

Department of Automatic Control

Distributed Control of Dynamic Flows
in Traffic Networks

Christian Rosdahl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289955747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MSc Thesis
TFRT-6039
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2017 by Christian Rosdahl. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2017

Abstract

In today’s society, traffic congestion is a major problem in several aspects. Apart
from the obvious problem that people are losing valuable time due to the resulting
delays, it also has negative impact on as well the economy as the local and global
environment. With the development of sensors and navigation support, it has now
become possible and thus of interest to study optimal routing of vehicles in a traffic
network, in order to reduce the congestion-related problems.

In this master’s thesis, a distributed algorithm for solution of optimal dynamic
traffic flow control problems is derived, implemented and tested. Traffic networks
are modelled with the cell transmission model (CTM), and the solution algorithm
is based on a generalization of the alternating direction method of multipliers
(ADMM).

The algorithm is tested for one simple and one more complicated traffic net-
work. The tests include both cases with time-varying external inflow of traffic as
well as cases where the flow capacity of a specific road segment is varied with time,
in order to simulate temporary traffic incidents.

The tests show that if the cost function is chosen as the sum of squares of the
traffic volumes at the cells (road segments) of the network, the algorithm converges
to the optimal solution if a specific parameter (the penalty parameter, or step length)
is chosen sufficiently small.

The report starts with a description and examples from the simpler case of static
traffic flow optimization. It also contains a summary of the concepts used from
optimization theory. After this, the approach for dynamic traffic flow modelling and
optimization is described. Finally, a description and derivation of the algorithm is
provided, after which the implementation is tested for different cases involving the
two different traffic networks.

3

Acknowledgements

I would like to thank my supervisors Giacomo Como and Gustav Nilsson, both at
the Department of Automatic Control, Lund University, who have given me valu-
able feedback, advice and support during the work with this thesis project. I would
also like to thank Enrico Lovisari who took time to look at my work and discuss
and think about possible improvements. Finally, I want to thank the Department
of Automatic Control in general for giving me the opportunity to work with this
project.

5

Contents

1. Introduction 9
1.1 Background and Purpose . 9
1.2 Related Work . 9
1.3 Method and Objective . 10
1.4 Outline . 11

2. Static Network Flow Optimization 13
2.1 Problem Formulation . 13
2.2 Lagrangian and Dual Problem 14
2.3 The Dual Ascent Method . 15
2.4 Distributed Formulation of the Dual Ascent Method 17
2.5 Implementation of the Dual Ascent Method 19
2.6 Test of Dual Ascent Algorithm 20
2.7 Interpretation of Lagrange Multipliers 22
2.8 Augmented Lagrangian . 24
2.9 ADMM . 26
2.10 ADMM-formulation of the Flow Problem 27
2.11 Lagrangian Minimization . 28
2.12 Test of ADMM Algorithm . 29

3. Dynamic Network Flow Optimization 33
3.1 Traffic Flow Modelling . 34
3.2 The Cell Transmission Model 35
3.3 Routing Matrix and Control Parameters 38
3.4 Problem Formulation . 41
3.5 Lagrangian and Dual Problem 42

4. Distributed Solution of Dynamic Flow Optimization 45
4.1 Distributed Formulation of the Dynamic Problem 45
4.2 Lagrangian Minimization . 48
4.3 Stopping Criterion . 63

7

Contents

5. Tests and Results 64
5.1 Test Problem 1 . 64
5.2 Test Problem 2 . 66
5.3 Test Quantities . 67
5.4 Results from Test Problem 1 . 68
5.5 Results from Test Problem 2 . 79

6. Discussion 84
6.1 Test Problem 1 . 84
6.2 Test Problem 2 . 87
6.3 General Discussion . 89

7. Conclusions and Future Work 91
7.1 Conclusions . 91
7.2 Future Work . 91

Bibliography 93

8

1
Introduction

1.1 Background and Purpose

Today, over half of the world population lives in urban areas. In 2014, the urban
population was 3.9 billion people, which can be compared to only 746 million
in 1950. Furthermore, this number is expected to increase to over six billion by
2045 [UN, 2014]. A consequence of this is a dramatically increased loading of the
transportation networks in many cities. Many people experience queues and traf-
fic congestion daily, which costs time, causes frustration and decreases the quality
of life. Moreover, this has negative environmental and climate effects and can also
have economical disadvantages. Since extending the infrastructure can be both very
costly and in some cases not even possible, there is a strong motivation for being
able to utilize the existing resources as efficiently as possible.

By methods such as variable speed limits at roads, ramp metering – meaning
that the number of vehicles that are allowed to enter a freeway at a particular time is
limited – and prescribed turning ratios at junctions (e.g. through navigation support
in the vehicles), the traffic flows in a given transportation network can be regulated.
The question to be addressed in this project is how these control means should be
chosen in order to fulfil the goal of utilizing the transportation network to its fullest
potential and decreasing the delay for the vehicles. The methods that will be used to
solve this optimization problem are distributed algorithms based on the dual ascent
algorithm and the alternating direction method of multipliers (ADMM).

1.2 Related Work

In order to describe a dynamic traffic flow in a transportation network, the cell
transmission model, originally presented in [Daganzo, 1994] and described in Sec-
tion 3.2, is used. A problem with this model is that the resulting optimization
problem with respect to the previously described control parameters becomes non-
convex. However, in [Como et al., 2016] it is shown that the flow optimization

9

Chapter 1. Introduction

problem can be relaxed to a convex problem, and that the solution of this problem
can be mapped back to control parameters for the original problem.

In [Ba et al., 2015], a similar problem is solved. This article also considers
flow opimization with the cell transmission model using adaptations of the ADMM
method and another method (accelerated dual descent). However, in this paper, the
optimization problem is solved only for the static case, where all flows and traffic
densities are constant in time.

Towards the end of this project, it was discovered that a solution of the same
problem as considered here is provided in [Ba and Savla, 2016]. In this work, some
interesting theoretical conclusions are drawn about the problem. However, the cur-
rent project, which thus has been developed independently of [Ba and Savla, 2016],
has at least two major differences. First of all, in this project, the inequality con-
straints are included in the Lagrangian function and as penalty terms in the aug-
mented Lagrangian, while these instead are taken into account in the primal update
step in the reference. Thus, even though both approaches use the cell transmis-
sion model and ADMM as starting points for solving the same problem, there are
quite large differences between the approaches. The second important difference
is that the reference does not contain any concrete implementation or any simula-
tions, whereby it is not possible to get a sense of the speed of convergence of the
algorithm. This project, on the other hand, includes a detailed description of how
the method is implemented and uses MATLAB scripts to create simulation results
which are presented for many different cases.

1.3 Method and Objective

The objective of this project is to derive and implement a distributed algorithm that
can be used to determine how the speed limits, ramp metering and turning ratios in
a given road network should be chosen in an optimal manner.

First, the special case when all the flows are constant in time, i.e., the static
case, is considered. This is easy to model compared to the dynamic case, and thus
this is suitable as a first step in the examination. The first goal is to implement the
dual ascent algorithm and ADMM for the static case, and compare the results of
these two different solutions to the problem. Another goal of this part is to gain
insights about the problem and optimization methods that can be used for the more
complicated dynamic optimization.

The remaining part of the project considers dynamic flow optimization where
the traffic network is modelled by the cell transmission model. This model contains
a large set of decision variables as well as both equality and inequality constraints,
which complicates the optimization. In order to be able to solve optimization prob-
lems for larger networks with many time discretization points in the optimization
horizon, it is of interest to have distributed methods for solving the problem. This
means that the problem can be divided into many smaller subproblems which each

10

1.4 Outline

only requires information about a small subset of all variables, instead of informa-
tion about all variables in the problem. This allows for scalability of the method,
since even a problem involving a large network and many time points can be di-
vided into problems which each involves few variables. These subproblems can in
turn be solved in parallel on different processing units.

