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Abstract 

A snow manipulation project was established on a sub-arctic mire close to Abisko, 

northern  Sweden, to study the effect of artificially thicker snow cover on vegetation and 

permafrost. Several years of increasing winter snow accumulation, clearly led to 

intensified permafrost degradation and vegetation change. The question arose how much 

these changes affected emissions of greenhouse gases. This study examines the methane 

fluxes in the area of the snow manipulation project during summer. Fluxes were studied 

by the closed chamber technique, in both manipulated and control plots. The results show 

a clear difference between fluxes at control and manipulated plots, with average values of 

0.15 and 0.66 mg CH4 m
-2

 h
-1

, respectively. If the trend of the global warming is 

continuing it will lead to even more thawing of permafrost. Then even more organic 

material will be available for decomposition and even more methane will be produced, 

adding to the global warming. 
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Introduction 

Methane 

Methane (CH4) is a greenhouse gas that is produced when biomass is decomposed under 

anaerobic conditions (without oxygen) (AMAP 2012). The amount of methane in the 

atmosphere in comparison to carbon dioxide (CO2) is small. Even though the emissions 

of CH4 are smaller than CO2, it is one of the most important contributor to the global 

warming (Jackowicz-Korczyński et al. 2010;  AMAP 2012). This is because CH4 is over 

25 times more potent as a greenhouse gas than CO2 over a 100 year time span (IPCC 

2014).  In 2014 the global average concentrations of CH4 in the atmosphere was 1833±1 

ppb (parts per billion) and for CO2 it was 397.7±0.1ppm (parts per million)(WMO 2015). 

Since the start of the industrial revolution, the amount of CH4 has more than doubled. 

During the same time the amount of CO2 has risen around only 30% (Norina 2007). CH4 

is not as long lived in the atmosphere as CO2, only around 9 years in comparison to 34-44 

years (Seinfeld and Pandis 2006), but long lived enough to have an impact on a global 

scale. From 2013 to 2014 the global average concentration of CH4 increased by 9 ppb, 

and during the same period CO2 increased 1,9ppm (WMO 2015).  

 

Figure 1: A conceptual flow chart of the CH4 pathway. In areas where permafrost is present this takes place 

in the active layer. Taken from (Whalen 2005). 
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There are three different pathways for methane to the atmosphere: ebullition, molecular 

diffusion and transportation through plants as seen in Figure 1 (Whalen 2005;  Kip et al. 

2010). When vascular plants are present and abundant, a large proportion of the transport 

and emission of methane takes place through these (Christensen et al. 2003a). If the 

decomposition occurs with oxygen (aerobic), CO2 is produced and without oxygen 

(anaerobic) CH4 (AMAP 2012). If the anaerobic horizon does not go all the way to the 

top soil there is an aerobic horizon where CH4 can be oxidised (Whalen 2005). In this 

horizon a very large fraction of the diffusing CH4 can be oxidized, but even in the 

anaerobic horizon in standing water there can be oxidization (Liebner et al. 2011).  

 

Permafrost 

Permafrost is permanently frozen ground, when the average yearly temperature of the soil 

is at or below 0⁰C for two or more years. The active layer is the surface layer of the soil 

that thaws each summer and refreezes every winter (AMAP 2012;  Schaefer et al. 2012). 

The active layer thickness varies depending on the type of soil, from centimeters in peat 

to meters in well-drained materials (Johansson et al. 2006a). Thawing of permafrost, or 

permafrost degradation is an increase of the active layer over time and is driven by 

increased air temperature and snow depth (Schaefer et al. 2012). 

Approximately 50% of all soil carbon is contained in permafrost (McCalley et al. 2014). 

When the permafrost starts to thaw, the carbon will be available for decomposition, but 

not all of the carbon will be available until all the permafrost is gone (Bosiö 2013). The 

decomposition will either produce methane or carbon dioxide, two major greenhouse 

gases which increase global warming. This in turn will lead to higher air temperatures 

and even more permafrost thaw, which creates a "positive feedback" (McCalley et al. 

2014) 
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Permafrost dynamics under climate change 

Vast areas in the northern terrestrial environment are mires or wet tundra habitats due to 

the permafrost preventing vertical drainage and the lack of slope preventing horizontal 

drainage (Svensson et al. 1999). In these ecosystems, because of low temperatures and 

prevailing anaerobic conditions, the decomposition rates relative to production rates are 

slow and lead to the accumulation of organic matter (Svensson et al. 1999;  Ström and 

Christensen 2007;  Bäckstrand et al. 2009;  Nykänen et al. 2003;  Ström et al. 2015), and 

due to anaerobic conditions they are also a significant source of methane (Christensen et 

al. 2003a;  Lund et al. 2009;  Ström et al. 2005). For thousands of years the arctic land 

areas have slowly fixed carbon dioxide from the atmosphere and accumulated this carbon 

in plant tissues that gradually have become peat or part of the soil. Over these thousands 

of years, vast quantities of carbon have been stored in the permafrost (AMAP 2012;  

