
Automatic dynamic updating
of the PalCom middleware for
Internet of Things

Christian Hernvall

MASTER’S THESIS | LUND UNIVERSITY 2016

Department of Computer Science
Faculty of Engineering LTH

ISSN 1650-2884
LU-CS-EX 2016-09

Automatic dynamic updating of the
PalCom middleware for Internet of Things

(Master’s thesis)

Christian Hernvall
christian.hernvall@gmail.com

April 19, 2016

Master’s thesis work carried out at
the Department of Computer Science, Lund University.

Supervisor: Boris Magnusson, Boris.Magnusson@cs.lth.se

Examiner: Görel Hedin, Gorel.Hedin@cs.lth.se

mailto:ada10ch1@student.lu.se
mailto:Boris.Magnusson@cs.lth.se
mailto:Gorel.Hedin@cs.lth.se

Abstract

The number of devices connected to the Internet is rapidly increasing. Es-
pecially the number of Internet of Things devices. These devices contain
software which, like any other software, needs to be updated. With the great
amount of devices to update, this calls for a manageable updating solution
which does not depend on user interaction. In this thesis we present a solution
to dynamically update an Internet of Things system, by automatically updat-
ing its devices. Our solution is based on and implemented for the Internet of
Things system PalCom.

Keywords: internet of things, palcom, automatic software updating, dynamic soft-
ware updating, software update management

2

Acknowledgements

I would like to acknowledge Björn, Boris, Mattias and Mia for their valuable input when
brainstorming solutions. I would also like to acknowledge Mattias, Mia and Gunnar for
their help with PalCom related tips and troubleshooting.

Finally I would like to thank all the people around me who have been forced to listen to me
talking about this interesting subject too many times, and often contributed as well. Most
of all Carolina.

3

4

Contents

1 Introduction 7

2 Motivating example 11

3 Approach 15
3.1 Method . 15
3.2 Technical background . 15

3.2.1 Dynamic software updating . 15
3.2.2 Automatic software updating . 16
3.2.3 PalCom . 16

4 Proposed solution 21
4.1 Selecting a solution . 21

4.1.1 Analyzing our system, environment and requirements 21
4.1.2 Existing solutions and related work 24
4.1.3 Conclusions based on requirements 28

4.2 Proposed solution . 29
4.2.1 Architecture . 29
4.2.2 Updating process . 33
4.2.3 Different updating scenarios . 36
4.2.4 Aborting update and performing rollback 36
4.2.5 Crash and failure handling . 37
4.2.6 Configuration and file structure 38
4.2.7 Requirement fulfillment retrospective 40

4.3 Future work . 41

5 Evaluation 43
5.1 Experimental Setup . 43
5.2 Results . 44
5.3 Discussion . 45

5

CONTENTS

5.3.1 Problem statement . 45
5.3.2 Usefulness of our solution . 45
5.3.3 Our solution and possible scenarios 46
5.3.4 Benchmark results . 47
5.3.5 Implementation improvements and features 47

6 Conclusions 49

Bibliography 51

Appendix A Manual 57
A.1 Installation guide . 57

A.1.1 PalComStarter . 57
A.1.2 Monitored devices . 59
A.1.3 UpdateServer . 59

A.2 Usage examples . 60
A.2.1 How to add and broadcast an update for a single device type . . . 60
A.2.2 How to add and broadcast updates for multiple device types . . . 60
A.2.3 How to update the Update Protocol 61

Appendix B Update Protocol 63

Appendix C PalCom Service Specifications 65
C.1 UpdaterService . 65

C.1.1 General commands . 65
C.1.2 Monitor specific commands . 66

C.2 UpdateDistributionService . 67

Appendix D Source code 69
D.1 se.lth.cs.palcom.palcomstarter.* . 69

D.1.1 PalComStarter.java . 69
D.2 se.lth.cs.palcom.updaterservice.* . 69

D.2.1 UpdaterService.java . 69
D.2.2 MonitoredDevice.java . 70
D.2.3 SocketSender.java . 70
D.2.4 SocketListenerThread.java . 70

D.3 se.lth.cs.palcom.updatedistributionservice.* 71
D.3.1 UpdateDistributionService.java 71

Appendix E Updating sequence diagram 73

6

Chapter 1

Introduction

Internet of Things, often referred to by its acronym IoT, is a term and vision with no sin-
gle definition, but generally describes how ’things’ all around us gets connected. These
’things’ are physical objects which by themselves or with the help of another device, are
able to generate, consume or exchange data with each other or other devices. All of this
happens without the need for human intervention. A key point in the Internet of Things is
that these ’things’ are not necessarily ordinary computers but can be any everyday object
such as a freezer, a cow or a pair of shoes. Any data-carrying, data-capturing, sensing,
actuating or processing device can connect itself or a ’thing’. The device can be connected
through any type of communication medium, for example Bluetooth, WiFi or both. The
network to which these ’things’ are connected can look very different. Some ’things’ are
indeed directly connected to the Internet, some only communicate inside a Local Area
Network, some only communicate with a single device and so on [30]. Some examples
of Internet of Things devices include embedded systems in our home devices, e.g. mon-
itoring the freezer or switching lights in different rooms, the so called smart home [26].
Another example is smart bins and smart traffic lights in a city reacting to their environment
and sending useful data about when to empty the trash, or if a light bulb needs changing
[4].

The number of connected devices in the world has been predicted to increase at a high
rate. Ericsson predicted that there will be 28 billion connected devices by year 2021, of
which 15.3 billion are Machine-to-Machine and consumer electronics, in their mobility
report from november 2015 [7]. This is a big increase from today’s 15 billion connected
devices, of which 4.6 billion are Machine-to-Machine and consumer electronics. Cisco
made a prediction as well in 2011, saying that there will be 50 billion connected devices
by 2020 [9], and Gartner stated in a 2015 press release that they estimated 6.4 billion con-
nected Internet of Things ’things’ in use by 2016, growing to 21 billion by 2020 [28]. The

7

1. Introduction

exact numbers differ depending on source, but they all agree that the number of connected
devices, most specifically Internet of Things devices, is rapidly increasing.

Internet of Things devices do not necessarily have a traditional graphical user interface.
They may be headless systems, which operates without a monitor, keyboard, buttons or
other peripheral devices. It can also be the case that the user is not even aware that the
system exists, as long as it is working. No matter which category the device falls into,
it will need to be updated in order to fix bugs or to release new features. But with the
obscurity of interactionwith a general device coupledwith the large and increasing number
of connected ’things’, we see that the traditional way of updating devices, which more or
less requires user interaction and intervention, is not a manageable solution for Internet of
Things systems in the long run.

We need a way to update Internet of Things systems that is automatic and dynamic. With
automatic, we mean that the updating process takes place without requiring user inter-
action. With dynamic, we mean that the updating process does not disturb or break the
services which the system provides or interacts with. This master’s thesis examine ways to
achieve this, proposes a solution and implements it for PalCom [10]; an Internet of Things
system developed at the Dept. of Computer Science at Lund University.

In this master’s thesis we examine different ways of achieving automatic dynamic software
updating of Internet of Things systems, but we are not looking for a general solution to
the problem which is applicable to all possible Internet of Things systems and contexts.
Instead, we study the specific case of updating PalCom devices in a PalCom system. If
we break down the ’Internet of Things’; PalCom devices resembles the ’things’ and the
PalCom system, the network and distributed system which these devices are parts of, re-
sembles the ’internet’.

PalCom devices are software, which means that there can be several PalCom devices run-
ning on the same hardware unit. Every type of PalCom device is built upon a core, the
Palcom kernel, working as an execution environment to which it is possible to add or
remove parts, called services and assemblies, dynamically in order to extend the device
with features and functionality. The versioning and updating of services and assemblies
are completely separated from the versioning and updating of the devices they are run-
ning on. This master’s thesis does not study the problem of updating the extension parts,
services and assemblies, since that subject has already been studied and implemented in
PalCom in a previous master’s thesis [21]. Instead, we study the problem of updating the
PalCom device kernel. The reasons to update the kernel include fixing bugs and adding
new features, for example adding support for Bluetooth as another possible PalCom com-
munication medium. We also study the problem of updating these devices given the fact
that they are part of a distributed system of other devices, their PalCom system.

We can break down this problem statement into the following questions that this thesis
answers:

• What are the important requirements when performing automatic dynamic updating
of the PalCom middleware?

• How can we perform automatic dynamic updating of the PalCom middleware?

8

To answer these questions, we analyze our Internet of Things system to update, PalCom, as
well as other related systems and techniques. The related work we study includes dynamic
updating solutions such as Kitsune [14], Upstart [1] and OSGi [2], as well as automatic
updating solutions such as Android for Work [12] and MobiCare [6]. From our analysis
we extract important requirements, from which we design and propose a solution that
dynamically and automatically updates the Internet of Things middleware PalCom. As
a proof-of-concept, we built a functional implementation of our proposed solution. The
implementation is tested to benchmark our solution in regards to device downtime and
quickness of the updating process.

9

1. Introduction

10

Chapter 2

Motivating example

To get a clear picture of what type of system we are working with and why we need a
solution, we dedicate this chapter to illustrate a concrete real world scenario where this
master’s thesis is applicable.

In a health care project, Android smartpads with PalCom is used by ambulance person-
nel in order to collect values and establish communication to describe the patient and its
symptoms to doctors before arriving to the hospital (see figure 2.1). This way, it may be
possible to prepare for faster and better treatment of the patient. At the time of writing,
there are about 60 smartpads distributed to ambulance personnel.

Figure 2.1: The ambulance scenario. Ambulance personnel use
smartpads with PalCom to communicate with doctors at the hos-
pital.

11

2. Motivating example

In this scenario, we take a closer look at the communication between hospital and am-
bulance. We refer to figure 2.2. The ambulance personnel use a smartpad, which has a
PalCom device installed and running. On the PalCom device, there is a service running
called AmbulanceService, which gives the ambulance personnel a GUI to enter patient
information, initiate audio communication, etc. This service is also responsible for com-
municating this informationwith theHospitalServicewhich is running on a PalComdevice
on a doctor’s desktop at the hospital. HospitalService gives functionality similar to Ambu-
lanceService. In reality, the functionality of AmbulanceService and HospitalService may
be spread out on many services. For example one service handling a GUI, one service
handling the audio communication, and so on. For the sake of simplicity we only have
one service handling all functionality on each PalCom device in this example.

Figure 2.2: Architecture diagram describing communication be-
tween ambulance personnel and hospital personnel through Pal-
Com devices and services.

Say that we want to bring more functionality to this scenario. The ambulance person-
nel like the way they can send patient values, chat via text and make audio calls to each
other, but would also like to be able to communicate via video calls in order to describe
the situation better. The ambulance personnel would also like to use a PalCom service on
their new health watches, that they attach on the patients wrist, so the watches can col-
lect health information and send it live to the hospital. The problem is that the watches
only communicate via Bluetooth, and Bluetooth is not supported by PalCom devices as
a communication medium. It is the PalCom device that makes it possible for its services
to communicate with services on other PalCom devices. There are also some bug fixes
to HospitalService and to PalCom device which we want to ship with the same update.
Summarized, we want to do the following:

• Update AmbulanceService to support video calls.

• Update HospitalService to support video calls and fix some bugs.

• Update PalCom device to support Bluetooth as a communication medium and fix
some bugs.

• Write a new service, let us call it HealthWatchService, which we install on the Pal-
Com devices on the health watches.

We want to end up with the system in figure 2.3.

12

Figure 2.3: Architecture diagram describing communication be-
tween ambulance personnel and hospital personnel through Pal-
Com devices and services in the updated version.