The main goal of the project is thus to derive a distributed method that can be
used to solve the dynamic flow optimization problem. For a traffic network, the
distributivity means that in order to determine traffic density and traffic flows at a
specific part of the network, only densities and flows in the vicinity of the position
in question have to be considered in each iteration of the algorithm. As a starting
point for this algorithm, the ADMM and insights from the static flow optimization
are used. The algorithm is then constructed by generalizing this to the dynamic flow
optimization problem.

1.4 Outline

In Chapter 2, the special case of static flow optimization is considered. The chap-
ter starts with a problem formulation of this case. After that, it continues with in-
troducing the concepts of Lagrangian function and duality, which are used in the
optimization. Following this, the dual ascent method is described and it is shown
that this is distributed for the problem considered. Thereafter, the dual ascent algo-
rithm is implemented and tested. After this, an interpretation is given of the dual
variables, or Lagrange multipliers, which appears in the optimization method. The
remaining part of the chapter is devoted to the ADMM, which is explained, adapted
to the problem and tested.

In Chapter 3, the general dynamic flow optimization problem is considered.
First, a short general background to traffic flow modelling is given. Thereafter, the
cell transmission model is described. After this follows the problem formulation
and a description of how the result from the convex optimization can be interpreted
in terms of the assumed control parameters. The last part of the chapter defines
the Lagrangian and dual problem for the dynamic case, which will be used in the
optimization.

In Chapter 4, the dynamic flow optimization problem is reformulated in a way
that allows for a distributed implementation of the optimization algorithm. This
formulation and approach is based on the results from using the ADMM on the
static flow optimization problem, and is an attempt of generalizing this. Thereafter,
the necessary calculations and equations for implementing the method are carried
out and described in detail.

Chapter 5 contains tests of the derived algorithm for dynamic flow optimiza-
tion on two different problems and for different choices of the parameters in the
algorithm. First, the problems and the methods by which they are compared are
described. After this, the results from running the algorithm are presented. These

11

Chapter 1. Introduction

results are discussed in Chapter 6 and conclusions from this are given in Chap-
ter 7.

12

2
Static Network Flow
Optimization

2.1 Problem Formulation

The first part of this project consists of determining how to optimally distribute a
static traffic flow in a given road network. The road network can be described as a
graph G = (N ,E), where N = {n1,n2, . . . ,nN} is the set of nodes, corresponding
to junctions, and E = {e1,e2, . . .eE} is the set of links (edges), corresponding to
directed road segments between the nodes. For example, if there is a link directed
from node ni ∈N to node n j ∈N , then the set of links E contains the directed link
e = (ni,n j). The number of a node will be identified with the node, so that ‘node i’
refers to node ni. Furthermore, the total number of nodes, i.e., |N |, will be denoted
N and the total number of links, i.e., |E|, will be denoted E.

The relation between the nodes and links is given by the node-link incidence
matrix B ∈ RN×E . This matrix has one row for each node in N , and one column
for each link in E . Column e consists of zeros except at the rows corresponding to
the start and end node of link e, which contain +1 and −1 respectively. Expressed
in equations,

Bie =

+1 if e = (i, j)
−1 if e = (j, i)
0 if e = (j,k)

, (2.1)

for any node i ∈N , any link e ∈ E and nodes j,k 6= i.
At each node (junction), vehicles can enter the network from external roads not

included in the modelled network. The external inflow and outflow at node i are
given by element i in the column vectors λ ∈ RN and µ ∈ RN respectively. Since
only the net flows are of interest, it will be assumed that either λi ≥ 0 and µi = 0
or that λi = 0 and µi ≥ 0 for each i. Furthermore, since the flow is assumed to be
static in this chapter, it is required that the total inflow to the network equals the

13

Chapter 2. Static Network Flow Optimization

total outflow from it due to conservation of mass. This property can be stated as

111T
λ = 111T

µ = τ,

where 111 is the all-one column vector, and τ is total flow though the network, termed
the throughput of the network.

The flow at link e = (i, j) ∈ E is given by element e in the non-negative column
vector f ≥ 0, termed the flow vector. Conservation of mass, which is required in
the static case, also implies that the total (external and internal) inflow to a node
equals the total outflow from the node. Thus,

λi + ∑
j:(j,i)∈E

f(j,i) = ∑
j:(i, j)∈E

f(i, j)+µi, ∀i ∈N . (2.2)

This can be equivalently, and more compactly, stated using the node-link incidence
matrix (2.1):

B f = λ −µ. (2.3)

For a given network topology (determining B), and given external in- and out-
flows λ and µ , the task is thus to determine the flow vector f ≥ 0 such that the mass
conservation (2.3) is fulfilled. This problem has in general many solutions, and one
further requirement is needed to determine which solution should be chosen. This
requirement consists of minimizing a sum of cost functions ψe(fe), where ψe rep-
resents the cost for maintaining the flow fe at link e. If the aim is to minimize the
total delay for all travellers, the cost function should be chosen as a measure of the
total delay that the fe vehicles entering the link during one time unit experience.
The cost functions are assumed to be defined for fe ≥ 0, be strictly increasing and
convex, as well as fulfilling ψe(0) = 0.

The static network flow optimization problem can thus be stated as

minimize ψ(f) = ∑
e∈E

ψe(fe), f ≥ 0

subject to B f = λ −µ

(2.4)

2.2 Lagrangian and Dual Problem

In this section, the Lagrangian function and the dual problem, which are used for
solving the optimization problem (2.4), are defined and described. This theory is
based on [Boyd and Vandenberghe, 2009, Ch. 5], in which it is more thoroughly
described and further developed.

The Lagrangian of the problem (2.4) reads

L(f ,γ) = ψ(f)+ γ
T (λ −µ−B f), f ≥ 0, (2.5)

where γ ∈ RN are the Lagrange multipliers (or dual variables) corresponding to
the equality constraints in (2.4). The domain f ≥ 0 is inherited from the domain

14

2.3 The Dual Ascent Method

of the objective function ψ(f). The Lagrangian function incorporates information
about both the objective function ψ(f) and the constraints B f = λ −µ , and will be
useful for solving (2.4). Moreover, the dual function is defined as

θ(γ) = inf
f

L(f ,γ). (2.6)

For any feasible f , i.e., for any f fulfilling the constraint B f = λ −µ , it holds that

θ(γ)≤ ψ(f). (2.7)

This is referred to as weak duality and follows from noting that the Lagrangian, for
any fixed γ , never is smaller than the dual function, according to the definition (2.6),
and that the second term in the Lagrangian (2.5) is zero for feasible f . The relation
(2.7) implies that the dual function θ(γ) for each γ constitutes a lower bound for the
solution ψ(f ∗) of (2.4). From this it can be concluded that the solution ψ(f ∗) must
be greater than or equal to the largest value θ(γ) can take, i.e., the solution of

maximize θ(γ), (2.8)

which is called the dual problem. Thus, if a γ and an f are found such that f is
feasible (i.e., fulfills the constraints in (2.4)), and so that ψ(f) = θ(γ)≡M, it must
according to (2.7) hold that M is the optimal value of both the primal problem (2.4)
and the dual problem (2.8). A problem for which this is achievable is said to have
zero optimal duality gap, and in this case one says that strong duality holds.

An optimization problem with a convex objective function, inequality con-
straints on the form ϕ ≤ 0, where ϕ are convex functions, and affine equality con-
straints, is said to be a convex problem. Such problems usually have strong duality,
i.e., zero optimal duality gap. It can be proved that this is the case for a particular
problem by checking one of many so-called constraint qualifications. The prob-
lem (2.4) has a convex objective function, since it is a sum of convex functions, and
affine equality constraints. Thus, it is a convex problem. In the sequel, it will be
assumed that it enjoys strong duality.

