with attributes and their
values of every node.

1.2 Project goals and challenges
Here we will present and explain the goals and challenges that we need to fulfil and over-
come in this master thesis.

1.2.1 Goals
The goal of this master thesis was to find a solution for debugging compilers, proposedly
by creating a new interactive-visual-attribute debugger for ASTs and analyse the benefits
of such a tool. The proposed solution should be able to visualize ASTs from compilers
generated with the attribute-grammar-based system JastAdd [11].

Usability The tool should have a high usability. The user base for the tool consists of
new and inexperienced users in JastAdd like students in compiler courses, and more
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1.2 Project goals and challenges

Figure 1.2: An illustration of how a compiler creates a AST from
some code.

advanced users such as researchers and companies. This makes the usability a vital
feature.

Performance The tool needs to be stable and execute its computations within an accept-
able time frame. This needs to be true for both small test projects and extensive
research or industry projects

Scalability The tool needs a way to present the AST in an intuitive way. The AST can
contain a great number of attributes and nodes, and the developer is not always
interested in the whole graph. A way to highlight or show specific parts of the AST
is therefore needed.

11



1. Introduction

1.2.2 Challenges
The following challenges were recognized within the project, in order to create the desired
debugger tool and fulfill the goals.

Features Identification of features that is important for the compiler developer.

Prioritizing the features Finding a way to prioritize the features that could be imple-
mented in to the debugger is needed, due to that the scope of possible features is
vast.

Platform Choosing the right platform and libraries to build this tool upon.

Method for implementation Finding the most suitable method for extracting the data
needed for the debugger.

Evaluation of usability and performance Evaluating the resulting tool with the goals
defined in section 1.2.1 in mind.

The details of these challenges are further explained and discussed throughout the rest of
the report.

1.3 Method
During the process of this project a number of different methods and resources was used,
ranging from literature studies and discussions to pair programming [3] and usability tests.
This section will describe what we did and why we did it. The methods used have been
chosen based on literature relevant to this type of work [18, 27], practical uses of said
methods, and experience from the authors and their supervisor.

In the end, an iterative process was decided upon. There are a lot of different agile
methods, Scrum and XP to name a few [10, 3]. What they have in common is that the de-
velopment is split into smaller iterations, sprints. We did not choose one specific method;
instead we mixed parts that we were comfortable with. Each sprint contained a number of
steps like a backlog meeting, implementation and testing. By choosing the next step care-
fully and regularly, we believe that a more stable tool was developed. At the beginning of
an iteration, the decision to strengthen the quality of existing features or adding new ones
could be made based on time and need.

1.3.1 Meeting and backlog
We decided upon a fixed sprint length. Each sprint was one week long, except for some
exceptions. In the beginning of an iteration, we had a meeting with the supervisor and
discussed the status of the project. The questions usually were if we should add new
features or improve the existing ones. The two main factors to consider when we decided
to implement a feature were; how critical the feature was and how time consuming was
the implementation. We also added time for research and writing.

12



1.4 Result

1.3.2 Implementation
During the implementation phase different techniques was used. Most implementation
was done individually after discussions, but for the more challenging or extensive features
pair programming [3] was used. §1

In order to keep track of the status of the project, and to be able to merge new fea-
tures developed on different machines, a Git repository was used located on BitBucket, a
software hosting service.

1.3.3 Testing
To have fixed parts of a sprint dedicated to testing did not fit into this project. Although
testing was needed in order to decide what needed to be implemented or improved. If per-
formance was bad we needed to optimize, otherwise add features. Usually when a feature
was done, it was tested by the developer themselves. Usability testing was conducted at
the last half of the development, as at that stage the graphical user interface was starting
to take shape and needed to be tested to be approved upon.

Performance and correctness The goal was to make a tool that help developers that uses
JastAdd. It is important that the tool performs well for projects of any size, small and
large. Therefore the tool was tested on a set of programs with ASTs of different size
and different number of attributes in the nodes. These tests evaluated the correctness
of the representation of the ASTs, and tool’s process time and memory use.

User experience As mentioned DrAST is supposed to be a tool for every developer and
therefore the user experience, or to be more precise the usability, is important. We
had to create a visual representation of huge sets of different types of data. In order
to battle our own blindness for faults in our user interface, we let users with different
JastAdd experience use DrAST under the rules of Think aloud [18] usability testing.

1.4 Result
1.4.1 Visualization debugger tool: DrAST
A new visualization debugger tool for JastAdd systems have been implemented, called
Display reflected AST (DrAST) and is implemented in Java. The tool shows a represen-
tation of the AST that we call the filtered tree. It is possible to see the attributes, and
their values, for each node in the tree. Parameterized attributes can be computed with user
input. References between nodes can be displayed. The main features of DrAST are the
following:

Filter language Anewdomain-specific language has been developed to tell DrASTwhich
nodes that should be visible and not. It is possible to filter on node classes, node posi-
tion in the tree and attributes in each node. The language is created to be simple and
powerful by itself, but the developer could combine it with JastAdd-implemented
attributes, specifically added for filtering. See chapter 4 for more information.
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1. Introduction

Reflected tree The reflected tree is the 1-to-1 representation of the AST in DrAST, where
each node in the AST are represented by a container node in the reflected tree. In
short each node in the reflected tree has a reference to a node in the AST. See chapter
5 for more information how this structure is created.

Filtered tree The tree structure displayed in DrAST does not necessarily represent the
complete AST, but instead a filtered version of it. Only nodes and attributes that
are interesting to the user is shown, the rest is collapsed into what we call cluster
nodes. In other words, DrAST can collapse parts of a tree, not just a whole subtree.
This makes it easier for the user to find the requested information and gives a good
performance boost when applied on big ASTs. See chapter 4 for more information
about the tool itself.

1.4.2 Implementation
The implementation is based on a Model-View-controller pattern [17]. The architecture
is split into one model and any number of view-controllers, that we just call views. The
model contains the reflected tree and the filtered tree as well as other data connected to
the AST. Views are then used to present the filtered tree to the user. The interactive graph
view is such an example, described in chapter 4. Other examples are printing the filtered
tree to an XML file or storing it as an image file.

The Model uses a combination of Java reflection [6] and Java annotations, generated
by JastAdd, to extract the AST data. With reflection, DrAST is able to create the reflected
tree, which then is used to create the filtered tree. See chapter 5 for more information about
the structure and implementation decisions.

1.4.3 Evaluation
The usability tests were not performed in a way so that any statistical assessments could be
done. The tests were too few, and performed on different versions of DrAST. However, the
tests gave us a pointer of how understandable the user interface and documentation was.
The participants of the tests always completed the given tasks within an acceptable time
frame. Many also expressed that they liked the features and thought the tool was useful.
More on this in chapter 6.

DrAST performs well, and creating the model should take under 2 seconds even for
large trees of around 200 000 nodes, on everyday machines. The graph visualization is
however not able to handle that amount of nodes without slowing down, but still works
with around 5 frames per second (FPS). We do believe that the user is usually interested
in viewing a smaller amount of nodes, and this is why we use the filter. The graph-view’s
performance is based on the filtered tree and not the original AST, and by shrinking the
size of the filtered tree we will gain a boost in FPS. See chapter 6.2 to get more information
about the performance.
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1.5 Contributions

1.5 Contributions
The work for this thesis was divided quite equally between us. We have been involved in
most parts of the development, either directly or via discussions. In broad terms though,
Joel has been more involved with the development of the model and the reflection part
while Johan has been working more on GUI view with the JavaFX design and Jung opti-
mizations.

1.6 Report structure
The structure of this report is as follows. The first chapter gives the reader a general
overview of what this project is about. We then go deeper into the different parts of the
process, in chapter 2 we introduce some basic knowledge about JastAdd and compilers.
We then describe the problem by giving an motivating example in chapter 3. Next is chap-
ter 4, DrAST, in which we describe our solution to the problems. After that comes chapter
5, Implementation, which goes deeper into how the tool is built, for example the underly-
ing structure and libraries used to create DrAST. We then come to the last chapters of the
report. Evaluation, chapter 6, presents how DrAST was evaluated as well as the result of
these evaluations. In Related work, chapter 7, we discuss alternative solutions and other
tools. And lastly in Concluding discussion, chapter 8, we summarize the topics of the
report and discuss future work.
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Chapter 2
Technical background

This chapter introduces some basic concepts in order to make the rest of the report more
understandable. A short summary of the compiling process and a small introduction to
JastAdd will be described.

2.1 The compiling process
Compiling code is the process of translating code into something the domain can under-
stand. This process can be divided into two parts; analysis and synthesis [2]. However,
synthesis is not always needed depending on the domain. In this project we are focused
on the analysis part. The analysis consists of reading and analyzing the code to ensure
that it follows the rules of the language. It can further be divided in to three steps: lexical,
syntactic and semantic (Figure 2.1) [2].

Figure 2.1: An overview of the analysis in the compiling process.
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2. Technical background

The lexical analysis converts the code (a char sequence) into a sequence of tokens. A token
is defined by a specific sequence of characters, some examples could be if and while.
This step is often called scanning.

The next step is the syntactic part of analysis. Here the compiler control that the tokens
identified during scanning comes in the right order relative to each other. As an example
the end of an expression might need to be followed by a semicolon token, or an equal token
must be followed by a digit token. If the order does not make sense there is a syntactic
error.

The last step of the analysis process is the semantic part, where the remaining rules of
the language are checked. The language might require some type checking, or that it only
accepts single declaration of variables.

Some compilers use an AST as an internal structure (ExtendJ [9] and CalcASM, de-
scribed in chapter 3, to name a few) and this AST will be complete after the semantic
analysis. DrAST, the tool described in this report, visualize this AST.

The synthesis part of the compiling process will not be described in detail. In short it
can be mentioned that this is when machine code is generated and sometimes optimized.
Generating machine code is though not always needed. Many programing languages are
domain specific and the resulting data after the analysis (the AST as an example) is all that
is needed.

2.2 JastAdd
JastAdd [11] is a system for generating compilers and different analytics tools, and is based
on attribute grammars [16] and Java. As of writing this report JastAdd is developed and
maintained by the JastAdd Team at the Faculty of Engineering at Lund University in Swe-
den. JastAdd uses an internal structure of an AST, where the nodes in the AST can hold
a number of attributes. The idea with the system is that it should be easy to add attributes
and nodes to the AST. The developer can simply "just add" attributes and nodes to the
AST. This in turn makes it easy to extend languages and tools using JastAdd, in a modular
way [11].