Nykänen et al. 2003;  Lund et al. 2009), almost twice the amount of carbon that is in the 

atmosphere (Hugelius 2009;  Bäckstrand et al. 2009;  Grogan 2012). With global 

warming permafrost areas all over the arctic have started to thaw, and this is alarming due 

to the fact that big quantities of organic matter will be available for decomposition (Bosiö 

2013), which may turn the large sink into a source of carbon (Christensen et al. 2000;  

AMAP 2012). Just small changes in the mean annual temperature can create strong 

changes for ecosystems in subarctic regions (Christensen et al. 2004). 

When the permafrost thaws the hydrology in the area changes (Åkerman and Johansson 

2008), and changes in vegetation composition followed by increased emissions of 

methane and carbon dioxide have already been reported in sub-arctic areas (Ström and 

Christensen 2007). More available nutrients can also affect the vegetation community and 

productivity (Aerts et al. 2006;  Ström and Christensen 2007).   

In the Torneträsk area the thickness of the active layer is currently increasing (Åkerman 

and Johansson 2008), and this area has during the last years experienced an increase of 

the annual air temperature (Figure 2) (Callaghan et al. 2010). 
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Figure 2: This Figure is taken from (Callaghan et al. 2010) and it shows the annual air temperature for the 

Abisko region for the last 100 years and the vertical line before 1995 shows where the annual temperature 

starts to rise above 0⁰C. The red line is a polynomial curve trough the local maxima, the blue through the 

local minima and the black is a smoothed mean annual air temperature. 

 

In high latitudes, ecosystem functions and vegetation are greatly affected by snow. For 

example in cold regions where the growing season is short, a few weeks change in season 

length can have a great impact (Høye et al. 2007). This can also affect the hydrology and 

ecological systems (Callaghan et al. 2011). Climate scenarios for the Abisko region 

predict an increase of ≈2% of precipitation per decade over the coming 60 years, and the 

predicted precipitation is expected to be higher during winter than summer (Sælthun and 

Barkved 2003). A explanation for this is that higher surface temperature over the northern 

Atlantic causes higher evaporation and then increased precipitation over the Lapland 

region (Seppälä 2003). The majority of the projected precipitation for the Abisko area 

will be in autumn and winter (Sælthun and Barkved 2003), which will lead to increased 

snow fall and snow depth. Changes in snow cover have already been observed and 

evidence in the form of thawing permafrost, increases in active layer and vegetation 

changes have been reported during the last decade (Åkerman and Johansson 2008). With 

increased snow depth there is also an increased water source in the spring when the snow 

melts, which can lead to a higher water table (Bosiö et al. 2014). 

As a rough generalization, permafrost can be formed and sustained in areas with an 

annual mean air temperature of 0⁰C or less, but when the temperature increases, the 

permafrost starts to thaw. When snow covers areas with permafrost during the winter, the 

snow acts like a blanket and slows the heat loss of the ground. When the heat loss during 

the winter is less than heat gain during summer, the active layer increases every year until 

there is no more permafrost.  
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With predictions of increased snow cover thickness in the future, it is likely that the 

permafrost will continue to thaw or even accelerate in the area (Johansson et al. 2013), 

and with this bring changes in vegetation composition, productivity and trace gas fluxes 

(Bosiö et al. 2012).  

In 2005 Margareta Johansson (Dept. of Physical Geography and Ecosystems Science, 

Lund university) started a snow manipulation project on a mire called Storflaket in the 

Abisko region (Figure 3) to study the effect of degrading permafrost by artificially 

increased snow cover thickness. The aim was to "advance" the degradation years into the 

future so that we will be able to predict the future of the permafrost, and learn more about 

the permafrost dynamics. Subsequently this has given us the chance to study possible 

changes in the methane cycle which is valuable since it is not as well-known as the 

general carbon cycle. Increased snow depth can increase the degradation rate of 

permafrost even more than positive annual temperatures. We know that this in turn will 

cause a change of greenhouse gas emissions, but not how much.  

The snow manipulation project is located on the western part of the mire (Figure 4), 

where twelve different, but as homogeneous as possible, plots measuring 10 x 20 meters 

were established, and six of them were randomly chosen to be manipulated plots. The 

manipulated plots during snow season have a 1 m high and 10 m wide fence erected 

against the dominating wind direction, which is easterly and westerly winds. For more 

detailed information about this project, read Johansson et al. (2013). The measurements 

for this thesis were carried out within the existing snow manipulation project. 

