
Image Processing Across Multiple
Interconnected System-on-Chips

Andrée Ekroth, Felix Mulder

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289959943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Image Processing Across Multiple
Interconnected System-on-Chips

Andrée Ekroth
dat11aek@student.lu.se

Felix Mulder
dat11fmu@student.lu.se

April 19, 2016

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Johan Rudholm, Johan.Rudholm@axis.com
Magnus Mårtensson, Magnus.Martensson@axis.com
Jonas Skeppstedt, Jonas.Skeppstedt@cs.lth.se

Examiner: Per Andersson, Per.Andersson@cs.lth.se

mailto:dat11aek@student.lu.se
mailto:dat11fmu@student.lu.se
mailto:Johan.Rudholm@axis.com
mailto:Magnus.Martensson@axis.com
mailto:Jonas.Skeppstedt@cs.lth.se
mailto:Per.Andersson@cs.lth.se

Abstract

This thesis explores the communication between interconnected System-on-
Chips that process images. It explores the difficulties faced when combining
two heterogeneous multiprocessors to act as a single unit. It also examines the
performance gain of the resulting system.

The thesis shows that not only does the resulting system decrease the band-
width usage on the individual System-on-Chips, but it also opens the possibil-
ity of using remote processors for offloading of independent tasks.

Keywords: MSc, System-on-Chip, Embedded, Inter-connected SoC, SystemC,QEMU,
TLMu

2

Acknowledgements

We would like to thank our supervisors at Axis, Magnus Mårtensson and Johan Rudholm,
for their support and knowledge shared during our thesis work at Axis. We have also
received valuable input and help from our colleagues Mikael Starvik, Rabin Vincent and
Lars Viklund - for this we are very grateful.

We would also like to thank Axis and specifically Johan Ekenstierna for providing us
with all the necessary material needed to complete the thesis.

We also thank our supervisor at Lund University Computer Science faculty, Jonas
Skeppstedt for the invaluable input on the approach and evaluation aspects of our thesis.

3

4

Contents

1 Introduction 7
1.0.1 Similar work . 7

2 Approach 9
2.1 Division of Work . 10
2.2 Theory and Technologies . 10

2.2.1 SoC Overview . 10
2.2.2 Pipeline Overview . 10
2.2.3 Local Central Processing Units 11
2.2.4 Image processing . 12
2.2.5 Methods of Dividing the Workload 13
2.2.6 ARTPEC Driver . 16
2.2.7 QEMU . 18
2.2.8 SystemC . 18
2.2.9 TLMu . 19
2.2.10 PCI Express . 20

2.3 Method . 20
2.3.1 Overview . 20
2.3.2 Interconnection using QEMU 21
2.3.3 Interconnection using SystemC 22
2.3.4 Modifying the LCPU Setup . 22
2.3.5 Modifying the Slave’s OS . 23

2.4 Implementation . 23
2.4.1 Introduction . 23
2.4.2 Image Path Through ARTPEC 24
2.4.3 PCIe Bridge Driver . 25
2.4.4 Sending Commands Between ARTPECs 27
2.4.5 SystemC PCIe Back End . 27

5

CONTENTS

3 Evaluation 33
3.1 Results . 34
3.2 Discussion . 35

3.2.1 Bandwidth . 35
3.2.2 Why Choose a Dual Chip Solution? 36
3.2.3 Future Work and Improvements 36
3.2.4 Issues with QEMU . 39
3.2.5 Issues with TLMu . 41
3.2.6 Handling LCPU Command Results 42
3.2.7 Direction of PCIe Accesses . 43
3.2.8 Alternative Implementation . 44
3.2.9 Development Workflow . 44

3.3 Conclusion . 44

Bibliography 47

Appendix A Glossary 53

Appendix B ARTPEC-6 Usage 55

Appendix C Bandwidth Calculations 57

6

Chapter 1
Introduction

It is common that modern embedded systems are built on platforms with System-on-Chip
(SoC) in which two or more different processors are put on a single chip to form the ar-
chitecture of a heterogeneous multiprocessor.

These types of architectures provide high performance at low cost, albeit with new
design challenges as well as added complexity to the software development process.

Axis’s chip platform is called ARTPEC - Axis RealTime Picture Encoding Chip. It
allows for communication between chips interconnected via PCIe [17]. There is currently,
however, no Axis product utilizing this feature.

Each Axis camera contains one of these chips (some products contain third-party
chips). The chip features hardware accelerated processing of specific tasks, such as de-
coding, encoding and so on. Since Axis design these chip themselves, they are cheap to
manufacture.

Embedded systems applications rely more and more upon interconnected individual
subsystems. As such, we believe that in the future, new systems will have functionality
built using less isolated components and more by components interacting within an inter-
connected system.

This thesis aims to explore how best to divide the system load across two ARTPECs
and show, by proof-of-concept, that it is feasible to use two interconnected chips for high-
bandwidth demanding applications. In practice, this means that two of these chips will
reside inside the camera, dividing up the work. The implementation is aimed at the sixth
generation of Axis’s image processing chip - the ARTPEC-6. Unless explicitly stated when
referencing the ARTPEC, we specifically mean the ARTPEC-6.

1.0.1 Similar work
When it comes to related work, the three main articles listed in the introduction were the
most similar ones we were able to find on our chosen subject. They all touch on various
aspects encountered during the thesis.

7

1. Introduction

• System level processor/communication co-exploration methodology for multipro-
cessor system-on-chip [26]
Details the approach when designing SystemC simulations to work with both hard-
ware and software, it was a good introduction to the mindset of writing simulated
hardware. The authors also talk about the slow simulation time when using Sys-
temC, something that we also suffered from.

• Design and implementation of an inter-chip bridge in a multi-core SoC [27]
Contains both an explanation of an inter-chip crossbar and PCIe interface between
the two chips. This was especially useful when approaching the implementation in a
conceptual manner. The SystemCmodel that Axis uses also makes use of a crossbar
- or in their case called xbar.

• Parallel programmingmodels for a multiprocessor SoC platform applied to network-
ing and multimedia [23]
The article targets parallel multimedia processing, using an object-oriented mes-
sage passing model on a MultiFlex system. There are some similarities with the
command interface used by Axis on their subsystems, but on a lower level. Since
our implementation is on a higher level, mostly driver level, and more about the
division of work - this was not as useful as we would have thought.

8

Chapter 2
Approach

During the first part of the thesis work, we did not have access to the actual hardware.
The need for a simulated environment was obvious. Axis uses a combination of Trans-
action Level Modeling [22] (TLM) and QEMU [8] (an open source processor emulator)
to emulate the hardware. The ability to do this is provided by TLMu - Transaction Layer
eMulator. TLMu extends QEMU by allowing it to interact with device models built using,
for example, SystemC. TLMu also makes it possible to emulate multiple CPUs in the same
process [18]. This is very convenient, since QEMU is able to emulate standard hardware
platforms such as Intel x86, ARM, CRIS et cetera. As such, it is possible to emulate stan-
dard processors and components using QEMU and build the non-standard components
using SystemC.

Like other companies [25], Axis has found that emulating the hardware shortens the
lead time for complex embedded projects.

We have examined the ARTPEC image processing pipeline to decide how to partition
work between the chips, or how to split the pipeline. No matter which split we would have
chosen, we decided early on to have a master-slave relationship between the two chips,
where one chip controls the other. We will show that a vertical split of the pipeline is both
the easiest and most rewarding approach in terms of time invested in the implementation.

Using the Axis implementation of TLMu, we implemented a simplified Peripheral
Component Interconnect Express (PCIe) interconnection between the two simulation in-
stances. The interconnection went through a series of different implementations before we
found the correct approach.

We tried implementing the bridge both within QEMU and SystemC. The approach is,
however, similar as both implementations use a memory mapped region and send data
between the simulation instances via POSIX sockets as will be shown in this chapter.

The ARTPEC Linux driver, which acts as a coordinator between the hardware and
image capture requests, was modified to account for the interconnection. The slave was in
turn stripped to only initiate the LCPUs (mentioned in section 2.2.3) and PCIe.

9

2. Approach

2.1 Division of Work
The work throghout the thesis has been equally divided between the both of us. With
this, we mean that every design choice was thoroughly discussed together, before any
implementation. During some parts of the implementation, mainly during debugging,
it was hard to parallelize the work. We concluded that during these periods, it was best
that Andrée focused on debugging code while Felix focused on the theoretical aspects of
the thesis. These aspects include, to name a few: calculation of bandwidth usage and other
metrics needed to evaluate the implementation.

2.2 Theory and Technologies
2.2.1 SoC Overview
The ARTPEC-6 SoC contains a dual core 1 GHz ARM Cortex-A9 MPCore CPU, hence-
forth called the MCPU (Main Central Processing Unit). The MCPU is used for generic
calculations and controlling the different subsystems on the SoC. Most - but not all - sub-
systems contain one or more processors called Local Central Processing Units. These LC-
PUs are used to perform specific tasks specified by the MCPU, see section 2.2.3. There
are a total of nine different subsystems, each in charge of different commands, such as
cryptography, graphics processing, peripherals et cetera. The SoC also contains electrical
interfaces like ethernet and PCIe. An overview of the SoC is shown in figure 2.1.

MIO

Sensor

VIP VPP CDC PCIe PCIe
Connection

MCPU Global Memory

Figure 2.1: Overview of SoC

2.2.2 Pipeline Overview
TheMCPUoffloads different tasks by sending commands to the different subsystem queues.
The different subsystems will then process these commands individually. Four of the avail-

10

2.2 Theory and Technologies

able subsystems are always used when processing an image throughout the pipeline as
shown in figure 2.2.

MIOSensor VIP VPP CDC Client

Figure 2.2: Image processing subsystems on the ARTPEC and a
receiving client

• MIO: Media Input/Output - handles capturing images and media from the different
sensors

• VIP: contains the Image Processing Pipeline (IPP). The VIP performs various tasks
like applying filters, performing noise reduction and the like. The order of filters
and processing in the IPP is proprietary and confidential

• VPP: Video Post Processing - this unit performs transformations on the finished
image; id est transformations like scaling and cropping

• CDC: Compression and decompression - handles encoding and decoding between
different encoding and compression schemes

• Client: A client that receives the encoded frames from the CDC, such as a web view
or a video player

The other subsystems (managing peripherals and cryptography for instance) are used
by theMCPUwhen needed, and do not typically require a lot of bandwidth or performance
compared to the subsystems involved in the image processing. For this reason they will
not be discussed in detail throughout this thesis.

2.2.3 Local Central Processing Units
The ARTPEC contains multiple Local Central Processing Units (LCPUs). These units
are part of a subsystem that performs specific tasks orchestrated by the MCPU.

Each LCPU consists of a CRIS processor with its own local RAM and possibly stan-
dard peripheral units, exempli gratia FPUs et cetera. CRIS stands for “Code Reduced
Instruction Set” and is the CPU architecture developed by Axis [1].

The MCPU communicates with the LCPUs via a well-defined API. This API uses
command and response queues to communicate with the LCPUs. The MCPU can queue
several tasks in an LCPU, so that the latter may perform them back-to-back.

11

2. Approach

MCPU

Global Memory

SRAM

Registers

LCPU
HW
Block

DMA

Figure 2.3: A subsystem communicating with the MCPU

In figure 2.3, the MCPU is communicating with an LCPU subsystem. The arrows
indicate the direction of data between the different parts. As can be seen, both the MCPU
and the LCPU can place data into the global memory. The LCPU, however, needs to use
DMA to transfer data between the global memory and its SRAM - this if further explained
in section 2.2.4. As previously stated, the MCPU can orchestrate the tasks performed by
the LCPU. It does this by writing and reading specific registers in the LCPU. In turn, the
LCPU controls a hardware accelerated block to perform heavy lifting.