We will in chapter 3, Motivating example, see how the node types and attributes are
defined by the developer in JastAdd. JastAdd generates Java classes, one class for each
node type. The attributes become methods in their specific classes. When compiling
some input code, any Java parser can be used together with the JastAdd-generated classes
to define the AST for the code.

18



Chapter 3
Motivating example

This chapter is here to motivate and explain the complexity of an AST, and why a visual
representation is needed. This chapter will also introduce abstract and attribute grammars
in JastAdd and how this relates to the AST structure. For this we will use a small example
language named CalcASM, and explain its abstract grammar and show how attributes can
be added to the AST with JastAdd.

3.1 Overview of a JastAdd compiler
In this section we will illustrate an overview of how a JastAdd compiler is created by
extending the Figure from chapter 1 (Figure 1.2) into Figure 3.1. The first thing the de-
veloper does is to define something called a abstract grammar, which are rules that define
the structure of the AST. This grammar will then be read by the JastAdd system, which
in turn generates Java classes which together makes up a compiler. Each type defined in
the grammar will be represented as its own Java class, and child nodes and attributes are
represented as methods in these classes. When code is compiled by the compiler, an AST
will be created at some point during the compiler process.

3.2 CalcASM
CalcASM is a small example language that will help to illustrate how the abstract grammar
and attributes are used during compilation to create an AST.

An example of a CalcASM program is shown in Figure 3.2. A CalcASM expression
can either consist of one computation or one let-in-end block, like in the figure. In the
example the variables a and b are defined in the let-block and are then used in the in-
block.
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3. Motivating example

Figure 3.1: An overview of how a JastAdd compiler is generated
and in turn how some code will result in an AST. The arrows in-
dicate order.

3.3 Abstract grammar for CalcASM
To build anAST the abstract grammar for CalcASMfirst needs to be defined. The grammar
describes the classes of the language constructs, and how they should fit together. This also
describes the structure of the AST. Figure 3.3 shows the JastAdd abstract grammar for the
CalcASM language. To the left of the ::= is the name of a class and to right are its
children.

A tree structure needs a root node, and in this case it is of the class Program and
it has one child, an Expr. Similar to object-oriented languages one can define abstract
classes, although in JastAdd these classes represent nodes. Expr is such a node class,
and is defined as an abstract class in the grammar by the prefix abstract. Inheritance
is marked by a : to the right of the class name. The following node classes all inherit
the Expr class: Mul, Numeral, IdUse, Let and Ask. This means that the Program
node can point to any of these classes as its child node.

In the grammar these child nodes all inherit the Expr class as explained above, but
otherwise they differ. For example areMul nodes defined to have two children, both of the
type Expr. Another example of the grammar is that Let nodes are defined to have a list
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let
a = 4
b = 2

in
a / b

end

Figure 3.2: A small code example of the CalcASM language.

Program ::= Expr;
abstract Expr;
Mul : Expr ::= Expr Expr;
Numeral : Expr ::= <NUMERAL>
IdUse : Expr ::= <ID>;
Let : Expr ::= Binding* Expr;
Binding ::= IdDecl Expr;
IdDecl ::= <ID>;

Figure 3.3: The JastAdd abstract grammar for the CalcASM lan-
guage.

of Binding nodes and one Expr. The list is indicated by the * character in Figure 3.3.
We can apply the abstract grammar from Figure 3.3 on the example code in Figure 3.2.

In this case there is a Let first and will be the child of the Program top node. Looking at
the grammar a Let node should consist of two children: one list of Bindings and one
Expr. The list have two Bindings (a=4, b=2) and the Expr node is represented as
the in-end block (a/b).

It should also be mentioned that the grammar in Figure 3.3 does not contain the in and
end words from the code in Figure 3.2. This is because they are tokens, and should not
be confused with node classes. A certain sequence of tokens will produce one node in the
AST, in this case the words let, in, end creates a Let node.

To summarize, the abstract grammars defines the different building blocks of an AST,
and their relation to one another.

3.4 Abstract syntax tree
An AST is the key component of a compiler, were the structure allows analyses to be
performed program it represents (this will be described later). It is generated from input
code (a program), the abstract grammars described in section 3.3 and attributes added
through reference attributed grammars (RAGs) in section 3.5.

After the code in Figure 3.2 has been parsed and scanned its AST will be generated,
but only if no parsing or syntactic errors are found. This is when the semantic analysis in
the compilation cycle begins, as mentioned in chapter 2 section 2.1.

The generated AST can be seen in Figure 3.4. If we examine the structure of the AST
we can see that it corresponds to the abstract grammar from Figure 3.3. The Program
node points to an Expr, in this case a Let node. The Let node in turn has two children,
a list with Binding nodes and an Expr node of the type Div.
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Figure 3.4: An representation of an AST generated by JastAdd.

3.5 Adding attributes to the AST
JastAdd comes with the possibility to alter the AST in Figure 3.4. The developer can add
attributes to existing nodes or add new nodes, called nonterminal attributes (NTAs). It is
also possible to rewrite or replace certain nodes. In JastAdd, these changes to the AST is
defined through aspect files, .jrag and .jadd. Code written in these files will be, by
JastAdd, translated into Java methods, which then are weaved into the appropriate node
classes. The code in the aspects is similar to Java code; however the aspect files can also
contain ordinary Java code.

Attributes in JastAdd are either defined as synthesized or as inherited, and they can
be with or without parameters. Equations are used to define an attribute’s value, which
can consist of multiple equations. The equations are like a function, meaning that they
always return the same value. An attribute can be declared in a parent class, and then let
all classes inherit that parent define its equation.

When it comes to attribute grammars, the term inherited should not be confused with
the inheritance in Object oriented programming. In JastAdd this for example means that if
class A contains an inherited attribute, x(), all classes with a child class A in the attribute
grammar must implement an equation for the x() attribute.

Attributes can also be declared as circular meaning that its equation can depend on
itself, directly or indirectly. Also, there is collection attributes where nodes in the AST
are so called contributors. A contributor adds some value to a collection attribute, so the
value of a collection attribute will be a sum of the contributors’ values. The collection
attribute can for example be an arbitrary class which counts the number of occurrences of
certain node type. Where each contributor increment the value of the collection attribute
when they contribute to the attribute.

As mentioned, attributes are useful when performing analysis on the AST. With the
help of the attributes found in Figure 3.5, we show how a namespace analysis can be
performed to find if any variable is declared more than once. In the aspect Errors, a
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aspect NameAnalysis {
...
syn boolean IdDecl.isMultiplyDeclared() = ...
...

}
aspect Errors {

...
coll Set<String> Program.errors() [new TreeSet<String>()] with add;
inh Program ASTNode.program();
eq Program.getChild().program() = this;
...

}
aspect ErrorContributions

...
IdDecl contributes error("symbol: " + id() +

" is already declared!")
when isMultiplyDeclared()
to Program.errors() for program();
...

}

Figure 3.5: Example of JastAdd attributes and aspects.

collection attribute errors() is added to the Program node. With the inherited at-
tribute program() on ASTNode we declare that all nodes will have a reference to the
top node. The equation for this attribute is defined in the node Program. In the as-
pect ErrorContributions it is defined that each variable declaration, represented by
IdDecl nodes, will contribute an error message to the errors() collection if they are
declared more than once. The synthesized attribute isMultiplyDeclared() checks
this, and is defined in the aspect NameAnalysis. Note that the equation for this has
been omitted as it is quite large. In short it checks the AST for other declarations that
define the same variable as itself, and returns true if it does and otherwise false. So if
isMultiplyDeclared return true the IdDecl will contribute an error message to
the collection errors() in the Program node, otherwise not.

The attributes can easily be reached through Java code, which is useful for any domain-
specific language. One can reach the result of any analysis or structural information in a
easy way and this is used by DrAST.

3.6 Looking at the AST and attributes
So how do we now inspect nodes and their attributes in an AST? How does one usually
proceed? The basic way is to define attributes that print the attribute values to the console
or to a text file, which often is quite time consuming and tedious. Therefore, to fulfil our
goals mentioned in section 1.2.1, we have created a tool called DrAST that allows the
developer to inspect the entire or parts of an AST, including all attributes defined for the
different nodes. Figure 3.6 is yet another extension of our overview, and shows that DrAST
runs after the AST has been created by the compiler. Chapter 4, DrAST, will describe how
this tool can be used.
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Figure 3.6: An overview of a JastAdd compiler and how DrAST
interacts with it.
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Chapter 4

DrAST

In this chapter our attribute debugger DrAST will be presented, which is the result of this
report. In addition to a description of how to use the tool and some of its key functionalities,
a number of design choices will be explained and defended.

Figure 4.1: A screenshot of the graphical user interface of DrAST.
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4.1 Visualizing the AST
To demonstrate DrAST the previously described language CalcASM (section 3.2) will be
used. As mentioned, the code in Figure 3.2 will result in an AST. DrAST can be used to
visualize this AST. It can start a compiler and extract the needed data. The screenshot in
Figure 4.1 illustrates how DrAST looks right after running the compiler for the CalcASM
language.

Currently DrAST has two ways to view the AST, Figure 4.2 illustrates them both side
by side. The default view, to the left, is the graph view with nodes and edges. The second
view, to the right, is a text-tree view where the indentation specify the relation between
parent and its child nodes.

When it comes to visualizing large amounts of data to a user it is important to remem-
ber the basic principle Overview first, zoom and filter, then details-on-demand [23]. This
has been one of the approaches we used when we designed DrAST’s interface and func-
tionality. With the graph view one get a good overview of the AST, and the attributes for a
node can be seen on demand when selecting a node (explained in 4.2). The text-tree view
on the other hand has better input delay performance, when displaying large sets of nodes,
than the graph view.

DrAST can handle ASTs with children that are not set, in other words references to
children that have the value null. If such a value is found an error is cast and a null child
will be placed in the reflected tree, these nodes are displayed as red nodes in the filtered
tree.

Figure 4.2: The AST can be shown as a graph view (left) or a tree
view (right).