 

Aims 

This study aims to examine the relationship between degrading permafrost and methane 

fluxes and specifically to answer the following research questions: 

Will the manipulated (increased snow depth) areas emit more methane than the control 

areas? If so, then how much?  

The hypothesis is that in the manipulated areas there will be a higher water table and a 

thicker active layer, which will increase the emissions of methane. 

http://www.lunduniversity.lu.se/lucat/group/v1000639
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The growing season in the manipulated areas is shortened due to the artificially increased 

snow depth. With the assumed higher emission rate of methane, will the manipulated 

areas emit more methane over the whole season in comparison to the control areas?  

The hypothesis is that there will be more accumulative emissions from the manipulated 

plots in comparison to control, due to higher fluxes of methane from manipulated plots 

and a long growing season in total.  

 

 

Methods and materials 

As a result of climate change, arctic and sub-arctic peatlands are expected to emit higher 

amounts of methane. This study was conducted at the sub-arctic mire Storflaket, close to 

Abisko, Northern Sweden. CH4 fluxes were measured in an area where a snow 

manipulation project has influenced the permafrost. Because it was not known whether or 

not CH4 concentrations during measurements would show a clear trend, CO2 was also 

measured simultaneously as a quality check on the measurements of CH4. CO2 

measurements can be used as such because under dark chamber conditions only a steady 

rise in CO2 concentrations can be expected (due to no photosynthesis and only respiration 

taking place). 

 

 

Site description 

CO2 and CH4 fluxes were measured on a mire called Storflaket, which is located in the 

northernmost Sweden (Figure 3), 6 km East of the Abisko scientific research station 

(68°20'47.60''N 18°58'22.10''E). The mire is approximately 13 ha and has a 60-90 cm 

thick peat layer and the plant community is classified as tundra because of the underlying 

permafrost (Bosiö et al. 2014). The road E10 between Kiruna and Narvik borders the 

mire to the north, a railway to the south and a birch forest to the east and the west 

(Johansson et al. 2013). The Abisko region has relatively low amounts of precipitation 
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because it is located in a rain shadow of the mountains on the border between Norway 

and Sweden (Seppälä 2005). During the period 1913-2006 the total annual precipitation 

was 303 mm per year, but the precipitation has increased during the last decade 

(Johansson et al. 2011).  

According to Johansson et al. (2011) the area is characteristic of the "sporadic 

permafrost" zone, and the permafrost can also be called "ecosystem protected 

permafrost". "Ecosystem protected permafrost" is usually found in climates where the 

mean annual air temperature is approximately 2⁰C to -2⁰C (Shur and Jorgenson 2007).   

The permafrost was formed during a colder climate than the present but can still exist 

during warmer climate as sporadic patches because of the properties of the mires 

ecosystem. In the case of Storflaket, it is the peat’s insulating capacity which enables the 

permafrost to be present.  

 

Figure 3: Map over Fennoscandia. The yellow dot indicates where the mire Storflaket is located, a few 

kilometres east of Abisko. Map taken from (Bosiö 2013). 
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Experimental setup 

 

Figure 4: Aerial view of the placement of the plots at the mire Storflaket. The green dots are the control 

plots and the white ones are the manipulated plots. The satellite photo is from Google Earth and is retrieved 

on the 25th of August 2014. 

 

By eye it was clear to see that the western side of the manipulated plots was more 

affected than the eastern side (more degraded). It was therefore decided to take the 

majority of the CH4 and CO2 measurements on the western side of all plots (both in 

control and manipulated plots).  

Of the twelve plots, it measurements were taken in a total of six subplots. Subplots one to 

five were put out according to a grid (Figure 5) that was determined prior to the 

measurements, and subplot number six was put on one already installed collar on the east 

side of the snow fence (Figure 5). Because of the subplots’ vegetation and tilt the 

placement of the chamber was in a radius of one meter from the original placement to 

find an as levelled area as possible to make the chambers as airtight as possible.  
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Figure 5: Aerial view of one plot. The dotted line is where the snow fence was erected. The plot  measure 

10x20 meters and it is the western side of the plot that is of most interest. The numbers 1 - 5 indicate where 

the subplots were put manually and number 6 is where a collar was installed in 2005. 

 

Chamber measurements 

Concentrations of CH4 and CO2 over time were measured with the closed chamber 

technique (Lund et al. 2009), with chambers made out of Plexiglas which were covered 

by non-transparent reflecting material to suppress photosynthesis and avoid overheating 

(Figure 6). Due to the fact that some plots had deep water, two different chambers were 

used, one higher for deeper waters (23 x 23 cm, height: 60 cm) and another one for 

vegetation and shallow waters (51 x 51 cm, height: 30 cm). If the system is airtight the 

concentration of CO2 will increase over time because of respiration. The linearity of CO2 

concentration change was used as a quality criteria for CH4 flux measurements. 