2.2.4 Image processing
The MIO subsystem handles the image capture and transfers the data to the VIP where
it is processed and enhanced in various ways and then transferred to the VPP subsystem.
In the VPP subsystem the image is (if needed) scaled and transformed, which is the last
processing step of the image. Finally the image is sent to the CDC subsystem where the
image is encoded to another format such as H264 [6].

Command Queues
The LCPU has access to two First-in-First-Out (FIFO) queues. A command queue, and a
response queue. The MCPU can insert commands in the first queue and send an Interrupt
Request (IRQ) to the LCPU, informing it of inserted commands. The commands are de-
scribed as C-structs in global memory. A pointer to the struct is passed to the commands
queue of an LCPU.

When an LCPU has completed a command, it will insert a response in the response
FIFO queue. The MCPU can be informed of the existence of any responses by trigger-
ing a response IRQ. The response contains a pointer to the original C-struct detailing the
command.

The MCPU must only communicate with the LCPUs using a well-defined API, work-
ing as described above.

To keep the subsystem busy, many commands should be issued before expecting a
response from the first. The LCPUmay execute the commands out of order and in parallel
as there is support for multiple parallel software pipelines.

12

2.2 Theory and Technologies

Direct Memory Access

Direct Memory Access (DMA) allows the LCPUs to access resources outside of the sub-
system, e.g. global memory, independent of the MCPU [20, Chapter 15]. The DMA on
the ARTPEC between LCPUs and global memory, is not optimized for high-performance,
since transfers are assumed to contain limited amounts of data at low transfer rates.

All addressing is aligned to a 4 byte boundary by ignoring the least two significant bits.
For efficiency, external addressing targeting PCIe or global memory should be aligned to a
32 byte boundary. Transfer lengths should also be a multiple of 32 bytes, since the transfer
will consume a multiple of 32 bytes. If we e.g. choose to transfer 33 bytes, 64 will be
transferred.

IRQs are used to inform the involved parties when DMA is ready for a new transfer.

Direct Data Transfer Between Subsystems

The ARTPEC chip has the ability to send data directly between certain subsystems. This
is achieved by using a FIFO connection between these subsystems. This concept is known
internally at Axis as flow. There is flow between the MIO and the VIP as well as between
the VIP and the VPP.

When flow is used, the data does not need to enter global memory to propagate through
the pipeline until it reaches the CDC. This results in lower bandwidth usage to and from
the global memory.

The other way of transferring data between the subsystems is to bounce the data to
global memory, into different bounce buffers. The MCPU allocates the buffers needed by
each subsystem; capture, process and scale buffers to name a few. The subsystems are then
able to access these buffers using DMA.

Flow has a couple of limitations - when there are multiple sensors, flow cannot be
utilized. This is because of flow’s nature, it is not implemented in a way that supports
more than one flow of data from the sensor outputs. Another issue is that if the subsystems
cannot keep up with the rate of captured images - flow will be disabled and the system will
fall back to using bounce buffers.

2.2.5 Methods of Dividing the Workload

When evaluating how best to split the pipeline as seen in figure 2.2, we’ve considered three
options - splitting the pipeline either horizontally, vertically or by every other frame. Each
of these options create fundamentally different problems.

13

2. Approach

Horizontal Split

MIO VIP VPP CDC

MIO VIP VPP CDC Client

Master

Slave

Figure 2.4: Horizontal split, where the Master’s MIO remains
unused.

Splitting the pipeline horizontally would mean dividing the images into two parts, and
then letting the two ARTPECs process each part individually - merging them at the CDC
subsystems, as seen in figure 2.4. This would mean that both ARTPECs would share the
load nearly equally. There would, however, be timing issues regarding the final merging
process. We would have to ensure that the correct images are stitched together. We would
also need to be certain that the VIP subsystem is not performing image processing in a
way that would distort the edges of the separate parts of the image. Unfortunately, the VIP
is proprietary and confidential. Modifying said code to ensure that images aren’t distorted
is outside the scope of this thesis.

Even if we assume that the VIP does not interfere with the images - selling features
like object recognition would be seriously affected by splitting the image. This might
be solvable by letting the two systems process partially overlapping images and blending
them together in the end. Another master’s thesis project at Axis, created a 360 degree
panorama for the ARTPEC-5. Their findings indicate that it would be possible to do this
in real time for lower resolutions [24]. As the goal of using two ARTPEC-6s is to be able to
handle high-bandwidth demanding applications such as 4K-resolution videos, this seems
infeasible or at best hard to estimate the resulting framerate.

14

2.2 Theory and Technologies

Vertical Split

MIO VIP VPP CDC

MIO VIP VPP CDC Client

Master

Slave

Figure 2.5: Vertical split, where the Master’s MIO and VIP, as
well as the Slave’s VPP and CDC remain unused.

Splitting the platform vertically would mean to divide the work performed by different
subsystems to different platforms. Looking at the pipeline in figure 2.2. It might seem as
though it would be natural to split the pipeline down the middle after the VIP is done with
the image processing, as illustrated in figure 2.5.

First off, the different subsystems might not take equally long time to perform their
respective tasks or use the same amount of resources to perform these. Also as the image
does not need to enter global memory until the encoding process; it would hypothetically
be beneficial to simply move the image to the other system’s memory directly and let it
perform the encoding and delivery.

Using flow, a possible solution would be to perform the image capture (MIO) and the
image processing (VIP) on the slave ARTPEC. Then transfer the image via PCIe to the
VPP on the master ARTPEC. Thus the master ARTPEC would receive the final image to
be scaled and encoded.

However, as mentioned in section 2.2.4, flow cannot be used in all scenarios, the data
might be forced to enter global memory anyway. This simply means that the path of the
data is extended, but the overall idea is the same.

15

2. Approach

Every Other Frame

MIO

Sensor

VIP VPP CDC

MIO VIP VPP CDC Client

Master

Slave

Figure 2.6: A split where even frames are sent to Master, and odd
frames are sent to Slave.

Assuming that the different ARTPECs share a sensor and that they can then get every
other frame at an early stage in the pipeline (i.e. before the VIP) - the driver would need
little modification. The master ARTPEC would encode even frames and the slave would
encode odd frames. An illustration of where the sensor output is split between the two
MIO subsystems can seen in figure 2.6.

The problem with this approach arises when encoding the stream. Compression meth-
ods like H264 use a base image frame (I-frame) in the beginning of the stream - and can
then use delta frames (P-frames) to encode the subsequent images.

The encoding subsystem (CDC) would also need to be tweaked to allow twoARTPECs
to coordinate the use of I- and P-frames in the encoding process. It would be possible
to only send the I-frames in a proof-of-concept, but the loss in compression would be
complete.

Chosen Method
The complexity of performing a horizontal split and the loss of compression in the ev-
ery other frame proof-of-concept drove us towards favoring a vertical split. The vertical
split, albeit not equally load balancing, should be able to increase the work capacity of the
ARTPEC platform.

2.2.6 ARTPEC Driver
The ARTPEC driver is a GNU/Linux kernel module developed by Axis. It basically con-
sists of two kernel modules; the ARTPEC-6 UDL (User Defined Logic) and the ARTPEC-
6 module. The UDL module takes care of probing, loading and interfacing with the LC-
PUs, in other words, it is the module closest to the LCPUs. The UDL module also defines
an interface for interacting with LCPUs, an interface used by other modules such as the
ARTPEC-6 module. The ARTPEC-6 module defines the interface used by user space

16

2.2 Theory and Technologies

programs. The driver uses ioctl [20] to allow interaction with the hardware from user-
space. Examples of ioctl calls are adding/removing encode requests, allocating video
memory buffers, getting/setting camera settings. A simple example showing the basic
usage of the ARTPEC-6 module is available in appendix B.

Design
The driver uses an object-oriented approach to simplify the addition of new functionality.
The process of generating an image consists of more or less four steps:

1. Capturing the image, performed by the MIO subsystem in hardware

2. Processing the image using the VIP

3. Scaling streams into desired sizes, performed by the VPP subsystem in hardware

4. Encoding the streams into the desired format, performed by the CDC subsystem in
hardware

The driver follows the same steps, with some added complexity and behavior, as illus-
trated by figure 2.2. Because of the use of third party encoding blocks, the image must
enter primary memory between steps 3 and 4. If the ARTPEC only has one sensor at-
tached, however, steps 1 through 3 may be performed in parallel, using the FIFO mode
described in section 2.2.5.

Capturing an Image
There exist a number of ways to capture an image in the driver. The driver can interact
with several different input devices, referred to as input_modules in the code. When
an ARTPEC has multiple image sensors attached, there is one input_module for each
image sensor.

The driver allocates multiple capture buffers for each source to be able to capture data
from the sensor and process it simultaneously. Each image contains 1.5 − 2 bytes per
pixel and is stored in video memory buffer. Space for these buffers needs to be reserved
at boot-time.

Once an image is captured and placed in a video memory buffer, the VIP is notified and
starts processing the buffer. As to not overwrite the buffer with the next image, multiple
buffers per input module are needed.

Processing
The processing step is offloaded to the VIP subsystem and handled by its LCPU. This step
processes the image by adding filters like noise reduction, tone mapping, white balance
et cetera. When applying these filters, the image may be repeatedly transferred between
global memory and the VIP’s hardware block and may, therefore, utilize a high amount of
bandwidth.

17

2. Approach

Scaling
The VPP performs actions like scaling, rotating, adding overlays, and performing aspect
correction before passing the data on to the encoder. For efficiency, the VPP will identify
jobs that require the same properties, such as resolution, and only perform these actions
once.

It is worth noting that some actions are expensive, like 90◦ rotations. These are con-
sidered expensive, since the VPP needs to perform two passes on the data. This means
that as the VPP works on the second pass, it cannot receive any data from the VIP; which
means that flow cannot be enabled and that the bandwidth usage from global memory is
increased.

Encoding
There are several encoders on the ARTPEC chip e.g. JPEG and H.264. These are imple-
mented in hardware and can put the result in a non-contiguous memory buffer, meaning
that this memory can be allocated by user-space.

The encoders have their own scheduler which tries to find jobs that can be performed
by the encoders immediately.

2.2.7 QEMU
QEMU, which stands for Quick Emulator, is an open-source hosted virtual machine mon-
itor. Through binary translation, it can simulate device models such as CPUs and various
standard hardware components e.g. network cards. When used with Kernel Virtual Ma-
chine (KVM) [7], it can achieve near native speed for virtual machines [8].

QEMU allows the developer to create his or her own hardware models. It is possible
to use standard Linux drivers and emulate the device via the models created by the devel-
oper. Many CPU vendors have contributed models emulating different different processor
architectures. There is x86 support as well as ARM support to name a few. If the QEMU
instance runs the same architecture as the host system, it can execute the instructions on
the host CPU without translation [8].

At Axis, QEMU is used to write hardware models for the more standard components
such as network cards and other peripherals.

2.2.8 SystemC
SystemC is a C++ framework which allows for hardware to be simulated in an event-driven
fashion [19]. In contrast to QEMU, the basis of SystemC is events. SystemC can be used
to emulate the different timings and latencies of the expected hardware. SystemC allows
different modules to be run concurrently and provides different mechanisms to commu-
nicate with surrounding components. These mechanisms have real world equivalents e.g.
SystemC’s signals correspond to wires.

Axis uses the fact that SystemC provides support for Transaction Level Modeling
(TLM) [16] to simulate upcoming ARTPECs. TLM abstracts the communication between
models away from their implementation, this allows the system designer to experiment

18

2.2 Theory and Technologies

with different bus architectures without having to recode models that interact with said
buses. The communication between the models is provided by SystemC channels.