Now that we have our new design ready it is time to perform the updates. Thanks to a
previous master’s thesis [21], it is already possible to automatically update services, so
we use that solution to update AmbulanceService and HospitalService. We also write our
new service HealthWatchService which also uses ideas in [21] to deploy it on our new
health watches. But when it comes to the PalCom devices, there is no way to update them
except by manually shutting down the device, replacing the executable with a new version
executable, and restarting the device. This has to be done for each PalCom device in the
system. It is this problem that our work is addressing: automatically updating PalCom
devices in a PalCom system.

13

2. Motivating example

14

Chapter 3

Approach

3.1 Method
The method of this thesis consisted of literature studies of scientific papers and other re-
lated projects to find out if existing solutions or methods could be used as a solution or as
part of a solution to the problem statement. The PalCom system was also studied, with
literature studies of scientific papers, and through informal conversations with PalCom
developers at the Department of Computer Science at Lund University.

As a testcase during the thesis work, a proof-of-concept for the proposed solution, as well
as a way to get to know the PalCom system in more detail, we worked on a couple of
implementations: two pilot projects with only simple functionality and a final implemen-
tation of the proposed solution. These implementations were developed in an iterative
manner, making it possible to adjust to new requirements and needs during the life of the
thesis.

3.2 Technical background

3.2.1 Dynamic software updating

Dynamic software updating, or briefly dynamic updating, is the process of updating a
running system without interrupting its execution [16] or without interrupting its service
[27]. This is in contrast to traditional updating of programs where the whole program is
restarted in order to load the new version.

15

3. Approach

3.2.2 Automatic software updating

In this thesis, automatic software updating, or briefly automatic updating, refer to the pro-
cess of fully automatic software updating, which means that everything in the updating
process happens automatically, with no human interaction from the point in time that an
update is made available.

Automatic software updating has no necessary connection to dynamic software updating.
It is possible to have an automatic dynamic software updating process as well as a non- or
semi-automatic dynamic software updating process.

3.2.3 PalCom

PalCom is an Internet of Things middleware, currently developed at the Department of
Computer Science at Lund University. The PalCom project originates from the EU project
Palpable Computing [8]. We begin by explaining some terminology:

Unit. A unit refers to a machine running one or more PalCom devices. The unit can for
example be a laptop, a smartphone, a server or an embedded computer in a lamp, cow
or any other thing. We use this term in order to avoid confusion between physical
and virtual devices. PalCom devices are software, so they are always virtual devices.
PalCom devices run on physical devices, which we call units.

Now that we have the terminology in place, we explain some general concepts which Pal-
Com is built upon [10]:

Devices. A device represents a running instance of the PalCom kernel. There are many
different device types available. All of them uses the same PalCom kernel, but can
otherwise differ from one another. Every device is identified by a unique ID, called
device ID, which the device broadcasts to other devices on the network. Normally,
there is one PalCom device running per unit, but there could be any number of de-
vices running on the same unit. Running many devices on the same unit is practical
for testing purposes and/or when there is a need for different device types on the
same unit. Devices offer no functionality. This is offered by services and assem-
blies, which are described below. A device provides an execution environment for
services and assemblies, the ability for them to announce themselves on the network
and the ability for them to discover other services and assemblies present on other
devices. The protocols used for this are specified in the PalCom kernel.

Services. A service offers functionality. The functionality can originate from the unit
which the service’s device is running on, such as a thermometer or camera, or
could involve only some processing or communication of data. Services are self-
describing which means that there is no need to know beforehand how to commu-
nicate with and how to use a service, because the service itself will tell you. This
is achieved through the use of service descriptions, which lists what commands the
service can send and receive. It is the service description that is announced on the
network by the service’s device, in order to be discovered by other devices. Any

16

3.2 Technical background

number of services can be added to a device in a modular way. For example, a ser-
vice on a device running on a unit with a camera could announce commands to take
a picture or trigger the flash.

Assemblies. Services have no idea about other devices or services. For this there are as-
semblies that are used to connect, combine and create logic between services. An
assembly is essentially a script defining configuration and coordination. Configura-
tion describes what services on which devices to connect to. Coordination describes
how incoming commands should be handled and how they trigger outgoing com-
mands being sent to other devices. Assemblies can be added to a device in the same
way as services. An example use of an assembly could be to link a motion detector
to a door opener. A service connected to a motion detector announce commands
when it detects motion. Another service connected to a door opener opens the door
when it receives the "open door" command. To create our solution we make the as-
sembly listen for commands from the motion detector. When the assembly receives
the command, it sends the "open door" command to the door opener. For another
good example of using PalCom devices with services and assemblies, with an illus-
trative walkthrough, see the article "Some like it hot: automating an electric kettle
using PalCom" [18].

When practically using PalCom in an environment, a collection of useful tools utilizing
the PalCom kernel has been developed to aid both during development and production.
Some of these tools include:

Browser. The Browser is an interactive GUI-tool allowing users to explore devices, ser-
vices and connections between services on the network. It is possible to inter-
act directly with discovered services via dynamically created user interfaces in the
Browser. An assembly editor and runner is included as well.

TheThing. TheThing is a generic application which announces itself as a PalCom device.
One could argue that TheThing is the standard PalCom device type. Services and
assemblies can be dynamically installed, started and removed, using the optional
GUI or via a service running on TheThing. TheThing can execute on a desktop, an
embedded system, on an Android device (using the fork TheAndroidThing), or any
other system with a Java Virtual Machine (or to which PalCom has been ported to).

The reference implementation of the PalCommiddleware is in the Java language, but there
is also a minimal implementation in the C language [22]. PalCom is not restricted to Java
or C, but can be implemented in other languages as well. In order to completely under-
stand the update process, we also need to know how PalCom handles the configuration of
devices, services and assemblies:

PalCom File System. More commonly referred to as PalCom FS, this is where all con-
figuration files are stored. It is essentially a folder, called PalcomFilesystem,
residing somewhere on the system (usually and by default in the user’s home folder).
The main folder is divided into the devices folder which contains device specific
configurations, and the global folder which contains information and configura-
tions which are not specifically tied to a single device (see figure 3.1).

In the global folder there is a folder for each device type on the unit. Inside a

17

3. Approach

device type folder there are files with device ID:s as names. Every file represents
an available device configuration for that device type. The file contains a device ID
and a device instance name. The device ID is used to uniquely identify the device
and the instance name is a human-identifiable name.

In the devices folder there are configurations divided into a folder for each de-
vice on the unit, with the device ID as name. Inside a device specific folder there
is a .properties file, a services folder and an assemblies folder. The
.properties-file contains device specific properties and information about which
services and assemblies to load. The services folder contains services and the
assemblies folder contains assemblies.

When a device starts, it traverses the global folder, into the folder representing its
device type. In the device type folder, the device can choose between different device
configurations, which appears as files with device ID:s as names. When a device ID
is chosen, the devices folder is traversed, into the folder representing the chosen
device ID. In the device ID folder, the device reads the device properties from the
.properties file. The services and assemblies specified in the properties will
be loaded from the services and assemblies folders.

Figure 3.1: A graph showing the general structure of the PalCom
filesystem. The [deviceID].properties file is the device specific
main configuration file. The assemblies folder contains assemblies
and the services folder contains services.

18

3.2 Technical background

For a deeper introduction to PalCom, see the Introduction in David Svensson Fors’ PhD
thesis "Assemblies of Pervasive Services"[10], or for a more up-to-date overview, see the
PalCom part of the Technical background in Mia Månsson’s master’s thesis "Dynamic
installation and automatic update of Bluetooth low energy devices in Palcom"[21].

19

3. Approach

20

Chapter 4

Proposed solution

4.1 Selecting a solution

We will not study nor propose a solution that is best for Internet of Things systems in
general. This is beyond this thesis’s scope, and we believe that the best solution is largely
dependent on the specific Internet of Things middleware used, because depending on the
application and requirements of the system, the design of the updating process will be
different. For example, an Internet of Things system which require its nodes to be online
all the time needs a different updating solution than a system without that requirement. In
this thesis we focus on the specific case of using PalCom.

4.1.1 Analyzing our system, environment and require-
ments

In this section we analyze our system and its environment, in order to know what is impor-
tant and what is less important when searching for or designing an updating solution.

We are to update PalCom devices, running in an Internet of Things environment, which
means:

• Different types of hardware

• Sometimes limited processing power

• Sometimes limited bandwidth and connectivity

21

4. Proposed solution

When updating Internet of Things devices, we must obviously think about the updating of
the individual devices, but we must also analyze how the updating affects the whole Inter-
net of Things system of connected devices. There may be dependencies between devices,
real-time requirements, uptime requirements, availability requirements etc. both for indi-
vidual devices and/or for the whole system of connected devices. We need to understand
the system as a whole as well as its parts in order to find a suitable updating solution. We
can compare the updating of different parts of PalCom with the updating of the following
systems:

• Traditional program. When updating, the program requires a restart in order to
load the new version of code.

• Real-time system. Because of the real-time constraint on these systems we need
specially tailored update solutions in order to update the systems while they are
running, so called dynamic software updating. This generally includes some kind
of hot-swapping of code, migrating states or running redundant hardware in order
to always have a system up and running.

• Distributed system. A distributed system consists of multiple nodes, which indi-
vidually can lose contact or go down. Despite this fact, the distributed system can
be constructed in a robust way, so that the system itself is not affected by individual
nodes being restarted or shut down. The Internet is a perfect example of such a ro-
bust distributed system. If one node go down, the Internet does not go down. If one
path for delivering messages disappears, another one is used instead.

A PalCom system is a distributed system, where PalCom devices are its nodes. The
PalCom system is designed to be robust despite devices going down, losing contact, being
restarted, etc. All PalCom devices are aware that at any time, they can lose connectivity or
contact with other devices. This means that when updating a PalCom device, we can treat
it like a traditional program and simply restart it to load the new version. But when we
consider updating of a PalCom system we treat it like a real-time system with a soft real-
time constraint. It is not possible to stop the whole PalCom system at once and restart it
in order to load a new version. We need to dynamically update the system by individually
updating its parts, the nodes, while the system as a whole is still running.

When we talk about updating the PalCom system, we refer to updates that affects all Pal-
Com devices in the system. Technically these updates includes all updates that changes
the PalCom kernel, such as changing the API for services or supporting a new communi-
cations medium. A PalCom device specific update on the other hand, can for example be
a GUI update for the specific device type TheThing. We divide PalCom system updates
into two categories: protocol-breaking updates and non-protocol-breaking updates. A
protocol-breaking update makes changes to the PalCom communication protocols, with
the consequence that a device which have performed a protocol-changing update can not
communicate with a device which have not performed the same protocol-changing update.
If we have a PalCom system where some devices have performed a protocol-breaking up-
date and some have not, we call it a mixed protocol system. Our updating solution must
support performing protocol-breaking updates, but it is not the updating solution’s job to
solve the problem ofmixed protocol systems. We get back to how to handle mixed protocol
systems in the future work section 4.3.

22

4.1 Selecting a solution

In conclusion, we have two levels to take care of and treat differently in the updating pro-
cess: the PalCom system and the PalCom devices. We see to dynamic software updating
techniques in order to update the distributed PalCom system. For its parts, the PalCom
devices, we treat them as traditional programs that can be restarted at any time.

When analyzing the PalCom project and how PalCom systems work, we can extract some
important requirements and scenarios specific to PalCom that the solution must be able to
handle, which answers the first of our questions of our problem statement in the introduc-
tion, chapter 1:

What are the important requirements when performing automatic dynamic updating of the
PalCom middleware?

(A) Pure Open Source PalCom code base. The PalCom project does not want to in-
clude proprietary code, or to introduce significant dependencies on other code bases
or projects. If a proprietary updating solution is used, it is not possible for PalCom
developers to make changes, and if the makers of the updating solution makes some
breaking changes to the updating solution it directly affects PalCom.