The measurements of both CH4 and CO2 were all made in the field subplot by subplot 

with a Los Gatos Research ultraportable greenhouse gas analyser (UGGA), Model 915-

0011 (powered with a car battery) which made measurements every second (1 hz) and 

saved them to a hard drive. The analyser was connected through Wi-Fi to an iPad, which 

visualized the concentration dynamics in real time. This made it easy to see if the 

chambers were airtight or not and the measurements could therefore be retaken directly if 

they were insufficient.   
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Inside of the chambers a thermometer was 

attached and a fan was put in to circulate the air. 

From the chamber two plastic tubes with a length 

of 40 meters and an inner diameter of 4 mm were 

connected to the ultraportable gas analyser for the 

gas content in the chamber to circulate through 

the machine. 

In an attempt to make the chambers more airtight 

when they were put on vegetation, pantyhose was 

filled with sand and first put on the ground to fill 

out the unevenness and then the chamber was put 

on top (Figure 6).  

 

Depending on the emission or the uptake of 

methane, a longer or shorter duration of time was 

needed. If a clear flux was easily observable, only 

a five minute sequence was needed. If the flux 

was very small with no clear concentration trend 

a longer duration of time was needed, up to 25 

minutes. Because of technical problems, real-time 

concentration monitoring was not always possible; then a measurement was taken for 10 

minutes as a compromise between the flux accuracy and the power consumption.  

The measurements used for the thesis were conducted daily between the 13th and the 

22nd of July, with the exception of rainy days during this period. There were a total of 72 

subplots, which were measured three times in total. All of the 72 subplots was measured 

once, before the next round. Round 1 was measured between the 13th and 15th of July, 

round 2 between the 15th and 17th of July and  round 3 between the 19th and 22nd of 

July. 

With the concentrations over time for both CO2 and CH4, the fluxes were calculated by 

with following equation:  

Figure 6: The top picture shows how the 

pantyhose was put on the ground to fill out 

any unevenness. The picture below is how 

the setup looked like, with stones on top to 

makes sure the covering of the chamber was 

on to suppress the photosynthesis during 

high speed winds. 
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Equation 1: F = flux of the analyzed gas in mg m
-2

 h
-1

. C is the concentration (ppm), t is 

time (min), h is the height of the chamber (m). M is the molar mass (g mol
-1

), where MCH4 

is 16 and MCO2 is 44. T is the air temperature (⁰C), P is the air pressure (hPa) and R is the 

universal gas constant (Pa m
3
 mol

-1
 K

-1
) which is 8.314. 

Measurements were done carefully to avoid ebullition , but in a few subplots there were 

CH4 bubbles observed in the beginning of the measurement. This only occurred in 

manipulated subplots with standing water. Depending on air pressure and wind these 

methane bubbles would probably be released sooner or later, but perhaps not in the 

magnitude that happened at once during measurements. 

 

Other variables 

Water table was measured  in every subplot with a water alarm that was stuck down into 

a hollow pipe that was put into the soil some minutes before. The pipe had small holes 

drilled into it so that potential water in the soil could drain into it. When the water alarm 

reached the water it made a sound. Then a measurement was taken of how far into the 

ground the alarm went.  

A thermometer was put inside of the chamber to register the air temperature and another 

one was also put outside of the shadow side of the chamber if the weather was sunny. 

Weather data for the area over the duration of the field work was collected from the 

Abisko Scientific Research Station. This included air pressure, temperature, wind speed 

and wind direction. Yearly averages of temperature and precipitation between 1950-2014 

were also collected.    

Photosynthetic Active Radiation (PAR) sensors (Minikin QT logger) measure hourly 

averages all year round and were already placed in all of the plots. Values of the PAR 
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over the duration of the field work were downloaded in the beginning of October. Snow 

does not disappear from control and manipulated plots at the same time, and with PAR it 

is possible to determine the day of snow melt (DOSM). The snow has a high albedo and 

when the snow melts there is a clear drop in the reflected PAR. Every plot was checked 

individually and the latest date of all the plots was used for DOSM. 

Soil temperature was also measured at every plot at the depths of 15 cm and also has 

hourly averages. These data were downloaded from loggers (Tinytag Plus 12G) in 

September. 

Active layer was measured manually. The measurements were retrieved after the field 

work between the end of September and the beginning of October. Measurements of the 

active layer only took place on the western side of the plot where subplots 1-5 were 

located. Subplot 6 was on the eastern side and was consequently without value of the 

active layer. 

A Paersons test, a linear correlation test between variables was performed with all the 

collected variables to calculate the correlation between them. A t-test was also made to 

determine if there was a statistical difference or not. These test was both done in SPSS.  