Axis has chosen to emulate their platforms in SystemC, which allows the implemen-
tation of the CPU peripherals and buses with their expected timings and latencies. The
platform contains several modules to emulate the subsystems of the ARTPEC (figure 2.2).

2.2.9 TLMu
As aforementioned, Axis uses QEMU to simulate standard components. QEMU is used in
conjunction with SystemC and the unison between these frameworks is called Transaction
Level eMulator (TLMu) [18]. TLMu establishes a way to communicate between SystemC
components and QEMU. While there are similarities between QEMU and SystemC, the
modeling goals are different. QEMU focuses on simulating a system with a single CPU,
while SystemC is much more hardware oriented - supporting things like latencies and
timings.

The SystemC modules are interconnected with the platform using ports. Each subsys-
tem also contains a crossbar with the memory map for the subsystem as well as a connec-
tion to one or several QEMU instances containing the subsystem’s LCPUs as shown in
figure 2.7.

Platform +
Standard
Com-
ponents

aMCPU

Inter-
connect

RAM

AXIS IP
Sub-systems

LCPU

SystemC QEMU Port

Figure 2.7: Schematic of SystemC interaction with QEMU alias
TLMu

All the QEMU CPU cores interface with SystemC through a SystemC module that
exposes a set of sockets. To run multiple instances of the TLMu system on a single host,
these ports need to be configurable as the same port can’t be bound multiple times.

19

2. Approach

2.2.10 PCI Express
PCI Express (PCIe) is an expansion bus, based on the previous PCI bus standard, and
is used in order to attach devices and other peripherals in a computer [17]. The system
will consist of one root complex (RC) which will act as the host, and multiple end points
(EP) which are clients. On the ARTPEC, two ARTPEC boards can be connected directly
using PCIe, but as long as the PCIe driver is properly implemented, this bus could be used
in order to connect other devices. Using a PCIe switch enables multiple devices to be
connected to a single PCIe port.

In order to access the other PCIe device, the RC can either map the device into the
I/O port address space or the memory mapped address space, the latter is used in the dual
ARTPEC solution. The RC and EP are able to map different regions of the PCIe addresses
to the other device’s address space. This enables the RC to communicate and control the
EP, a concept which fits nicely into the master-slave configuration intended for the dual
ARTPEC solution.

An important aspect of PCIe is the fact that reads are slower than writes [13]. In order
to read, the reader must send a request containing no payload (meaning that there is only
overhead), which in turn will cause the receiver to respond with the data. Writes however,
only require one write request; this is important to consider when interfacing with PCIe
devices.

Another feature required is the ability to forward and emit interrupts over the PCIe
bus, enabling the RC to seamlessly access devices which require interrupts, such as the
LCPUs of the ARTPEC. This can either be implemented using legacy interrupts or Mes-
sage Signaled Interrupts (MSI) [15]. Legacy interrupts are simpler and are routed to the
RC’s interrupt controller, requiring each type of interrupt to use a specific interrupt num-
ber (which are a limited resource [20]). MSI however, is more versatile protocol and might
be a better alternative.

Message Signaled Interrupts (MSI) enables the hardware to support up to 32 interrupts,
while only requiring one physical interrupt lane. The MSI message contains information
about which interrupt number triggered the message to be sent, enabling the interrupt
handler to discern what to do.

2.3 Method
2.3.1 Overview
As aforementioned, the proof-of-concept was implemented using simulated hardware. As
a consequence, the approach is a bit different than if we had implemented it with direct
access to the hardware. Nevertheless, our approach can be summarized in the following
steps:

• Decide were to split pipeline: we decided upon splitting the pipeline in a vertical
split as mentioned in section 2.2.5. The details of this choice are explained in the
same section. This split effectively turns one ARTPEC into a master and the other
into a slave.

20

2.3 Method

• Simulate the PCIe connection: the actual hardware will be linked via PCIe, since
we are using a simulated environment we need to implement something that acts
like the PCIe bridge would. That is to say, we do not need to implement it exactly
like PCIe, we can take some shortcuts.

• Modify the ARTPEC driver: the master’s ARTPEC driver is the main orchestrator
of what happens in the pipeline. As such, it needs to be modified in order to properly
use the remote LCPUs.

• Minimize the slave’s OS: we remove all unnecessary modules to make the slave as
small a system as possible. Things that are left on the slave should only be things that
do not interfere with the master driver and if possible should alleviate the complexity
of our solution.

With the actual hardware, the simulated PCIe connection can be dropped. Axis has al-
ready implemented drivers for the master and slave PCIe buses, as such the main problems
to solve there are the first and last step in the list above.

2.3.2 Interconnection using QEMU

During our thesis work, we never had access to actual hardware, as Axis were still testing
and developing the drivers and firmware. We needed to simulate the interconnection to
perform the pipeline split. The ARTPEC-6 can be connected via PCIe as shown in fig-
ure 2.8. Where the idea is that one of these acts as a master, issuing commands to the
slave ARTPEC. Only one of these chips would need to run an entire Linux system. Using
QEMU we emulated a PCIe driver and used a socket to act as the bridge (as in figure 2.9).

Later this implementation was abandoned in favor of a SystemC implementation as
explained in section 2.3.3.

Master Slave
PCIe Connection

Figure 2.8: ARTPECs interconnected via PCIe

21

2. Approach

Linux

QEMU

Linux

QEMU

Socket Connection

Figure 2.9: Interconnected ARTPECs simulated with TLMu

2.3.3 Interconnection using SystemC
Later on during our thesis work, we realized that the interconnection was not possible to
implement using QEMU. Sending data using QEMU is fine, however, a thread not created
by SystemC is not allowed to use the various functions that simulate hardware operations,
such as thememory read andwrites required by the PCIe simulation. The reason being that
the memory read functions are simulated using delays (in this case the wait function) and
these functions can only operate properly when running in a SystemC thread. This forced
us to instead implement the PCIe module purely in SystemC and making sure that the
receiving socket thread was properly created using the SystemC framework.

2.3.4 Modifying the LCPU Setup
The ARTPEC driver on the master needed to be modified in order to issue commands to
the slave. The driver contains several levels of abstractions, from user space the user may
simply issue ioctl calls to control the image capture. As such, our first stab at adapting
the driver was to somehow wrap these calls and send them to the slave ARTPEC. This
method, however, would need two running Linux systems.

The Linux device tree has support for changing the drivers associated with the different
LCPUs as well as changing their physical start and end addresses.

Axis supplies remote versions of their LCPU drivers, that support probing using PCIe.
Specifying the use of these can be achieved by simply changing a constant. We, however,
realized that it would be easier for us to let the driver think that it was communicating with
a local CPU and just change the target addresses to addresses we had mapped to PCIe in
memory. This means that our PCIe simulation could be kept simple and not compatible
with the generic PCIe driver [11] that the ARTPEC-6 module relies on.

As such, we changed the addresses of the MIO and the VIP. These LCPUs were now
mapped to an area in memory that we had performed ioremap on. ioremap is a func-
tion in the Linux kernel which returns a virtual address that can be used to access I/O
memory regions [20].

22

2.4 Implementation

2.3.5 Modifying the Slave’s OS

The slave does not really need to run a full OS kernel. It is, however, preferential to let the
regular system load the firmware for the LCPUs and perform setup of the different systems
needed on the slave chip. As this allows us to focus more of our attention to howwe handle
splitting the pipeline - we decided to let the slave keep its OS for the time being.

In order to focus on the pipeline split, we decided to keep a modified version of the
ARTPEC-6 UDL module. It still flashes the LCPUs, but does not setup debugging and
other operations that can interact with the LCPU after the setup has been completed, i.e.
the UDL does something similar to what a primitive OS would do on a real chip. The
ARTPEC-6 module, however, is completely removed, since no program should be inter-
facing with the LCPUs except the master system.

Additionally, the LCPUs firmware had to be modified in order to support MSI. The
reason for using MSI instead of legacy interrupts is simply that the ARTPEC-6 driver was
already prepared with partial (but untested) support for MSI.

2.4 Implementation

2.4.1 Introduction

The final implementation will make the captured image travel a very different way through
the pipeline than we originally imagined, or at least by different means. The road to this
implementation is detailed throughout this chapter, but we will start by explaining the
resulting implementation in a high-level manner.

23

2. Approach

2.4.2 Image Path Through ARTPEC

Sensor MIO VIP

Global Memory

VPP CDC

Global Memory

Master
Slave

1
2 3 4

5

6 7 8

Figure 2.10: Image path through the ARTPEC-6 Dual Chip So-
lution without flow

1. Using a Python script we are able to inject previously captured images into the MIO
from a source on the host. The script opens a socket connection to the SystemC
model, which then injects the image directly into the MIO subsystem. It is also pos-
sible to use a real camera and then bounce the images via the host to the simulation
using the same script; this enables the simulation to use a live feed.

2. The MIO will place the captured image in a capture buffer in the slave’s global
memory via DMA. It will then notify the ARTPEC driver that a captured image is
available.

3. The ARTPEC driver will then inform the VIP of the image to be processed. The
VIP will process the image contained in the capture buffer.

4. The VIP will then place the resulting chunk of the image back in the master’s global
memory, but in a different buffer known as a process buffer. Once it is‚ done with
all chunks it will inform the driver.

5. The VPP will need access to the image from the slave ARTPEC’s global memory.
As such, chunks of the image will be transferred to the VPP, where the VPP can
work on the image. This behavior is the same as what occurs in step 3.

6. The VPP will place the resulting chunk in a scale buffer which resides on the master.
There might also be an extra buffer allocated, if the scaler is told to rotate the image.
No matter the configuration, once the VPP is done with all chunks - the driver is
notified.

24

2.4 Implementation

7. There are several different coding blocks, H264, JPEG et cetera. The image from
the scale buffer is processed and placed within one of the different coding buffers.
After this step, the image is ready for consumption by the user space application.

8. The final image will be placed back in global memory and made available to the
client application.

The choices that have led to this implementation are shown throughout this chapter.
The path in figure 2.10 differs if flow is used, paths 2 and 3 are merged if flow between
MIO and VIP is used, which means that the slave global memory is bypassed. Similarly
paths 4 and 5 are merged if flow between VIP and VPP is used.

2.4.3 PCIe Bridge Driver
As mentioned in section 2.3.1, the emulated version of the driver is supposed to function
like PCIe. For our proof-of-concept implementation, however, the driver was implemented
to be as simple as possible. The bridge driver uses the ARTPEC driver to map memory
and a backend provided by the simulation. The backend handles the aspects of the driver
concerned with emulating PCIe. Our original approach intended to use QEMU as the
backend - unfortunately, this proved infeasible. The original implementation using QEMU
served as an inspiration to how the final driver was implemented using SystemC. As such,
the details of this implementation, as well as the final implementation, are described below.

ARTPEC Driver
Via ioremap, the ARTPEC driver, on the master, maps a portion of the physical memory
to virtual memory addressable by the kernel [20, Chapter 9]. The driver also registers an
interrupt handler for use when data has been made available on the bus.

When an interrupt is raised, the driver can read the data and clear the interrupt if ap-
plicable.

The memory mapped region makes it possible to access different parts of the remote
system. Thankfully, the ARTPEC driver does not need to implement PCIe emulation,
since this can be handled in the backend.

QEMU Back End
The QEMU back end acts as the link between two instances of the emulator. These
instances can be run on different machines and as such, we chose the means of inter-
communication to be POSIX sockets. This will of course not be needed on the actual
hardware.