(B) Unreliable connections. Devices can go offline without warning, for example be-
cause of entering flight mode, shutting down, or simply crashing.

(C) Unreliable connectivity. Connectivity can be lost at any time, for example when
entering a connectionless area.

(D) Low bandwidth. Depending on underlying connection type, for example LE Blue-
tooth or GPRS, the bandwidth can be very low.

(E) Heterogenous PalCom implementations. The updating process must not be plat-
form or language dependent. It does not matter if the PalCom device is implemented
in C or Java or any other language for the updating process to work.

(F) Security. The PalCom system can be handling sensitive information, such as per-
sonal data in health care. Therefore the updating solution must be designed with
security in mind.

(G) No user interaction. From the point where an update is made available, the updat-
ing process must be fully automatic, requiring no user or admin interaction, unless
a major error occurs. Due to the big number of devices and the obscurity of interac-
tion with a general device, as explained in the introductory chapter (1), the solution
becomes unmanageable if this requirement is not met.

(H) Unexpected crashes. Power failure, running out of memory, running out of disk
space, and so on, must be handled without the PalCom system getting corrupt. From
anywhere in the updating process, the system should always be able to return to a
functioning state. This is important because PalCom devices may run on units which
are very hard to manually recover.

(I) Protocol breaking updates. The updating solution must be able to perform updates
that change communication protocols.

23

4. Proposed solution

On the other hand, we can also extract some things which does not matter so much in
PalCom:

(I) Processing power. Although the processing power can be low, the updating process
does not need to be extremely lightweight in terms of processing power. It does not
matter if the updating process is taking a long time to finish.

(II) Uptime/Availability. It is acceptable for the device that is being updated to go of-
fline, be restarted or stopped for a limited time period. That devices can go down
without warning, for example because of loss of connectivity or if they crash, is
assumed and handled by all PalCom devices.

4.1.2 Existing solutions and related work

In order to arrive at the best possible solution for PalCom, we need to study existing so-
lutions and related work. There could very well already be a solution out there that fits
perfectly with what we want. And of course, on the contrary, it could be the case that no
existing solution is matching what we seek due to some of the requirements we arrived
at earlier. In the latter case we can at least hope to learn from the solution and extract
something valuable in order to design a new solution for PalCom.

Even though a lot of solutions are language dependent, for example only Java or C(++),
thus breaking requirement (E), they can still include useful and generally applicable con-
cepts. If not, they may still be of interest when implementing the updating solution for
PalCom in a specific language.

It is important that we remember the difference between dynamic software updating and
automatic software updating and their respective application. We will first study dynamic
updating solutions, followed by automatic updating solutions and finally solutions which
can be put in both categories.

Dynamic updating

In this part we study existing solutions and related work focusing on, or closely linked to,
dynamic software updating; the process of updating a running system without interrupting
its execution or service. When looking at existing solutions, we must remember that the
solution has to be applicable to a PalCom system in order to be relevant. It is not just
PalCom devices that has to be updated individually, but a system of devices.

There are a lot of solutions which have a very low level approach, trying to solve the
updating problem for programs and systems which are not allowed to ever go offline or
have their execution suspended at all. However, because of our loosened requirement
on availability and uptime (II), we do not need to take that approach. These solutions,
even though they may boost performance, impose unnecessary complexity. All of them
also fail to comply with requirements (A), Pure Open Source PalCom code base, and (E),
Heterogenous PalCom implementations. Some of them include:

24

4.1 Selecting a solution

1. A Technique for Dynamic Updating of Java Software, 2012 [23]. A solution for
updating java code dynamically by using class wrappers. When a class is updated,
deleted or modified, its class wrapper takes care of the administrative work.

2. JavaDaptor, 2012 [25]. JavaDaptor is a Java specific solution using the JVM Tool
Interface to replace old code with new code and remap all references to the new
code.

3. Partitioning of Java Applications to Support Dynamic Updates, 2014 [5]. As
the title explains, this work proposes a way to partition Java applications in order to
support dynamic updating.

4. Upstare, Immediate Multi-Threaded Dynamic Software Updates Using Stack
Reconstruction, 2009 [19]. Updates programs by using stack reconstruction. Very
low level updating.

5. Ksplice, 2009 [3]. Ksplice is a tool used to make dynamic updates for OS kernels.
It analyzes the differences between the kernel to be updated and a traditional source
code patch by comparing the compiled code, rather than source code. For example
used to update the kernel in Red Hat Linux.

Some solutions use a state-transfer technique. Although the actual process can look very
different, it typically works by starting an instance of the new version of the system, trans-
ferring all state information from the old version instance of the system to the new version
instance, and finally putting the new version instance in charge. This idea could very nat-
urally be used for PalCom systems because of the fact that all necessary states and settings
are stored in the PalCom filesystem, and due to the loosened requirement on uptime (II),
it is possible to perform a simple stop-and-update process for the devices. In the most
simple scenario we could stop the old version devices (one-by-one or maybe some at a
time), copy and/or transform the PalCom filesystem (the states) to the new version, and
finally start the new version of devices. Some solutions that incorporates the state-transfer
technique are listed below (6-8). Unfortunately also these solutions fall short on the Pure
Open Source PalCom code base requirement (A) and the Heterogenous PalCom imple-
mentations requirement (E).

6. Ekiden, 2011 [15]. Ekiden updates whole programs at once by state-transfer. It
forks the new version of the program, serializes the old program state and transfers
it to new version. A programmer must manually mark the states that should be trans-
ferred and mark update points in the code, where an update can occur. C language
specific.

7. Kitsune, 2012 [14]. Can be seen as a later version of Ekiden. As opposed to Ekiden,
Kitsune uses dynamic linking to perform state-transfer. Also C language specific.

8. Rubah, 2013 [24]. A state-transfer solution, similar to Kitsune, but for the Java
language.

A slightly different way to approach the problem in the same spirit as above solutions is
to first update the code in a stop-and-update way, and then when the new version of code
is running, perform a lazy, on-demand, state-transfer, like the following solution:

25

4. Proposed solution

9. Javalus, 2014 [13]. Javalus works by suspending a program, updating the code and
then continuing the execution. All states and objects are then updated on-demand.
The solution is specific to Java and require a Java HotSpot VM.

Because of the fact that there exists a lot of dynamic software updating solutions, a few
surveys have been made on the subject providing both general and individual analysis of
existing solutions. They also introduce interesting concepts, issues and techniques such as
quiescence, state-transfer, transformation functions and rollbacks.

10. ASurvey aboutDynamic SoftwareUpdating, 2012 [20]. The paper includes some
interesting solutions, such as 3.6 and 3.10, which essentially works by starting a new
version process, transferring the state from the old version to new version and finally
transferring control to the new version, very much like the state-transfer solutions
mentioned earlier (6, 7 and 8).

11. A survey of dynamic software updating, 2013 [27]. This survey has a category for
solutions focusing on distributed systems, which matches our system. The following
two solutions are particularly interesting:

• DRACO [29] is a component framework, in many ways similar to PalCom,
which supports updates in a state-transfer way. One key difference is that it is
acceptable in PalCom to restart a device at any time in order to be updated due
to the loosened requirement on uptime (II), whereas in DRACO the compo-
nents must reach a special so called tranquility state before updating, in order
to not break when performing the update.

• Upstart [1] is an automatic update system for distributed systems. The updat-
ing process updates the distributed system’s nodes by state-transfer. The idea
contains an Upgrade Layer which acts as a communication proxy between an
object (similar to PalCom devices) and other objects. The Upgrade Layer han-
dles cross-version calls by using transformation functions. Unfortunately, the
work only supports objects calling each others methods, and not general mes-
sage passing, which is marked as future work. PalCom is built on message
passing, which means that this work is not applicable.

Automatic updating

Many applications and operating systems offer some kind of automatic updating function.
We are interested in the architectural design of such solutions, if it can be used directly for
the PalCom system, or if it is possible to reuse ideas for a new solution.

Traditional operating systems generally include some kind of automatic updating solution.
Examples include Microsoft Windows, Apple OS and many different Linux/Unix operat-
ing systems. They usually utilize the client-server model which is a usablemodel regarding
our requirements. Unfortunately the solutions are bound to their operating system, thus
breaking requirements (A) and (E).

26

4.1 Selecting a solution

For mobile devices (and lately also in traditional operating systems to some extent) we
have seen automatic updating solutions that involves a centralized marketplace for all ap-
plications.

12. Play Store / App Store. Devices running the Android or Apple iOS operating sys-
tem generally include a marketplace application, Play Store for Android and App
Store for Apple iOS, where it is possible to browse and install applications to the
device. These marketplace applications also handles updates. Unfortunately they
sometimes require user intervention and are only available for their respective op-
erating system, breaking our requirements (A), (E) and (G). Despite this fact, Play
Store and App Store serve as possible models for automatic updates, where in the
PalCom system we could have a PalCom update manager device act as a market-
place, and see the other PalCom devices which we want to update as the applications
in the marketplace.

13. Android forWork [12]. As an extension to the Play Store, Google has also released
a service called Android for Work, which makes it possible to remotely install, re-
move and update device applications. These actions can also be performed automat-
ically, and are controlled from an administrative "enterprise mobility management"
solution, of which there are many to choose from. Unfortunately this solution falls
short on some of the same requirement as Play Store, Pure Open Source PalCom
code base (A) and Heterogenous PalCom implementations (E).

Both dynamic and automatic updating

Some updating solutions falls under both the dynamic and automatic software updating
categories:

14. OSGi [2] and Apache ACE [11]. The OSGi specification describes a system used
to modularize Java programs, packaging bits of java code into components the same
way PalCom packages functionality into services. OSGi has implementations such
as Apache Felix and Equinox. It is possible to start, stop and update these compo-
nents. There is no automatic updating solution for the OSGi system itself, although
this can be solved by using the software distribution framework Apache ACE, which
can update itself as well. Unfortunately the use of this solution for PalCom would
introduce big dependencies on other code bases, thus breaking requirement (A), and
it only works for Java implementations, thus breaking requirement (E).

15. MobiCare, 2006 [6]. MobiCare is a service architecture focusing on health related
services and supports dynamic updates. We can not use the solution as is, because
it is too specific to health care applications. It is also not possible because of re-
quirement (A), Pure Open Source PalCom code base. But there are some interest-
ing architectural designs that we can reuse. The MobiCare design is client-server
based where on the server side there are among others services for device activa-
tion, device configuration and remote dynamic device code upgrades. This kind of
administrative setup is usable in the design of a new updating solution.

27

4. Proposed solution

4.1.3 Conclusions based on requirements
When we study the existing solutions with the PalCom requirements (4.1.1) in mind it
becomes clear that, to the best of our knowledge, there is no existing solution that can be
directly applied to PalCom. This is largely due to requirements (A), Pure Open Source
PalCom code base, and (E), Heterogenous PalCom implementations.

Instead of applying an existing solution, we will try to reuse concepts and ideas from these
existing solutions in order to design a solution specific to PalCom, which can handle the
requirements stated in section 4.1.1.

Because of the loosened requirement on uptime (II), it is possible to use a simpler stop-
and-update process (similar to Ekiden (6), Kitsune (7) and Rubah (8)), instead of altering
the device kernel during runtime. Also, due to the fact that all configuration and neces-
sary states are stored in the PalCom filesystem, this state-transfer approach is natural with
PalCom: stop the old version, transfer the relevant content from the PalCom filesystem,
which is practically just a recursive copy, and start the new version.