Every subplot was photographed and with these photos a rough vegetation inventory was 

made, with the categories with and without the vascular plant Eriophorum vaginatum. 
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Results 

The first research question in this study was to determine if the areas manipulated with 

increased snow depth emit more methane than the control areas. The results show that, 

yes, the manipulated plots emit more CH4 than the control plots. Figure 7 shows this 

result with the total average for all measurements of CH4. Specifically, for control plots 

the value is 0.15 mg CH4 m
-2

 h
-1 

and for manipulated the value is 0.66 mg CH4 m
-2

 h
-1

. 

 

 

 

Figure 7: The average CH4 flux for both control and manipulated plots. 

 

There is a consistent big difference (t-test, p<0,01) between the control and manipulated 

plots in emissions, in every round (Figure 8). The manipulated plots have higher 

emissions and there is also an increase for every round, and the emissions in the control 

plots are decreasing. For control plots the values for round 1, 2 and 3 were  

0.16, 0.14 and 0.14 mg CH4 m
-2

 h
-1

 and for manipulated the values were  

0.51, 0.55 and 0.91 mg CH4 m
-2

 h
-1

. Every dot in the Figure is an average of 36 different 

measurements during one round and for the control plots it varied between -0.02 
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(negative numbers is an uptake) and 0.93 mg CH4 m
-2

 h
-1 

and for manipulated plots it was 

from -0.03 to 5.51 mg CH4 m
-2

 h
-1

. 

 

Figure 8: The average CH4 flux for every round. 

 

A Paersons test was made to calculate the correlation between the CH4 flux and the other 

variables that were collected. The closer to 1 it is the higher the correlation. As illustrated 

in table 1, in both control and manipulated plots the highest correlations are between CH4 

flux and water table and also active layer. The correlation of CH4 flux with active layer 

thickness was highest at the control plots and with the water table it is highest at the 

manipulated plots.  
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Table 1: Paersons correlation values between methane flux and different parameters and the number of 

corresponding measurements in control and manipulated plots. Also the p-value is presented, and when the 

value is below 0.05 it means that it is statistical significant.  

 

 

Plots with a higher water table shown higher emissions of CH4 and the majority of the 

manipulated plots were located in a cluster with high water table and high emissions 

(Figure 9). 

 

Figure 9: Emissions of CH4 versus the level of the water table. Blue dots are the control plots and red dots 

are the manipulated plots 
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Control plot values         

 

Methane flux 

(mg CH4 m
-2

 h
-1

) 

Water table 

(cm) 

Soil temperature  

(⁰C) 
Active layer 

(cm) 

PAR 

(μmol/m
2
/sec) 

Correlation with methane flux 1 0.584 0.307 0.605 -0.12 

P-value 

 

0.000 0.001 0.000 0.214 

Number of measurements (n) 108 108 108 90 108 

Manipulated plot values       

 

Methane flux 

(mg CH4 m
-2

 h
-1

) 

Water table 

(cm) 

Soil temperature  

(⁰C) 
Active layer 

(cm) 

PAR 

(μmol/m
2
/sec) 

Correlation with methane flux 1 0.503 0.183 0.435 -0.069 

P-value 

 

0.000 0.084 0.000 0.519 

Number of measurements (n) 108 108 90 90 90 
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Higher emissions of CH4 were found to correspond with thicker active layer and the 

majority of the manipulated plots had thicker active layer (Figure 10). Figure 10 shows 

the average values of CH4 against the measured active layer for every plot with data. 

 

 

Figure 10: Emissions of CH4 versus the thickness of the active layer. Blue dots are the control plots and red 

dots are the manipulated plots. 

 

With the photographs of every subplot, a rough vegetation inventory to document 

whether a given plot contained vascular plant (mostly Eriophorum) or not. Figure 11 and 

12 show how the inventory was made. Within the manipulated subplots 23 contained 

Eriophorum and 13 did not. Within the control subplots 17 contained  Eriophorum 

species and 19 did not.  
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Figure 11: A few examples of how a subplot could look like when Eriophorum was occurring. From the 

left: Subplot 9:2, 11:1 and 2:2.  

 

Figure 12: A few examples of how a subplot could look when Eriophorum was not occurring. From the 

left: Subplot 3:2, 2:1 and 5:2.    

 

There is a greater difference in CH4 emissions when comparing subplots with and 

without Eriophorum, than between manipulated and control plots (Figure 13). Figure 13 

shows the total average of CH4 emissions for all the subplots. The subplots where 

Eriophorum is occurring had an average flux of 0.70 mg CH4 m
-2

 h
-1 

and the subplots 

without Eriophorum had an average flux of  

 0.02 mg CH4 m
-2

 h
-1

.  
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Figure 13: The total average of CH4 emissions for all the subplots with and without Eriophorum occurring. 