The QEMU backend registers itself as the hardware for the portion of the physical
memory that was mapped by ioremap in the driver. Whenever the driver wants to read
from or write to said portion of the memory - two functions are invoked in the QEMU
backend listed in figure 2.11.

25

2. Approach

/**
* Function invoked when the driver wants to read from the mapped
* physical memory
*
* @param state - the state of the model
* @param offset - the offset invoked by a read i.e. ‘ptr[offset]‘
*
* @return the value read from "memory"
*/

uint32_t iomodule_read(void *state, target_phys_addr_t offset);

/**
* Function invoked when the driver wants to write to the mapped
* physical memory
*
* @param state - the state of the model
* @param offset - the offset invoked by a read i.e. ‘ptr[offset]‘
* @param val - the value to be written
*/

void iomodule_write(void *state, target_phys_addr_t offset, uint32_t val);

Figure 2.11: Driver Back End functions in QEMU environment

When iomodule_write is invoked, the offset is checked to see whether it was a
command or a data write. On a data write, the written data is stored in the module’s state
and subsequentially written to the remote chip.

The UNIX socket is connected to the other instance of the emulator. When the receiv-
ing instance has data available, it writes the data into its model and raises an IRQ. This
means that the receiving side will be notified via IRQ, when data has been written to its
memory.

As such, the receiving ARTPEC can be made aware that there is data or a command
available and act accordingly.

To make sure that the receiving socket reads the appropriate amount of bytes, a struct
defined below in figure 2.12.

typedef struct {
size_t size;
uint32_t data[];

} iomodule_header;

Figure 2.12: Header with data sent over socket between QEMU
Back Ends

When the receiving instance starts reading, it can read the size variable and determine
how much it should read before alerting the driver of the data by raising the IRQ. Doing
it this way ensures that the driver has access to all of the data being sent by the remote
ARTPEC.

26

2.4 Implementation

2.4.4 Sending Commands Between ARTPECs
Our first idea was to wrap the ioctl calls and send them directly to the slave ARTPEC.
The drawback with doing this, however, is that the ARTPEC driver will perform several
LCPU commands on one ioctl call. As such, we decided that it would be easier to
simply wrap all commands sent to certain LCPUs and send them to the remote ARTPEC.
Please note that commands sent to the LCPUs are in fact register writes made to the LCPU
command FIFO-queue. The actual commands will then be fetched by the LCPU via a
DMA transfer as mentioned in section 2.2.4.

Wrapping LCPU Commands
As aforementioned, commands are sent to the LCPUs from the MCPU. Since the LCPUs
cannot address main memory directly, they need to perform DMA to get the command
struct sent by the MCPU. This poses a problem to us, since the LCPUs in the MIO and
VIP need to be unaware of the fact that the commands have been sent from a remote
MCPU. Thus, when fetching the command structs via DMA, the LCPU needs to work as
if the memory it is fetching is on the same chip.

Therefore, the idea is to send the relevant commands via the socket in QEMU to the
slave MCPU. The slave is then to re-create the commands and execute them on its MIO or
VIP. Once the command is done, the slave would need to send the resulting data back to
the master MCPU and place it in memory at an address expected by the ARTPEC driver.
Once this is done, we would need to trigger the appropriate callback in the ARTPEC driver
by sending an interrupt request.

As can be seen from this approach, we would need to wrap a lot of different driver
functions - and in turn, the driver would need to be very different on the separate systems.

Direct addressing over PCIe
After the above attempts, we decided that it might be best to simply address the LCPUs
over PCIe directly. Doing this results in us not having to wrap anything but redirecting the
actual register reads and writes to the LCPUs.

2.4.5 SystemC PCIe Back End
The SystemC model is more complicated than the original idea we had, which solely in-
volved QEMU, but the general idea is the same. Just like in the case of QEMU we need
to capture all reads and writes to the specific PCIe addresses. The way Axis has set up
their SystemC models is that all models and interconnects (basically a model consisting of
other models) are connected using so-called xbars (also known as crossbars, a term used
by similar projects [28]). Xbars are used to wire different blocks together, where each
model can retrieve a target or initiator socket connected to the model by specifying the
name of the target model. The target socket is used to read and write data to the other
model, while the initiator socket is used to handle reads and writes from the other model.

• Every interconnect defines an ic_to_pf (interconnect-to-platform) xbar, it han-
dles all outgoing requests from the interconnect to the platform. This is mapped to

27

2. Approach

the whole available address space 0x0–4GB. Each internal model is registered to this
xbar by name, and binds their initiator socket (called <model>_mem) to the xbar.
The interconnect then exports the initiator socket mem which is bound to the target
socket pf from ic_to_pf. This means that other models will be able to make
requests to this interconnect by using the publicly available mem socket, which itself
is connected to other xbars from internal models.

• Every interconnect also defines an ic_from_pf xbar, it handles all incoming re-
quests from the platform to the interconnect. The interconnect binds each internal
model target socket (called <model>_ctrl) to the ic_from_pf xbar by model
name. It also defines the address mappings corresponding to each model’s target
socket. Finally the target socket ctrl which is bound to the initiator socket pf
from ic_from_pf is exported. In order for this interconnect to be able to make
requests to other models, they have to bind the target socket ctrl from this model.

This effectively separates all interconnects and models from each other, making the
overall system very modular.

At first, the PCIe module was integrated with the interconnect like the other CRIS sub-
systems. This, however, makes efficient DMA impossible from the CRIS to PCIe because
of the way DMA is implemented in the simulator. In the simulator, the Direct Memory
Interface (DMI) is used to access memory from the CRIS subsystems. DMI tries to use
DMA when possible, otherwise it falls back to using the QEMU memory access system,
resulting in 4-byte transfers. This is very slow compared to DMA. As seen in figure 2.13,
there is no direct memory path available from the interconnect to the PCIe. This is be-
cause PCIe resides in the interconnect and systems inside of it are not directly connected
- they are merely grouped. Any DMI performed will go through the ic_to_pf, to the
platform (QEMU), to the to_from_pf and back to PCIe.

In order to make DMA possible, another xbar was added as seen in figure 2.14. By
adding paths from ic_to_pf and to_from_pf directly to PCIe, we are able to makes
sure that the subsystems can take a shortcut to the PCIe’s memory without involving the
platform.

ic_to_pf ic_from_pf

Interconnect

Platform

Figure 2.13: xbar connections, where PCIe resides in the inter-
connect.

28

2.4 Implementation

Interconnect

PCIe

Platform

ic_to_pf ic_from_pf

Figure 2.14: xbar connections, where PCIe is separated from the
interconnect.

Memory Map of Remote LCPUs
We created a subsystem in SystemC to catch writes to remote LCPUs. IO accesses are
caught by being targeted at a predefined range of physical memory. Looking at the source
for driver setup in the Axis Linux repository, we found that the VIP precedes the MIO in
memory. Upon this discovery, we concluded that it would be easier to mirror the original
memory map in our mapped area. Each subsystem has 32kB allocated for register reads
and writes as can be seen in figure 2.15.

VIP

MIO

MSI

LCPU_CMD

EP_RAM

PCIE_ADDR

MIO_BASE_ADDR

MSI_BASE_ADDR

LCPU_CMD_BASE_ADDR

EP_RAM_BASE_ADDR

32kB

32kB

8kB

64kB

2MB

Figure 2.15: Root Complex’s memory mapping

29

2. Approach

VIP this area contains the register mappings for the VIP subsystem

MIO this area contains the register mappings for the MIO subsystem

MSI this area contains the register mappings needed to pass MSI messages from slave to
master

LCPU_CMD this area is used to allocate LCPU command structs that can be addressed
by both the slave and the master

EP_RAM this area is mapped to a portion of the slave’s global memory. It is addressable
from the master ARTPEC

Communicating with target SystemC Process
Both the root complex and the endpoint have a thread waiting for input from their coun-
terpart. The endpoint, alias slave, acts as the server, waiting for a connection from the
root complex. Once the connection has been established, however, they perform the same
actions - i.e. sending output and waiting for input on the socket.

The simplified PCIe connection will wait for reads and writes and propagate them
across the socket if applicable.

Setting Up Remote LCPUs
The MIO and VIP subsystems on the slave were compiled with MSI support. This means,
for the ARTPEC, that instead of just sending an interrupt to its local MCPU, it can also
send MSI messages to a specific address in memory.

As it so happens, we’ve mapped this area in memory to correspond to the PCIe area.
Once something is written to or read from this area, it will propagate across the socket to
the other ARTPEC. (Please note that if the ARTPEC driver had been running on the slave,
we would also have needed to prevent it from requesting the LCPU IRQ.)

Even though the support is compiled in, the LCPUmust be set up to useMSI in addition
to traditional interrupts. This is done by sending an MSI setup command struct to the
intended subsystem.

Once this is done, it will acknowledge the MSI setup by sending an MSI to the en-
tity which has issued the command. The LCPU will write to a specific memory address
which is contained within the memory area detailed in figure 2.15 asMSI. A write into this
area will make SystemC trigger an interrupt handled by the ARTPEC driver. As such, the
master can be alerted of completed commands by the remote LCPU. The size of this spe-
cific memory area was made larger than needed, in order to make sure that the following
memory areas were page aligned.

MSI Communication
Sending anMSI instead of an interrupt has several advantages when dealing with PCIe end
points. For instance, the word written by the MSI in the ARTPEC contains a vnum, an
ep and an unused field as described in figure 2.16. The first two can be used to determine
which endpoint (ep) and which subsystem (vnum) generated the MSI.

30

2.4 Implementation

typedef struct _msi_data {
unsigned vnum : 5;
unsigned ep : 3;
unsigned unused : 24;

} msi_data;

Figure 2.16: MSI data struct

Using vnum, we can establish which remote LCPU subsystem triggered the interrupt
after which we can run the appropriate interrupt handler.

Sending LCPU commands
By writing a value to a register representing a FIFO queue in the LCPU, the LCPU is
alerted of new commands. Once the LCPU knows which address to fetch the command
from (via the value in the register write), it uses DMA to fetch instructions from theMCPU.
In our case the MIO will fetch these commands from the remote MCPU’s main memory
via DMA.

To handle the transfer of commands between the two ARTPECs, we need to place the
LCPU command structs in a regionmapped by the PCIe driver. Anioremap is performed
in the ARTPEC driver from the LCPU_CMD_BASE_ADDR spanning 64 kB. This gives us
a virtual address mapping of the area in which we can place our commands.

Many commands in the driver are, unfortunately, allocated on the stack. As we cannot
possibly know where in memory the different kernel threads’ stacks are located - we opted
for using a bounce buffer. Each issued command is copied to the ioremapped memory
before being issued to the LCPU. Once the remote LCPU has completed the command,
it will send an MSI and trigger an interrupt handler on the master ARTPEC. The inter-
rupt handler will then copy the completed command back to its original location before
triggering any optional callback.

LCPU commands are of varying size, and as such, the amount of memory needed for
a command was originally unknown. We handled this by wrapping the LCPU command
functions in macros and then including the size in the original function as a parameter as
seen in figure 2.17. It is worth noting that the macro will fail if the first argument is a void
or char pointer. As such, the command struct pointer should not be cast to a different
type before being passed to this macro.

extern int lcpu_cmd_sync_impl(void *, int, size_t);

#define lcpu_cmd_sync(cmd, dest)\
lcpu_cmd_sync_impl(cmd, dest, sizeof(*cmd))

Figure 2.17: Including adding size as a function parameter

As we need to place the structs in a specific memory area, we cannot use convenient
allocation functions such as kmalloc or kfree. Implementing our own free list, arena
or buddy allocator would be another risk factor, in an already complex solution.