4.2 Attributes
The window to the left in Figure 4.3 is the Node data window, which display the attributes
for a selected node. This view is split into two columns: Name and Value. The Name
column will display the name of an attribute and the Value column will display its value,
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if there is a value. An attribute value can be anything from Java objects to primitive types.
Some of the values may also be references to other nodes in the AST. If one of these
reference attributes is clicked, an edge is displayed in the graph view between the selected
and the referred node.

Figure 4.3: The Node data window: here all attributes and their
values can be inspected and computed on demand.

Some attributes are so called parameterized attributes, these have up to an infinite number
of values depending on the parameters. In the Node datawindow, it is possible to compute
these attributes with user input as parameters.

NTAs are also displayed in this window, but also in the graph as nodes. In theory, there
could be a near infinite number of nodes under a NTA. We added the possibility to expand
specific NTAs like any other subtree by right clicking in the Node data window. DrAST
does not by default compute NTAs; however it is possible to configure DrAST to compute
specific NTAs.
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DrAST is a debugger and a visualisation tool, although it does not simply display one
fixed state of a program. It is possible through DrAST to recalculate all attributes, even
the ones that were not used during the compiling process. The developer does however
have the option to configure DrAST to only show cached attributes, and by doing so show
the static state of the debugged program. If an attribute throws errors they will be caught
by DrAST, which itself will print the errors to the user.

4.3 Clusters
ASTs can rapidly grow large, with bigger programs and more complex compilers, but a
developer is often only interested in some specific part of it. We state in our goals (section
1.2.1) that we must solve this problem with Scalability. Therefore, DrAST comes with the
ability to filter unnecessary information instead of illustrating the entire AST. Nodes that
do not pass the filter will be, what we call, clustered. This collapses part of a subtree, not
necessary a whole subtree, into what we call a cluster node.

To demonstrate how this works we apply a filter on the AST in Figure 4.2 to only
include the following node types: Program, Let, IdUse and IdDecl. The result of
this can be seen in Figure 4.4, this representation is called the filtered tree and is what
DrAST will display. Every node that is not one of the classes or subclasses of the types
mentioned will be gathered into a cluster.

Figure 4.4: A filtered version of the AST in Figure 4.2, with the
nodes not fulfilling requirements of the filter clustered into the two
nodes (grey) following under the Let node.

The cluster nodes are in place to make the parent structure of the complete AST more
apparent. We illustrate the advantages with the cluster node in Figure 4.5. Figure 4.5a is
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the original tree, and the other two are filtered with or without cluster nodes. We lose both
structure and information about the tree in case 4.5b. By using the cluster, we can clearly
see what nodes are direct children to a node, and we also get information about how many
nodes that are hidden between two.

(a) Example graph (b) Removed parent (c) Clustered parent

Figure 4.5: Three different visualizations of an AST.

If a cluster node is selected in DrAST the Node data window will show a list of all node
types in the cluster, and additionally the node count for each type. This helps the developer
to see what has been filtered away, so the developer can more easily configure the filter
include or exclude more nodes.

4.4 The Filter Configuration Language
To achieve amodular filter solutionwe implemented a new domain-specific language using
JastAdd (Appendix A contains the abstract grammar). This language is simply called the
Filter Configuration Language (FCL) [26].

With the FCL a user can define what should be included in the filtered tree. The FCL
code is written in a.fcl file, whichwill be compiled byDrAST. This filter file is displayed
in a text editor in the graphical user interface of DrAST, so that the user can configure the
filter and see the changes to the filtered tree more easily. This editor window is the right
window in Figure 4.1. In short FCL works in such a way that the developer writes one or
more filters which all then are applied to DrAST’s representation of the AST.

The filter describes the node types that should be included in the filtered tree, and
all other types will be gathered into cluster nodes. The developer writes the simple-class
name of a node type (an example of a simple-class name: org.ast.Mul has Mul).
Some types like the Expr in the CalcASM language has a number of sub classes (Mul,
Numeral, IdUse and Let). If Expr is added as a type that should pass the filter, all
sub classes will pass too.

A filter could have been implemented in many ways. Different graphical elements
consisting of buttons, check boxes and draggable objects could all be good solutions, but
we chose to create FCL and a text editor. One problem was that we did not know what
feature the filter should contain, and so old features was constantly changed or removed
while new ones were implemented. To maintain a constantly changing graphical user
interface would be too time consuming, and we wanted to focus on other parts of DrAST.
In the end, we felt that a well-defined programming language with high usability would be
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sufficient and even preferred (by us) over a GUI. The implementation of the FCL also gave
us the opportunity to test DrAST during the development of a new language. However, as
future work one can implement a GUI for FCL into DrAST.

The FCL contains a number of features, and in the following sections we will explain
those that manipulate the filtered tree.

4.4.1 Filter conditions
Filters can also be applied on a more detailed level than just different node types. It is
possible to specify conditions that each node of a certain type needs to fulfil to be included
in the filtered tree. There are two types of conditions that can be specified; firstly the
conditions for attributes in the nodes and secondly the positions of the nodes in the AST.
These conditions can be specified for each node type, see Figure 4.6, in a when block.

The code in Figure 4.6 contains two node types, namely ASTNode and IdDecl. Each
of them has one condition specified in a when block. The ASTNode type is a superclass
for all nodes in the CalcASM language. The condition for the ASTNode will apply for
all nodes in the AST due to this (the conditions will propagate downward to all subtypes).
This filter will thus only include nodes that are directly children of a node of the type
Binding in the AST. IdDecl nodes will only be included if they fulfil the superclass
conditions as well as their own conditions. IdDecl should have an attribute with the
name getID and by the use of quotes in FCL, namely "a", it is specified that the value
of the attribute need to be of the type java.lang.String and a value equal to "a".

configs{
use = f1;

}
filter f1{

:ASTNode{
when{

child of :Binding;
}

}
:IdDecl{

when{
:getID == "a";

}
}

}

Figure 4.6: Small example code of FCL, showing that the node
types ASTNode and IdDecl are to be included in the AST (not
filtered away and clustered) when certain conditions defined in the
when blocks are fulfilled.

The conditions that currently are supported are quite basic. Attribute values are compared
to some primitive value like int or boolean, and also String. This is usually enough. If
more advanced filtering is needed the developer can add attributes with more advanced
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computations via the JastAdd system. These advanced attributes can in turn result in a
simple value, say boolean, which then can be filtered on by the FCL. For example the
IdDecl nodes can have a boolean attribute named FilterMe, that will return true if
some analysis yield a correct value, then the developer can just filter on the FilterMe
attribute. This is implemented this way so that FCL can use the existing attribute mecha-
nisms present in the JastAdd system, without the need to implement a similar mechanisms
into FCL.

4.4.2 Subtree conditions
In addition to clustering nodes with normal filter conditions one can collapse a whole
subtree, which is useful for large ASTs. These conditions are very similar to the filter
conditions, one specify conditions that the node type needs to fulfil to have its subtree
included in the filtered tree. If one node fails a condition all its children, direct or indirect,
will be collected in to a single cluster. See Figure 4.7 for a comparison between normal
filter conditions and subtree conditions.

(a) Part of a tree collapsed, achieved by filter
conditions.

(b) Graph with collapsed subtree, achieved
by subtree conditions.

Figure 4.7: Illustration of the difference between normal filter
conditions and subtree conditions.

4.4.3 Displaying attributes
With FCL one can also enable that attribute values should be displayed directly in the
graph view. This can be applied for each AST node type, just like the filter conditions.
Name and value of the attribute will be displayed directly inside its node in the graph. If
the value is a reference to another node though, it will be represented as an edge between
the nodes.

If the attribute that should be displayed is a NTA (an attribute that is or can dynamical
create a new AST node), it and its subtree will be calculated added to the model. The filter
will be applied to these nodes as well. This makes it possible to create an endless loop of
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NTAs, if one NTA create another by the same type and so on. FCL has configurations that
can prevent these kinds of infinite loops, by defining a recursive depth.

4.4.4 Styling
We also added the possibility to style nodes through the filter. Node colour, shape and the
border around the node can all be defined, and will override the standard colours in the
user interface.

4.4.5 Multiple filters
FCL supports multiple filters that can be enabled or disabled by the user. FCL will collect
all conditions and other values for each of the AST node types in to collections during the
compilation of the filter, but only from the enabled filters. This means that if a node type
is defined in two filters, all AST nodes of that type need to fulfil the filter conditions from
both filters to be included in the filtered tree.

An example of this use is that one could have a filter for deciding which nodes that
should be shown, and a style-filter that only changes the styles of each node. This style
can then be activated or not, without changing the filtering of nodes.
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Chapter 5
Implementation

This chapter will describe the different methods and Java libraries used to develop DrAST.
DrAST follows a Model-View pattern, where the model is separated into its own package
and has no connections to the view. DrAST receives the root node of the AST, as a Java
Object, and through Java reflection extracts the data and constructs its own representation
of the AST to create the model. The model contains two versions of the tree: the reflected
tree and the filtered tree.

The implemented graphical user interface is a view that visualizes the model. The GUI
is built with JavaFX, a set of graphical packages for Java [5]. The graph view is created
using the graph framework Jung [14].

5.1 The model-view architecture
The goal of the project was to create a tool for AST implementations, but the structure
of the DrAST system is designed to potentially be expanded for more uses. Figure 5.1
show the architecture of the system. The architecture is divided into one model and any
number of view-controllers, which we call views. As indicated by arrows, the model has
no dependency on the view, and performs its computations without knowledge about the
view (Figure 5.1). The model uses a Java object as a parameter that represents the root of
the AST (top node). All necessary data is extracted from the object and creates the data
in the model. Outside the model, views or other Java programs can use the data model in
any way they want. The graphical user interface presented in this report is an example of
a view implementation.

The views do not have direct access to the model, but rather through a long list of
public java methods. These methods together could be called the API. If the view want to
compute an attribute, change the filter or access the filtered tree it communicate this to the
API, which in turn will alter or use the model to return the result. Figure 5.1 show some
methods that can be used for communication.
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Further, views can either create a model or receive one from an external source. The
user can through the GUI export the graph as an XML file. The GUI view does not cre-
ate this file itself, but calls another view (DrAST XML) and passes its own model as an
argument. So a view can thereby use other views, and share its model.