 

There is a significant difference (t-test, p<0.05)  in emissions between the two categories, 

and the emissions for the subplots with Eriophorum occurring are increasing for every 

round. For the subplots without Eriophorum occurring the emissions are very small and 

decreasing from round 1 to 3 (see Figure 14). The values for plots with Eriophorum from 

round 1, 2 and 3 were 0.58, 0.60 and 0.93 mg CH4 m
-2

 h
-1 

and for plots without 

Eriophorum 

 0.03,  0.03 and 0.02 mg CH4 m
-2

 h
-1

. In Figure 14 every red dot is an average of 40 

different measurements and every blue dot is an average of 32 different measurements. 
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Figure 14: The average CH4 emissions per round for plots with and without Eriophorum. 

 

Table 2, as well as table 1, shows that the CH4 flux had the highest correlation with water 

table and the active layer. For both with and without Eriophorum water table was the one 

with the highest correlation followed by active layer. 

 
Table 2: Paersons correlation values between methane flux and different parameters and the number of 

corresponding measurements all the subplots, separated by the occurrence of Eriophorum. Also the p-value 

is presented, and when the value is below 0.05 it means that it is statistical significant. 

With Eriophorum values       

 

Methane flux 

(mg CH4 m
-2

 h
-1

) 

Water table 

(cm) 

Soil temperature  

(⁰C) 
Active layer 

(cm) 

PAR 

(μmol/m
2
/sec) 

Correlation with methane flux 1 0.43 0.105 0.34 0.15 

P-value 

 

0.000 0.289 0.004 0.877 

Number of measurements (n) 120 120 105 87 111 

Without Eriophorum values       

 

Methane flux 

(mg CH4 m
-2

 h
-1

) 

Water table 

(cm) 

Soil temperature 

(⁰C) 
Active layer 

(cm) 

PAR 

(μmol/m
2
/sec) 

Correlation with methane flux 1 0.429 0.205 0.371 -0.25 

P-value 

 

0.000 0.048 0.001 0.021 

Number of measurements (n) 96 96 93 90 87 
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Figure 13 shows very clearly that where Eriophorum species are occurring the CH4 

emissions were a lot higher than where they were not, both in control and manipulated 

plots. The subplots with Eriophorum also had a higher water table and a thicker active 

layer as seen in Figure 15 and 16. Because the categorization with and without 

Eriophorum was made on a subplot level the two graphs that follow will not show values 

plot by plot, but instead the total average. 

The highest emissions of CH4 were from subplots with Eriophorum and Figure 15 shows 

clearly that the water table is much closer to the soil level where Eriophorum is occurring 

in comparison to where it is not.  

 

Figure 15: The average water table at subplots with and without Eriophorum. 

 

 

The highest emissions of CH4 were from subplots with Eriophorum and Figure 16 shows 

that the subplots with Eriophorum had a thicker active layer than the ones without 

Eriophorum. 
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Figure 16: The average active layer at subplots with and without Eriophorum. 

In Figure 17 every measurement of the CH4 flux is visualized against the measured water 

table. For plots with the water table far from the soil level the emissions of CH4 were low, 

but above a threshold around -10cm they increased rapidly. When the water table reaches 

over 10 cm above soil level there is a decrease which continues the higher the water table 

gets. 

 

Figure 17: Emissions of CH4 versus the water table level. 
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Discussion 

Permafrost 

The permafrost on this mire is classified as ecosystem protected (Johansson et al. 2011), 

and according to Shur and Jorgensson (2007) ecosystem protected permafrost exists 

where the mean annual air temperature is approximately 2⁰C to -2⁰C, which matches well 

with Storflaket. However, according to Sælthun and Barkved (2003), there will be a 3⁰C 

increase of the mean annual air temperature by 2050 and 4.5⁰C by 2080. In Abisko the 

mean annual air temperature has been -0.6⁰C (1913-2006), but during the last decade 

temperatures have increased. This has put the mean annual air temperature at positive 

degrees (Johansson et al. 2011;  Callaghan et al. 2010). With these predictions and 

considering today’s mean temperature, it is not likely for these permafrost 

 areas around Abisko to survive.  

 

Equipment  

Due to technical issues causing problems with the real-time display of the concentrations, 

a duration time of ten minutes was used during the measurements. If the subplot had a 

very low flux, a longer measurement time was needed to estimate the flux with a proper 

precision. Before the technical malfunction, when visual aid was lost, the longest 

duration used was 25 minutes, more than twice as long as the predetermined 10 minutes. 

Hence a few measurements may not be totally accurate. This problem, however, was 

actual for subplots with very low fluxes, and therefore the absolute error in the 

determined flux values was small and could not change the conclusion of the study.  

The active layer measurements were conducted by several different people on different 

occasions. This may have an impact on the measurement accuracy since different people 

may use different ways of measuring. Also some of them were students and may not 
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 have experience conducting these kinds of measurements. Still, the overall trend with a 

deeper active layer in the manipulated compared with the control plots shown in the data 

is considered very solid.  