2.3 The Dual Ascent Method

One optimization algorithm that can be used to solve the convex optimization prob-
lem (2.4) is the dual ascent method. This method takes advantage of the assumed
strong duality, and uses the gradient of the dual function (2.6) to find the γ solving
the dual problem (2.8). The following explanation is based on the description in
[Boyd et al., 2011].

Assume that f ∗ and γ∗ are the primal and dual optimal points, i.e., the f and γ

which solve the primal problem (2.4) and the dual problem (2.8) respectively. Since
strong duality is assumed to hold, this implies that

ψ(f ∗) = θ(γ∗)≡ inf
f

L(f ,γ∗). (2.9)

15

Chapter 2. Static Network Flow Optimization

Since the optimal point f ∗ is feasible with respect to the constraint in the primal
problem (2.4), the second term in the Lagrangian (2.5) becomes zero for any γ , and
thus

L(f ∗,γ) = ψ(f ∗).

Inserting γ = γ∗ in this equation and combining it with (2.9), it is concluded that

f ∗ = argmin
f

L(f ,γ∗).

In order to compute the gradient of the dual function, ∇θ(γ), the dual function is
formulated in terms of the Lagrangian, according to the definition (2.6). This gives

θ(γ) = L(f̃ ,γ) = ψ(f̃)+ γ
T (λ −µ−B f̃), where f̃ = argmin

f
L(f ,γ).

From this, the gradient is obtained as

∇θ(γ) = (λ −µ−B f̃), where f̃ = argmin
f

L(f ,γ). (2.10)

The dual ascent method proceeds as follows: Assume that non-optimal primal
and dual points, f k and γk, are given. The dual function gradient evaluated in γk is
according to (2.10) given by

∇θ(γk) = (λ −µ−B f k+1), where f k+1 = argmin
f≥0

L(f ,γk).

The sought optimal dual point, γ∗, is the γ which maximizes θ(γ). To find a γ for
which the dual function is larger than for γk, it is reasonable to move in the direction
of the gradient. Thus, a point γk+1 is found according to

γ
k+1 := γ

k +α∇θ(γk) = γ
k +α(λ −µ−B f k+1),

where α > 0 is the size of the step taken in the gradient direction. In summary, the
dual ascent method operates by iteratively computing

f k+1 := argmin
f

L(f ,γk) (2.11)

γ
k+1 := γ

k +α(λ −µ−B f k+1). (2.12)

If the step size α is chosen appropriately and some other conditions are fulfilled,
the values of f k+1 and γk+1 in the dual ascent algorithm will converge to the optimal
primal and dual optimal points f ∗ and γ∗. In particular, γ will continue to change
as long as f is not feasible, according to equation (2.12). However, the necessary
conditions for convergence are in many cases not fulfilled (e.g., if the Lagrangian as
a function of f does not have a minimum but can be arbitrarily small), whereby the
algorithm is not applicable. This is a major drawback of the dual ascent approach.

16

2.4 Distributed Formulation of the Dual Ascent Method

To determine when to stop the iterative scheme, a stopping criterion is needed.
Since strong duality is assumed to hold, the primal and dual objective functions,
ψ(f) and θ(γ), should be equal at optimality. An appropriate criterion is thus to
require that the duality gap ψ(f)− θ(γ) (which always is positive for feasible f
according to (2.7)) is small. The stopping criterion can thus be chosen such that the
iterations should go on until

|ψ(f)−θ(γ)|< tol

for some small tolerance tol > 0, in combination with requiring that the solution is
feasible, i.e., fulfils

B f −λ −µ = 0.

2.4 Distributed Formulation of the Dual Ascent Method

A major advantage of the dual ascent method is that it in the present case can be
formulated as a distributed algorithm. This means that the flow on any link can be
determined from the Lagrange multipliers γi for the nodes to which it is connected
only. Moreover, the Lagrange multiplier γi associated with any node i can be deter-
mined from the total in- and outflows to that node only.

The Lagrangian (2.5) can be decomposed according to

L(f ,γ) = ∑
e∈E

(
ψe(fe)− γ

T Be fe
)︸ ︷︷ ︸

Le(fe,γ)

+γ
T (λ −µ),

where Be denotes column e of the node-link incidence matrix B. From the definition
of the node-link incidence matrix, (2.1), it can be seen that

γ
T Be = (γi− γ j), where e = (i, j),

which confirms that only the Lagrange multipliers for the nodes of the link in ques-
tion are needed to compute the flow on this link. The Lagrangian thus becomes

L(f ,γ) = ∑
e∈E

(ψe(fe)− (γi− γ j) fe)︸ ︷︷ ︸
Le(fe,γ)

+γ
T (λ −µ), (2.13)

and the Lagrangian minimization (2.11) can thus be carried out by minimizing each
term Le(fe,γ) (corresponding to each link) separately, giving E minimization prob-
lems in one variable. The flow on link e at iteration k+1 is thereby given as

f k+1
e := argmin

fe≥0
Le(fe,γ

k) = argmin
fe≥0

(ψe(fe)− (γk
i − γ

k
j) fe).

17

Chapter 2. Static Network Flow Optimization

The minimization is carried out by studying the derivative of the Lagrangian
term Le. It becomes

∂Le

∂ fe
(fe,γ

k) = ψ
′
e(fe)− (γk

i − γ
k
j). (2.14)

For a given γk, the second term is constant, while the first term increases with fe,
since ψe(fe) is chosen as a convex function (implying a non-decreasing derivative).
This implies that the derivative of Le will be increasing as a function of fe. Two
cases will be distinguished, depending on the value of the derivative evaluated at
fe = 0. The first case is when

∂Le

∂ fe
(0,γk) = ψ

′
e(0)− (γk

i − γ
k
j)≥ 0 ⇔ ψ

′
e(0)≥ (γk

i − γ
k
j).

Since the derivative is non-negative at fe = 0 and is increasing, Le will increase for
fe > 0. Thus, the minimizing non-negative flow is in this case f k+1

e = 0. The second
case is when

∂Le

∂ fe
(0,γk) = ψ

′
e(0)− (γk

i − γ
k
j)< 0 ⇔ ψ

′
e(0)< (γk

i − γ
k
j).

Since the derivative is negative at fe = 0 and increasing, it will take the value zero for
some fe > 0, which is then the minimizer of Le. The optimal flow is then obtained
by setting the derivative (2.14) equal to zero, yielding

f k+1
e = (ψ ′e)

−1(γk
i − γ

k
j).

In summary, the first step in the dual ascent algorithm, (2.11), is given linkwise for
each link e ∈ E as

f k+1
e :=

{
0 if ψ ′e(0)≥ (γk

i − γk
j)

(ψ ′e)
−1(γk

i − γk
j) if ψ ′e(0)< (γk

i − γk
j)
.

Also the second step of the dual ascent algorithm, (2.12), can be be computed
distributively. By noting that row i of the mass conservation relation (2.3) can be
expressed according to (2.2), the dual variable update for node i becomes

γ
k+1
i := γ

k
i +α

(
λi + ∑

j:(j,i)∈E
f(j,i)− ∑

j:(i, j)∈E
f(i, j)−µi

)
. (2.15)

Thus, only the in- and outflows to node i are needed in order to compute the associ-
ated Lagrange multiplier γ

k+1
i .

The mechanism of the dual ascent method can now be understood for a simple
example. Assume that the flow vector f equals the optimal flow vector f ∗ except

18

2.5 Implementation of the Dual Ascent Method

for entry e which is smaller, i.e., fe < f ∗e . Then, the mass conservation (2.2) for the
start node i of link e = (i, j) is violated such that (2.15) becomes

γ
k+1
i := γ

k
i + α︸︷︷︸

>0

(f ∗e − fe)︸ ︷︷ ︸
>0

> γ
k
i .

Thus, γi is increased. In the Lagrangian minimization step (2.11), this implies that
in order for the derivative (2.14) to remain zero, if it was zero for the old dual
variable values, an increase of γi must be compensated by an increase in ψ ′e(fe).
Since ψe(fe) is an increasing convex function, this corresponds to an increase of fe.
Thus, the flow fe is increased and approaches the optimal flow value f ∗e (if α and
thereby the change of γi is small enough).