Figure 5.1: The model-view architecture of the DrAST imple-
mentation. The arrows indicate dependency. Views (GUI, XML)
are dependent on the model.A view communicates with the API
that in turn uses the model to return a results based on the request.

5.2 The model
The model has two representations of the original AST, which can be seen in Figure 5.2.
The root object is passed into DrAST from the compiler. From this root node we traverse
down to all the leaves with reflection (see section 5.4.1). Each node is placed in its own
container class, and all these containers together become the reflected Tree. The reflected
tree is thereby a one-to-one representation of the original AST, where each container node
has a reference to the AST node it represents.

The last structure, the filtered tree, is created based on the reflected tree. First the
model uses an internal compiler to compile the filter. The filter is then applied to each
node in the reflected tree. If a reflected node passes the filter, it is placed in yet another
container node that will be used by the filtered tree. If it does not pass the filter it is placed
in a cluster node. A cluster node contains references to all reflected nodes it contain; no
new container is created for these reflected nodes.
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Figure 5.2: The reflected tree is DrAST’s representation of the
original compiler AST. From this tree, the filtered tree with cluster
nodes is created. The reflected tree and the filtered tree together
form themodel. Each node has a reference to the node it represents
in the previous tree (illustrated by the arrows).

5.3 Running DrAST
There are two ways DrAST can debug a compiler (Figure 5.3). It can either be done
through a call to DrAST via the compiler (compiler call), or through an addition of a static
field in the main class of the compiler, followed by letting DrAST run the compiler (DrAST
starter).

Both ways are valid, though the DrAST starter might often be the preferred method as
the compiler does not need to import DrAST in order to run. DrAST have quite a number
of library dependencies which the compiler unlikely need, and will make the compiler
grow substantially. All one need to do in the second option is to define what node that will
be used by DrAST by assigning it to the static field.

5.3.1 Compiler call
The compiler call works as following, and is illustrated by Figure 5.3a. The compiler
imports the DrAST library and calls it itself. It can either create the model or a DrAST
view (for example the GUI), with the root node as a parameter. Figure 5.4 show some
example code of a compiler calling the GUI view. When the GUI is called (or any other
view), it will in turn create the model. The filtered tree is created and can be reached by
any view, for example the GUI.

5.3.2 DrAST starter
The second alternative (Figure 5.3b) is by adding a static field in the compiler, called
DrAST_root_node. Figure 5.5 show some example code of this. The object in the static
field of the compiler will act as the root in DrAST. DrAST starter first calls the main func-
tion of the compiler and then fetches the DrAST_root_node field. User input is required
to get the arguments needed to run the compiler. The Object from the field is then, like
when using the compiler call, passed to a view or to the model.

35



5. Implementation

(a) Compiler call: the compiler starts
DrAST

(b) DrAST starter: first call compiler and then DrAST

Figure 5.3: The two ways to start DrAST, compiler call and
DrAST starter.

LangScanner scanner = ...;
LangParser parser = ...;
// Compile some code with the scanner and parser.
CompiledProgram rootNode = (CompiledProgram) parser.parse(scanner);
if (program.errors().isEmpty()) {

// start DrAST gui tool
DrASTGUI gui = new DrASTGUI(rootNode);
gui.run();

} else {
...

}

Figure 5.4: Example of code for DrAST compiler call where the
compiler starts DrAST from the compiler by calling the method
run().

When the debugged compiler’s classes are loaded at runtime there could be problem with
DrAST’s own filter compiler created with the JastAdd system, since Java cannot distin-
guish between two classes with the same name and package [19]. To avoid method calls
on the wrong classes we therefore created our own custom class loader, instead of letting
Java handle it with its own class loaders. In Java, class loaders are connected in a hier-
archic order [19, 7]. There are several loaders that each contains a number of class paths
and its parent loader. When a program is searching for a certain class in a loader, the
loader first asks its parent to search for the corresponding class. Only if the parent class
loader does not find the class the loader it will conduct a search. The above described
problem, two classes with the same name from the two different compilers (debugged and
filter compiler), will result in calls on the wrong class. Our custom class loader is created
to avoid this. It contains all possible class paths in the debugged compiler, and is placed
at the bottom of the loader hierarchy for the debugged compiler, thereby being the first
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loader activated. Our loader will first search itself for the wanted class, and only if it is
not found, calls for a search by its parent. The filter compiler and the debugged compiler
can therefore use their own class versions, and still have any number of classes or libraries
with the same name without any problems.

public static Object DrAST_root_node;
...
public void runCompiler(){

LangScanner scanner = ...;
LangParser parser = ...;
// Compile some code with the scanner and parser.
CompiledProgram rootNode = (CompiledProgram) parser.parse(scanner);
if (program.errors().isEmpty()) {

DrAST_root_node = rootNode;
} else {

...
}

}

Figure 5.5: Example of code for DrAST starter where the com-
piler sets the DrAST_root_node field to the root node of the AST.

5.4 Building the reflected tree
As explained DrAST creates its own representation of the compiled AST that is called
the reflected tree (Figure 5.2). In order to make DrAST run regardless of what JastAdd-
generated language the compiler is built upon, we had to ensure that DrAST has no depen-
dencies on any specific grammar. In other words, DrAST should function without knowing
what Java classes the compiler is built on. This was achieved by using the Java Reflection
API [6] and Java annotations produced by the JastAdd system. With this we can extract the
necessary information needed to represent an AST of any JastAdd compiler. This section
will explain in more detail what methods were used to achieve this.

5.4.1 Reflection
In order to extract data DrAST uses Java reflection, which enables modification and exami-
nation of the runtime behaviour of an application that is running on a Java Virtual Machine
(JVM) [6]. With reflection one can perform operations on an application that otherwise
would not be possible, for example change the access level modifier of a method or class.
It is also possible with reflection to invoke methods of an object without knowing its type.
An example can be a class A with the method foo, which generate its value bar. If we
have a reference to a generic Java object which we assume is of the type A, we can compute
the method foo without type casting and thereby retrieve its value bar. With this it is
possible to, without knowing the type of an object at compile time, retrieve the value of a
method [6], parameterized or not. See Figure 5.6 to see an illustration of the example.

The return type, access modifier, annotations, parameter types and more are examples
of other information that can be extracted with Java reflection [6]. With Java 8, it is also
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//Normal Java code to extract the value bar from the method foo()
A a = new A(); //A is a known type
//This is the standard way of computing methods
int bar = a.foo();
...
//Reflection code which the value bar from the method foo()
Object a = //Given a value some where, which we assume has a method foo()
//Using reflection to find and compute the method foo()
int bar = a.getClass().getMethod("foo").invoke(a);

Figure 5.6: Example code of Reflection code compared with nor-
mal Java code, where the goal is to retrieve the value bar.

possible to extract the names of the parameters for any method or constructor, but this
requires a compiler flag, namely -parameters [6].

Java reflection is usually used for special cases, as there are a number of drawbacks
[6]. With reflection it is possible to invoke methods, but there is no way to see what they
actually do. Invocation of a method can produce unexpected side-effects, especially if
it involves methods not normally reachable, for example methods declared private. This
could change things within the object that normally should not change, and the user would
not understand why.

However we still need something that tell us what information that is connected to the
AST, for example which methods that represents attributes. This problem is solved with
generated Java annotations, which are explained in section 5.4.2 below.

5.4.2 AST annotations
The JastAdd system produces a number of annotations, in the generated classes, for the
methods that represent the attributes, tokens and children references in the AST. In short
the annotations help us to find the correct methods in the classes so we can extract the
correct information and understand what they represent.

The JastAdd annotations are currently in the form of@ASTNodeAnnotation.value. The
value can be either Attribute, Token, Child, ListChild or OptChild in the latest released
JastAdd version 2.2.0. The Attribute and Token value correspond to their type, an attribute
or a token. The other three, namely Child, ListChild and OptChild represent references to
the children of a certain node in the AST.

To create the reflected tree we traverse the entire AST provided by the compiler, by
invoking the methods annotated with Child, ListChild or OptChild. We presume that the
objects returned from these methods represent nodes in the AST and they are put in a
container class. This process continues with the the child nodes, until we cannot find
more of these annotated methods. During this traversal we store basic information about
the nodes, for example if the node is a List or an Opt node.

During the development of DrAST new annotations were added to the JastAdd system,
to help us extract more data about the AST (Figure 5.7). It follows the same pattern as
before but the value part can now also be Source. Also, a number of value fields were
added to the annotations. An example is that the Source annotation now contains value
fields such as aspect and declaredAt. The aspect field contains the name of the aspect in
which the attribute was declared in, and the declaredAt field contains the file path to the
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aspect. The attribute annotations now also contain a kind field that specifies the kind of
an attribute; synthesised, inherited or collection.

...
@ASTNodeAnnotation.Attribute(kind=ASTNodeAnnotation.Kind.SYN)
@ASTNodeAnnotation.Source(aspect="MyAspect",

declaredAt="somePath/MyAspect.jrag:7")
public abstract String getID(){

...
}

...

Figure 5.7: An example of the new JastAdd annotations for a syn-
thesized method called getID.

DrAST do not know that the objects it extracts are actually from an AST, it blindly invokes
the annotated methods. This creates the possibility to use DrAST on any Java program,
of any kind. If a developer is interested in viewing some structure in their code (tree or
linked list are two examples), it is possible to just add these annotations to visualize the
structure in DrAST.

5.4.3 Cached values
The JastAdd system caches the resulting values from computations of the attributes, so
that these values are available without need for recomputation each time they are needed,
increasing overall speed [25]. The generated classes have, for each attribute, a private field
where cached values are stored [25]. For parameterized values the storing can occur in a
Java Map.

With reflection we are able to find these private fields for each AST node.
In the current implementation cached values are found by making assumptions on how

the name of the field is structured for an attribute, and then finding a field with the same
name. This approach is not entirely safe and prone to errors, but it is the only one currently
available. For example, if the JastAdd system is updated and the way private fields are
named changes, this can mean that we search for the wrong names - so that present fields
cannot found. This can be avoided by adding annotations to specify the names of the fields.

