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Statistical tests of V1 connectivity
I The large number of feed-forward and recurrent inputs to neurons in

primary visual cortex (V1) makes it difficult to untangle what is being
computed, and how such computations are implemented biologically
in simple and complex V1 neurons [1,2,3].

I While intracellular recordings can separate the contribution of
excitatory and inhibitory inputs, it cannot tease apart the effects of
multiple excitatory inputs, which is necessary to address complex cell
properties.

GOAL: Use extracellular data to identify the multiple inputs to V1
neurons & how they combine to generate direction selectivity (DS)

Background & Motivation

Random bar stimuli are a simple, relatively unbiased way to probe a
cell wrt. motion perpendicular to its preferred orientation and
determine its spatiotemporal receptive field (STRF).

Data provided by N. Rust & A. Movshon [1]
Extracellular recordings from macaque V1 cells during visual
stimulation with patterns of optimally oriented bars, modulated
by a binary m-sequence.

Models of simple and complex cells

simple cell complex cell

adapted from [4]

Simple Linear Nonlinear models and the energy model explain
central features of orientation selective simple and complex cell
responses in V1 [4].

The energy model

Adelson & Bergen(1985) [7] suggested an abstract model for phase
invariant motion detectors based on non-DS inputs. It explains DS
simple and complex cell responses on a conceptual level.

2d representation of motion & spatiotemporal receptive fields
motion ≈ spatiotemporal orientation STRF FFT

Constructing DS from spatiotemporally separable inputs

space

time

construction of DS [7] kernels

Questions left open by the energy model

I How can these combinations be biologically implemented?
I What do they tell us about more complicated response patterns?

Nonlinear stimulus selectivity
We use Spike Triggered Covariance (STC) to identify the relevant
subspace, i.e. the visual features that affect the firing rate of a cell [5].

Spatiotemporal STC features of an example complex cell:
STA excitatory suppressive

Problem: STC only identifies a set of dimensions that span the space
containing the preferred features – not the features themselves!

Both expanding and suppres-
sive dimensions show progres-
sively non localized RFs.

Most simple and complex cells
show multiple expanding AND
suppressive STC directions
Rust et al (2005)

Identifying biologically plausible filters

We assume inputs to V1 cells to be spatially confined→ At each
spatial position, we identify the n most localized features from STC
space.

This results in an overcomplete set of localized filters:
expanding suppressive

RESULT 1: Localized features ...

I form homogeneous filterbanks with simple-cell-like spatiotemporal
shape (envelope, tilt & spatial frequency).

I are well described by a set of single quadrature pairs of filters that is
spatially translated (for excitation and suppression).

I represent true inputs properties much more accurately than STC.
e.g. they recover the true inputs of a simulated complex cell

Complex cell stimulus selectivity can be characterized by pools of
spatially shifted inputs with nearly identical properties.

Characterizing V1 computation

firing rate = F
(∑

i

hi ∗ f [S(t) ∗ ki]
)

The Generalized Nonlinear Modeling framework (GNM) ...
I Represents an extension of the Generalized Linear Model (GLM, see e.g. [8]) using

linear combinations of nonlinear stimulus transformations called ’modules’ [3].
I Estimates shape of nonlinearities (fi) and temporal dependencies (hi) from

extracellular data using multilinear methods [3,8,9].
I The internal receptive fields ki cannot be estimated in the same efficient way. They

can, however, be refined using local search based on the full model likelihood.
I We use regression with a sparsity prior [11] to select the relevant features from the

highly overcomplete set of localized filters.
I Correlations between the non orthogonal features call for regularization.

RESULT 2: Computation underlying DS is
consistent with the energy model

I Most complex cell RFs show roughly bowlshaped nonlinearities.
I The specific nonlinear combination of multiple localized features

approximately extracts local motion energy [7].

Our model suggests how “the energy model” might be
implemented with populations of localized filters and how their
properties can be inferred

model fit

Beyond the energy model, this allows to:
I Estimate DS of different model components (e.g. 2-D Fourier

transform of the receptive fields [5]) and their impact on simulated
responses of the full model to gratings.

I Predict further cell properties depending on the nonlinear
interaction of multiple features (e.g. Modulation Index).

Q1−Q2
Q1+Q2

RESULT 3: Construction of DS in simple cells

”Very” simple cell: excitation only

Note: Most thalamic inputs are NOT direction selective – How can
DS be plausibly constructed?

DS in simple cells can be repro-
duced in a model with two non-
DS excitatory inputs that are rec-
tified and summed without re-
quiring multiplication or more ab-
stract mathematical operations.

Typical simple cell: excitation AND suppression

Most simple cells show more than one excitatory filter and often have
DS suppression as well.

Can we reproduce this pattern of opposing excitatory and
suppressive directions using only non-DS inputs?

I Suppressive DS with opposing
STA/excitation cannot be
constructed from non-DS inputs.

I HOWEVER: Model with non-DS excitatory & DS suppressive inputs
reproduces observed excitatory & suppressive DS.

RESULT 4: Complex cells ≈ 2nd order cells

We were unable to produce DS complex cells (phase-invariance+DS)
using a biologically plausible first-order model (like those above).

I We constructed 2nd order complex cells from a population of purely
excitatory DS simple ON and OFF cells from the same study.

2nd order model reproduces properties of complex cell filters:
I Opposing, spatially widespread excitation & suppression.
I DS for both excitation & suppressive increased wrt. 1st order.

DS suppression in complex cells can arise from properties of
first order cells and does not require direct DS inhibition,
consistent with intracellular recordings [6]).

Extension to natural movie sequences

Same ideas apply to more complex stimuli, allowing to examine
processing of complex cells under more naturalistic conditions.

Data: Silicon polytrode recordings of multiple cat V1 neurons to 2D
spatiotemporal pink noise & natural movies [10].

whitened STC directions localized filters

→

Localized filters show similar orientation preference at different
spatial phases. This provides a possible mechanism to achieve
phase independent orientation sensitivity.

Contours indicate
contigouous regions
of strongest excita-
tion/suppression

spatial profiles per-
pendicular to pre-
ferred orientation

Summary

We can use extracellular data to infer:
I Relevant stimulus dimensions & characteristic input properties.
I Computation: How these features are combined.

This provides statistical evidence for the following circuit diagram:
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