2.5 Implementation of the Dual Ascent Method

As an example, the dual ascent algorithm will be implemented for the network in
Fig. 2.1. The node-link incidence matrix is in this case, according to the definition
(2.1), given by

B =

+1 +1 0 0 0
−1 0 +1 +1 0
0 −1 −1 0 +1
0 0 0 −1 −1

 .
The next step is to choose the cost functions ψe(fe). Assuming that the goal is to
minimize the total delay that all the travellers experience in the network, the cost
functions should constitute a measure of this delay. Let le be the travel time that
a vehicle experiences on link e when there is no other traffic, i.e., when fe = 0.
Furthermore, let Ce > 0 be the link capacity, which is the upper limit of the flow
that the link can handle, i.e., fe < Ce. Then, a simple model for the delay de that a
vehicle experiences along the link, as a function of the flow on the link, is

de(fe) =

{
le

1− fe/Ce
if 0≤ fe <Ce

+∞ if fe ≥Ce
.

This delay function is convex and has the properties de(0) = le and de(fe)→+∞ as
fe→Ce. The cost function is then chosen as the delay that all vehicles entering the
link during one time unit experience together, resulting in

ψe(fe) = fede(fe) =

{
fele

1− fe/Ce
if 0≤ fe <Ce

+∞ if fe ≥Ce
. (2.16)

The cost function is convex with the properties ψe(0) = 0 and ψe(fe)→ +∞ as
fe→Ce. Differentiating the cost function (on the interval fe ∈ [0,Ce)) gives

ψ
′
e(fe) =

le
(1− fe/Ce)

2 , 0≤ fe <Ce, (2.17)

19

Chapter 2. Static Network Flow Optimization

n1

n2

n3

n4

e1

e2

e3

e4

e5

Figure 2.1 Simple road network used for example implementation of the dual as-
cent algorithm.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1,000

fe [vehicles / unit time]

ψ
e(

f e
)

Cost function ψe(fe)

0 10 20 30 40 50
0

10

20

30

40

fe [vehicles / unit time]

ψ
e’

(f
e)

Derivative of cost function, ψe’(fe)

Figure 2.2 Cost function (2.16) and its derivative (2.17) for le = 10 and Ce = 100.

and the inverse function of the derivative is obtained as

(ψ ′e)
−1(x) =Ce

(
1−
√

le
x

)
, x≥ le.

The cost function and its derivative are illustrated in Fig. 2.2 for le = 10 and Ce =
100.

2.6 Test of Dual Ascent Algorithm

Simulation Results
In the tests, the external flows were set to a unit inflow at node n1 in Fig. 2.1 and a
unit outflow at node n4, i.e. λ = ê1 and µ = ê4. This flow can, as seen in the figure,
be distributed between three different paths:

p1 = (e1,e4), p2 = (e2,e5) and p3 = (e1,e3,e5).

The empty-link delay vector was chosen as

l =
[
1 2 1 2 1

]T
, (2.18)

20

2.6 Test of Dual Ascent Algorithm

step size α 1 0.1 0.01 0.001 0.0001
number of iterations no convergence 65 589 5981 59908

execution time [s] no convergence 0.05 0.17 1.5 46

Table 2.1 Number of iterations for different step sizes α in the dual ascent algo-
rithm with l given by (2.18), Ce = 10 ∀e ∈ E and tol = 10−10.

Test 1 2 3 4 5 6

l =

1
2
1
2
1

1
2.4
1

2.4
1

1
2.5
1

2.5
1

1
2

1.1
2
1

1
2

1.2
2
1

3
2
1
2
1

f =

0.5975
0.4025
0.1949
0.4025
0.5975

0.9466
0.0534
0.8932
0.0534
0.9466

1.0000
0

1.0000
0

1.0000

0.5070
0.4930
0.0141
0.4930
0.5070

0.5000
0.5000

0
0.5000
0.5000

0
1.0000

0
0

1.0000

iter. 589 682 1311 607 742 1194

time 0.15 s 0.17 s 0.29 s 0.15 s 0.16 s 0.27 s

Table 2.2 Results for dual ascent algorithm with step size α = 0.01, Ce = 10 for
all e ∈ E and tol = 10−10.

implying that each of the paths p1, p2 and p3 would give the same delay for an
empty network. Furthermore, the link capacities were chosen to be equal: Ce = 10
for all e ∈ E . The tolerance for the size of the duality gap in the stopping criterion
was chosen as tol = 10−10. Running the algorithm with this setting for different
values of the step size α gave the convergence results in Tab. 2.1. In all cases except
for α = 1, where the algorithm did not converge, the resulting flow vector was

f =
[
0.5975 0.4025 0.1949 0.4025 0.5975

]T
,

which (approximately) fulfils the feasibility constraints B f −λ −µ = 0.
In the remaining tests, the step size α = 0.01 was used. Keeping the link capacity

vector as Ce = 10 for all e∈ E and the tolerance tol = 10−10, the results for different
empty-link delay vectors are reported in Tab. 2.2.

Discussion
The tests of different step sizes α show that, for the tested set-up, the same flow
vector f is obtained for all values for which the algorithm converges. Convergence
is obtained for the tested step sizes which are 0.1 or smaller. The fact that the results
are consistent shows that the algorithm seems to be robust with respect to changing
the step size, as long as it is small enough for obtaining convergence. The resulting
flow vector shows that the largest flow is on the links e1 and e5. This is a reasonable

21

Chapter 2. Static Network Flow Optimization

result, since the flow along these links is divided along two links on part of the travel
between the nodes n1 and n4, following from that each of these links are included
in two of the paths. In contrast, the flow along link e3 is not divided among several
links during the travel (it must follow path p3), whereby it is reasonable that this
flow is small.

When increasing the empty-link delays, le, along links e2 and e4, such that the
cost is increased for these links, the result in Test 2 in Tab. 2.2 is obtained. This
shows that almost all flow follows path p3, which is the only path not including the
links e2 and e4. Increasing the empty-link delays at e2 and e4 further, all the flow
is assigned to path p3, as shown by Test 3. Since a large cost at some links should
imply that the flow is assigned to paths not including these links, the result is in
agreement with what would be expected.

When the empty-link delay instead is increased along link e3, almost all flow
becomes equally distributed between paths p1 and p2, which do not contain the link
in question. This is shown by Test 4. If the cost is increased further (Test 5), no
flow at all is assigned to the path through e3. Also this result is reasonable, since
increasing the cost at a particular link decreases the flow at that link.

Finally, the empty-link delay was increased at link e1, which is included in paths
p1 and p3, but not in path p2. It is then expected that all flow should be assigned to
path p2 if the increased delay is sufficiently large, which is confirmed by Test 6.

The conclusion is that the dual ascent algorithm seems to work fine and give
feasible and reasonable results for the cases tested, as long as the step size α is
chosen small enough so that convergence is obtained.

2.7 Interpretation of Lagrange Multipliers

Solution methods consisting of simultaneously solving both the primal optimization
problem (2.4) and its dual problem (2.8) give not only the link flow vector f , but
also the vector of dual variables (Lagrange multipliers) γ . The dual variables can be
interpreted as a measure of how much the cost function changes for small changes
in the constraints B f = λ − µ , which will be shown in this section. The derivation
in this section is based on [Boyd and Vandenberghe, 2009, pp. 249-253] as well as
[Whittle, 2007, Ch. 1].

To show this relation, the following function is defined:

M(u)≡ min
B f=u

ψ(f), where u≡ λ −µ.