Regarding the automatic updating solution, the client-server model is a simple and broadly
used model which is also suitable for our problem. If the server runs PalCom as well, many
requirements can be checked off for the server part by simply reusing existing features of
the PalCom kernel. By using PalCom communication we support heterogenous PalCom
implementations, requirement (E), from the server’s point of view. The built-in detection
of disappearing connections and connectivity will greatly help in dealing with requirement
(B), unreliable connections, and (C), unreliable connectivity. Also, the use of PalCom
tunnels and secure connections solves the security requirement (F). A PalCom tunnel is
an SSH tunnel which is implemented into the PalCom kernel, which makes it available for
all PalCom devices to use for communication.

28

4.2 Proposed solution

4.2 Proposed solution

In this section, we propose our solution to the problem of automatic dynamic updating of
the PalCom middleware.

4.2.1 Architecture

Units

A unit refers to a machine running one or more PalCom devices. In the architecture (figure
4.1) we distinguish between client units and server units. It is perfectly possible for a unit
to be both a client unit and a server unit at the same time.

Figure 4.1: Architecture diagram of our proposed updating so-
lution for PalCom. Dotted boxes represent units. Colored boxes
inside represent PalCom devices containing PalCom services in
rounded boxes. The services in black rounded boxes are the new
parts in our proposed solution. Arrows with dashed lines represent
PalCom communication and arrows with solid lines represent Up-
date Protocol commands.

Client Unit

On the client unit we have a PalComStarter: a lightweight PalCom device which is run-
ning an instance of the PalCom service UpdaterService. PalComStarter has three areas of
responsibility:

29

4. Proposed solution

• Starter: to initially start up all other devices on the local client unit. PalComStarter
itself is started by the client unit’s operating system.

• Monitor: to act as a monitor for all devices running on the local client unit. If Pal-
ComStarter discovers any non-functioning device, that device is restarted by Pal-
ComStarter. For example if a device has a memory-leak or a fatal bug leading to a
crash.

• Updater: to update all devices running on the local client unit.

PalComStarter’s responsibilities is more thoroughly described later in its own section (Pal-
ComStarter). Besides PalComStarter, there is also one or more other PalCom devices (for
example TheThing, TheWebThing, etc.) running on the same unit as PalComStarter. From
now on, we refer to these devices as monitored devices, because they are being monitored
(started, stopped and updated) by PalComStarter. Each of these monitored devices has an
UpdaterService, in addition to other services or assemblies that may already be present
on the device. Even though both PalComStarter and the monitored devices run the same
UpdaterService, there is an important difference. The monitored devices’ UpdaterService
runs in a monitored mode, in contrast to PalComStarter’s UpdaterService which runs in
monitoring mode. In the monitoring mode, the functionality to perform starting, moni-
toring and updating of monitored devices is activated. In the monitored mode, the func-
tionality to be controlled by a monitoring device and to be part of the updating process is
activated.

PalComStarter and all monitored devices executes in separate runtime environments on the
unit in order to isolate problems. For the Java implementation, this means that each device
is running in a separate JVM. The significance of this is that when one device crashes it
will not drag other monitored devices or, even worse, PalComStarter with it. If one of
the devices crashes, PalComStarter and the other devices will safely continue executing as
before in their own environment.

PalComStarter and all monitored devices are executing in parallel. They are not stopped
unless explicitly told to do so, for example during update or restart.

Server Unit

In order to keep track of and distribute updates to PalCom clients we have anUpdateServer,
also a PalCom device, which runs on the server unit. The UpdateServer has an Update-
DistributionServicewhich communicates with PalComStarters running on the client units.
The communication takes place using PalCommessages transmitted through PalCom tun-
nels. When developers push out new updates to the UpdateServer, the PalComStarters
running on the client units are automatically notified and the updating process takes place
automatically.

30

4.2 Proposed solution

PalComStarter

A deeper description of the main part of the architecture: PalComStarter.

Starter. The starter role of PalComStarter means that it functions as a bootstrapper for
the PalCom system on the client unit. The operating system on the client unit exe-
cute a file in the PalCom filesystem, the startup script, which points to the current
version of PalComStarter. When PalComStarter is started it will check the moni-
toring configuration in a file called monitoring.properties in the PalCom
filesystem (details in 4.2.6 Configuration and file structure) for information about
which devices to start, monitor and update. If any of the devices specified to be
monitored in the configuration are not installed on the system yet, PalComStarter
retrieves executables and configurations for those devices from the UpdateServer. If
all the devices it should monitor are already installed on the system, PalComStarter
checks if they are currently running. If a device is not running, it will be started in
a new instance.

Figure 4.2: Sequence diagram describing the start process used
by PalComStarter.

31

4. Proposed solution

Monitor. PalComStarter is monitoring all devices running on the same unit. Themonitor-
ing is achieved through PalCom communication. The PalCom discoverymechanism
is used in order to decide if a device is healthy or not. If a device is discovered it is
assumed to be healthy. If a device is not discovered it is assumed to be unhealthy
and thus restarted by PalComStarter.

Updater. In order to update devices, PalComStarter communicateswith theUpdateServer,
using a PalCom tunnel if necessary. When a new update is added to the Update-
Server, information about the new update is broadcasted to all PalComStarters. If
any PalComStarter is not online when this broadcast is sent, that PalComStarter will
still be able to compare its own version with the UpdateServer’s broadcasted version
when the connection to the UpdateServer is established again.

When UpdaterService has received an update message from the UpdateServer, the
update is downloaded to PalComStarter. After the download is complete, the in-
stallation phase begins. During this phase, PalCom communication is not used any-
more, but instead a separate update protocol is used, which we call the Update Pro-
tocol, that is specifically designed and intended only for updating. This makes it
possible to handle updates between PalCom versions which break PalCom commu-
nication, for example if the current and new version use different PalCom commu-
nication protocols or due to bugs in one of the versions. It is still PalComStarter
that is responsible for the updating process though; it is only switching to another
protocol. The Update Protocol is much simpler than the PalCom communication
protocols since it is only used locally on one unit, whereas PalCom communication
protocols are designed for communication between devices that can be on differ-
ent units. A reason for using a simple protocol is to reduce the number of possible
bugs, and thus try to eliminate the need to update the Update Protocol itself. But if
we need to update the Update protocol, we can use the method to update PalCom
services as described by Månsson in her master’s thesis [21], because the Update
Protocol is fully contained in the UpdaterService. In the Update Protocol there are
commands for starting, stopping, updating, aborting and to exchange information
between devices during the updating process. TCP sockets are used to locally send
these commands.

32

4.2 Proposed solution

4.2.2 Updating process
The updating process is designed so that there will always be a PalCom device running and
in charge of the updating process, in order to be able to abort and rollback to a previous
functioning version in case of error. Abortion and rollback is described later in 4.2.4. The
updating process can be divided into three stages where each stage denote that one of the
devices is in charge of the update process. The different stages are illustrated in figures 4.3-
4.8. They are also indicated in the more detailed sequence diagram available in appendix
E (figure E.1). The device in charge of the updating process is responsible for deciding
when to abort and to perform rollback in case of error during the updating process.

Figure 4.3: Example of update process in update stage one. The
device with green background and thick borders is in charge of the
updating process.

Figure 4.4: Example of update process in update stage one. The
device with green background and thick borders is in charge of the
updating process.

33

4. Proposed solution

When the update process begins, in stage one, the current version of the PalComStarter is
in charge (see figures 4.3, 4.4 and 4.5). The update data is fetched from the UpdateServer
and saved to the PalCom fileSystem. The new versions of monitored devices are started
and tested to make sure that they function properly.

Figure 4.5: Example of update process in update stage one. The
device with green background and thick borders is in charge of the
updating process.

Figure 4.6: Example of update process in update stage two. The
device with green background and thick borders is in charge of the
updating process.

When PalComStarter has made sure that the new versions of its monitored devices are
working, it is time for stage two, where PalComStarter itself must be updated. In this
stage, one of the new version monitored devices is in charge of the updating process (see
figures 4.6 and 4.7). To choose which monitored device that should be in charge is done by
iterating through the unsorted list of all monitored devices. If the first chosen monitored
device is not able to be in charge for any reason, another is chosen. If there are no moni-
tored devices that are able to be in charge, the updating process will abort. When chosen,
the monitored device in charge starts and tests the new PalComStarter to make sure it is
functioning properly.

34

4.2 Proposed solution

Figure 4.7: Example of update process in update stage two. The
device with green background and thick borders is in charge of the
updating process.

Figure 4.8: Example of update process in update stage three. The
device with green background and thick borders is in charge of the
updating process.

At last, when the monitored device in charge has made sure that the new version of Pal-
ComStarter is working, it is time for stage three. In this stage, the new version of Pal-
ComStarter is in charge of the updating process (see figure 4.8). PalComStarter performs
cleanup which includes removing old executables and other unnecessary files, and updates
the startup script which sets the new version as the current version and finishes the update
process.

The purpose of the startup script is to be a shortcut which the operating system always
can use to start the current version of the PalCom system. For example when the operating
system starts for the first time, restarts after a power failure, or via some scheduled task
or operating system service. It is also used in case of update abort in stage two and three,
in order to fallback to the current version of the PalCom system. The startup script is
essentially a text file containing the command to start PalComStarter. See section 4.2.6
Configuration and file structure, for more info about the location and content of the startup
script.

35

4. Proposed solution

4.2.3 Different updating scenarios

Depending on the type of update and which devices to update, we may not need to go
through the whole updating process. We may only need to perform some of the updating
stages. We describe the possible scenarios and what type of updating stages are needed
in table 4.1. When only the monitored devices needs to be updated, it is unnecessary to
perform update stage 2 and 3 which focuses on updating the PalComStarter. Similarly,
when only PalComStarter needs to be updated, stage 1 is unnecessary.

Table 4.1: Updating scenarios and needed updating stages. The
device types to update are listed in the first column and the update
types are listed on the first row. The updating stages are acquired
in the resulting matrix. For example, if a monitored device is to
be updated with a non protocol breaking update, updating stage 1
is needed.

Device(s) to update Non protocol breaking update protocol breaking update
Monitored device(s) stage 1 N/A

PalComStarter stage 2,3 N/A
All devices stage 1,2,3 stage 1,2,3

It is important to keep in mind that when there is a protocol-breaking update available
for any one device type present on the client unit, it must also be available to all device
types present on the client unit in order to perform the protocol-breaking update. If the
protocol-breaking update is not available to all device types present on the client unit, the
protocol-breaking update will not be performed.

4.2.4 Aborting update and performing rollback

If something goes wrong during the updating process, for example due to exceptions that
can not be handled, the updating process will be aborted and the systemwill fall back to the
current version. As stated before in the update process part (4.2.2), it is the responsibility
of the device in charge to detect errors and perform abort.

When waiting for responses in the update process, or in any other scenario where there is
a possibility for the process to be blocked indefinitely, we need to be able to abort if the
wait time is too long. To solve this we set maximum waiting times for these scenarios,
called abort timers. The abort timers will trigger the abortion of the updating process if
these maximum waiting times are exceeded. More specifically, this is done by not using
methods and threads that block indefinitely, but instead setting a maximum amount of
time to wait. And in those cases where there have to be a thread or method that may block
indefinitely, timer threads are used to interrupt the blocked thread if the maximum waiting
time is exceeded.

36

4.2 Proposed solution

4.2.5 Crash and failure handling

The updating process is designed with a lot of focus on requirement (H): unexpected
crashes. Unexpected crashes are handled by leaving the current PalCom filesystem in-
tact during the whole updating process. If something goes wrong during the update, the
system will rollback to the current functioning state. PalComStarter will then try to update
again at a later time.

If some device in the updating process should crash for any reason we have two possible
scenarios. If the device that crashes is not in charge of the updating process, the device
in charge will notice this and abort the updating process if necessary. If the device that
crashes is in charge of the updating process, it is up to the operating system to restart the
current PalComStarter via the startup script.