5.4.4 Modularity
DrAST, in its current state, uses Java reflection to extract the data necessary for creating
the model. In chapter 7, we discuss alternative methods. We have isolated the current
reflection solution of themodel so it is not dependent on this particular solution, but instead
on an interface that should contain all data. This allows for alternative methods to be
implemented and replacing the current one.

5.5 Frameworks and libraries
In this section the frameworks and libraries DrAST utilize are presented and described.
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5.5.1 JavaFX
JavaFX [5] is a software platform for Java, and is used to create the GUI of DrAST. JavaFX
is intended to be the new way of creating GUI based applications in Java, and is embedded
into JRE/JDK package in Java 8. JavaFX uses an XML based language to create the GUI
components called FXML, and these components can be styled through CSS or code.

JavaFX was used because it is the new official version of GUI handling in Java, hope-
fully this will mean that the maintenance for this framework will be longer than for other
libraries. Also, our previous experience with XML and CSS made JavaFX a good option
to work with.

The graph library Jung [14] (section 5.5.3) is built on Java Swing [4]. This created
some challenges. JavaFX have the possibility of embedding Swing applications, which
helped greatly. However this disrupted the normal JavaFX structure flow a bit, because the
Swing components and the JavaFX components run on different threads. Some handling
of the multiple threads was therefore needed to be implemented in the appropriate classes.

As mentioned, the JavaFX library is, at the time of writing this report, part of the latest
JRE/JDK package. However, it is not included in the path of some Linux distributions,
why it has to be manually added as an external library on these machines.

5.5.2 JUnit
We used JUnit tests suites to make sure things work as they should after adding new fea-
tures or changing old code. These also give future developers helping hints so that they
can avoid breaking any existing functionality with their additions to DrAST. Three differ-
ent test suites have been created: Input from file, input from code and GUI tests. The two
former tests the model of DrAST, while the latter suite only tests the GUI. The three types
of test suites are further described below.

Input file We used input file tests for the structure of the AST representations in the model
and for the structure of the filter language. Each test has its own folder and contains
three files: a filter written in the filter language, an input file and an XML file with
the expected output.

Two programming languages were used when performing the input file tests: Cal-
cASM 3.2 and FCL (4.4). We used CalcASM because we needed a stable language
that was simple and with an AST with that had some variation. Tests with CalcASM
were implemented to make sure the model’s AST representations were correct. The
FCL was used to check that the structure of the filters stays the same, even though
a developer changes or adds to parts of the code. Also, it works as a reminder for
updates of FCL’s documentation after structural changes.

A third case was added to check the performance of the model, by creating the model
on a large AST. This case can be used as an indicator for when it is time to optimise
the model.

Code generated input Manually created ASTs are supported by tests of this type. This
does for example simplify creation of trees with null children.
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GUI testing To perform automatized GUI testing we used an open source library called
TestFX. TestFX can emulate mouse and keyboard input events on JavaFX compo-
nents, so with TestFX one can control a components’ position and status. However,
TestFX does currently not support embedded Java Swing components.
The GUI tests perform action calls on buttons, test keyboard shortcuts and so on.
With these tests we also controlled that the text-tree view succeeded in its creation.

5.5.3 Jung
The Java Universal Network/Graph Framework (Jung) is a Java Swing based library for
modelling, analysing and visualising data [14]. In Jung data can be represented in a number
of different ways, for example tree graphs or networks. DrAST uses version 2 of this
framework to visualize the AST.

Input events such asmouse and keyboard are handled by Jung internally. The developer
simply chooses what events that is interesting and Jung will handle them. Selection of
nodes, moving nodes, panning the camera and zooming are some examples of such events.

To change the look and feel of a Jung graph something called Transformers are used.
Each individual transformer handles either an edge or a node and transforms its appear-
ance. Examples of transformers are the shape of a node, or the colour of it.

The built in API for basic mouse and keyboard events saves a lot of time, because it
makes it relatively easy to extract the clicked node and perform UI changes upon such
events. The transformers collect their information about the nodes and edges from the
model, something that makes it easy to change the design of the graph by simply changing
the value in the model.

Jung performs quite well for smaller ASTs, but when the number of nodes starts to rise,
above 10000 nodes, the performance starts to drop. The Jung library renders the graph ev-
ery frame, and with a large set of nodes, edges and complex transformers the performance
will be drop significantly. To boost the performance we made a simple optimization: if
the filtered tree contains over a certain number of nodes, the edges and labels will not be
rendered during any navigation event.

Problems with Jung
Although Jung is a robust framework with a high extendibility it has some problems when
one want to add a specific behaviour to a layout or transformer. Most of these can be solved
by extending the class that performs the operation and override a conflicting method.

The problem with this is that methods overridden usually contain a lot of special-
ized code, for example the computations for scaling the graph, and when overriding these
methods one can lose the version handling of the framework, so one’s own code will not
be effected by future updates. This can be error prone and troublesome when using the
Jung framework.
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Chapter 6
Evaluation

So far we discussed the functionality of DrAST, but not how well it performs in different
areas. DrAST has been evaluated for its performance (time, memory and lag), and for
its usability. The methods for the evaluations and their results will be described in this
chapter.

6.1 Usability
The potential users of DrAST could be both professionals working with compilers devel-
opment with the JastAdd system, like The JastAdd Team that is supervising this project,
or students that are learning the basics in compiler technology. One of our goals (section
1.2.1) was to create a tool that is understandable and non-restrictive for new and experi-
enced users.

The usability tests focused on finding faults in two cases. Firstly, we wanted to control
if the GUI hinders the developer by not being intuitive enough. Secondly, the usability can
be insufficient regarding the documentation. We therefore also wanted to see how different
users read FCL’s documentation, in order to improve its language and structure.

6.1.1 Think aloud
We decided to use the Think aloud [18] method when conducting the usability tests. First
we thought of doing more complex tasks, where the user would find and solve bugs in a
language grammar using DrAST. While a test like that could demonstrate how powerful
the tool is, it is not a suitable method to find problems in usability. Instead we decided that
small, easy tasks in an already complete language better would meet our needs ([18]). If
the user could figure out the given tasks without being familiar with DrAST, we deemed
usability to be of good quality.
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The same method was used for every participant: we read a number of tasks aloud
which the participant had to solve. At the same time, the participant had to continuously
give oral feedback about their view and experience of DrAST. The task were read aloud
to encourage a dialog and making the process of giving feedback aloud more natural. The
feedback was documented and conversations between us and the participants were kept at
a minimum. We only answered questions when we deemed it would have no impact on
the outcome of the test, since the participant was supposed to complete the tasks without
our help.

Test groups
As mentioned, the users can be both professionals and beginners in JastAdd development.
The participants were divided into two groups. We started with only two professionals,
since a small test group of 1-4 persons is enough to find major usability problems, accord-
ing to Lauesen ([18]). These two participants used the same version of DrAST, so that
we could see whether or not they both got stuck on the same problems. After this first
test group, we made changes based on their feedback and added new features. The next
group consisted of four people with varied experience in JastAdd development. As a com-
mon knowledge base all had completed the same compiler course at Lund’s University.
In contrast to the first test group, we made changes to DrAST after each test and the next
participant tried the new version.

Tasks
Each participant had to solve in total 9 tasks (for all see Appendix B), some examples are:

• The root of the AST has an attribute nodeCount. What is the value of this attribute?

• Create a filter that hides all nodes except Program, Let, IdDecl.

• IdUse have an attribute decl that points to an IdDecl somewhere in the three. Draw,
for all IdUse:es, these reference edges directly in the graph.

The tasks are designed to see if a participant, without any background knowledge of
DrAST, can figure out how to solve them by just having access to DrAST and FCL’s doc-
umentation [26]. We gave as little information as we could about DrAST in the task de-
scription, to stay away from so called hidden help [18]. To summarize, the tasks hinted
on features in DrAST but not how to use them. By observing how the users worked with
these tasks we could identify potential faults in both the GUI and the documentation, which
decreased the overall usability of DrAST

The tasks that required reading the FCL’s documentation [26] allowed us to see how
users interacted with the documentation. At the time of writing this thesis, the documenta-
tion is available on a single Wiki page, and therefore only scrolling is needed to find infor-
mation. We did not only observe the time it took the users to find the information, but also
which search techniques they used. The documentation was displayed in a web browser,
which let participants use word search functions. Not only did the participants read the
documentation the traditional top-to-bottom way or reading titles but also searched with
key words like "child" and "reference". It was important that these words were at relevant
position in the text.
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6.1.2 Results of usability testing
As we described above, we did changes between the user tests, based on the feedback. We
did not have any measurable data on usability. However, we found a lot of usability prob-
lems, bugs and got ideas for new features. Here we will list some of the more interesting
findings.

Usability problems
Usability problems are what we called problems that had an direct effect on DrAST’s
usability. For example buttons that the user did not see because of their colour are such a
problem.

We noticed that it was difficult to understand the use of the class overview window,
which explains how the classes in the graph are connected (for example a binding node
has IdDecl and Value as its children). Most participants thought the window displayed the
grammar, until they looked closer. We did not improve this window, because we decided
that this window should be used for something else. However, in the end we added a text
at the top of the window explaining its use was.

There was also lack of feedback, given by the GUI, at a number of places (waiting for
the compiler and calculating an attribute value are two examples). To solve these problems
we changed the position of information, implemented loading cursors and loading dialogs.

Features
Ideas for new feature that could enhance the usability came to light through the tests. We
noticed that some users tried to use the keyboard instead of clicking in the GUI, so we
added a number of short commands to DrAST. Saving the filter, rerunning the compiler
and hiding all windows except for the graph are some of the implemented commands.

Another feature was the ability to open the source code for attributes. If, for example,
a user notice that an attributes value is faulty, it is possible to open the file that define the
attribute (the .jrag or .jadd file) in the default program for the machine.

Bugs
Most bugs or problem with GUI occurred when the user did not do "as they should".
Mostly it was short keys that did not work (pressing enter to press a highlighted button),
windows placing themselves over each other or that the graph positioned itself wrongfully
on the screen.

User survey
At the end of each test session the participant was given a small survey consisting of three
questions with the option to answer either yes or no. Again, this has no statistical signifi-
cance but helps as an indication. The questions were the following:

Do you think this tool would have been useful during the compiler course?

45



6. Evaluation

Do you think this tool would be useful today, if you worked with JastAdd?