This function gives the solution of the primal problem (2.4) for a given right-hand
side u = λ − µ in the constraints. Assume that the problem is solved for a given
right-hand side u = u0, corresponding to a Lagrangian

L0(f ,γ) = ψ(f)+ γ
T (u0−B f),

22

2.7 Interpretation of Lagrange Multipliers

and with the solution M(u0). This solution will now be compared to the solution
that would be obtained if u0 would have been replaced with ũ = u0 + uε for some
small uε , constituting a perturbation. In this case, the Lagrangian would become

L̃(f ,γ) = ψ(f)+ γ
T (ũ−B f),

and the solution would be M(ũ). Using that weak duality (2.7) holds for any feasible
f and any γ , it follows that

M(ũ)≡ min
B f=ũ

ψ(f)≥ θ̃(γ)≡ inf
f

L̃(f ,γ)

= inf
f
{L0(f ,γ)+ γ

T uε}= θ0(γ)+ γ
T uε ,

(2.19)

where θ̃(γ) and θ0(γ) are the dual functions corresponding to the perturbed and
unperturbed problem respectively. Since this holds for any γ , the value γ = γ∗, being
the optimal dual point for the unperturbed problem, can be chosen. Assuming that
strong duality holds, it follows that θ0(γ

∗) = M(u0). Thus, (2.19) gives

M(ũ)≥ θ0(γ
∗)+(γ∗)T uε = M(u0)+(γ∗)T uε

or, equivalently,
M(u0 +uε)−M(u0)≥ (γ∗)T uε . (2.20)

In the sequel, it will be assumed that the function M(u) is differentiable. If the
perturbation is chosen as uε = ε êi, where êi is a unit basis vector, and ε > 0 is some
small number, (2.20) then gives

γ
∗
i ≤

M(u0 + ε êi)−M(u0)

ε
→ ∂M

∂ui
= (∇M)T êi when ε → 0.

If instead choosing uε =−ε êi, the result is

γ
∗
i ≥

M(u0)−M(u0− ε êi)

ε
→ ∂M

∂ui
= (∇M)T êi when ε → 0.

From these two results, the conclusion is that if arbitrary perturbations can be added
to u = λ −µ , then it holds that

γ
∗
i =

∂M
∂ui

= (∇M)T êi.

In words, this means that γ∗i can be interpreted as the rate of change of the optimal
(smallest possible) cost when the external flow to node i is changed infinitesimally.
If, e.g., the inflow to node i is changed by a small amount λ ε

i , then the cost would
increase by approximately λ ε

i γ∗i .

23

Chapter 2. Static Network Flow Optimization

However, since the problem consists of a static flow analysis, it is required that
the total external inflow equals the total external outflow, whereby the vector u can-
not be chosen arbitrarily, but must fulfil 111T u= 0. Then, the analysis and conclusions
above must be modified in order to take this into account. The perturbation is in-
stead chosen as uε = ε v̂, with v̂ = 1√

2
(êi− ê j), so that ũ = u0 + uε fulfils the mass

conservation 111T ũ = 0. Then, (2.20) gives

γ
∗
i − γ

∗
j ≤
√

2
M(u0 + ε v̂)−M(u0)

ε
→
√

2
∂M
∂ v̂

= (∇M)T (êi− ê j) when ε → 0.

Choosing uε =−ε v̂ gives analogously

γ
∗
i − γ

∗
j ≥
√

2
M(u0)−M(u0− ε v̂)

ε
→
√

2
∂M
∂ v̂

= (∇M)T (êi− ê j) when ε → 0.

The conclusion from these two inequalities is that

γ
∗
i − γ

∗
j = (∇M)T (êi− ê j) =

∂M
∂ui
− ∂M

∂u j
.

In the static analysis, the Lagrange multipliers can thus be interpreted as follows:
If the inflow is increased by a small amount λ ε

i = ε at node i, and the outflow
is increased by the same amount, µε

j = ε , at node j, then the cost will increase
by approximately ε(γ∗i − γ∗j). In other words, the difference between two optimal
Lagrange multipliers, γ∗i − γ∗j , is the rate of change of the minimized cost function
when increasing the flow between node i and node j.

2.8 Augmented Lagrangian

As mentioned in Section 2.3, several assumptions about the problem in question
must hold in order for the dual ascent method to be applicable. An example of a
problem type where the method in general is not applicable is if the objective func-
tion ψ(f) is a non-zero affine function (defined for all real numbers). In this case,
the first step in the algorithm, (2.11), might fail, since there in general is no finite
variable value which solves the minimization problem. A modification of the dual
ascent method which is applicable for a larger class of problems and in addition
often has better convergence and robustness properties consists of replacing the La-
grangian with a so-called augmented Lagrangian, in combination with a specific
choice of step size in the dual variable update (2.12).

The augmented Lagrangian for the static network flow optimization problem
(2.4) is

Lρ(f ,γ) = ψ(f)+ γ
T (u−B f)+

ρ

2
‖u−B f‖2

2, f ≥ 0, (2.21)

24

2.8 Augmented Lagrangian

where u ≡ λ − µ and ρ > 0 is a parameter, called the penalty parameter, to be
chosen. The augmented Lagrangian is equal to the ordinary Lagrangian (2.5) ex-
cept for the last term, and reduces to the ordinary Lagrangian if setting ρ = 0. The
augmented Lagrangian can be viewed as the ordinary Lagrangian corresponding to
the problem

minimize ψaug(f) = ∑
e∈E

ψe(fe)+
ρ

2
‖λ −µ−B f‖2

2, f ≥ 0

subject to B f = λ −µ

(2.22)

This problem is equivalent to the original problem (2.4), since for each solution to
the both the original problem and to (2.22), B f = λ −µ according to the constraint,
implying that the second term in the objective function ψaug(f) is zero, whereby this
objective function is equal to the original objective function ψ(f). Thus, proceeding
in accordance with the dual ascent method with the augmented Lagrangian (2.21)
instead of the original Lagrangian corresponds to solving the problem (2.22), which
is equivalent to the original problem (2.4) and thus has the same solution.

For an inner solution, i.e., a solution f ∗ > 0, of the problem (2.4), a necessary
condition on the ordinary (non-augmented) Lagrangian L(f ,γ) is that

∇L(f ,γ) = 0 ⇔

{
∇ f L(f ,γ) = ∇ψ(f)−BT γ = 0
∇γ L(f ,γ) = λ −µ−B f = 0

. (2.23)

This implies that the constraint λ − µ − B f = 0 is fulfilled, and that ∇ψ(f)−
∇ f (λ − µ − B f)T γ = 0. The latter equation states that the objective gradient,
∇ψ(f), is parallel to a linear combination of the gradients of all equality constraint
functions, λi−µi−B(:,i) f . If this is not the case, the objective function decreases in
some feasible direction, which contradicts the fact that the point in question it is a
minimum.

If the step size in the dual variable update (2.12) is chosen as α = ρ , then the
so-called dual feasibility ∇ψ(f)−BT γ = 0 in (2.23) is automatically fulfilled for
an inner optimal point f ∗ > 0. From the first step in the dual ascent algorithm,
(2.11), using the augmented Lagrangian, one gets that f k+1 := argmin f Lρ(f ,γk).
This implies that

0 = ∇ f Lρ(f k+1,γk) = ∇ψ(f k+1)−BT
γ

k−ρBT (λ −µ−B f k+1). (2.24)

Then, with α = ρ , the dual update step (2.12) yields

γ
k+1 := γ

k +ρ(λ −µ−B f k+1),

which inserted into (2.24) gives that

∇ψ(f k+1)−BT
γ

k+1 = 0.

25

Chapter 2. Static Network Flow Optimization

Using the dual ascent method with the augmented Lagrangian (2.21) and the dual
variable update step size α = ρ is known as the method of multipliers.

For further explanation of the theory in this section, see [Boyd et al., 2011,
Ch. 2], from which also the theory presented here was obtained.