There are a lot of other errors that can occur during the updating process:

Connection, connectivity or communication error. If PalComStarter’s connection to the
UpdateServer is lost (due to failing tunnels or something else) or if the devices on the
client unit is unable to communicate for any reason, the fallback timers will timeout
which triggers update abort.

The server unit crashes. From the PalComStarter’s point of view, this is the same as a
connection error with the UpdateServer, and thus handled the same way. When the
server unit restarts, the UpdateServer will be started again through its startup script.

The client unit crashes. This could be due to power failure, hardware failure, etc. When
the client unit restarts, the unit will start the current PalComStarter again through
the startup script.

If rolling back to current version do not work. If the updating process is aborted and
the current version is not working, manual rescue is needed. This scenario can not
be created by the updating process itself, because the current version remains un-
touched during the whole process. But there may of course be external events cor-
rupting the file system.

Out of disk, and other exceptions. If the disk space runs out during the updating pro-
cess, the process will abort and clean away all created files. The same goes for any
other exception encountered during the updating process.

Out of memory, and other errors. If the updating process runs out of memory, or en-
counters any other major error, it will try to abort gracefully and return to the cur-
rent version, although this is not always possible depending on the error. If it is not
possible to abort gracefully, the device will be left in a corrupt state which is not
allowed. The updating process will therefore shut down the affected device in that
case, and it is up to the operating system to restart the current PalComStarter again
via the startup script.

37

4. Proposed solution

4.2.6 Configuration and file structure

In our architecture, we need some way to remember which devices to monitor and update,
as well as their version and device type. We also need some place to put the executables
of different device types and the device types’ different versions. It is favorable to keep
all settings and data in one place, so we will naturally use the already existing PalCom
filesystem as storage location for this.

Recall the structure of the PalCom filesystem from the theory section about PalCom 3.2.3.
If we start with the information about which devices to monitor, let us call it the monitoring
properties, a good place to put it is in the global folder. That way, it is not bound to a
specific device. The path to the monitoring properties will thus be:

[path to PalCom filesystem]/PalcomFilesystem/
global/monitoring.properties

If we continue with the executables, we see that it is a waste of space to have one exe-
cutable for each device because if there are many devices of the same type, they could
share the executable. It is a better idea to have one executable for each type of device.
A good directory to place the executables is therefore the device type specific folders in
the global/devices folder. In order to know which version of the executable we have, we
also need to name them according to some versioning scheme. The path to a device’s
executable will thus be:

[path to PalCom filesystem]/PalcomFilesystem/global/devices/
[deviceType]/[deviceType]-[version].[executable file suffix]

We also need some place to put the startup script. The important thing to remember about
the startup script is that its path is never allowed to be changed, because it is accessed by the
operating system when the operating system wants to start the PalCom system. Therefore,
a good place to put the startup script is in the global folder. The path to the startup script
will thus be:

[path to PalCom filesystem]/PalcomFilesystem/global/startupscript

The resulting file structure is illustrated in figure 4.9.

Now that we have our file structure figured out, wemay ask ourselves what kind of informa-
tion we need to store in monitoring.properties for the architecture to work. PalComStarter
must know the following:

UpdateServer’s Device ID. PalComStarter must be able to establish a connection to the
UpdateServer in order to receive updates and be able to ask for updates. We need to
know the UpdateServer’s device ID for this.

Monitored Devices’ ID. PalComStarter needs to know which devices to monitor and to
update. They can be identified by their device ID.

Monitored Devices’ type and version. In order to start the monitored devices, PalCom-
Starter must know what type of device it is and the version of the device type. This
key pair is used in order to find the appropriate executable in the file system.

38

4.2 Proposed solution

Figure 4.9: A graph showing the file structure of our proposed
solution’s architecture. The additions made in this architecture are
highlighted.

For detailed instructions about how to set up a working system using the architecture, see
appendix A.1.

39

4. Proposed solution

4.2.7 Requirement fulfillment retrospective

We look back to the requirements stated in section 4.1.1 to see if they are fulfilled by our
proposed solution:

(A) Pure PalCom code base. Bywriting a new solution tailored specifically for PalCom
and reusing existing PalCom features, this requirement is naturally met.

(B) Unreliable connections. By using secure communication protocols that ensure that
every message arrives, it does not matter if connections to other devices go down.
If a connection is lost, the message is resent at a later time. When a connection has
been lost for too long, the abort timers will trigger and the update process will abort
and fallback to the latest working version. The update process will have to be started
again at a later time.

(C) Unreliable connectivity. This is handled analogous to the way unreliable connec-
tions are handled.

(D) Low bandwidth. This can be handled by reducing the size of data being transferred
as well as keeping the communication to a minimum. Almost all communication is
made on the local device, between PalComStarter and its monitored devices, which
means that the network bandwidth is not used at all. All communication between
PalComStarter and the UpdateServer is sparse, and also lightweight except the send-
ing of update data from the UpdateServer to the PalComStarter. This is solved by
compressing the update data by using delta encoding, which means that only the
difference between the current and the new update is sent, instead of sending the
whole new update.

(E) Heterogeneous PalCom implementations. It is possible to use our update solution
in all implementations that support TCP sockets, which are used to communicate
with the Update Protocol.

(F) Security. PalCom tunnels and authentication are used during communication using
PalCom messages. The update protocol is only communicated locally, thus need no
protection.

(G) No user interaction. After uploading the update to the UpdateServer, the whole
update process is performed automatically. In case of major errors, there is of course
a need for human assistance.

(H) Unexpected crashes. By keeping the old filesystem intact until the updating process
is all done and the new versions have been tested, it is always possible to fallback to
the old version. Even in case of externally triggered crashes, such as power failure,
the system will restart in a functioning state. It is assumed that the old version is
the current version until the end of the process when the startup script is updated.
The only point in the updating process where the system is vulnerable and could
become corrupt when crashing is when the startup script is being edited to contain
the command to start the new version of PalComStarter.

40

4.3 Future work

4.3 Future work
A great addition to our proposed solution would be the use of protocol proxy layers, as
proposed by Ajmani et al. in [1], in the PalCom kernel if possible. This would make Pal-
Com devices backward and forward compatible even with protocol breaking updates in a
system of devices with mixed versions, which in turn would reduce the service interrup-
tion when protocol breaking updates are released because devices with different versions
can then still communicate.

Another great addition to our proposed solution would be to use peer-to-peer (P2P) dis-
tribution techniques for the update content. By letting PalCom devices share updates to
each other it is possible to lower the network congestion, apply less pressure on the Up-
dateServer and achieve faster distribution of updates. The impact of this feature is most
noticeable in a system with very many devices and where there may be a faster connection
between client units than between the server unit and client units.

41

4. Proposed solution

42

Chapter 5

Evaluation

5.1 Experimental Setup

The implementation has been manually tested for functionality by running the client unit
and the server unit on different Linux and Windows units on the same WiFi.

When testing the performance of our solution we benchmark two things:

Test 1: Average time to update. From the point in time that an update is made available
on the UpdateServer, how long time does it take for a client unit to update. This
measures how fast the overall updating process is. Total time is the total time for the
updating process. We will also measure how much of this total time that is spent on
sending the update content, the time to send update content. Time to update is the
total time subtracted with the time to send update content

Test 2: Average monitored device downtime. In this test we record how much down-
time each monitored device suffer during the updating process. This measures how
fast the updating process is from a monitored device’s point of view. It can also be
seen as the service interruption noticed by users and other devices that are depending
on the device being updated.

We benchmark these things in three different scenarios:

Scenario A: Update PalComStarter. In this scenario, we only update PalComStarter,
which means that only update stage 2 and 3 are performed. In this scenario, the
monitored devices do not suffer any downtime and it is thus not interesting to per-
form test 2 in this scenario.

43

5. Evaluation

Scenario B: Update monitored devices. In this scenario, we only update the monitored
devices, which means that only update stage 1 is performed.

Scenario C: Update PalComStarter and monitored devices. In this scenario, we up-
date all devices present on the client unit, performing all updating stages 1, 2 and 3.
This shows us how long time it takes to perform a protocol breaking update, which
means that we update all devices at the same time.

Each scenario is run 20 times in order to get a mean value for test 1 and test 2.

The update content is .jar-files with the size of 2 MB for PalComStarter and 3.4 MB for
the monitored devices.

The test system specifications are shown in table 5.1.

Table 5.1: Test system specifications

System: Laptop
CPU: 2.6Ghz (3.6Ghz turbo) quad-core Intel i7-4720HQ
Memory: 8Gb DDR3
Storage space: 256Gb SSD
Connection: WiFi 802.11 b/g/n/ac
Operating system: openSUSE Tumbleweed x86-64

The amount of time it takes for a client unit to update depends on how many devices there
are on that unit. In our benchmark we will use a client unit with two PalCom devices in
addition to the PalComStarter itself. This represents a typical client unit according to usage
scenarios in projects using PalCom in collaboration with the Department of Computer
Science at the Faculty of Engineering at Lund University.

5.2 Results

In this section we present the results from the benchmarks specified in 5.1 Experimental
Setup. Results are shown in table 5.2.

Table 5.2: Scenario A: Update PalComStarter. Mean values with
standard deviation in paranthesis.

Test 1 Test 2

Time to update Time to send
update content

Total time Monitored device
downtime

Scenario A 0.64 s (0.05 s) 4.9 s (1.5 s) 5.5 s (1.5 s) 0 s
Scenario B 1.5 s (0.059 s) 3.4 s (0.92 s) 4.9 s (0.93 s) 0.57 s (0.039 s)
Scenario C 2.5 s (0.4 s) 7.6 s (2 s) 10 s (2 s) 0.59 s (0.051 s)

44

5.3 Discussion

5.3 Discussion

In this section we discuss different aspects of our solution that is worth mentioning and
interesting things that have come up working with this thesis.

5.3.1 Problem statement

To start with, we must look back to see if we can answer the questions asked in the problem
statement. We begin to answer the first question:

• What are the important requirements when performing automatic dynamic updating
of the PalCom middleware?

Through specifying and analyzing our system we got a clear picture of important require-
ments specific to our system, which can be seen in section 4.1.1. Followed by literature
studies of existing systems and and related work in section 4.1.2, we learned about more
general requirements and techniques related to automatic and dynamic updating. By com-
bining these two sources we can move on to the second question:

• How can we perform automatic dynamic updating of the PalCom middleware?

By introducing our proposed solution in section 4.2, we present a way to solve the problem
of automatic dynamic updating of the PalCom middleware, that also fulfills the important
requirements found in the previous question. As a proof-of-concept, we also built a work-
ing implementation of our proposed solution.

5.3.2 Usefulness of our solution

It is also important to reflect about the usefulness of our solution. As stated in the intro-
ductory chapter 1, there are a lot of connected devices in the world and they are predicted
to increase rapidly. By using our solution together with PalCom it is possible to solve the
problem of updating the big amount of devices present in Internet of Things systems. As a
direct practical example, it is worth mentioning the itACiH project [17], which is focusing
on developing IT support for advanced health care at home. By using PalCom devices
in the home of patients and available to health care personnel, it is possible to remotely
collect patient values and establish communication directly between patients and health
care personnel. The automatic updating of these devices is a great help. Without it, the
updating process have to be done manually for each device. Our solution is also appli-
cable to the health care project mentioned in the motivating example in chapter 2, where
ambulance personnel use Android smartpads to proactively collect and send information
to hospitals. By using our updating solution it is possible to automatically ship updates to
these smartpads, without disturbing the work of the ambulance personnel.

45

5. Evaluation

5.3.3 Our solution and possible scenarios

In the section 4.2 Proposed solution, we explained how our solution works. But it is also
interesting to see how it solves different scenarios. The obvious scenario our solution
solves is to update the PalCom devices running on a client unit, but there may also be
other scenarios that may or may not be as obvious:

What if we want to update PalComStarter itself?
As described in 4.2.2 Updating process, the updating includes PalComStarter by putting
the monitored devices in charge of updating the PalComStarter.