Do you think you could recommend the tool to other people?

In the end, all participants answered yes on all three questions.

6.1.3 Conclusions from usability tests
The tests conducted were not designed to provide data for statistical analyses. The test
groups were too small and the changes made between tests make a comparison among
the feedback from participants difficult. Also, such a comparison would not have been
relevant, as the participants’ prior experience of workingwith JastAdd varied a lot. In order
get sufficient data for statistical analyses, the usability tests need to be further developed.
Regardless of this, the results of our tests enabled identification of the worst usability
problems and indicated the suitable direction of future developmental work.

In the end all participants completed the tasks within a short time span. The total time
for each test session ranged from 20 minutes to over an hour, depending on how much
feedback the participant gave.

To summarize - from this we cannot statistically quantify and prove the level of usabil-
ity in DrAST. However, we can still conclude that users of a varying degree of JastAdd
experience could manage to do the tasks they were assigned, and that they all had a pos-
itive attitude towards DrAST. This implies that our goal about usability (section 1.2.1) is
reached.

6.2 Performance
Performance tests were conducted to see how well DrAST performs on ASTs of different
sizes. The results from these tests hinted on the machine requirements for DrAST, and
also indicated if and where optimizations were needed. Time, memory and input lag were
the main metrics and the model (Section 5.2) the main focus.

In order to test the performance of DrAST we used two different compilers: CalcASM
and ExtendJ [9]. CalcASM is the compiler used as an example in this report, and is a
small compiler with only 9 node classes and with few attributes in each class. ExtendJ is
a Java compiler that is considerably larger, with around 250 - 260 node classes, each of
them usually containing a large number of attributes (some classes have around 30 - 60
different attributes).

The machine used for these tests had an Intel Core i7 870 CPU with a clock frequency
of 2.9 GHz and 16 GB ram.

6.2.1 Time
The time it took to create the model was measured in two ways. Firstly, we used the
time needed to create the full model - both the reflected and the filtered tree. The second
measure we used was the time required for building only the filtered tree.

For each of the compilers a set of programs were run. For ExtendJ 16 different Java
programs of varying sizes were chosen. As the CalcASM language is very small and large
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programs do not exist (and are not feasible to create manually), we created a script that
automatically generates 16 CalcASM programs with AST sizes corresponding to the Java
programs’. The largest programs had about 170 000 nodes; for CalcASM this corresponds
to 64 200 lines of code and for Java around 2000 lines of code. The reason Java programs
can have such extensive ASTs with so few lines of code, is that they use a large amount
of libraries represented in ASTs as NTAs (section 3.5). A Java program with 2 lines of
code could produce an AST of approximately 2700 nodes, while a CalcASM program (not
using so many libraries) would need 1000 lines of code to generate an AST of the same
size.

Time to build the entire model
Here we present the total time it took to build the entire model. The 32 programs, 16 for
each compiler, were executed 10 times each. A single filter was used for all programs. The
filter in question was configured to include all node types, without exception. Figure 6.1
show the result of the performance tests, where the bars represent the average time it took
to create the model for each program, including 95% confidence intervals. Note that the
x-axis is not linear; the values (number of nodes generated) are only following size order.

In Figure 6.1 we see that the confidence intervals are small, which means that the time
it takes to create a model of a certain size is relatively constant. If one creates the model
for certain a program multiple times the time for each iteration will be approximately the
same, this is indicated by the confidence intervals. The number of nodes seems to directly
affect the total time, so that time increases linearly with the number of nodes in an AST.

The difference in time between ExtendJ and CalcASM can be explained by the differ-
ence in number of attributes included in the two languages. Each node in ExtendJ has a lot
more attributes than the nodes in CalcASM. As mentioned in 5.4.2 each method in a node
class can represent an attribute, token or edge in the AST, meaning that more attributes
results in more methods. DrAST must, for every node class in the tree, iterate through all
methods and read the Java annotations to be able to build the reflected tree. The methods
are cached for each node class so the full iteration will only be done once every class. This
caching thereby makes the number of attributes less important for the total time it takes
to generate the entire model. Without the caching, we would expect bigger differences
between the two compilers in mean total time.

We deem the total time required for creating even the larger trees of 170 000 nodes
acceptable, with a mean of 1.2 seconds when using ExtendJ.

Time to build the filtered tree
We believe it is acceptable that DrAST does not start immediately, but after that point it
should run smoothly. After the models first creation one can apply a new filter which will
create a new filtered tree, and it is important that the new model is ready after a short time.
When a new filter is applied, one iteration is done on the reflected tree and every node
that passes the new filter is added to the filtered tree. We wanted to see the impact of this
iteration.

The same sets of programs from the last section (6.2.1) were executed for both com-
pilers and their models were created. We recreated the filtered tree 10 times after this by
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Figure 6.1: Average time to create the model, for trees with differ-
ent numbers of nodes, with two different compilers (ExtendJ and
CalcASM).

applying a new filter over and over. The result of this can be seen in Figure 6.2. The graph
is similar to Figure 6.1. Each bar represent the average time for the filtered tree to be cre-
ated. The confidence interval is marked at the top of each bar as a line, here as well we
used a confidence interval of 95%.

Again, the confidence interval is small, indicating that the number of nodes seem to
be the biggest factor when creating the tree. According to J. Nielsen [20] a time below
0.1 second gives the impression that a system reacts instantaneously. Above that up to
1 second will be noticed, but the user’s flow of thought will stay uninterrupted. We see
that for the program with 170 000 nodes it takes 0.35 seconds, which is well below the 1
second limit. Note that this time only represents recreation of the filtered tree, if a view
like the GUI also is used, this will add additional time.

6.2.2 Memory
The compiler holds the original AST, and within the DrAST model we have the reflected
tree and the filtered tree. The GUI adds two additional representations with the graph and
text view. To this we also have a large number of different caches and the whole GUI with
buttons, windows and so on. We are interested in how much memory that DrAST with the
GUI use when running, especially on large ASTs.

We generated 5 different programs for the CalcASM compiler, with different sizes
ranging from around 2 700 to 170 000 nodes (around 1 000 to 64 200 lines of code).
We ran the compiler that in turn started the DrAST GUI. We printed the memory use
(in megabytes) at three set points, running garbage collector right before each print. The
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Figure 6.2: Average time to rebuild a filtered tree, for trees with
different numbers of nodes, with two different compilers (ExtendJ
and CalcASM).

memory-use data was printed when the compiler was done, when the model was done and
when the GUI was running. We did this two times for each program with different filters.
First with a filter that passed all nodes and then only passing around 900 nodes. Table 6.1.

The largest memory use of 544 megabytes was when the AST contained around 170
000 nodes and the GUI was running. This should not be a problem for machines of today.
By filtering this large tree to only 900 nodes, we lowered the total memory use to 157
megabytes. Hence, applying the filter language can save memory.

Table 6.1: The memory usage (megabytes) in different stages of
running programs with different graph sizes in DrAST.

AST size (number of nodes) 2 784 9 610 50 101 109 971 170 012

Compiler (MB) 3 5 18 39 59

Model (MB) 9 19 84 180 275

Filtered model (MB) 9 16 45 94 140

GUI (MB) 33 53 178 364 544

Filtered model, GUI (MB) 31 38 66 114 157

Figure 6.3 uses the data from Table 6.1 to exemplify the memory usage of the different
parts of DrAST. From top to bottom we see memory usage of the GUI, the filtered tree, the
reflected tree and lastly the compiler. No filtering was applied for the case in the figure,
in other words all nodes were displayed. We see that the reflected tree is almost the same
size as the compiler, the difference are some caches that use some extra memory. The
filtered tree section consists of both the reflected tree and the AST from the FCL compiler.
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In this case all nodes pass the filter, resulting in that the filtered tree’s memory usage is
approximately the same as the reflected tree. The GUI uses a lot of memory compared
to the other parts. Some memory section of the GUI is based on the filtered tree and by
adding a more restrictive filter one can lower the memory impact of both the GUI and the
filtered tree.

Figure 6.3: The memory usage in different parts of DrAST run-
ning with an AST of 170 000 nodes.

6.2.3 Input lag
The GUI must appear to be responsive and not suffer from input lag, otherwise the overall
impression of DrAST will suffer. The heavy part of the GUI is the graph view that must
render all nodes, edges and labels onto the screen. The GUI needs to render the graph
every time the user wants to zoom, pan or highlight a node. The graph view is however
on its own thread so even if it is lagging behind, the rest of the program is still responsive.
To evaluate DrAST regarding lag performance we tested the number of times the tool can
render a graph per second, also known as frames per second (FPS).

We created a script that rendered graphs as many times as it could during 10 seconds.
Rendering of nodes was only done with edges and nodes remaining hidden, like they are
while a user navigates the graph view in DrAST. This was done for 13 programs with
different AST sizes, ranging from around 2 700 to 170 000 nodes. The result is presented
in Figure 6.4, where the bars represent the average FPS for each program. Note that the
values on the x-axis only are in size order and that the scale is not linear.
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J. Nielsen (1993) showed that a program appears to react instantaneously when it has
an update rate above 10 FPS [20]. As seen in Figure 6.4, the GUI of DrAST performs at
this level for programs with less than 30 000 nodes. When the FPS is between 10 and 1 a
user will notice a lag but will not lose its interest [20]. In our tests the GUI performance
approached the lower limit of 1 FPS for graphs of 170 000 nodes, but never dropped below
it (Figure 6.4). We also want to highlight that by using the filter mechanism the lag can be
decreased as only nodes the user actually is interested in are included.

Figure 6.4: The average frames per second of several renderings
of the graph view of 13 programs of differing AST sizes (number
of nodes).

If a node has a large amount of children, we noticed a great loss of performance. This is
connected to the edges that must calculate the length and angle between two nodes. The
children of a node will all be placed next to each other in a row, with the parent placed
above in the middle of the row and this result in a lot of computations with large numbers
for the children farthest away from the parent. This problem could make a more restrictive
filter perform worse, because a cluster node can get a lot of children. Our quick solution
to this is to deactivate edges in the GUI, so they will not be rendered.