Fortunately, Linux contains a convenient basic general purpose allocation pool to han-
dle this for us. This pool is located in genalloc.h. This pool can be used to manage

31

2. Approach

special purpose memory, and can be told over which area it is allowed to allocate and man-
age memory. The allocation pool can use best fit or first fit to insert elements. This means
that at the cost of performance, it can reduce the amount of fragmentation in the area it
manages. It is worth noting that multiple pools can be allocated in the specified area,
whereas we are only using one. This is so that we can convert back and forth between
virtual and physical addresses.

Since the addresses returned by genalloc are virtual, we need to be able to translate
these into physical PCIe addresses which the slave LCPU’s can address and perform DMA
on. Because we are only using one pool from genalloc, we are able to perform these
translations easily by calculating the offset of an allocation.

physical = alloc - pcie_cmd_store + PCIE_LCPU_CMD_BASE_ADDR

This address can be written by the MCPU to the LCPU’s FIFO queue, as aforemen-
tioned. This register write will be sent over PCIe and written directly to the target LCPU.
When the write has been completed, the target LCPU can start transferring the command
from the supplied address to its own memory using DMA.

32

Chapter 3

Evaluation

We realized fairly early on, that running the implemented inter-connected system on real
hardware would be far-fetched. The sheer amount of issues in the first two months along
with fairly untested code led us to only implement the system in Axis’s simulated environ-
ment.

Two things are good with this approach. First off, the simulated hardware allows for
much easier and deeper debugging. This proved paramount to us, since the memory map-
ping described in figure 2.15, was not trivial to implement in the simulated environment.
We had issues with offsets when adding new subsystems and adding support for their dif-
ferent memory channels.

Secondly, the lack of empirical testing forced us to calculate things like bus usage and
memory traffic from a theoretical perspective. This helps us predict the best and worst
cases for different streaming scenarios.

A drawback with using this approach is the ability to cut corners. It is easy to fake a
lot of things using the simulated environment. For instance, one normally has to notify the
PCIe controller that MSI data has been read, by writing to an address. We simplify this by
reseting the MSI as soon as the PCIe model notices that the MSI has been read, something
that is not possible to implement properly in a hardware solution.

Another corner cut, is the fact that reading and writing over the PCIe bridge is not
accurately modeled when it comes to latencies. In fact, it is the same latency for writing
to a remote subsystem register as to a local one. While in reality, writing over the PCIe
bus would incur a penalty.

When calculating theoretical figures for bandwidth et cetera, the real counterpart of
these cut corners have been used; so as to establish a realistic assessment of how the im-
plementation would behave on real hardware.

33

3. Evaluation

3.1 Results
Internal benchmarks at Axis, show a throughput of roughly 500MB/s from slave to master
over PCIe on the ARTPEC-6, while using a low amount of bandwidth in the opposite
direction (about 3 MB/s). The PCIe bridge, however, is supposed to have 700 MB/s on the
actual hardware.

The difference in bandwidth between the two directions is explained by the slave be-
ing the platform responsible for capturing and processing the images, meaning that the
slave’s incoming data over PCIe is simply LCPU commands. Once the images have been
processed, they are transferred to the master’s global memory and sent to the scaling unit
(the VPP).

As mentioned in section 2.2.4, there is a flow mode between the image capturing sub-
system (MIO) and the image processing subsystem (VIP). This mode can only be enabled
when there is a singular video stream being captured by the MIO. If we assume that there
are at least two video streams being concurrently captured by the MIO and processed by
the ARTPEC, we get the bandwidth savings illustrated by table 3.1 for 1080p and in ta-
ble 3.2 for 4K, using our dual ARTPEC solution. Note that the table shows the average
bandwidth usage per stream between the subsystems and the global memory.

Configuration Bandwidth/frame (MB) Bandwidth 60 fps (MB/s)
Single ARTPEC 35.9 2154
Dual ARTPEC (master) 11.9 720
Dual ARTPEC (slave) 26.9 1614
Dual ARTPEC (total) 38.0 2333

Figure 3.1: Average bandwidth usage per stream for 1080p

Configuration Bandwidth/frame (MB) Bandwidth 30 fps (MB/s)
Single ARTPEC 142 4273
Dual ARTPEC (master) 48 1425
Dual ARTPEC (slave) 107 3204
Dual ARTPEC (total) 154 4629

Figure 3.2: Average bandwidth usage per stream for 4K

The bandwidth required for a raw image in 1080p and 4K is shown in equations 3.1
and 3.2 respectively. The calculations assume 4:2:0 sub-sampling, resulting in 12 bits per
pixel.

1920 · 1088 ·
12
8
· 2−20 = 2.98828 (MB / frame)

=⇒

2.98828 · 60 ≈ 179 (MB / s)

(3.1)

34

3.2 Discussion

3840 · 2160 ·
12
8
· 2−20 = 11.8652 (MB / frame)

=⇒

11.8652 · 30 ≈ 356 (MB / s)

(3.2)

The results in table 3.1 and 3.2 are calculated by using the size of the image being
copied to and from different parts of the system. This is explained further by the Python
source code in appendix C.

Power consumption
We got a hold of some some rough effect consumption measurements on the actual hard-
ware of the ARTPEC-6. The exact numbers and gradient, however, have been removed
to protect Axis’s intellectual property. The results of the measurements are illustrated in
figure 3.3.

System Load

Eff
ec

tu
sa

ge
(W

)

Single ARTPEC
Dual ARTPEC

Figure 3.3: Power consumption using single vs dual ARTPECs

3.2 Discussion
3.2.1 Bandwidth
When creating a dual chip solution, we can at best hope to increase the total bandwidth of
the system. As shown in table 3.1 and 3.2, the bandwidth usage of the master ARTPEC
decreases by roughly 63%, whereas the slave’s bandwidth is decreased by roughly 25%
for both 1080p and 4K. This assumes that multiple streams are running on the system. If

35

3. Evaluation

there is only one stream running, the system can make use of the FIFO-mode between the
MIO, VIP and VPP. As such, the image needs not be sent to memory until the CDC unit.
Effectively making it equally or more efficient than the dual ARTPEC configuration.

The decreases in bandwidth consumption means that the slave will now become the
bottleneck. The ARTPEC is able to handle roughly 5.1 GB/s, but unfortunately the PCIe
bridge is, as aforementioned, only able to handle 700 MB/s. As shown in equation 3.1
and 3.2, the bandwidth required for a single 4K stream at 30 frames per second requires
more than half of the PCIe bridge’s bandwidth. The PCIe bandwidth lets us use up to three
separate 1080p streams at 60 frames per second.

Amongst Axis’s partners, one of the more common scenarios is that one stream is used
for live viewing while another, with a different configuration, is used for semi-permanent
storage. As such, it is unlikely that two streamswith the same configurationwill be used. In
the single chip configuration, a 4K stream with an additional 1080p stream is impossible.
While using the dual chip configuration allows for both streams to be enabled simultane-
ously.

When calculating the values for the tables in chapter 3.1, the overhead of sending LCPU
commands around was ignored. The reason for this is two-fold. First off, the bandwidth re-
quired for the LCPU commands is estimated by Axis to be smaller than 5 MB/s. Secondly,
this means they do little to impact the performance of the ARTPEC.

3.2.2 Why Choose a Dual Chip Solution?
The performance benefits of using dual ARTPECs over a single ARTPEC has been ex-
plained previously. There is also, however, another reason why Axis would choose a dual
chip solution over a more powerful single chip solution - namely costs.

Since Axis designs the ARTPEC themselves, it is very inexpensive to produce more
chips. This is orthogonal to the way that using third party chip manufacturers works. For
instance, Axis does have a product line that uses chip platforms from a company called
Ambarella and Axis’s current 4K products all use these chips. Since the chips are pur-
chased instead of produced - they are significantly more expensive compared to the cost
of printing one of their own chipsets.

In summary, it will be less expensive for Axis to use two ARTPECs compared to using
one, more powerful, thirdparty chip. As an added bonus, the costs of maintaining the
software will be less if only one type of system is used.

3.2.3 Future Work and Improvements
Modeling Issues
When implementing our model, the first concern was to be able to complete a proof-of-
concept before the end of our thesis. This, we have succeeded in. The second goal was
to provide Axis with an implementation that would be easy to re-implement on the actual
hardware. Ideally, our code would run without modification on the real hardware.

Unfortunately, because of the way we’ve implemented the PCIe emulation, this is not
entirely possible. The PCIe layer has been simplified greatly and there are several issues
with this. Firstly, the implementation contains some data that is contained purely within

36

3.2 Discussion

the SystemC model, i.e. not mirrored in Linux. Secondly the slave ARTPEC was not
stripped of its operating system, as was Axis’s recommendation - on real hardware the
slave would not be running an operating system at all. Instead, the PCIe root complex
would have to handle the setup of LCPUs on the slave ARTPEC. We think that there is a
use case for keeping the slave’s Linux OS, which is further discussed below.

ARTPEC Driver Enhancements
When it comes to how LCPU commands are bounced, we’re not completely satisfied. It
would be much more efficient to not copy every command to a special place in memory;
and upon completion, copy them back. Ideally the driver should be modified so that LCPU
command allocation is not allowed on the stack or dynamically in kernel memory by using
kmalloc and the like. Rather, they should only be allowed to be allocated in a specific
pre-defined area of memory. This is discussed further in section 3.2.6.

Previous versions of the ARTPEC driver have been proprietary. Thanks to the decou-
pling between the firmware used in the LCPUs and the ARTPEC driver, Axis has decided
to provide the ARTPEC driver with an open source license - the GNU General Public
License (GPL). It is this fact that allows us to use structures and functionality from the
Linux kernel that are GPL licensed. This includes genalloc as well as things like work
queues.

Power Consumption
When it comes to the power consumption of built in systems, there is a base effect con-
sumption that is always present [21]. From the effect measurements performed (as shown
without hard numbers in figure 3.3), we can conclude that the base leakage and peripheral
power consumption will roughly double when using two chips. However, the increase in
power consumption in relation to load is somewhat less in the dual chip case compared to
the single chip case.

When it comes to the quality of the measurements, at the time of writing, Axis had not
performed corner case effect measurements; meaning that the boards that these measure-
ments were performed on, were near perfection. Whereas in later tests Axis will measure
worst case and best case performance on a plethora of differently manufactured boards.

As such, the accuracy of the measurements can basically only tell us two things. First
off, that the leakage or base effect consumption is linear to the amount of chips used.
Second off, they tell us that the slope of the curve is decreased when using two chips. In
figure 3.3 it looks like they are converging quite fast, but the truth is that they might not
converge that fast or at all. This is due to the fact that there will be a theoretical max load
that the chip is able to handle, after which the power consumption will be constant.

Utilizing The Slave MCPU
As previously mentioned, our current implementation allows the slave system to use Linux
in order to set up the firmware for the LCPU subsystems. This means that while the slave
has an MCPU, this unit is not used for anything after the setup and will, de facto, be idle.

The same goes for the remaining subsystems not being used on the slave. Namely the
VPP, CDC, Crypto and various other peripherals.

37

3. Evaluation

We believe that some tasks could be offloaded to the slave MCPU without effecting
the bandwidth limitations of the PCIe bridge.

One possible application is audio capture and processing. Since the slave already per-
forms the image capture, it might not be a bad idea to also let it perform the audio capture
and processing. In current Axis products, the audio resampling is done with emphasis on
speed rather than quality. This is because the resampling is performed on the MCPU and
it is quite CPU intensive to do well. In the dual ARTPEC case, this resampling could be
offloaded to the slave’s MCPU.