What if wewant to updateUpdaterService, UpdateDistributionService, or some other
service running on the devices?
As stated in the problem statement in chapter 1, the updating of services and assemblies
is a different problem which have been solved in another thesis [21].

What if we want to update the UpdateServer?
By running a PalComStarter on the server unit with the UpdateServer, it is possible to
automatically update the UpdateServer as well.

What if we want to update the Update Protocol?
The Update Protocol is specified and only used in UpdaterService, which means that to
update the Update Protocol it is only needed to update the UpdaterService service (see
previous question on how to do this). Because of the fact that services and assemblies are
separated from devices, it is possible to update UpdaterService without updating the device
it runs on. This means that when updating the Update Protocol, the Update Protocol itself
is not used, which makes it possible to release protocol breaking updates to the Update
Protocol.

What happens if there is a protocol breaking update for PalCom?
Our updating solution solves protocol breaking updates by introducing the Update Proto-
col. PalComStarter and all monitored devices can communicate through the update pro-
cess, even when the current version’s communication protocol is incompatible with the
new version’s, by using the Update Protocol. The UpdateServer though, have to com-
municate with PalComStarter through PalCom messages in order to make use of PalCom
tunnels and to not make the Update Protocol too complex. To handle protocol breaking
updates, two instances of UpdateServer must be online until all devices have been up-
dated. It is possible to solve this in another way, for example similar to [1] by introducing
a protocol proxy layer in the UpdateServer for PalCom communication, which we see as
a great future improvement. But even though it is a great feature, it is not the intention
of our updating solution to support a PalCom system with mixed PalCom protocols for an
extended period of time. The intention is that when a new update is released, no matter if
it is protocol breaking or not, the client units should update as soon as possible. As stated
in the introduction (1), it is not possible for a whole distributed system to update itself at
once because some devices may be offline, sleeping, busy with other things, slower than
others to update, etc. But when a device is ready, the updating should be performed as
soon as possible.

46

5.3 Discussion

5.3.4 Benchmark results
We believe that the results from our benchmarks in section 5.2 are satisfactory, because of
the low device downtime of less than a second. We believe that the user will not experience
any notable interruption during the updating process.

It is also interesting to point out that the most time during the updating process is spent
transferring the update content from the UpdateServer to the PalComStarter. This is rea-
sonable because of the fact that we did not have time to implement update content delta
compression. The update content sent in the tests was complete .jar-files with the size of
2 MB for PalComStarter and 3.4 MB for the monitored devices. If only the diff where to
be sent, the size could be greatly reduced to an order of kilobytes instead of megabytes,
which in turn would reduce the time to update.

If we set aside the time needed to transfer the update content, we see that the actual updating
process is relatively fast (table 5.3).

Table 5.3: Time to update subtracted by time to send update con-
tent. Mean values rounded to the nearest millisecond.

Scenario A Scenario B Scenario C
0.64 s 1.5 s 2.5 s

PalCom can run on many different systems. From high performing desktop, laptop or
server computers to minimal embedded systems with very low processing power and stor-
age space, so it is important to test our updating solution for both kinds of systems. We
tried to test our solution on a minimal Android device called Minimal Viable Device,
which features lower performance hardware than our test system, but we were unable to
make it work due to hardware problems. Given more time, we would like to test our solu-
tion onmore different kinds of hardware. Wewould also like to perform larger experiments
with our solution and test it in a live situation, such as the in the itACiH project.

5.3.5 Implementation improvements and features
There is a lot that can be improved in the implementation of our solution. For example
the way of communicating the Update Protocol can be implemented in a nicer way. For
the UpdateServer it is possible to add a lot of commands helping the administrative work
of uploading and keeping track of updates, and maybe even adding a web interface. The
implemented solution as of now is working, but is not finished by any means, and can
always be improved and updated with more features.

Abort timer length

In our solution we use abort timers in order to abort when the wait time is too long waiting
for a response or when blocking to send a message. The hard part here is to know what

47

5. Evaluation

length to set on these timers. For devices with low bandwidth or unstable connections,
the timer length may need to be longer than for devices with stable high bandwidth con-
nections. Also, the timers may need different lengths depending on what action they are
tied to. When waiting for update data there is much more data to transfer than when just
pinging the UpdateServer, and thus need a longer timer. The timer length may also depend
on the processing power of the device. An example of this is when device A starts device
B and A waits for an answer from B to know that it have started gracefully. For a low
performance device, the time needed for device A to start device B may be longer and thus
require more waiting time and a longer timer.

When implementing our solution we have empirically tested different abort timer lengths
in order to find a balance between having a long enough timer so that the updating process
has enough time to perform its task, and not waiting to long to abort, so that we do not
interrupt service for to long. The timer lengths have been tuned to our testing systems
running in our testing environment only, which may or may not work for other systems
and environments.

What is not implemented yet?

Unfortunately, we did not have time to implement all features of our proposed solution
into our proof-of-concept implementation. We see this as future work.

• Use delta encoding to compress update data.

• Make it possible for the UpdateServer to store and distribute update content de-
pending on language of implementation. Currently, there is only support for the
Java implementation of PalCom, using .jar-files.

• Distinguish between protocol breaking updates and other updates.

• When PalComStarter starts and reads monitoring.properties, it should check if the
devices to monitor are installed or not. If some devices are not installed on the
system yet (they have no DeviceID in monitoring.properties), executables and con-
figurations should be downloaded from UpdateServer and new DeviceID:s should
be generated for them. This feature presumably resides in a new PalCom service
separated from UpdaterService.

• Updating of UpdateServer with the help of PalComStarter. When protocol breaking
updates are released, a new UpdateServer have to be started and run in parallel with
the old version until all devices are updated.

48

Chapter 6

Conclusions

In this master’s thesis we propose a solution which dynamically updates the middleware
of an Internet of Things system. More specifically a distributed system of PalCom de-
vices, a PalCom system. The middleware of the devices are updated in a completely au-
tomatic manner by using a monitoring device, called PalComStarter, which is responsible
for startup, monitoring and updating of all other PalCom devices on the local machine.
The PalComStarter receives updates from an UpdateServer. All devices, protocols and
parts are updatable, including the PalComStarter and the UpdateServer, even in protocol
breaking updates.

By studying related work, existing solutions and our specified system, we arrived at a num-
ber of requirements that needed to be fulfilled. (1) The solution must be fully automatic,
requiring no user interaction. (2) It must be able to handle unreliable connections and (3)
unreliable connectivity. (4) Unexpected crashed must be handled so that the system always
can return to a non-corrupt functional state. (5) Protocol breaking updates must be sup-
ported. (6) It must have security in mind, as well as (7) the possibility of low bandwidth
connections. (8) The code base must be open source and not introduce significant de-
pendencies on other systems or code bases. (9) The solution must work in heterogeneous
PalCom implementations. We designed an updating architecture, our proposed solution,
which fulfills all of the above mentioned requirements.

We built a proof-of-concept implementation of our proposed solution in Java. The im-
plementation was benchmarked to evaluate update time and device downtime during the
updating process, on a machine with three devices. The resulting update time was 10 sec-
onds in the worst scenario, when updating all devices with a protocol breaking update,
with an average device downtime of 0.6 seconds.

With our work on updating PalCom devices together with the work provided by [21] to up-
date services and assemblies, we have achieved a fully automatic and dynamic deployment
and updating of PalCom systems.

49

6. Conclusions

50

Bibliography

[1] Sameer Ajmani, Barbara Liskov, and Liuba Shrira. Modular software upgrades for
distributed systems. In Dave Thomas, editor, ECOOP 2006 - Object-Oriented Pro-
gramming, 20th European Conference, Nantes, France, July 3-7, 2006, Proceedings,
volume 4067 of Lecture Notes in Computer Science, pages 452–476. Springer, 2006.

[2] OSGi Alliance. Osgi architecture. https://www.osgi.org/developer/
architecture/ accessed 2016-02-08.

[3] Jeff Arnold and M. Frans Kaashoek. Ksplice: automatic rebootless kernel updates.
In Wolfgang Schröder-Preikschat, John Wilkes, and Rebecca Isaacs, editors, Pro-
ceedings of the 2009 EuroSys Conference, Nuremberg, Germany, April 1-3, 2009,
pages 187–198. ACM, 2009.

[4] Luigi Atzori, Antonio Iera, and GiacomoMorabito. The internet of things: A survey.
Computer Networks, 54(15):2787–2805, 2010.

[5] Robert Pawel Bialek, Eric Jul, Jean-Guy Schneider, and Yan Jin. Partitioning of java
applications to support dynamic updates. In 11th Asia-Pacific Software Engineering
Conference (APSEC 2004), 30 November - 3 December 2004, Busan, Korea, pages
616–623. IEEE Computer Society, 2004.

[6] Rajiv Chakravorty. A programmable service architecture for mobile medical care.
In 4th IEEE Conference on Pervasive Computing and Communications Workshops
(PerCom 2006 Workshops), 13-17 March 2006, Pisa, Italy, pages 532–536. IEEE
Computer Society, 2006.

[7] Ericsson. Ericsson mobility report, 2015. http://www.
ericsson.com/res/docs/2015/mobility-report/
ericsson-mobility-report-nov-2015.pdf accessed 2016-02-04.

[8] EU-IST. Palpable computing. http://www.ist-palcom.org/, accessed
2015-11-27.

51

https://www.osgi.org/developer/architecture/
https://www.osgi.org/developer/architecture/
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf
http://www.ist-palcom.org/

BIBLIOGRAPHY

[9] Dave Evans. The internet of things, how the next evolution of the internet is changing
everything, 2011. https://www.cisco.com/web/about/ac79/docs/
innov/IoT_IBSG_0411FINAL.pdf accessed 2016-02-04.

[10] David Svensson Fors. Assemblies of Pervasive Services. PhD thesis, Dept. of Com-
puter Science, Lund University, 2009. http://lup.lub.lu.se/record/
1287708.

[11] The Apache Software Foundation. Apache ace. https://ace.apache.org/
accessed 2016-02-08.

[12] Google. Android for work. https://static.googleusercontent.
com/media/www.google.com/sv/SE/work/android/files/
android-for-work-apps-guide.pdf accessed 2015-11-13 12:49.

[13] TianxiaoGu, ChunCao, ChangXu, XiaoxingMa, Linghao Zhang, and Jian Lü. Low-
disruptive dynamic updating of java applications. Information & Software Technol-
ogy, 56(9):1086–1098, 2014.

[14] Christopher M. Hayden, Karla Saur, Edward K. Smith, Michael W. Hicks, and Jef-
frey S. Foster. Kitsune: Efficient, general-purpose dynamic software updating for C.
ACM Trans. Program. Lang. Syst., 36(4):13:1–13:38, 2014.

[15] Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster.
State transfer for clear and efficient runtime updates. In Serge Abiteboul, Klemens
Böhm, Christoph Koch, and Kian-Lee Tan, editors, Workshops Proceedings of the
27th International Conference on Data Engineering, ICDE 2011, April 11-16, 2011,
Hannover, Germany, pages 179–184. IEEE, 2011.

[16] Michael W. Hicks and Scott Nettles. Dynamic software updating. ACM Trans. Pro-
gram. Lang. Syst., 27(6):1049–1096, 2005.

[17] itACiH. It support for advanced care of cancer patients at home. http://itacih.
cs.lth.se/ accessed 2016-02-24.