6.2.4 Conclusions from performance tests
The performance goal (1.2.1) was to create a stable tool that performs its computations
within an acceptable time frame, for both small and large projects. We can conclude from
our studies that this goal has been achieved for ASTs with up to 170 000 nodes. In the
worst case DrAST is able to create its model in 1.2 seconds, and can reapply a filter in
about 0.35 seconds. DrAST’s GUI is able to visualize large ASTs. However, the FPS
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drops when displaying a large amount of nodes but with FCL it is possible to remove the
vast majority of nodes, down to a number that is manageable for the user.
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Chapter 7
Related work

Today there exist a number of different tools used for debugging, and in this chapter we
will compare DrAST to some of these solutions. Here we will discuss different methods
for debugging attribute grammars and methods for extracting the AST information.

7.1 Attribute debuggers
An attribute grammar debugger can have many features, although the main feature usually
is to inspect the current values of attributes. DrAST debugs a program by visualizing the
AST at some state. With DrAST, one can inspect attributes, nodes, edges and references,
as well as invoke parameterized attributes. There are some things DrAST cannot do. Some
examples of missing features are analysing of the grammar, see if the AST structure follows
the grammar or if attribute values correct or not. This is partially solved by the internal
structure of DrAST that allows the developer to add its own analyse modules. Currently
no such analyses are implemented in DrAST though.

In this section we will broaden our perspective on attribute debugging, by also looking
at other tools and algorithms.

7.1.1 Visualization
The visualization of an AST structure can be done in many ways, and today there are a
number of different ways to visualize graphs. For example exporting the AST to a file
(DOT, GraphML or JSON format) and use a program that can read these files. VAST is an
example of this [1]. The idea here is that the developer generates one output file from their
parser and then opens this file in VAST. VAST displays to the user an interactive visual-
ization of the AST, a disadvantage in this approach is that this structure is not connected
to the compiler. However VAST is good for cases when the visualization of the current
AST is all you want, where the output file can be stored and used later. Although adding

53



7. Related work

analysing tools to these files could prove hard. For example computing attributes with pa-
rameters on demand is not possible. This is one of DrAST’s strengths when compared to
external file solutions, as it is integrated on a deeper level and can also be extended more
easily (Although only for JastAdd based systems).

The Eclipse plugin AST View [24] is another example of an AST visualizer. It shows
the AST for a Java file in a view similar to the text-tree view in DrAST. However, AST
View does not support attributes and thus it is not possible to compute these on demand,
which is a disadvantage compare to DrAST. Also, it can only display the AST for a single
Java file as where DrAST can visualize the complete ASTs from programs with different
compilers.

Aki [13] is another example of a visualization tool but in contrast to VAST, is built
into the compiler and has full access to grammar and attribute-definitions. Aki is closely
connected to the specific task, even more than DrAST, and must has access to a lot of
information about the syntax to function. Aki has some features that DrAST is lacking
though, which will be explained in the next section.

One strength that DrAST also have compared to these three is its filtering capabilities.
VAST shows everything that is stored in a file, AST View shows the AST for a single Java
file, and AKI shows the complete AST of the compiled program. For large trees or files
this will become a problem regarding both performance and usability, where it will be hard
for the user to navigate and find the point of interest.

7.1.2 Grammar debugging
For debugging attribute grammars one can also use algorithmic debugging [13]. The gen-
eral idea of these algorithms is to help the user localize errors in their program. The
algorithms are based on user input. The user get to follow the evaluation of one or more
attributes through the AST, and see its value in each node up to its final value. The idea is
that the user tells the program if a value is correct or not. If the Value is correct then we
know that the problem should not be in this part of the AST, and we can look somewhere
else. These methods require that the user knows what the value of solution should be and
that it know the values in between. AKI mentioned in the last section has this feature.
DrAST has no way to follow the evaluation of the attributes in the grammars, due to that
reflection can only invoke methods but cannot access the internal computations.

7.2 Heap snapshot
Compared to many other debuggers DrAST work on a high level, and visualize only data
of one state compare too many other step-by-step debuggers. We do not want to debug the
java code in itself, but rather one structure in the program. In other words, only the objects
representing nodes and methods representing edges, attributes and tokens. To use DrAST
we force the user to alter their code to make certain information visible, DrAST then uses
Java reflection to automatically extract the needed information.

Another solution to extract the AST from a program could be by following the theory
used in the article Visualizing Memory Graphs [28]. The authors talk about debugging
memory and visualizing it as a graph. Pointers and references in the stack or heap memory
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could be represented as edges and objects as nodes. This theory has been used in a number
of different tools [12, 15, 22] and is intuitive with object oriented languages where rela-
tionships between objects often are represented as graphs. One method for creating this
kind of memory graphs is called Heap snapshot. A snapshot of the heap could be used to
extract the AST objects and we will discuss methods for this in this section.

7.2.1 Examples
Some examples of tools using heap snapshots is Heapviz [15] and Fox [22]. For any state
of the program these tools are able to take a snapshot of the debugged program’s heap.
This data is used to produce the object graph for this state. In the heap one can access all
objects surrounding a java program, from external libraries and java libraries to the source
code itself. The heap data is therefore huge, even for small programs, and grows quickly
with bigger programs. The graphs get cluttered quickly so some kind of filtering is needed.
Especially for DrAST who are only interested in one particular subset of objects, the ones
in the AST.

Heapviz apply a summarization algorithm [15] to group objects of the same type into
something similar to our clusters. So a list of objects becomes one node in their graph.
This method could be used by DrAST to extract the AST from the snapshot, by finding
the set of nodes representing the AST. Although it still might prove difficult, due to that
there is no simple way to specify the information or nodes DrAST need. Fox on the other
hand use a two-step filtering [22]. The first step is to only let objects fulfilling certain
criteria (e.g. depth in graph or class type) be part of the snapshot. The second step is user
based. The user constructs SQL-like queries to fetch the data from the constructed snap-
shot. Something like this would probably work better for DrAST, compared to Heapviz,
with the purpose to extract the AST information.

7.2.2 Getting the snapshot
Normally when you take a heap snapshot in Java you take a heap dump. This takes the
current heap and dumps it to a file. In this process you lose your references to all objects in
the JVM, and will not be able to invoke the methods that represent attributes and tokens.
Both Heapviz and Fox are tools for viewing the current status in the heap, and need no
references to the Java Objects. DrAST however support additional features, and are not
only interested in viewing current information that can be derived from a snapshot file.
DrAST is also able to compute attributes with or without parameters on demand. Without
the references a heap snapshot is not enough for these on-demand computations. One
approach to solve this is to calculate all attributes before the heap snapshot is taken. The
main issue with this is that it would obviously slow things down and make the heap grow
substantially, especially for large ASTs with a great number of attributes in the nodes. To
use the snapshot approach, we would need a way to directly connect to the JVM and take
a snapshot and also save all real Java objects during runtime. We are not quite sure if this
is feasible, so further studies are required.
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7.2.3 Comparison
Using a heap snapshot method would make the integration with the debugger easier, com-
pared to the current solution. There would be no need to alter source code, because all
data is fetched from the heap memory. We would also be able to receive extensive data
about the compiler, not just the AST objects and at any point during runtime. Currently
DrAST have no clue what is happening inside method/attribute calls, and cannot break the
calculation without altering the source code. In theory one can compare two snapshots to
see the evaluation of some attribute and changes in different nodes, however this would
not be an efficient solution.

One problem that would arise with the use of heap snapshots compared to reflection
is that we would not know which objects that represent the AST. DrAST should work for
any JastAdd grammar, and therefore we do not have any information about which classes
that are the nodes in the AST beforehand. We do not know if ArrayList and String are
nodes of the AST. With our solution we get the root object, and use JastAdd annotations
to separate the AST classes from other classes. With heap snapshots DrAST would need
to have more information to know what classes are AST nodes, some information about a
parent class that all AST nodes have in common, or a package name.

The heap memory consists of large amounts of data and could be used by many dif-
ferent applications, but we are interested in a specific subset. The majority of the heap
data could therefore be considered junk, and would be discarded. Focusing on only the
AST Objects directly, like our solution, probably gives a better performance in time and
memory compared to heap snapshots.

7.3 Java remote debugging
JAVIS [21] is an example of a tool that is quite similar to DrAST, but uses a different
method than reflection and annotations to gather its data. According to their paper, JAVIS
was created to help new students to understand the structure of Java programs, where it
visualizes how a program’s different objects refer to each other. As an example it can show
how a linked list has a reference to the first and last element of the list, and each element
points to the next. JAVIS uses the Java Debug Interface (JDI) to extract the data, the JDI
is part of the Java Platform Debugger Architecture (JPDA) [8]. This architecture lets one
application run and debug another application.

7.3.1 Comparison
Using Java remote debugging to debug would hold some similar pros and cons as heap
snapshot. Wewould not need to change the source code andwe could step through the code
like a normal debugger. This method would most probably perform better than reading the
heap. As with the heap snapshot, this method would give us access to all classes in the
debugged program and not just the ones we are interested in. We would need a way to
know which class objects that are part of the AST.

Compared to our current solution JDI does not let us access the real objects of the tree,
rather just a proxy called ObjectReference [8]. However it would still be able to reach
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the values of fields and invoke methods. DrAST as in the moment of this writing would
not have a problem with this restriction. Future features in DrAST could however include
changing the AST and this would need the real AST-node objects.
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Chapter 8
Concluding discussion

This chapter concludes this report. A summary of the key results of the project is presented
and some ideas for future work of DrAST.

8.1 Summary
This paper presents a solution to debugging compilers that use ASTs as internal structures,
as such solutions to our knowledge previously have been lacking. The solution has been
implemented in a tool called DrAST. The main feature of DrAST is visualizing a represen-
tation of the AST to the user in an interactive way. We call the representation the filtered
tree, due to that the user can hide nodes with the help of a filter. The nodes that do not pass
the filter are gathered in nodes we call clusters, which can contain any number of filtered
nodes. The purpose of the cluster nodes is to hint on how the original structure of the AST
looks and they help the user by removing unnecessary information, i.e nodes that did not
pass the filter.

DrAST was implemented in Java for the JastAdd system. JastAdd is an attribute gram-
mar based system that can be used to generate compilers and analysing tools. It generates
Java classes and each method can represent attributes or edges in an AST. The methods are
also annotated with Java annotations. DrAST uses Java reflection on the root-node object
of the AST and the JastAdd annotations to create its own representation of the AST that
can be filtered and displayed to the user.