2.9 ADMM

An advantage of the dual ascent method is that it can be formulated in a distributed
manner, since the Lagrangian (2.13) can be decomposed into one term for each
link, and since the dual variable update only requires information about flows on
links containing the node corresponding to the variable in question. In the method
of multipliers, the Lagrangian is replaced by the augmented Lagrangian, which has
the extra term

ρ

2
‖u−B f‖2

2 =
ρ

2 ∑
i∈N

(
∑

j:(j,i)∈E
f ji− ∑

j:(i, j)∈E
fi j +ui

)2

,

where u≡ λ−µ . This expression contains crossproducts between flows on different
links, which prevents a decomposition of the augmented Lagrangian into separate
terms for each link. Neither a nodewise decomposition is possible, since each flow
variable fi j is associated with both the node i and the node j. A possible method
for accomplishing a nodewise decomposition is to use a modified version of the
method of multipliers, known as the alternating direction method of multipliers,
ADMM.

ADMM can be used to solve problems on the form

minimize ψ1(f)+ψ2(g)

subject to F f +Gg = u,
(2.25)

for some objective functions ψ1 and ψ2, some given matrices F and G, and some
given vector u. The set of (primal) variables is here partitioned into the vectors f and
g. The only difference between the method of multipliers and ADMM is that the first
step of the algorithm, the Lagrangian minimization (2.11), is replaced by two steps.
In the first step, the minimization is carried out with respect to only the variables f ,
while the remaining variables, g, are fixed. In the second step, the variables f are
fixed, and the minimization is carried out with respect to the variables g. Thus, the
algorithm becomes

f k+1 := argmin
f

Lρ(f ,gk,γk) (2.26)

gk+1 := argmin
g

Lρ(f k+1,g,γk) (2.27)

γ
k+1 := γ

k +ρ(u−F f k+1−Ggk+1). (2.28)

26

2.10 ADMM-formulation of the Flow Problem

Notice the difference compared to the method of multipliers. For the case of the
method of multipliers, (2.26) and (2.27) would be replaced with (f k+1,gk+1) :=
argmin f ,g Lρ(f ,g,γk), i.e., simultaneous minimization with respect to all primal
variables.

This section is based on the description in [Boyd et al., 2011, Ch. 3].

2.10 ADMM-formulation of the Flow Problem

In order for ADMM to solve the problem consisting of the non-decomposability of
the augmented Lagrangian, the variables f and g must be chosen appropriately. A
useful approach is to let f be the original link flow variables, and to let g represent
the same link flows. The idea of this approach is to use f for representation of the
inflows to each node, and to use g for representation of the outflows from each node.
This will allow for a nodewise decomposition of the derivatives of the augmented
Lagrangian used in each Lagrangian minimization step in ADMM, i.e., (2.26) and
(2.27). Since f and g represent the same flows, an additional constraint, f = g,
must be added. Furthermore, the cost functions in (2.25) are chosen as ψ1(f) =
ψ(f) and ψ2(g) = 0, where ψ(f) is the cost function from the original problem
formulation (2.4). The ADMM-formulation of the static flow optimization problem
thereby becomes

minimize
f ,g

ψ(f ,g) = ∑
e∈E

ψe(fe), f ,g≥ 0,

subject to ∑
j:(j,i)∈E

f ji− ∑
j:(i, j)∈E

gi j +ui = 0, i = 1, . . . ,N,

fe−ge = 0, e = (i, j) ∈ E , e = 1, . . . ,E.

(2.29)

This problem is equivalent to the original problem (2.4), since the only difference
is that the variables f at some places in the original constraints have been replaced
by g, but g is required to be equal to f according to the added constraints.

The augmented Lagrangian for the ADMM-formulation becomes

Lρ(f ,g;γ,ν) = ∑
(i, j)∈E

ψi j(fi j)

+ ∑
i∈N

γi

(
∑

j:(j,i)∈E
f ji− ∑

j:(i, j)∈E
gi j +ui

)
+ ∑

(i, j)∈E
νi j(fi j−gi j)

+
ρ

2 ∑
i∈N

(
∑

j:(j,i)∈E
f ji− ∑

j:(i, j)∈E
gi j +ui

)2

+
ρ

2 ∑
(i, j)∈E

(fi j−gi j)
2, f ,g≥ 0.

(2.30)
Note that in this expression, each flow variable in f and g is associated to one node
only. The variable fi j is an inflow to node j and is thus associated with node j, while

27

Chapter 2. Static Network Flow Optimization

gi j is an outflow from node i and thus associated with node i. When the expression is
differentiated, it will consist of terms ψ ′i j(fi j), linear terms of the flow variables and
constant terms. Thereby, a nodewise decomposition of the augmented Lagrangian
derivatives is possible. The ADMM algorithm thus gets the appearance

f k+1 := argmin
f

Lρ(f ,gk;γ
k,νk) (2.31)

gk+1 := argmin
g

Lρ(f k+1,g;γ
k,νk) (2.32)

[
γk+1

νk+1

]
:=
[

γk

νk

]
+ρ

∑ j:(j,1)∈E f j1−∑ j:(1, j)∈E g1 j +u1
...

∑ j:(j,N)∈E f jN−∑ j:(N, j)∈E gN j +uN
f1−g1

...
fE −gE .

(2.33)

In order to update the inflow variables f ji for a node i, only the dual variables ν ji
associated with the inflow links to the node in question as well as the dual variable γi
associated with the same node need to be known. Thus, only these variable values
need to be communicated to the processing unit that computes the updated flow
variables f ji. Analogously, the outflow variables gi j for the node i are updated using
only the dual variables νi j associated with the outflow links from i as well as γi
associated with node i. The update of the dual variable γi uses only the flow variables
f ji and gi j for in- and outlinks to and from node i respectively. Finally, the update
of the dual variable νi j uses the two flow variables fi j and gi j only. Thereby, the
algorithm is distributed.

2.11 Lagrangian Minimization

The derivatives of the augmented Lagrangian (2.30), which are used in the La-
grangian minimization steps (2.31) and (2.32), become

∂Lρ

∂ f ji
= ψ

′
ji(f ji)+ γi +ν ji +ρ

(
∑
`

f`i−∑
`

gi`+ui

)
+ρ(f ji−g ji) (2.34)

∂Lρ

∂gi j
=−γi−νi j−ρ

(
∑
`

f`i−∑
`

gi`+ui

)
−ρ(fi j−gi j). (2.35)

In the first Lagrangian minimization step (2.30), the derivatives (2.34) are used.
The derivative with respect to f ji depends on the other inflows f`i to node i, and can
thereby not be decoupled completely as in the dual ascent algorithm. However, since
only the inflows to node i and not any other inflows are present in this derivative,

28

2.12 Test of ADMM Algorithm

the minimization can be considered for each node separately. Thereby, the algorithm
still has distributive properties which should be advantageous for scalability.

In the test implementation of the algorithm, the first Lagrangian minimization
step (2.31) is carried out by considering one node i at a time. For node i, all inflows
f`i except one are assumed to be fixed at the previous value (initially zero). Mini-
mization is then carried out with respect to the non-fixed variable, after which this is
considered fixed and the next inflow variable is varied instead, and so on. This con-
secutive minimization procedure is carried out for all inflow variables. The entire
procedure is then iterated until the sum of the changes of the Lagrangian deriva-
tives between consecutive iterations is small. An analogous procedure holds for the
second Lagrangian minimization step (2.32), but with all outflows gi` from node i
considered instead.

2.12 Test of ADMM Algorithm

Simulation Results
The ADMM algorithm was tested with the problem used in ‘Test 1’ in the dual
ascent tests in Section 2.6. To run 100 iterations took about 5 seconds. The resulting
values of the cost function and feasibility residual after each iteration, for different
values of the penalty parameter ρ , are illustrated in Fig. 2.3. The feasibility residual
εfeas consists of the sum of the absolute values of the residuals for all constraints,
i.e.,

εfeas =
N

∑
i=1
|B(i,:) f −λi−µi|.