This use case provides a basis for why Axis should not strip the slave of its Linux
OS, which is further discussed below. While this example might be trivial, the main fo-
cus of our implementation is to boost the video processing power of upcoming ARTPEC
products. Thus, any utilization of the slave MCPU may not interfere with the PCIe link’s
bandwidth limitation between the two ARTPEC chips. Audio processing would likely take
up no more than 5 Mbit/s across the PCIe bridge, which is small enough not to exacerbate
the performance.

Removing The Slave’s OS
During the information gathering portion of the thesis, we discussed with several different
people at Axis what to do with the slave’s OS. The consensus at Axis was that the slave’s
OS should be removed. This was motivated by the fact that having two operating systems
would complicate the resulting system.

In our implementation we chose to keep a stripped slave OS for the simple reason that
it would allow us to skip implementing the firmware initiation of the remote LCPUs. We
did - however - remove the ARTPEC driver. This driver would have generated conflicts
and perhaps issues that would have been hard to debug.

While we do agree, that having two independent systems is overly complicated; we
think that the use of the same type of API that is used for the LCPUs, can be leveraged to
make great use of the slave’s MCPU and idle subsystems.

In our opinion, one of themost impressing features of theARTPEC is themodularity on
the SoC. Each subsystem can be controlled remotely, and does not depend on peripherals
or mutable state. They can be used in a declarative way; a command struct specifies what
to do, where to get the relevant data from and where to place any results.

This model could be transferred to being used on the slave MCPU that could act as
its own subsystem, a Slave CPU (SCPU). The SCPU would work in the same way as the
other subsystems, a command struct would be sent to a specific FIFO address - it would
perform calculations and emit the resulting data to the specified address.

In the case of offloading the audio resampling to the SCPU, the master ARTPEC could
send a command to the slave system, saying capture audio and resample it, then write it
to this address. The resulting audio stream could then be muxed together with the video
stream in the master without much hassle. This also means that Axis would be able to
offer higher quality audio - without needing to invest in specialized hardware like digital
signal processors.

To do this, however, the system needs access to an audio infrastructure. Much of this
infrastructure is provided by the Linux kernel with extensions available in specialized pro-
grams for audio processing. A bare metal system would not be able to handle this quite as

38

3.2 Discussion

easily as a system running Linux.
When it comes to power limitations, the MCPU can be loaded pretty heavily without

affecting the effect consumption. Thus, if the system is already a dual chip solution, then
it will not matter, power-wise, if the slave is running its own OS or not.

Limitations of Flow
As previously established, there is a single direct data channel across the MIO, VIP and
VPP. After the VPP there are multiple direct data channels that can be directed to memory,
and subsequently sent to the CDC for encoding.

In the scenario of a singular stream, our dual ARTPEC solution is not beneficial. This
is because the data won’t enter main memory before the coding unit. As such, the utilized
bandwidth will be the same on a single as dual ARTPECs (disregarding the bandwidth for
transferring over PCIe).

Flow provides the possibility to process a single image stream throughout the ARTPEC
until the VPP, but generate multiple streams at different resolutions. In this scenario the
benefit is also moot, because of the same reason as for a singular stream.

The real benefit is when there are multiple sensors attached to the ARTPEC. In this
scenario, flow between the MIO and VIP cannot be used. As such, the need to bounce
the image in memory becomes mandatory. The benefits of running this scenario on dual
ARTPECs is the one illustrated by table 3.1 and table 3.2.

Multiple ARTPECs
As the thesis title suggests, it is indeed possible to use more than one slave ARTPEC to cre-
ate a multi-ARTPEC solution. The hardware supports this, and Axis has even performed
tests in which a master ARTPEC is able to address more than one slave over PCIe. This is
done by using a switch between the different endpoints from the root complex.

With that being said, the main question is - does our implementation support multiple
ARTPEC slaves? The answer is that it does - sort of. This is due to the fact that while the
hardware and driver support is there - we simply see no real use for multiple slaves. Our
method of dividing the work would not improve from having more slaves available. This
is because the limiting factor in our implementation is the PCIe bridge.

The ability to have multiple endpoints, however, is great - why hook up an ARTPEC?
You could hook up a totally different SoC that provides functionality that the ARTPEC
does not.

3.2.4 Issues with QEMU
Interrupt Numbers
The first problem that we encountered when implementing the simulated PCIe bridge was
the indexing of the interrupt numbers. It turned out that the interrupt numbers created in
QEMU are not mapped to the same numbers as the Linux guest operating system. After
reading a vague comment about it in the source code [12], we found out that there is
a constant offset of 32. The reason being that the Cortex-A9MP chip numbers external

39

3. Evaluation

interrupts starting from 32 [10, Chapter 3.12], where our PCIe bridge is to be considered
an external device, and therefore emits external interrupts.

Alignment and Data Transfers
When sending the data over the simulated PCIe bridge, there are a few things to consider.
There are a total of four (possibly different) operating systems involved when sending data
over the socket, one guest and one host per machine as illustrated in figure 2.9. In order to
send data over the simulated PCIe, the dataflow is as seen in figure 3.4.

1. Guest 1 writes the command struct to the I/O mapped memory in QEMU, this is
4-byte aligned.

2. Host 1 wraps the command struct in a header struct and writes to the socket.

3. Host 2 reads the data from the socket and interprets it as a header struct.

4. Guest 2 reads from the I/O mapped memory, again 4-byte aligned, and interprets
this as a command struct.

Figure 3.4: Data flow

At each read and write, it is important that the different operating systems interprets
the bytes in the same way. The compiler of a C program is allowed to add padding to the
various fields in a struct, either because it is required by the architecture, or because it
results in a performance gain [4]. If the two hosts, or the guests, or both, add padding in a
different way, the interpretation will differ and the communication is broken. The GCC [3]
compiler used supports specifying attributes of types [14], where the two interesting at-
tributes are packed and aligned. Here, packed effectively removes padding as much as
possible, and aligned aligns the struct and its members to a specific minimum alignment.

The first attempt without any special attributes resulted in that the QEMU drivers could
talk to each other and correctly read the messages, but the guest operating system could
not read the received bytes properly. An attempt was made where we used the packed
attribute, but this still resulted in the same error, possibly because of the 4-byte alignment
when reading from the I/O mapped memory. Finally aligned with a 32-byte alignment
fixed all the issues, this results in an increased memory usage, but it is the same alignment
as required by the LCPUs.

It is also worth noting that QEMU does not allow byte level access to data, but rather
chunks the read and writes to a uint32_t or word level. This can be seen in the function
declarations in figure 2.11.

Threading Issues
As previously mentioned, QEMU is wrapped as a library and uses one instance for each
CPU in TLMu. This means that the code in QEMU will be run by the SystemC instance.
Since SystemC does not support concurrently running threads, but rather allows one thread
to run at a time. It also imposes restrictions on when memory can be read or written.

40

3.2 Discussion

In our solution using QEMU, we tried to let a pthread continuously read from a
socket and perform memory IO by calling cpu_physical_memory_read or
cpu_physical_memory_write when applicable; this was a bad idea. SystemC im-
mediately crashes when QEMU tries to write to the physical memory outside of IO func-
tions. This is because SystemC does not allowwrites to memory outside of SC_THREADs.

This is not surprising, as SystemC aims to really emulate how hardware behaves; it
should impose these types of restrictions. Unfortunately, we could not hack around this
issue and were forced to abandon this implementation strategy.

3.2.5 Issues with TLMu

Port and Socket Issues

There were a couple of problems that occurred when using QEMU. First off, the version
used in the TLMu environment is a very old version, dated back to 2010-08-16 [9]. The
documentation is fine when using the application, but when we were required to program
in QEMU it was hard to find proper documentation, and we often had to go through the
source code in order to gain information.

Another problem with this environment is that it is not possible to run two TLMu
instances on the same computer. This is due to the fact that there are a lot of hard-coded
ports and sockets used as means for QEMU to communicate with SystemC as well as the
various help utilities. Since the environment models a complete ARTPEC a lot of utilities
are used to emulate hardware implemented features, e.g. H264 coding. As such, both the
TLMu implementation as well as the various utilities would need to be re-configured to
use different ports, to allow multiple instances on one computer.

An attempt was made to reconfigure all the ports, but it still resulted in crashes. In the
end we had one TLMu instance per computer and the workflow was fine.

Message Passing Between ARTPECs

Implementation wise, the message passing between machines, is the same for both QEMU
and SystemC. The first machine sends a message and the other machine acknowledges that
it has received the message by echoing the sequence number.

Since, however, the SystemC implementation dynamically decides if it is the endpoint
or the root complex - the complexity is higher in this implementation. The reason for
choosing this approach, was that the workflow in building and starting the two simulations
would be lighter considering the trial and error style programming employed. In retrospect,
a static decision would have been easier to deal with - however, the lack of testability on a
unit level would not have alleviated the trial and error style programming.

One of the bugs encountered because of the dynamic decision making was sending an
ACK on every message. This was later refactored so that an ACK would always be sent else
an error would be generated.

41

3. Evaluation

Slow Transfer Rates Over PCIe
As aforementioned, one of the issues with trying to implement the socket connection in
QEMU is the fact that we’re not allowed to block in SystemC threads. As such, when
we switched to implementing the socket connection in SystemC, we had to use SystemC
threads without blocking. Because of this, we chose to implement the socket communica-
tion using polling on both sides.

The waiting thread would call SystemC’s wait function if no data was available, thus
yielding execution to the next SystemC thread. The problem with this approach is that the
resulting transfer rate is terrible. Despite decreasing the wait time, the transfer rate only
increased slightly - however, since the other threads are allowed less time to progress - the
whole simulation slows. From what we understand, this is due to the fact that SystemC
does not actually use real threading. Instead it lets each SystemC thread run, one after the
other in the SystemC context. Instead of letting each thread run concurrently on the host
computer’s CPU.

In IEEE 1666-2011, SystemC introduced async_request_update, which allows
non SystemC threads to update the simulation [5]. Once this feature was discovered, we
could re-implement the socket connection using POSIX threads, allowing asynchronous
update calls to the simulation exactly when data is available. This improves the data trans-
fer immensely, allowing us to pass larger images over PCIe in a time frame that is seconds
as opposed to hours.

The second problemwhich occurred when large amounts of data had to be transmitted,
was the fact the DMI could not make use of DMA. This occurs when transmitting frames
from the process buffers on the slave to the VPP subsystem on the master. Each time 72
KB had to be transmitted (the largest amount of data transmitted in the simulator), 4 byte
transfers were issued to QEMU. This resulted in low FPS in the simulator and a large
overhead in the PCIe model.

Each PCIe packet, excluding the payload of 4 bytes, requires 9 bytes (11 bytes including
possible padding). This means that in order to transfer 72 KB over PCIe, 18432 packets
over PCIe needed to be transmitted, each one causing a large overhead in the simulator.

First a new xbar was added in order to bypass the platform, enabling DMA to be used
with PCIe, which in turn made it possible to make memory accesses much larger than 4
bytes (in practice 72 KB accesses were made). This forced us to change the way PCIe
packets were transmitted, and we had to make sure that PCIe packets could carry a dy-
namic amount of data. Finally 72 KB transfers over the Unix socket were possible with an
overhead of only 16 bytes (no padding) and the performance thus increased.

3.2.6 Handling LCPU Command Results
The LCPU commands will be transferred back to their origin address via DMA - this
means that the PCIe back end must be able to facilitate this in some way.

As mentioned section 2.4.5, we chose to avoid this problem by copying the LCPU
commands to a bounce buffer addressable from the memory area mapped to PCIe.