The tool has been tested for its usability by 6 participants of varying experience in
JastAdd development. Their common background is a compiler course at the faculty of
engineering at Lund’s university. Their feedback was used to improve and add features
to DrAST in order to make the user experience better. Each participant gave a positive
response, and thought the tool would be useful for both the compiler course and more
advanced JastAdd projects.

A number of different performance tests were conducted on DrAST. The primary met-
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rics for the tests were the following; Process time, memory usage and input lag (measured
in FPS). The FPS and process time is dependent on the machines, although it is possible
to create a filtered tree with 200 000 nodes under 3 seconds on everyday machines. Nav-
igation in the graph works well, up to around 40 000 nodes. The idea is though that the
user should filter the tree to something smaller than this. For normal usage, we expect the
user to have between 20 to 50 visible nodes, and as seen in Figure 6.4 it takes less than
0.03 seconds to draw the filtered tree with roughly 2 800 nodes present in the graph. This
is well below the limit of 0.1 seconds recommended by user interface experts [20].

In the end we believe that our goals, usability, performance and scalability, have been
reached.

8.2 Future work
The DrAST system was implemented with support for continued development in mind.
Themodel-view architecturemakes it easy to create new views that can visualize or analyse
the reflected or the filtered tree. An analyser interface can be extended to easily add analysis
during or after the construction of the reflected or filtered tree. The reflection part of the
model that is used to fetch attributes and edges of each node is its own separate module, and
could be replaced by something else without making changes to the rest of the model. The
overall structure of the GUI is based on abstract classes and interfaces, to help developers
add their own buttons, dialogs or windows. In this section we will present some ideas we
have, that can be extensions to DrAST.

8.2.1 Save the model to a file
The model is separated from the views so that new views can be added. We have a view
that creates a simple XML file that only store the nodes but no attributes. One could think
of many other views that do a similar task but more complex, and to different formats.
DOT, GraphML or JSON could be some formats that would be useful for different uses.
By extending this feature, the DrAST system could be used to export specific information
about an AST to any other software.

8.2.2 Java remote debugging API
The current solution requires the developer to change the compiler source code. Instead,
one could use a normal debugging interface (example Java remote debugging), that would
allow developers to set break points, and from there start DrAST. The Java remote de-
bugging API could then also replace the reflection part of the model. By doing this, the
objects used to create the reflected and filtered tree would instead be extracted from the
reflection API. The Java remote debugging API could also be used to add support for the
evaluation of attributes, to see intermediate values and nodes that create the final value.
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8.2.3 Optimizations
One optimization could be to change the filtering to only affect relevant nodes, not the
whole tree. The idea is to inspect the difference between two filters and only reevaluate
the affected nodes. Presently the model discards the whole filtered tree and creates a new
one when applying a new filter. Instead one could keep the current filtered tree and alter it
according to the new filter, which could improve the time it takes for the model to create
the filtered tree.

8.2.4 Analyzes
Analyser is an interface in DrAST that executes a method during or after the creation of
the reflected or the filtered tree. The current state of the trees or their nodes is passed into
an analyser object, in which DrAST can perform whatever analysis the developer needs.

8.2.5 Graphical interface for FCL
Currently in DrAST’s GUI the filter language is handled through a text editor. One could
later on replace this with a GUI of some sort to improve DrAST’s usability, for example
with edit boxes, spinners and buttons.

Compare tree to grammar
DrAST does not know about the grammar of theAST that it performs reflection on. Adding
an analyser to the project that knows the grammar would be a solution to this. This analyser
could be called during the creation of the filtered tree, and for each node see if it has the
parent of the correct class (because the children have yet to be created in the filtered tree).
This could of course be done after the filtering, but this would mean another iteration of
the whole tree. Note that this analysis should be done on the reflected tree, which is a
direct representation of the AST.

JastAdd annotations would make it possible to add a general grammar analyser for all
JastAdd compilers. Every class generated by JastAdd could be annotated with the defining
grammar. This way our tool could rebuild the grammar, or at least the part of the grammar
that are currently in use by the AST represented.

Find equations for inherited attributes
Our solution does not help the user to see how an attribute was calculated, because Java
reflection only allows us to invoke methods. We cannot see the internal structure of a
method with reflection. However, with the information we get from JastAdd annotations,
we can see if an attribute is inherited or synthesized. DrAST could, for inherited values,
search upward in the tree until it finds a synthesized attribute with the same name. This
node could then be marked in a way so the user easily finds it. Of course, we still do not
know what the attribute does internally. A synthesized attribute that use other attributes
to compute its value will still be hidden from us.
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A. The abstract grammar for FCL

NodeFilter ::= <ClassName:String>;
DebuggerConfig ::= Configs:FilterConfig Filter*;
FilterConfig ::= [Use] Binding*;
Filter ::= FilterName:IdDecl Nodes:Node*;
Node ::= ClassName:LangDecl NodeConfig*;
abstract NodeConfig;
When : NodeConfig ::= Expr*;
SubTree : NodeConfig ::= Expr*;
Style : NodeConfig ::= Binding*;
Show : NodeConfig ::= LangDecl*;
Use ::= IdDecl*;
Binding ::= Name:IdDecl Value;
IdDecl ::= <ID:String>;
abstract Expr;
Shown : Expr;
ChildOf : Expr ::= Not:Bool LangDecl;
ParentOf : Expr ::= Not:Bool LangDecl;
abstract BinExpr : Expr ::= Left:Value Right:Value;
In : BinExpr;
NotIn : BinExpr;
EQ : BinExpr;
LT : BinExpr;
GT : BinExpr;
NEQ : BinExpr;
LEQ : BinExpr;
GEQ : BinExpr;
abstract Value;
Num : Value ::= <NUMERAL>;
Str : Value ::= <String>;
Color : Value ::= <Color>;
StrArray : Value ::= Str*;
NumArray : Value ::= Num*;
EmptyArray : Value;
LangDecl : Value ::= <ID:String>;
Bool : Value ::= <BOOL>;
OnOff : Value ::= <ONOFF>;

Figure A.1: The abstract grammar for the filter configuration lan-
guage (FCL).
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Appendix B
Usability Tasks

Here are the 9 tasks the participant had to perform during the usability test. These were
spoken aloud to the participant, so they can be instructions to the reader and not the par-
ticipant.

• Open DrAST and let the participant think aloud. Let the participant click around in
the GUI meanwhile they explain their actions.

• Take a screenshot/picture of the graph.

• The root of the AST has an attribute nodeCount. What is the value of this attribute?

• Iduse has a parameterized attribute called lookup(String arg). This attribute tries to
find the IdDecl that has an attribute getID wiht a value that corresponds to the pa-
rameter arg. Find an IdUse in the AST and find its IdDecl with the lookup attribute.

• The Program node has a parameterized attribute called getIdDecl(IdUse use). This
attribute receives an IdUse and returns its IdDecl. Use this attribute with the same
IdUse used in the last task, and control that it returns with the same IdDecl as before.

• Create a filter that hides all nodes except Program, Let, IdDecl.

• IdUse and some other node types inherite a superclass. Create and apply a filter that
only shows nodes that inherit this superclass.

• Change the last filter so that only Div and IdUse nodes are visible. Then change the
filter so that IdUse’s that are a direct childr of a Div node are visible. Also, make a
last adjustment so that only the IdUse’s that have an attribute getID with the value a
are visible.

• IdUse has an attribute decl that points to an IdDecl somewhere in the three. Draw,
for all IdUse:es, these reference edges directly in the graph.
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Verktyget DrAST har skapats för att enklare förstå hur en kompilator faktiskt 
fungerar, den där magiska lådan som översätter kod till något datorn begriper. 
DrAST är en debugger, som illustrera hur kompilatorer ser ut på insidan.

En titt in i kompilatorn
Den kod som programmeraren skriver är faktiskt bara 
text och inget annat. Datorn förstår dock inte text, 
utan den måste översättas till maskinkod med hjälp 
av en kompilator. Kompilatorn måste först kontrollera 
att koden följer vissa regler. Vi kan jämföra detta med 
en grammatikgranskare av svenska språket. Om någon 
skriver ”grisar hoppar sängar ” ska kompilatorns analys 
förstå att språkreglerna inte följs. 
 En AST (Abstract Syntax Tree) är en trädstruktur 
som ofta används för att utföra dessa analyser. Låt oss 
kolla på ett exempelprogram. Koden ”a = 2” betyder 
att ”a” är en låda som innehåller en 2:a. En kompila-
tor kommer att ta de viktigaste delarna i koden för att 
bygga en trädstruktur med noder (Figur 1). Tilldelning 
(likhetstecken) pekar på två saker: Variabel (lådan a) och 
Siffra (innehållet 2). Om en regel säger att Tilldelning 
ska peka på en Siffra och en Variabel, kan vi enkelt se 
om det stämmer i vårt träd.

Problemet och lösningen
Till skillnad från Figur 1 så består ett program ofta av 
tusentals noder, och en överblick kan vara svårt att få 
utan hjälp. Det finns dock få hjälpmedel idag. Vårt nya 
verktyg DrAST är skapat för att fylla en del av detta 
tomrum för utvecklare av kompilatorer. DrAST kan 
nämligen ”plocka ut” en AST från en kompilator och 
sedan illustrera den grafiskt för programmeraren.

Filtrering
DrAST har också andra egenskaper, än själva visualise-
ringen av en AST, som förenklar arbetet med kompi-
latorer. Som vi nämnt ovan kan ett program bestå av 
många noder. För att kunna fokusera på det intressanta 
i trädet kan det filtreras, med hjälp av regler som beskri-
ver vilka noder som faktiskt ska visas. De noder som 
inte uppfyller alla reglerna gömmer DrAST helt enkelt. 
Figur 2 visar samma träd som Figur 1, men bara noder 
av typen Siffra visas. 

Vem kan ha nytta av DrAST?
Målet är att vårt verktyg ska kunna användas av många, 
allt från studenter som lär sig kompilatorteknik till pro-
fessionella som forskare och företag. Som sagt så hoppas 
vi att DrAST kan hjälpa till att fylla ett tomrum som 
funnits allt för länge.
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