A quantity that in the sequel will be referred to as the ‘duality gap’ is for the
tests shown in Fig. 2.4. This quantity consists of ψ(f k)−L(f k,γk), and is thus not
strictly speaking equal to the real duality gap which would be ψ(f k)−L(f k,γk−1),
since the flow variable f k is determined using the dual variable γk−1. However, in
convergence, γk = γk−1 and since f k minimizes L(f ,γk−1) it holds that L(f k,γk) =
θ(γk) and the studied quantity will thereby converge towards the real duality gap.
Note that the duality gap may be negative due to infeasible values of f (for feasible
values of f , it is always non-negative).

The flow values after each iteration for the different choices of ρ are plotted in
Fig. 2.5.

Discussion
The simulations show that the ADMM algorithm can give a reasonably accurate
solution of the problem in slightly fewer iterations compared to the dual ascent
algorithm, for a good choice of the penalty parameter ρ . However, each iteration in
the ADMM requires more computations and can comprise several inner iterations
in the f - and g-minimization parts of the algorithm. Thereby, the running time for

29

Chapter 2. Static Network Flow Optimization

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Iteration nbr

O
bj

ec
tiv

e
fu

nc
tio

n

Objective function

Dual ascent (ρ = 0.1)
ADMM - ρ = 0.1
ADMM - ρ = 0.8
ADMM - ρ = 10

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

Iteration nbr

Fe
as

ib
ili

ty
re

si
du

al

Feasibility residual

Dual ascent (ρ = 0.1)
ADMM - ρ = 0.1
ADMM - ρ = 0.8
ADMM - ρ = 10

Figure 2.3 Objective function and feasibility residual from the static ADMM al-
gorithm, with different penalty parameter values ρ .

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

Iteration nbr

D
ua

lit
y

ga
p

Duality gap

Dual ascent (ρ = 0.1)
ADMM - ρ = 0.1
ADMM - ρ = 0.8
ADMM - ρ = 10

Figure 2.4 Duality gap from the static ADMM algorithm with different penalty
parameter values ρ .

30

2.12 Test of ADMM Algorithm

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Iteration number

L
in

k
flo

w

Flow at link 1

Dual ascent (ρ = 0.1)
ADMM - ρ = 0.1
ADMM - ρ = 0.8
ADMM - ρ = 10

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Iteration number

L
in

k
flo

w

Flow at link 2

Dual ascent (ρ = 0.1)
ADMM - ρ = 0.1
ADMM - ρ = 0.8
ADMM - ρ = 10

0 20 40 60 80 100 120
0

0.1

0.2

Iteration number

L
in

k
flo

w

Flow at link 3

Dual ascent (ρ = 0.1)
ADMM - ρ = 0.1
ADMM - ρ = 0.8
ADMM - ρ = 10

0 20 40 60 80 100 120
0

0.2

0.4

0.6

Iteration number
L

in
k

flo
w

Flow at link 4

Dual ascent (ρ = 0.1)
ADMM - ρ = 0.1
ADMM - ρ = 0.8
ADMM - ρ = 10

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

Iteration number

L
in

k
flo

w

Flow at link 5

Dual ascent (ρ = 0.1)
ADMM - ρ = 0.1
ADMM - ρ = 0.8
ADMM - ρ = 10

Figure 2.5 Flow variables for static ADMM algorithm with different penalty pa-
rameter values ρ .

the ADMM might anyway be greater than for the dual ascent algorithm, depending
on how many computations are required in each iteration. If the implementation of
each iteration step is efficient, the ADMM however seems to be an efficient method,
since the cost function converges approximately to the optimal value in about half
the number of iterations for ρ = 0.8.

Another advantage of ADMM is that it has improved robustness properties.
While the dual ascent algorithm does not converge for the step size α = 0.8, the
dual ascent algorithm seems to operate fine with the same value of the penalty pa-
rameter ρ . Also larger step sizes (penalty parameters) seem to work fine with the
ADMM, with the only consequence that the flow variables converge more slowly
towards the minimizing values. The better robustness properties can also be seen at,
e.g., the flow values at link 3. While the dual ascent algorithm results in fast oscilla-
tions before the convergence, the changes of the flow values between iterations are
much smoother with ADMM.

In conclusion, the ADMM algorithm for static flow optimization seems to have

31

Chapter 2. Static Network Flow Optimization

some advantages compared to the dual ascent algorithm, which can be useful if each
iteration of the algorithm can be implemented efficiently.

32

3
Dynamic Network Flow
Optimization

The second part of this project consists of deriving, implementing and studying an
algorithm for optimization of traffic flow distribution in a given road network as a
function of time. That is, the difference from the previously studied problem is that
both the external in- and outflows as well as the traffic densities and flows in the
network are allowed to vary with time. This implies that both the distribution of
flow between different paths as well as the flow on different parts of a single road
can vary. In order to describe this, a more elaborate model than earlier has to be
used, which has the ability to describe both temporal and spatial variations.

This chapter contains a description of how dynamic traffic flow can be modelled,
as well as a formulation of the problem type that will be studied in the rest of this
report. In Section 3.1, a description is given of how traffic flow can be modelled in
continuous time and space by hydrodynamic models. In Section 3.2, the cell trans-
mission model, which is discrete in space and time but works as an approximation
of the hydrodynamic model, is described. This is the model that will be used in the
optimization. Section 3.3 describes an alternative way of viewing the flow variables
in the cell transmission model. Instead of considering all flow variables, the total
outflow from each cell and a routing matrix which distributes this outflow among
the outgoing links are considered. This concept will be useful in order to interpret
the results from the optimization as ramp metering and speed regulations on the
roads. Section 3.4 describes the problem type that will be considered in the rest of
this report. In this section it is also described how the result from the optimization
can be interpreted in terms of turning ratios and ramp metering or speed regulations.
Finally, Section 3.5 gives the Lagrangian and the corresponding dual problem for
the considered problem.

33

Chapter 3. Dynamic Network Flow Optimization

3.1 Traffic Flow Modelling

In traffic flow modelling, usually two different cases are distinguished: microscopic
and macroscopic models [Seibold, 2015]. In microscopic models, the trajectory of
each vehicle is described. The problem with this approach is that it, for a human
driver, is impossible to describe exactly how the vehicle will move even if the states
of all surrounding vehicles are known. For example, the driver’s mood and expec-
tations of how the traffic flow will evolve based on earlier experiences are factors
that affect how the vehicle will move. Even if it would be possible to approximately
model the driver’s behaviour, small errors in this model might cause large differ-
ences in the evolution of the entire system, since the model is non-linear.

A practically more useful approach is to use macroscopic models. In hydro-
dynamic models, as the Lighthill-Whitham-Richards model, the traffic flow is de-
scribed in the same manner as a flow of liquid in a system of pipes. Consider a road
with an associated position coordinate ξ on which the traffic density (vehicles per
unit length) is given by ρ(ξ , t) at time t. The traffic volume xab(t) at time t on the
part of the road between ξ = a and ξ = b is given by

xab(t) =
∫ b

a
ρ(ξ , t) dξ .

If the flow (vehicles per time unit) along the road is given by f (ξ , t), then the con-
servation of vehicles implies that the time derivative of traffic volume on the road
segment [a,b] equals the inflow at a minus the outflow at b, i.e.

d
dt

xab(t) =
∫ b

a

∂

∂ t
ρ(ξ , t) dξ = f (a, t)− f (b, t). (3.1)

Furthermore, the right-hand side of this expression can according to the fundamen-
tal theorem of calculus be written as

f (a, t)− f (b, t) =−(f (b, t)− f (a, t)) =−
∫ b

a

∂

∂ξ
f (ξ , t) dξ . (3.2)

Combining (3.1) and (3.2) and noting that this is valid for arbitrary values of a and
b implies the relation

∂

∂ t
ρ(ξ , t)+

∂

∂ξ
f (ξ , t) = 0. (3.3)

This is called the continuity equation or flow conservation equation, and states
that no vehicles are created or disappear in any segment.