This, unfortunately, is not the most efficient implementation. There are, however, two
efficient ways of implementing this that were considered. The first way was to let the PCIe
back end map the entire kernel stack (for all kernel threads). With this approach, we would

42

3.2 Discussion

not need to copy the results back and forth - the slave could transfer the structs back via
DMA directly. Since we cannot be sure where Linux will decide to allocate its kernel
thread stacks - we would need to map the entire memory available, which we cannot do
with PCIe. The ARTPEC-6 is limited to 512 MB of mapped PCIe addresses, making it
impossible to make sure that all memory used by Linux is covered; since the ARTPEC-6
will have more than 1 GB global memory.

Another alternative to mapping the entire kernel stack space would be to simply allo-
cate the messages in a specific part of memory ioremapped by the PCIe backend. This
approach was, however, not chosen because it would mean having to change a lot of code
in the driver.

An issue with the bounce buffer approach was that to copy the structs back to memory,
we needed to know the size of the command structs. When copying to the PCIe memory
area, however, we could have simply copied a large enough chunk of memory to cover the
command struct.

Knowing the size of these structs was not possible in the original ARTPEC driver. We
introduced the macro detailed in figure 2.17 to fix this, however, the macro has some down
sides. It cannot be passed around as a function pointer and the user has to be aware of the
fact that it is a macro, and therefore has these limitations, as mentioned in section 2.4.5.

One problem with the bounce buffer approach is that the memory consumed by the
ARTPEC driver is increased by the amount of LCPU commands concurrently running. It
is also possible that synchronous commands will time out and if they are stack allocated
- get popped. If a command times out but is written back to the stack after timeout, the
DMA transfer might overwrite stack memory that is being used for something else. As
such, implementing the solution with a dedicated memory area would be beneficial for
both memory usage and stability.

To implement the memory area, using something like genalloc is entirely plausible.
This pool can be tweaked using features like best-fit instead of first-fit, as such the choice
can be made between increased speed or better memory utilization. Arenas are another
alternative, but the amount of different LCPU commands would make this approach fairly
tedious. Each arena would store commands of the same size, and to know how large each
arena should be - a more thorough analysis of the ARTPEC driver would be needed.

3.2.7 Direction of PCIe Accesses
In order to maximize the performance, we have to consider howwe interface with the PCIe
device; in particular we have to consider if we can use writes instead of reads. The first
optimization is the location of the buffers, in this case the process buffer. The VIP writes
to the slave’s global memory, and then the master reads from it, the process buffer should
therefore be placed in the master’s global memory. One could argue that the same thing
applies for the command structs, that the ARTPEC UDL driver should have two memory
pools, one on the master - and one on the slave side where the commands are bounced.
However, when the command has finished, the driver must fetch the command struct back
to master. The ARTPEC UDL driver does not use DMA - something that the LCPU’s
always do - and therefore the fetch would require multiple 4 byte reads over PCIe.

43

3. Evaluation

3.2.8 Alternative Implementation
When looking back at our implementation across two separate instances of TLMu and
SystemCmodels, we’ve come to the conclusion that we could have implemented two ART-
PECs using one SystemC simulation. For the initial stage of the implementation this would
have been a smoother approach, especially since we had so many issues with the sockets
and threading. However, it would not have entirely solved our problem with the internal
TLMu socket communication for CPUs - these would have clashed regardless.

3.2.9 Development Workflow
When making changes to the ARTPEC kernel driver, a simple rebuilding of the kernel
image followed by rebooting the simulation constitutes the actions needed to reflect the
changes in the simulation. This needs only be done on the ARTPEC master simulation,
thus changes in the ARTPEC driver are preferable to those made in the simulation.

When developing functionality in the SystemC simulation however, the whole project
needs to be compiled on both ends. The changes were usually made on the master host,
and then pushed to Axis’s git repository, followed by a pull on the slave host. When we
were developing in QEMU, the whole SystemC project had to be recompiled, which is very
time consuming unless something like ccache is used [2]. This is because SystemC is a
large project written in C++.

As such, once we had the simulation working properly, the whole workflow improved
drastically.

Looking back at the software written during this thesis, testability has been a huge
issue. We both come from a background where test-driven development (TDD) plays a
huge roll in development. As such, the absence of unit, integration and regression tests in
the simulation and drivers has been somewhat new to us. Testing is instead performed by
external scripts or by using GDB to make sure that the correct values are passed on.

3.3 Conclusion
We think that Axis has a real winner on their hands with the dual ARTPEC concept.
Thanks to ingenuity of the subsystem structure and the ARTPEC driver, the complexity
of the dual ARTPEC lies mainly in the sharing of LCPU command structs and efficiently
implemented buffer sharing.

We have shown that the resulting system reduces both systems’ bandwidth usage; the
master ARTPEC’s bandwidth usage is decreased by 63% while the slave’s usage is de-
creased by roughly 25%. The dual chip implementation also provides other opportunities,
such as the ability to use the slave’s CPU as a separate subsystem.

We strongly advocate for the usage and development of applications for the slave’s
MCPU - as it would otherwise stand idle. As the PCIe bridge becomes the choke point,
applications offloaded to the slave have to take care not to transmit data across the bridge
unnecessarily.

The resulting implementation provided by this thesis has taken some shortcuts. This is
due to the fact that the implementation was performed on simulated hardware as opposed

44

3.3 Conclusion

to real hardware. This means that the implementation in itself does not map directly to
hardware - but it is close enough that the real implementation should very be straightfor-
ward.

45

3. Evaluation

46

Bibliography

[1] Axis Developer Wiki - FAQ. http://developer.axis.com/wiki/doku.
php%3Fid=faq.html. Accessed: 2016-02-16.

[2] ccache. https://ccache.samba.org/. Accessed: 2016-02-23.

[3] GCC, the GNU Compiler Collection homepage. https://gcc.gnu.org. Ac-
cessed: 2015-11-18.

[4] IBM developerWorks data alignment straighten up and fly right. http://www.
ibm.com/developerworks/library/pa-dalign. Accessed: 2015-11-
18.

[5] IEEE 1666-2011. http://standards.ieee.org/getieee/1666/
download/1666-2011.pdf. Accessed: 2016-01-05.

[6] ITU h.264 : Advanced video coding for generic audiovisual services. http://
www.itu.int/rec/T-REC-H.264-201402-I/en. Accessed: 2015-11-03.

[7] Linux Kernel Virtual Machine. http://www.linux-kvm.org. Accessed:
2015-12-01.

[8] QEMU open source processor emulator. http://wiki.qemu.org/Main_
Page. Accessed: 2015-11-02.

[9] qemu.git short log of tag 0.12. http://git.qemu.org/?p=qemu.git;a=
shortlog;h=refs/heads/stable-0.12. Accessed: 2015-11-18.

[10] RealView Platform Baseboard Explore for Cortex-A9 User Guide. http:
//infocenter.arm.com/help/topic/com.arm.doc.dui0440b/
DUI0440B_realview_platform_baseboard_for_cortexa9_ug.
pdf. Accessed: 2015-11-26.

[11] The PCI Express Port Bus Driver Guide HOWTO. https://www.kernel.
org/doc/Documentation/PCI/PCIEBUS-HOWTO.txt. Accessed: 2016-
02-17.

47

http://developer.axis.com/wiki/doku.php%3Fid=faq.html
http://developer.axis.com/wiki/doku.php%3Fid=faq.html
https://ccache.samba.org/
https://gcc.gnu.org
http://www.ibm.com/developerworks/library/pa-dalign
http://www.ibm.com/developerworks/library/pa-dalign
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://www.itu.int/rec/T-REC-H.264-201402-I/en
http://www.itu.int/rec/T-REC-H.264-201402-I/en
http://www.linux-kvm.org
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
http://git.qemu.org/?p=qemu.git;a=shortlog;h=refs/heads/stable-0.12
http://git.qemu.org/?p=qemu.git;a=shortlog;h=refs/heads/stable-0.12
http://infocenter.arm.com/help/topic/com.arm.doc.dui0440b/DUI0440B_realview_platform_baseboard_for_cortexa9_ug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0440b/DUI0440B_realview_platform_baseboard_for_cortexa9_ug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0440b/DUI0440B_realview_platform_baseboard_for_cortexa9_ug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0440b/DUI0440B_realview_platform_baseboard_for_cortexa9_ug.pdf
https://www.kernel.org/doc/Documentation/PCI/PCIEBUS-HOWTO.txt
https://www.kernel.org/doc/Documentation/PCI/PCIEBUS-HOWTO.txt

BIBLIOGRAPHY

[12] TLMu GitHub tlmu/hw/vexpress.c. https://github.com/edgarigl/
tlmu/blob/d60ca691992e9f987e9c855ae5fb04b1730468f1/hw/
vexpress.c#L106. Accessed: 2015-11-18.

[13] Understanding Performance of PCI Express Systems. http://www.xilinx.
com/support/documentation/white_papers/wp350.pdf. Accessed:
2016-02-04.

[14] Using the GNU Compiler Collection (GCC) specifying attributes of
types. https://gcc.gnu.org/onlinedocs/gcc-3.3/gcc/
Type-Attributes.html. Accessed: 2015-11-18.

[15] P.R. Bashford. Message signaled interrupt generating device and method, Septem-
ber 30 2003. US Patent 6,629,179.

[16] Lukai Cai and Daniel Gajski. Transaction Level Modeling: An Overview. In Pro-
ceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 19–24. ACM, 2003.

[17] PCI Special Interest Group. PCI Express Base Specification Revision 3.0. 2010.

[18] Edgar E. Iglesias. Tlmu. 2011.

[19] Open SystemC Initiative et al. IEEE standard SystemC language reference manual.
IEEE Computer Society, 2006.

[20] Greg Kroah-Hartman Jonathan Corbet, Alessandro Rubini. Linux Device Drivers -
3rd Edition. O’Reilly Media, 2005.

[21] Nam Sung Kim, Todd Austin, David Baauw, Trevor Mudge, Krisztián Flautner, Jie S
Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykrishnan Narayanan. Leakage
current: Moore’s law meets static power. computer, 36(12):68–75, 2003.

[22] Sudeep Pasricha. Transaction level modeling of soc with systemc 2.0. In Synopsys
User Group Conference (SNUG), volume 3, page 3, 2002.

[23] P.G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard, O. Benny,
B. Lavigueur, D. Lo, G. Beltrame, V. Gagne, and G. Nicolescu. Parallel program-
ming models for a multiprocessor soc platform applied to networking and multime-
dia. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 14(7):667–
680, July 2006.

[24] H. Linse R. Lindahl. Real-time Panorama Stiching using a Single PTZ-Camera with-
out using Image Feature Matching. 2015.

[25] Marco Sironi and Francesco Tisato. Capturing information flows inside android and
qemu environments. arXiv preprint arXiv:1302.5109, 2013.

[26] A.Wieferink, M. Doerper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel, G. Braun, and
A. Nohl. System level processor/communication co-exploration methodology for
multiprocessor system-on-chip platforms. IEE Proceedings-Computers and Digital
Techniques, 152(1):3 – 11, 2005.

48

https://github.com/edgarigl/tlmu/blob/d60ca691992e9f987e9c855ae5fb04b1730468f1/hw/vexpress.c#L106
https://github.com/edgarigl/tlmu/blob/d60ca691992e9f987e9c855ae5fb04b1730468f1/hw/vexpress.c#L106
https://github.com/edgarigl/tlmu/blob/d60ca691992e9f987e9c855ae5fb04b1730468f1/hw/vexpress.c#L106
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf
https://gcc.gnu.org/onlinedocs/gcc-3.3/gcc/Type-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-3.3/gcc/Type-Attributes.html

BIBLIOGRAPHY

[27] Yin Yaming and Chen Shuming. Design and implementation of a inter-chip bridge in
a multi-core soc. National University of Defense Technology, Department of Com-
puter Science and Tehnology, Changsha, 410073, China, 2009.