[18] Boris Magnusson and Björn A. Johnsson. Some like it hot: automating an electric
kettle using palcom. In Friedemann Mattern, Silvia Santini, John F. Canny, Marc
Langheinrich, and Jun Rekimoto, editors, The 2013 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing, UbiComp ’13, Zurich, Switzerland,
September 8-12, 2013 - Adjunct Publication, pages 63–66. ACM, 2013.

[19] Kristis Makris and Rida A. Bazzi. Immediate multi-threaded dynamic software up-
dates using stack reconstruction. In Geoffrey M. Voelker and Alec Wolman, editors,
2009USENIXAnnual Technical Conference, SanDiego, CA, USA, June 14-19, 2009.
USENIX Association, 2009.

[20] Emili Miedes and Francesc D Munoz-Escoı. A survey about dynamic software up-
dating. Instituto Universitario Mixto Tecnologico de Infromatica, Universitat Po-
litecnica de Valencia, Campus de Vera s/n, 46022, 2012.

52

https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://lup.lub.lu.se/record/1287708
http://lup.lub.lu.se/record/1287708
https://ace.apache.org/
https://static.googleusercontent.com/media/www.google.com/sv/SE/work/android/files/android-for-work-apps-guide.pdf
https://static.googleusercontent.com/media/www.google.com/sv/SE/work/android/files/android-for-work-apps-guide.pdf
https://static.googleusercontent.com/media/www.google.com/sv/SE/work/android/files/android-for-work-apps-guide.pdf
http://itacih.cs.lth.se/
http://itacih.cs.lth.se/

BIBLIOGRAPHY

[21] Mia Månsson. Dynamic installation and automatic update of bluetooth low energy
devices in palcom. Master’s thesis, Dept. of Computer Science, Lund University,
2015. http://lup.lub.lu.se/student-papers/record/5471214.

[22] Daniel Nilsson and Mattias Nordahl. Minimal implementation av PalCom för små
enheter. Department of Computer Science, Faculty of Engineering, LTH, Lund Uni-
versity, Lund, 2013.

[23] Alessandro Orso, Anup Rao, and Mary Jean Harrold. A technique for dynamic up-
dating of java software. In 18th International Conference on Software Maintenance
(ICSM 2002), Maintaining Distributed Heterogeneous Systems, 3-6 October 2002,
Montreal, Quebec, Canada, pages 649–658. IEEE Computer Society, 2002.

[24] Luís Pina, Luís Veiga, and Michael W. Hicks. Rubah: DSU for java on a stock JVM.
In Andrew P. Black and Todd D. Millstein, editors, Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October
20-24, 2014, pages 103–119. ACM, 2014.

[25] Mario Pukall, Christian Kästner, Walter Cazzola, Sebastian Götz, Alexander Greb-
hahn, Reimar Schröter, and Gunter Saake. Javadaptor - flexible runtime updates of
java applications. Softw., Pract. Exper., 43(2):153–185, 2013.

[26] Michael Schiefer. Smart home definition and security threats. In Jana Dittmann and
Holger Morgenstern, editors, Ninth International Conference on IT Security Incident
Management & IT Forensics, IMF 2015, Magdeburg, Germany, May 18-20, 2015,
pages 114–118. IEEE, 2015.

[27] Habib Seifzadeh, Hassan Abolhassani, and Mohsen Sadighi Moshkenani. A sur-
vey of dynamic software updating. Journal of Software: Evolution and Process,
25(5):535–568, 2013.

[28] Rob van der Meulen. Gartner says 6.4 billion connected "things" will be in
use in 2016, up 30 percent from 2015, 2015. http://www.gartner.com/
newsroom/id/3165317 accessed 2016-02-04.

[29] Yves Vandewaude. Dynamically updating component-oriented systems. PhD thesis,
University of Leuven, 2007.

[30] International TelecommunicationUnion. Recommendation ITU-TY.2060. Overview
of the internet of things, 2012. http://handle.itu.int/11.1002/1000/
11559.

53

http://lup.lub.lu.se/student-papers/record/5471214
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317
http://handle.itu.int/11.1002/1000/11559
http://handle.itu.int/11.1002/1000/11559

BIBLIOGRAPHY

54

Appendices

55

Appendix A

Manual

A.1 Installation guide
In order for the system to work for our proposed architecture, some configuration prepa-
rations are needed.

A.1.1 PalComStarter

monitoring.properties

For PalComStarter towork, the following propertiesmust be set inmonitoring.properties:

general@updateServerDeviceID = [device ID]
deviceTypeVersion@PalComStarter = [version]

Where [version] is on the form "A.B.C" where A,B,C are natural numbers. A: major
(protocol breaking) version. B: minor version. C: patch number.

For every device instance to monitor, the following properties must be set:

monitoredDeviceNames@[device instance name] = ["enabled" if this device
should be monitored]

monitoredDevice-[device instance name]@ID = [device ID, or left blank
if the device is not in-
stalled yet]

monitoredDevice-[device instance name]@type = [device type]

57

A. Manual

For every type of device to monitor, the following property must be set:

deviceTypeVersion@[device type] = [version]

PalcomStarter uses jar-files to start its monitored devices. Every monitored device, as well
as PalcomStarter itself, must keep its jar-file in its device type specific folder:

[path to PalcomFilesystem]/PalcomFilesystem/global/
devices/[device type]/[device type]-[version].jar

The startup script should be located at:

[path to PalcomFilesystem]/PalcomFilesystem/global/startupscript

The startup script must contain the command to start the current PalComStarter:

java -jar [path to PalComStarter jar] -x [PalComStarter device ID]
-f [path to PalcomFilesystem]

The -x option may be omitted if there is only one PalComStarter configuration and the
-f option may be omitted if the standard location of PalcomFilesystem is used.

Example configuration

Say that we have the following devices ...

Device instance name Device type Device ID
PS PalcomStarter C:e8f17688-3203-456d-ac84-deb10c56f49e
TT1 TheThing C:518126a6-a623-491e-b661-9930e1766141
TT2 TheThing C:cff30b40-ec25-453e-927a-2042e6c40663
WT TheWebThing C:3f265a08-a993-418e-8b2c-d19e0a7e5cd0
AT TheAndroidThing C:84a9c2bf-d062-46a8-b479-e5020f68d43a
US UpdateServer C:4840b04b-dd38-461a-b40a-ef939f6248ae

... where the device type versions are ...

Device type version
PalComStarter 1.1.0
TheThing 1.3.2
TheWebThing 1.3.2
TheAndroidThing 1.6.14

... and the path to our PalcomFilesystem directory is ...

/home/palcomuser/PalcomFilesystem

Our properties in monitoring.properties would then be (notice that ":" is escaped
with "\" in the configuration file) ...

general@updateServerDeviceID=C\:4840b04b-dd38-461a-b40a-ef939f6248ae
deviceTypeVersion@PalComStarter=1.1.0
deviceTypeVersion@TheThing=1.3.2
deviceTypeVersion@TheWebThing=1.3.2

58

A.1 Installation guide

deviceTypeVersion@TheAndroidThing=1.6.14
monitoredDeviceNames@TT1=enabled
monitoredDeviceNames@TT2=enabled
monitoredDeviceNames@WT=enabled
monitoredDeviceNames@AT=enabled
monitoredDevice-TT1@ID=C\:518126a6-a623-491e-b661-9930e1766141
monitoredDevice-TT1@type=TheThing
monitoredDevice-TT2@ID=C\:cff30b40-ec25-453e-927a-2042e6c40663
monitoredDevice-TT2@type=TheThing
monitoredDevice-WT@ID=C\:3f265a08-a993-418e-8b2c-d19e0a7e5cd0
monitoredDevice-WT@type=TheWebThing
monitoredDevice-AT@ID=C\:84a9c2bf-d062-46a8-b479-e5020f68d43a
monitoredDevice-AT@type=TheAndroidThing

... , we would have placed the jar-files in the following locations ...

/home/palcomuser/PalcomFilesystem/global/devices/
PalComStarter/PalComStarter-1.1.0.jar
/home/palcomuser/PalcomFilesystem/global/devices/
TheThing/TheThing-1.3.2.jar
/home/palcomuser/PalcomFilesystem/global/devices/
TheWebThing/TheWebThing-1.3.2.jar
/home/palcomuser/PalcomFilesystem/global/devices/
TheAndroidThing-1.6.14.jar

... and the content of startupscript would be ...

java -jar /home/palcomuser/PalcomFilesystem/global/
devices/PalComStarter/PalComStarter-1.1.0.jar
-x C:e8f17688-3203-456d-ac84-deb10c56f49e -f /home/palcomuser

To start the system, run startupscript.

A.1.2 Monitored devices

For every device specified in PalcomStarter’s configuration, monitoring.properties,
add the service UpdaterService to the device.

A.1.3 UpdateServer

Simply add the service UpdateDistributionService to the device which should act as an
UpdateServer. Use the appropriate commands to upload and distribute updates.

59

A. Manual

A.2 Usage examples

A.2.1 How to add and broadcast an update for a sin-
gle device type

1. Start a PalCom Browser connected to the same PalCom network as UpdateServer.
A PalCom tunnel may need to be configured.

2. Navigate to the UpdateDistributionService in the PalCom Browser.

3. Click on the broadcast update for single device type command.

4. Enter the following information:

(a) device type, (eg "TheThing").

(b) version, the device type version on the form [major].[minor].[patch] (eg
"1.2.5")

(c) jar content, the executable .jar-file, (eg "thething.jar").

5. Click on Invoke to broadcast the update to all connected PalComStarters.

A.2.2 How to add and broadcast updates for multi-
ple device types

1. Start a PalCom Browser connected to the same PalCom network as UpdateServer.
A PalCom tunnel may need to be configured.

2. Navigate to the UpdateDistributionService in the PalCom Browser.

3. Click on the add jar command.

4. Do the following for every device type to update:

(a) Enter the following information:

i. device type, (eg "TheThing").

ii. version, the device type version on the form [major].[minor].[patch]
(eg "1.2.5")

iii. jar content, the executable .jar-file, (eg "thething.jar").

(b) Click on Invoke.

5. Click on broadcast update for multiple device types to broad-
cast info about the latest update for each device type to all connected PalComStarters.

60

A.2 Usage examples

A.2.3 How to update the Update Protocol
TheUpdate Protocol is fully contained in the service UpdaterService. Updating of services
is not handled in this work. Use the standard procedure of updating services to update
UpdaterService. (See [21])

61

A. Manual

62

Appendix B

Update Protocol

All commands available in se.lth.cs.palcom.updaterservice.UpdaterService.

KILL = "kill" commands receiving device to halt execution.

ABORT = "abort!" commands receiver to abort update.

CHECK_SOCKET = "socket working?" commands receiver to reply with confirma-
tion (see command below) in order to test socket communication.

CHECK_SOCKET_CONFIRM = "socket working!"

CHECK_UPDATE_SERVER = "update server hear you?" commands receiver to ping
UpdateServer in order to test PalCom communication and eventual PalCom tunnels,
followed by a reply with confirmation (see command below).

CHECK_UPDATE_SERVER_CONFIRM = "update server hear me!"

FINISH_DEVICE_STARTUP_CHECK = "finish device startup check" used by Pal-
ComStarter to notify a newly started monitored device that the startup check is fin-
ished. Commands receiver to reply with confirmation (see command below).

FINISH_DEVICE_STARTUP_CHECK_ACK = "finish device startup check ACK"

STAGE_TWO = "update stage two" , commands the initiation of update stage two, when
the monitored device is in charge of updating PalComStarter to the new version.

STAGE_TWO_SENDING_DEVICE_INFO = "stage two device info" , followed by in-
formation needed by the monitored device in stage two to update PalComStarter.

63

B. Update Protocol

FINISH_STAGE_TWO = "finish stage two" commands the finish of update stage two,
meaning that the new version of PalComStarter is in charge of finishing the update
process.