Soil temperature from plot number 9 (Figure 3) and PAR values from plot number 7 

(Figure 3) are missing, probably due to faulty equipment. 

 

Methane 

To justify the measurements of the field work for this thesis, a comparison was made 

between them and the results presented in Lund et al. (2009), who also measured  CH4 at 

the Storflaket mire. Only mean values of the CH4 fluxes are provided in Lund et al. 

(2009), three in total from control plots. Moreover the values are from different seasons. 

Two of those were chosen for comparison; summer 0.30 and 

 autumn 0.45 mg CH4 m
-2

 h
-1

,
 
due to the timing the fieldwork for this thesis. It is also not 

known if the control values are from dry or wet areas of the mire. The CH4 fluxes 

originating from this thesis are mean values of the data from control plots (0.15 mg CH4 

m
-2

 h
-1

) and manipulated plots (0.66 mg CH4 m
-2

 h
-1

). Combining those two gives a mean 

value of 0.40 mg CH4 m
-2

 h
-1

. The measurements from this study are therefore within the 

span of Lund et al.'s (2009) measurements.  

Our study shows that summertime CH4 emissions are higher at locations where snow was 

accumulated in winter. In the manipulated plots it was easy to see with the naked eye 

how the snow has affected the ground. All of the manipulated plots have a large degraded 

part in the middle, an area in which the snow has been deepest. Figure 10 shows clearly 

that the active layer is thicker in the manipulated plots. However, in the control plots 

there has also been some degradation of permafrost, especially in plot number 1. This can 

perhaps be explained by the fact that the annual temperature in the area has been positive 

the last decade (seen in Figure 2). The fact that plot 1 is located close to the border of the 

mire could also be an aspect of this degradation.   

The increased active layer means that the upper part of the permafrost has thawed and the 

ice lenses within it have melted, causing a "gap" in the soil, which most of the time is 
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filled with water. This can be seen in Figure 9 where the average height of the water table 

is shown plot by plot, and again the manipulated plots have the highest water table.  

Johansson et al. (2013) show that the snow between the period of 2005 and 2013 began to 

fall around mid October and mid November and the start date is similar in all of the plots. 

However, over the years there has been a variation when the snow starts to melt, and the 

time difference of snow melt between control and manipulated plots. In 2007, 2008 and 

2011 the snow disappeared three weeks later from the manipulated plots than in the 

control plots, but in 2012 there was only three days in between. This year the snow 

disappeared from the control plots around the 10th of May and from the manipulated 

plots around 25th of May, a little more than two weeks difference. Snow depths 

measurements from Abisko research station were used as a reference for, when the snow 

disappeared from the station. They have ten different plots they measure snow depths in, 

and the DOSM is determined when there is no snow left in any of them, which was the 

27th of May. But the Swedish Metrological and Hydrological Institute (SMHI) have 

determined the DOSM in Abisko to the 18th of May. Using empirical calculations with 

the average CH4 fluxes from both control (0.15 mg CH4 m
-2

 h
-1

) and manipulated (0.66 

mg CH4 m
-2

 h
-1

) plots during the fieldwork, it will only take around 4 days until the 

manipulated plots have emitted the same quantity that the control plots have during 2 

weeks. Because of the manipulated plots emits more than four times CH4 than control, it 

is easy to assume that the accumulative emissions from the manipulated plots will be 

much higher, despite a shorter growing period and different fluxes for spring and autumn. 

Two previous studies from a nearby mire(Jackowicz-Korczyński et al. 2010;  Johansson 

et al. 2006b) have reported that there are higher emissions of CH4 from wetter parts 

which is a direct response to permafrost degradation. They both studied a mire named 

Stordalen, which is located approximately three kilometres east of the mire Storflaket.  

A statistical use of the Pearson test was conducted to quantify the correlation between all 

the variables collected at the mire. The largest correlation is between CH4 flux and water 

table and active layer as seen in table 1. It is not a surprise that the water table is an 

important driver as this has been shown repeatedly in the literature. The water table is a 

major regulator of the CH4 production (Bellisario et al. 1999;  Christensen et al. 1995;  
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Whalen 2005). However in the same studies soil temperature was shown to be another 

factor, which was not seen in this study. This is probably due to the short duration of the 

measurement campaign in the current study. 