[28] Zhaohui Zhong, Deli Wang, Yi Cui, Marc W Bockrath, and Charles M Lieber.
Nanowire crossbar arrays as address decoders for integrated nanosystems. Science,
302(5649):1377–1379, 2003.

49

BIBLIOGRAPHY

50

Appendices

51

Appendix A
Glossary

ARTPEC Axis RealTime Picture Encoding Chip
CDC Coding and Decoding Unit
CPU Central Processing Unit

DMA Direct Memory Access
DMI Direct Memory Interface

DRAM Dynamic Random-Access Memory
EP Endpoint

FIFO First-In-First-Out
GPL GNU Public License

Global Memory the main memory of the ARTPEC addressable from the MCPU
I-frame Inter frame

IPP Image Processing Pipeline
IRQ Interrupt Request

KVM Kernel-based Virtual Machine
LCPU Local CPU
Linux a Unix-like and mostly POSIX-compliant computer operating system

MCPU Main Central Processing Unit
MIO Memory Input/Output
MSI Message Signaled Interrupts

P-frame Predicted frame
PCIe Peripheral Component Interconnect Express

QEMU a generic and open source machine emulator and virtualizer
RAM Random-Access Memory

RC Root Complex
SCPU Slave CPU

SRAM Static Random-Access Memory
Sensor an input to the MIO, usually a camera lens and sensor

53

A. Glossary

SoC System-on-Chip
SystemC A C++ framework for event-driven simulation

TDD Test-driven Development
TLM Transaction Level Modeling

TLMu Transaction Level Emulator
UDL User Defined Logic
VIP Video Input Processor
VPP Video Post Processor

54

Appendix B
ARTPEC-6 Usage

i n t main (void) {
/∗ Open d e v i c e ∗/
i n t fd = open (" / dev / cam0" , O_RDWR) ;

/∗ Add a new s t r eam w i t h t h e s p e c i f i e d c o n f i g u r a t i o n ∗/
i o c t l (fd , CAM_IOC_STREAM_ADD, s t r e am_ con f i g) ;

/∗ S t a r t c a p t u r e ∗/
i o c t l (fd , CAM_IOC_STREAM_CONTROL, 1) ;

/∗ A l l o c a t e s one s t r u c t e n cod e_ r e qu e s t ∗ /
i n t enc_phys = i o c t l (fd , CAM_IOC_ENCODE_ADD, IMAGE_JPEG) ;

/∗ Map encode r e q u e s t t o u s e r space ∗/
s t r u c t e n c od e_ r e q u e s t ∗ enc =

mmap(NULL, s i z e o f (∗ enc) , PROT_READ | PROT_WRITE , MAP_SHARED, fd , enc_phys) ;

/∗ S t a r t encode p r o c e s s ∗ /
i o c t l (fd , CAM_IOC_ENCODE, phys) ;

/∗ Wait f o r encode t o f i n i s h ∗/
s e l e c t (fd , NULL, NULL, NULL, NULL) ;

/∗ Encoded frame i s now a v a i l a b l e i n ‘ enc ‘ ∗ /
re turn 0 ;

}

55

B. ARTPEC-6 Usage

56

Appendix C
Bandwidth Calculations

! / u s r / b i n / env py thon3

Ca l c u l a t e bandwid th u s i ng t h e f o l l o w i n g image d imen s i on s :
wid th = 1920
h e i g h t = 1088
f p s = 60

Ca l c u l a t e b y t e s per image :
p i x e l _ s i z e = 12
by t e = 8 . 0
r aw_ s i z e = wid th ∗ h e i g h t ∗ p i x e l _ s i z e / by t e
raw_meta = wid th ∗ h e i g h t

H264 encod ing f o r 30 f p s :
h264_30_fps = 10 ∗ 1024 ∗ 1024 / by t e # 10 mbi t / s t o MB/ s
h264_ s i z e = h264_30_fps / 30

De f i n e conv en i e n c e f u n c t i o n s :
def t o_kb (f r om_by t e s) :

re turn f r om_by t e s / 1024 .0

def to_mb (f r om_by t e s) :
re turn t o_kb (f r om_by t e s) / 1024 .0

def p r i n t _ r e s (f r om_scena r i o , w i t h _ by t e s) :
mb = to_mb (w i t h _ by t e s)
pr in t (" R e s u l t s from : {} " . format (f r om_ s c e n a r i o))
pr in t (" { 0 : 1 0 . 3 f } MB/ image " . format (mb))
pr in t (" { 0 : 1 0 . 3 f } MB/ s a t {1}x{2} @ {3} f p s \ n " . format (mb ∗ fps , width , h e i gh t , f p s))

##
#
Scen 1: s i n g l e ch ip , m u l t i p l e s t r eams , c a l c u l a t e bw needed f o r one s t r eam
#
##

def scen1 () :
Between MIO => DDR
mio_ to_ddr = r aw_s i z e
Between VIP <=> DDR, assuming a s i m p l i f i e d IPP
v i p _ t o _ dd r = r aw_ s i z e + raw_meta ∗ 2 + \

57

C. Bandwidth Calculations

raw_meta + r aw_s i z e ∗ 4
Between DDR => DDR (t o VPP /CDC b u f f e r)
dd r _ t o _dd r = r aw_ s i z e
Between VPP <=> DDR
vpp_ to_dd r = 2 ∗ r aw_s i z e
Between DDR => CDC
dd r_ t o_cdc = r aw_s i z e
From CDC => DDR (Comple ted image)
cdc_ t o_dd r = h264_ s i z e

re turn mio_ to_ddr + \
v i p _ t o _ dd r + \
dd r _ t o _dd r + \
vpp_ to_dd r + \
dd r _ t o_cdc + \
cd c_ t o_dd r

##
#
Scen 2m: dua l ch ip s , m u l t i p l e s t r eams , c a l c u l a t e bw needed f o r one s tream ,
on mas t e r ARPTEC
#
##

def scen2m () :
From s l a v e over PCIe t o DDR
p c i _ t o _ d d r = r aw_ s i z e
Between VPP <=> DDR
vpp_ to_dd r = 2 ∗ r aw_s i z e
Between DDR => CDC
dd r_ t o_cdc = r aw_s i z e
From CDC => DDR (Comple ted image)
cdc_ t o_dd r = h264_ s i z e

re turn p c i _ t o _ d d r + \
vpp_ to_dd r + \
dd r _ t o_cdc + \
cd c_ t o_dd r

##
#
Scen 2 s : dua l ch ip s , m u l t i p l e s t r eams , c a l c u l a t e bw needed f o r one s tream ,
on s l a v e ARPTEC
#
##

def s c en2 s () :
Between MIO => DDR
mio_ to_ddr = r aw_s i z e
Between VIP <=> DDR, assuming a s i m p l i f i e d IPP
v i p _ t o _ dd r = r aw_ s i z e + raw_meta ∗ 2 + \

raw_meta + r aw_s i z e ∗ 4

To mas t e r v i a PCIe
pc i_ to_mas = r aw_s i z e

re turn mio_ to_ddr + \
v i p _ t o _ dd r + \
pc i_ to_mas

p r i n t _ r e s (" S c e n a r i o 1 " , scen1 ())
p r i n t _ r e s (" S c e n a r i o 2 (mas t e r) " , scen2m ())
p r i n t _ r e s (" S c e n a r i o 2 (s l a v e) " , s c en2 s ())
p r i n t _ r e s (" S c e n a r i o 2 (combined) " , scen2m () + s c en2 s ())

pr in t (" R e s u l t s a r e m i s s i ng ove rhead from LCPU commands amongst o t h e r t h i n g s ")

58

This theis examines how best to divide the work of image processing across
multiple interconnected System-on-Chips and shows by proof-of-concept that it
is a feasible solution for bandwidth demanding applications.

Splitting Up The Work
The motivation for the thesis was to allow Axis to uti-
lize the hardware they designed themselves - instead of
purchasing third party chips - to allow for high band-
width applications like streaming at high resolutions.
  During our thesis work, we have implemented a so-
lution for dividing work between two SoC:s intercon-
nected using a PCI Express (PCIe) bridge. It is easiest
to imagine the relation between the two chips as a slave
and master relationship, where the master simply tells
the slave what to do.
  Each chip contains several subsystems, and the good
people at Axis have implemented an API to communi-
cate with these subsystems. The API basically uses com-
mand structures sent from the operating system on the
CPU to the subsystems containing Local CPUs (LC-
PUs). The beauty of this approach is that the system
becomes very decoupled and modular - i.e. each system
operates independently of the others.
  In our thesis, we have split the work for different sub-
systems across two ARTPECs. In the single ARTPEC
case, all subsystems are on the same chip.

Basically the figure illustrates the images’ path through
the different subsystems to the point at which it is made

available for user consumption. To start with, we feed
the system with a known image at the sensor stage on
the slave side. When the image has been captured and
processed by image improvement algorithms, it is sent
via PCIe to the master ARTPEC. At this point the ima-
ge is scaled and then sent for encoding. Once these steps
have been performed, the image can be delivered to the
user application.
  We have chosen to divide the work by placing the
image processing on the slave and the post-processing
on the master ARTPEC. This is because the most band-
width demanding subsystems are the image processing
(VIP) and post-processing (VPP).

Results and Future Work
Our implementation results in a significant decrease
of memory bandwidth usage on both the slave and the
master ARTPEC. Most significantly it decreases the
slave’s bandwidth usage with 63% and the master’s with
roughly 25%.
  Both the master and the slave ARTPEC contain all
subsystems. This means that with our implementation
the slave has subsystems and, perhaps more importantly,
an entire CPU that is not being used. What this entails
is that we have effectively enabled offloading of strenu-
ous tasks!
  In order to offload tasks to remote subsystems, it
would be very easy for Axis to write an API that works
in the same way as their current subsystem control me-
cha-nism. Examples of things they could easily offload
are things like: audio re-sampling, user applications
dubbed ACAP, facial recognition, and object recogni-
tion to name a few.

EXAMENSARBETE Image Processing Across Multiple Interconnected System-on-Chips

STUDENT Andrée Ekroth, Felix Mulder

HANDLEDARE Jonas Skeppstedt (LTH), Johan Rudholm (Axis), Magnus Mårtensson (Axis)

EXAMINATOR Per Andersson

Image Processing Across Multiple
Interconnected System-on-Chips
POPULÄRVETENSKAPLIG SAMMANFATTNING Andrée Ekroth, Felix Mulder

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-03-18

	Introduction
	Similar work

	Approach
	Division of Work
	Theory and Technologies
	SoC Overview
	Pipeline Overview
	Local Central Processing Units
	Image processing
	Methods of Dividing the Workload
	ARTPEC Driver
	QEMU
	SystemC
	TLMu
	PCI Express

	Method
	Overview
	Interconnection using QEMU
	Interconnection using SystemC
	Modifying the LCPU Setup
	Modifying the Slave's OS

	Implementation
	Introduction
	Image Path Through ARTPEC
	PCIe Bridge Driver
	Sending Commands Between ARTPECs
	SystemC PCIe Back End

	Evaluation
	Results
	Discussion
	Bandwidth
	Why Choose a Dual Chip Solution?
	Future Work and Improvements
	Issues with QEMU
	Issues with TLMu
	Handling LCPU Command Results
	Direction of PCIe Accesses
	Alternative Implementation
	Development Workflow

	Conclusion

	Bibliography
	Appendix Glossary
	Appendix ARTPEC-6 Usage
	Appendix Bandwidth Calculations