64

Appendix C

PalCom Service Specifications

C.1 UpdaterService

All commands available in se.lth.cs.updaterservice.UpdaterService.

C.1.1 General commands

Commands in

KILL = "kill" ,
Commands receiver to halt.

CHECK_UPDATE_SERVER_CONFIRM = "I hear you!" ,
Received fromUpdateDistributionService as confirmation when testing connection.

ABORT_UPDATE = "abort update!" ,
Commands receiver to abort update.

Commands out

CHECK_UPDATE_SERVER = "do you hear me?" ,
Request sent to UpdateDistributionService in order to test connection.

65

C. PalCom Service Specifications

C.1.2 Monitor specific commands

Commands in

UPDATE = "update" ,
Parameters: VERSION (text/plain)
Received from UpdateDistributionService when a new update is available. Starts
the update process.

STOP_MONITORED _DEVICES = "stopAllMonitoredDevices" ,
Stops all monitored devices.

UPDATE_DATA = "updateData" ,
Parameters: VERSION (text/plain), UPDATE\CONTENT (application/x-jar)
Received from UpdateDistributionService in response to update content request.

DISABLE_MONITORING = "disable monitor" ,
Disables monitoring of monitored devices.

ENABLE_MONITORING = "enable monitor" ,
Enables monitoring of monitored devices.

LIST_MONITORED_DEVICES = "list all monitored devices" ,
Lists the index, device ID and device type of all monitored devices. The response
is a concatenated string where each device has the form: "index=[internal index of
monitored device] ID=[device ID] type=[type of device]".

KILL_DEVICE_BY_INDEX = "kill device by index" ,
Parameter: MONITORED\DEVICE\INDEX (text/plain)
Kills a monitored device specified by index (which is obtain through the "list all
monitored devices" command)

START_DEVICE_BY_INDEX = "start device by index" ,
Parameter: MONITORED\DEVICE\INDEX (text/plain)
Starts a monitored device specified by index (which is obtain through the "list all
monitored devices" command)

RESTART_DEVICE_BY_INDEX = "restart device by index" ,
Parameter: MONITORED\DEVICE\INDEX (text/plain)
Restarts (kills and starts) a monitored device specified by index (which is obtain
through the "list all monitored devices" command)

RESET_UPDATE_ABORTED_COUNTER = "reset update aborted counter" ,
Resets the counter, which counts the number of times an update has aborted, to zero.
This makes it possible to retry to update again, even though the maximum amount
of tries has been used.

66

C.2 UpdateDistributionService

Commands out

UPDATE_CONTENT_REQUEST = "gief the jar!" ,
Parameters: VERSION (text/plain)
Update content request sent to UpdateServer.

KILL = "kill" ,
Command used to tell monitored devices to halt.

CHECK_LATEST_VERSION = "latest version?" ,
Requests latest version info from UpdateDistributionService.

LIST_MONITORED_DEVICES = "list of all monitored devices" ,
Reply with all monitored devices.

C.2 UpdateDistributionService
All commands available in se.lth.cs.updaterservice.UpdateDistributionService.

Commands in

BROADCAST_UPDATE = "broadcast update" ,
Parameters: VERSION (text/plain), UPDATE_CONTENT (application/x-jar)
Used by administrators to broadcast an update.

UPDATE_CONTENT_REQUEST = "gief the jar!" ,
Parameters: VERSION (text/plain)
Received from PalComStarters requesting a specific update version.

CHECK_UPDATE_SERVER = "do you hear me?" ,
Received from PalComStarters and monitored devices testing their connection.

CHECK_LATEST_VERSION = "latest version?" ,
Latest version request from client.

Commands out

UPDATE = "update" ,
Parameters: VERSION (text/plain)
Broadcast sent to all PalComStarters, notifying them about the new version avail-
able.

UPDATE_DATA = "updateData" ,
Parameters: VERSION (text/plain), UPDATE_CONTENT (application/x-jar),
Reply to the update content request command

67

C. PalCom Service Specifications

CHECK_UPDATE_SERVER_CONFIRM = "I hear you!" ,
Confirmation reply sent to device testing their connection.

68

Appendix D

Source code

The source code is available at: https://github.com/splushii/PalComStarter

D.1 se.lth.cs.palcom.palcomstarter.*

D.1.1 PalComStarter.java

Extends AbstractDevice to create a minimal PalCom device used as a monitoring device.
All updating functionality is in UpdaterService.

D.2 se.lth.cs.palcom.updaterservice.*

D.2.1 UpdaterService.java

The UpdaterService.java specifies the service used both by PalComStarter (a monitoring
device) as well as by monitored devices. During the service’s startup, it is decided if the
service should act as a PalComStarter or as a monitored device. If the device running
the service is of type PalComStarter, it will act as a PalComStarter and otherwise as a
monitored device. The available commands differ depending on if the service runs as
a PalComStarter or as a monitored device. If the service runs as a PalComStarter, the
PalComStarterStartThread is created and started. If the service runs as a monitored device,
the MonitoredDeviceStartThread is created and started.

69

https://github.com/splushii/PalComStarter

D. Source code

Both PalComStarter and monitored devices utilizes the classes SocketSender and Sock-
etListenerThread in order to send and receive Update Protocol commands.

PalComStarter (monitoring device)

The following threads are run only as PalComStarter: PalComStarterStartThread, Updat-
eStageOneThread, UpdateStageThreeThread, MonitoringThread.

When PalComStarter is started, PalComStarterStartThread is started.

When PalComStarterStartThread has decided that we are fully operational, MonitoringTh-
read is started.

When an update command is received, UpdateStageOneThread is started.

When started in the middle of an update, which is decided by PalComStarter, Updat-
eStageThreeThread is started.

Monitored device

The following threads are run only as a monitored device: MonitoredDeviceStartThread,
UpdateStageTwoThread.

When started as a monitored device, MonitoredDeviceStartThread is started.

When MonitoredDeviceStartThread receives the command to initiate update stage two,
UpdateStageTwoThread is started.

D.2.2 MonitoredDevice.java

A structure used by MonitoringThread and during update to represent a monitored device
and relevant attributes.

D.2.3 SocketSender.java

A helper-class used to send Update Protocol commands via TCP sockets.

D.2.4 SocketListenerThread.java

A helper-class used to receive Update Protocol commands via TCP sockets.

70

D.3 se.lth.cs.palcom.updatedistributionservice.*

D.3 se.lth.cs.palcom.updatedistributionservice.*

D.3.1 UpdateDistributionService.java
UpdateDistributionService makes it possible to upload PalCom updates in the form of .jar-
files and distribute information about the updates to all connected PalComStarters. Other
than this, UpdateDistributionService is a simple service which responds to requests from
PalComStarters. For example if a client requests update content, the UpdateDistribution-
Service responds with the update content if it is available.

71

D. Source code

72

Appendix E

Updating sequence diagram

73

E. Updating sequence diagram

Figure E.1: Sequence diagram describing the update process.
Dashed lines represent Update Protocol commands. Solid lines
represent PalCom commands and other actions.

74

Det är inte bara våra telefoner som har blivit smarta och börjat koppla upp sig mot
internet, utan även våra klockor, vitvaror, TV-apparater och varför inte snart våra
husdjur? Men vem är det som ska uppdatera alla dessa saker?

Det fenomen där både våra egna saker och saker runt
omkring oss i samhället kopplar upp sig till varandra
eller till Internet brukar kallas ”Sakernas Internet”, eller
det kanske ännu mer kända engelska uttrycket ”Internet
of Things”. En sak kan exempelvis vara en temperatur-
mätare i hemmet som säger till elementen att öka el-
ler sänka temperaturen, eller en alarmklocka som slår
på kaffekokaren automatiskt på morgonen. Dessa saker
styrs av datorer som kör program, som behöver uppda-
teras för att fixa buggar eller för att bygga ut saken med
fler och bättre funktioner.
 Ericsson har beräknat att det fanns 4,6 miljarder av
dessa saker i november 2015 och förutspår att den siff-
ran kommer öka till 15,3 miljarder under år 2021. Med
denna ofantliga mängd saker blir det uppenbart att vi
inte vill uppdatera alla manuellt. Att uppdatera för hand
innebär mycket onödigt arbete som istället kan skötas
automatiskt av sakerna själva eftersom de faktiskt inne-
håller datorer. Datorer är mycket bättre än oss männ-
iskor på att följa instruktioner och utföra upprepande
uppgifter.
 Vår lösning gör det möjligt att uppdatera stora mäng-
der av saker automatiskt, utan att användaren behöver
röra någonting eller märker att någonting händer. Att

uppdatera en sak tar oftast mindre än en sekund, i värsta
fall ett par sekunder. Vi har även tagit hänsyn till pro-
blemet som uppstår när uppdateringar är protokollbry-
tande. Att en uppdatering är protokollbrytande innebär
att saker som uppdaterats inte längre kan prata med de
saker som inte uppdaterats.
 Vår lösning är baserad på ”Internet of Things”-lös-
ningen PalCom, en programvara som gör det möjligt
för saker att prata med varandra.
 Genom att använda vår lösning så finns stor potential
att underlätta utvecklingen och förbättringen av dessa
saker. I ett samarbete mellan PalCom-projektet och
sjukvården har ambulanspersonal fått tillgång till surf-
plattor med PalCom installerat. Genom PalCom kan
ambulanspersonalen knappa in uppgifter om patienten
som direkt skickas till sjukhuset, och starta röst- eller
video-samtal med en läkare för att snabbt förklara si-
tuationen. För tillfället cirkulerar cirka 60 stycken surf-
plattor ute bland ambulanspersonal. Genom vår lösning
kan surfplattorna uppdateras automatiskt, istället för att
någon manuellt ska behöva uppdatera varje surfplatta
för sig. Den tiden kan istället läggas på viktigare saker,
och det blir dessutom möjligt att snabba på utvecklings-
cykeln genom att uppdatera oftare.

EXAMENSARBETE Automatic dynamic updating of devices in Internet of Things middleware PalCom

STUDENT Christian Hernvall

HANDLEDARE Boris Magnusson (LTH)

EXAMINATOR Görel Hedin

Låt datorerna uppdatera sig själva
POPULÄRVETENSKAPLIG SAMMANFATTNING Christian Hernvall

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTATIONSDAG 2016-03-18

	Introduction
	Motivating example
	Approach
	Method
	Technical background
	Dynamic software updating
	Automatic software updating
	PalCom

	Proposed solution
	Selecting a solution
	Analyzing our system, environment and requirements
	Existing solutions and related work
	Conclusions based on requirements

	Proposed solution
	Architecture
	Updating process
	Different updating scenarios
	Aborting update and performing rollback
	Crash and failure handling
	Configuration and file structure
	Requirement fulfillment retrospective

	Future work

	Evaluation
	Experimental Setup
	Results
	Discussion
	Problem statement
	Usefulness of our solution
	Our solution and possible scenarios
	Benchmark results
	Implementation improvements and features

	Conclusions
	Bibliography
	Appendix Manual
	Installation guide
	PalComStarter
	Monitored devices
	UpdateServer

	Usage examples
	How to add and broadcast an update for a single device type
	How to add and broadcast updates for multiple device types
	How to update the Update Protocol

	Appendix Update Protocol
	Appendix PalCom Service Specifications
	UpdaterService
	General commands
	Monitor specific commands

	UpdateDistributionService

	Appendix Source code
	se.lth.cs.palcom.palcomstarter.*
	PalComStarter.java

	se.lth.cs.palcom.updaterservice.*
	UpdaterService.java
	MonitoredDevice.java
	SocketSender.java
	SocketListenerThread.java

	se.lth.cs.palcom.updatedistributionservice.*
	UpdateDistributionService.java

	Appendix Updating sequence diagram