 

Vascular plants 

Due to the predetermined grid of the subplots inside the plots, the subplots did not have 

the same conditions as the average of the whole plot. To account for this, the rough 

vegetation inventory of every subplot individually was made because the water table and 

the thickness of the active layer have a great impact on the vegetation. When the 

permafrost thaws it releases nutrients that were frozen in the soil, that is becoming 

available for plants. Theoretically the amount of released nutrients is very high because 

just below the thaw-front there are nutrients that have been leached from the active layer 

into the frozen layer at the end of the summer. When the active layer  increases due to 

global warming (or snow manipulation), those nutrients are free for the vegetation 

(Keuper et al. 2012). This could be an explanation for the quick increase of vascular 

plants biomass in areas where the permafrost is disappearing. Also when permafrost 

thaws, the area can become wetter or drier depending on how the hydrology is affected 

(Christensen 2014). On the Storflaket mire, the majority of the manipulated subplots and 

some of the control subplots became wetter.  

In the majority of the wet subplots, a vascular plant family named Eriophorum was 

identified. Every subplot that had such vascular plants was put in the category with 

Eriophorum, although in some of the subplots this was not the dominating species. 

Eriophorum species thrive in these wet habitats, especially when the permafrost  is 

disappearing (Ström et al. 2015), which is seen in Figure 15 and 16. Eriophorum species 

show a strong relation to increased CH4 emissions, which can be explained by the fact 

that Eriophorum species have a high gross primary production (GPP) (Ström et al. 2015). 

Emissions of CH4 are higher in areas with Eriophorum than without (Figure 13) at the 

Storflaket mire, but it is not clear if this is because of the higher gross primary production 

or the fact that the Eriophorum species thrives in areas where CH4 emissions already are 
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high. Eriophorum may also increase the emissions of CH4 to the atmosphere due to the 

fact that they can act as a "chimney" for CH4 and bypass the oxidation horizon, where a 

large portion of the CH4 usually is oxidized (Christensen et al. 2000;  Macdonald et al. 

1998). In wetlands, with, for example, dominating vegetation like Sphagnum, diffusion is 

the most common pathway for CH4. During diffusion a large portion of the produced 

methane is oxidized (Mastepanov et al. 2012). It is not only the Eriophorum species that 

has this "chimney" effect, but in fact most of the vascular plants. Depending on the 

species, the level of efficiency can vary (Joabsson et al. 1999).   

(Ström et al. 2005) measured the emissions of methane from peatland monoliths with 

different dominating vegetation, and one of them was Eriophorum. It was experimental 

and the monoliths were kept under constant light and temperature and a high water table 

over the duration of the experiment. They measured the average CH4 flux to 2.38 mg CH4 

m
-2

 h
-1

. The flux measurements originating from this thesis where Eriophorum was 

occurring and the water table was high the average flux was 1.41 mg CH4 m
-2

 h
-1

, which 

is not that much lower. The average flux in this study was measured during cold 

temperature, cloudy skies and small amounts of rain, not the most favourable conditions 

for emissions.  

Before the industrial revolution the atmospheric CH4 was around 715ppb, but in 2005 it 

was up in 1774ppb which is an increase of 148% and it the greatest increase of all the 

greenhouse gases (Forster et al. 2007). For comparison, CO2 only increased 35% over the 

same time period (Miao et al. 2012). The majority of the methane emissions is man-

made, but wetlands are the greatest single emission, accounting for around 20% of the 

global CH4 budget (Christensen et al. 2003b;  Jackowicz-Korczyński et al. 2010;  Miao et 

al. 2012). As seen in both Figure 9 and 17 there is an exponential increase of CH4 

emissions from when the water table is 10 cm below surface and increasing. When the 

water table is over 10 cm above ground there is a decrease of the emissions again. This is 

shown in Figure 17, and not in Figure 9. That is why Figure 17 is shown, so that will not 

be an assumption from Figure 9 that the exponential increase will continue. When the 

water table is higher than 10 cm above the soil other processes in the wetlands take over 

which favours oxidation (Mastepanov et al. 2012). This is called the water table on/off-



27 

 

switch (Christensen et al. 2003b) and during large scale variations of CH4 emissions this 

on/off-switch is very important (Mastepanov et al. 2012). 

To be able to make projections of Earth's climate changes we must learn more about the 

global budget of CH4 (Miao et al. 2012). For instance, it is not possible today to predict if 

an area is becoming wetter or drier when permafrost thaws (Christensen 2014). This is an 

important process regarding if the decomposition will produce CH4 or CO2. Also if a wet 

area where high emissions of CH4 occurs becomes wetter the emissions can decrease. 

This can work the other way around as well; a very wet area that becomes drier 

substantially increases the emissions because the water table is now inside the -10 +10 

span from the soil surface. 

 

Conclusions 

There is a substantial difference between the emissions of CH4 from the control and the 

manipulated plots with the latter showing much higher fluxes. Probably one of the main 

factors effecting the emissions is the presence of the Eriophorum species in the plots with 

artificially increased snow depth.  

 

Accumulative emissions of CH4 are also much higher for manipulated plots than the 

control plots over a growing season, despite that the season for the manipulated is shorter.  
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