In order for the continuity equation (3.3) to be able to describe the traffic den-
sity ρ(ξ , t) along the road, the flow f (ξ , t) must be related to the density. Empirical
studies show that when the density is under a certain limit, the vehicles’ velocities
are approximately independent of the density. Thus, in this case, the vehicles are as-
sumed to have the free-flow velocity v, giving a flow f = vρ . The flow can increase

34

3.2 The Cell Transmission Model

0 2 4 6 8 10

0

0.5

1

1.5

2

Density

Fl
ow

Flow-density relation

Figure 3.1 Flow f at a specific position ξ and time t at the road as a function of
the density ρ according to (3.4) with v = 1, w = 0.25, C = 1.5, ρjam = 10.

until a certain limit, the maximum flow capacity C. When this limit is reached,
the flow keeps constant for increasing density until the density reaches a certain
limit. At this point, the density is large enough to start to slow down the traffic, and
thereby decrease the flow. The maximum density that can occur is the jam density
ρjam. This density corresponds to a queue where the vehicles do not move, and thus
the flow is zero. A simple model for the relation between flow and density with
these properties is

f (ξ , t) = min{vρ(ξ , t), C, w(ρjam−ρ(ξ , t))}, (3.4)

which is illustrated in Fig. 3.1. The parameter w > 0 can be viewed as the speed of
the congestion wave that propagates backwards when a queue starts to build up at
the road. This is usually smaller than the free-flow velocity v of the vehicles. Now,
by inserting (3.4) into the flow conservation equation (3.3), the density ρ(ξ , t) can
be computed if initial conditions and boundary conditions are given.

3.2 The Cell Transmission Model

In order to numerically compute the traffic density at each point in the road network
as a function of time, a method which is discrete in space and time but is a good
approximation of the hydrodynamic model should be used. Such a method is the cell
transmission model, CTM, which was originally proposed in [Daganzo, 1994].
This model has in [Como et al., 2016] been used for the study of the same kind of
problems as considered in this project.

In the CTM, a spatial discretization of the road network is used. The discretiza-
tion is obtained by dividing the roads into segments of a particular length, termed
cells. An example of this is given in Fig. 3.2. The traffic volume in cell i at time

35

Chapter 3. Dynamic Network Flow Optimization

Figure 3.2 Example of spatial CTM-discretization of a road network consisting of
two one-way roads. The red boxes correspond to cells. Cell 5 has two inflow links
and two outflow links, while the remaining cells have at most one inflow and one
outflow link.

t is denoted by xi(t). Furthermore, the external inflow, i.e., the inflow from roads
outside the modelled network, to cell i at time t is denoted by λi(t) and the external
outflow from the cell at time t by µi(t). The flow between cell i and cell j at time t
is denoted by fi j(t). All the presented quantities are assumed to be non-negative.

The discretized road network used in the CTM will be represented by a graph
where the set of nodes, N = {n1, . . . ,nN}, represent the cells, and the set of links,
E = {e1, . . . ,eE}, represent interconnections between cells. Note the difference from
the static flow modelling where the links corresponded to roads and the nodes to
junctions. Thus, the dynamics in continuous time is given by

ẋi(t) = λi(t)−µi(t)+ ∑
j:(j,i)∈E

f ji(t)− ∑
j:(i, j)∈E

fi j(t), i = 1, . . . ,N, (3.5)

where i refers to cell (node) ni and N is the total number of cells. This relation is
illustrated in Fig. 3.3.

In order to obtain a computer implementable algorithm, also a temporal dis-
cretization is needed. The time-derivative is, in accordance with the Euler method,
approximated by a forward difference:

ẋi(tk)≈
xi(tk +h)− xi(tk)

h
, for tk = (k−1)h, k = 1,2, . . . , (3.6)

where h = tk+1− tk > 0 is the chosen time step size. Denoting xi(tk), λi(tk), µi(tk)
and fi j(tk) by xk

i , λ k
i , µk

i and f k
i j thus gives the discretized dynamics

xk+1
i = xk

i +h

(
λ

k
i −µ

k
i + ∑

j:(j,i)∈E
f k

ji− ∑
j:(i, j)∈E

f k
i j

)
,

k = 1, . . . ,K
i = 1, . . . ,N

, (3.7)

where K is the number of time steps considered, so that the time interval during
which xi is studied has length T = Kh. Now, if the initial traffic volumes in the

36

3.2 The Cell Transmission Model

Figure 3.3 The traffic volume xi in cell i depends on the inflows from from other
cells and external inflows (red arrows) as well as outflows to other cells and external
outflows (blue arrows), according to (3.5).

cells, x1, as well as the flows λ k, µk and f k for times k = 1, . . . ,K are given, the
traffic volumes in the cells, xk, can be computed for times k = 2, . . . ,K + 1 by the
model (3.7).

Except for the dynamics model (3.7), the CTM also includes constraints on
the flows, which depend on the current cell traffic volumes. These correspond to
the limitations of the flow that were discussed when establishing the flow-density
relation (3.4) illustrated in Fig. 3.1.

The total inflow, i.e., the external and internal inflow, to cell i at time k is limited
by a supply function si(xk

i), which depends on the cell traffic volume at the current
time. This function is non-negative, non-increasing and concave. It describes the
supply of road capacity that cell i provides when receiving flow. The total outflow
from cell i at time k is limited by a demand function, di(xk

i). This function is
non-decreasing and concave, and fulfils di(0) = 0. It describes the demand on road
capacity that cell i requires when emitting flow. Examples of simple supply and
demand functions are illustrated in Fig. 3.4. Thus, the model has the constraints

λ
k
i + ∑

j:(j,i)∈E
f k

ji ≤ si(xk
i), k = 1, . . . ,K, i = 1, . . . ,N, (3.8)

µ
k
i + ∑

j:(i, j)∈E
f k
i j ≤ di(xk

i), k = 1, . . . ,K, i = 1, . . . ,N. (3.9)

The supply constraint implies that the allowed inflow to the cell in question de-
creases when the traffic volume increases. This is reasonable, since a large amount
of traffic on a road segment should increase the congestion in this cell.

The demand constraint assures that the flow from a cell is zero if there is no
traffic in the cell, by the property di(0) = 0 in combination with the non-negativity
requirement on the flow variables. Assume that the demand function is linear, as in
Fig. 3.4, and has the slope v/L, where L is the length of the cell. Then, the value of
the function corresponds to the outflow that would result if the vehicles in the cell

37

Chapter 3. Dynamic Network Flow Optimization

0 2 4 6 8 10
0

2

4

6

8

10

x

d(
x)

Demand function

0 2 4 6 8 10
0

2

4

6

8

10

x

s(
x)

Supply function

Figure 3.4 Example of demand and supply functions.

are equally distributed and drive at the speed v. Thus, choosing v as the free-flow
velocity and assuming that the vehicles never drive faster than this speed naturally
implies the demand constraint. A limited maximum flow capacity, corresponding
to the flat part of the graph in Fig. 3.1, can be taken into account by replacing the
demand function with a modified demand function min{d(xk

i), Ck
i }, where Ck

i is the
maximum flow capacity.

The cell lengths Li in the CTM should be chosen such that they do not exceed
the length that a vehicle travels during one time interval h when driving with the
free-flow speed v at the road in question, i.e., with the speed that it would have if
the traffic density is low. This is necessary in order to get numerical stability of
this discetized solution to the originally continuous problem, according to the CFL
condition.

When the time step h, and thereby also the cell lengths Li, go to zero, the CTM
gives the same result as the hydrodynamic model, but even when the time steps
are larger, the model gives similar and resonable results, as described in [Daganzo,
1994].

3.3 Routing Matrix and Control Parameters

Now that a model for the traffic network and its dynamics is established, the ques-
tion to be addressed is the following: For given external inflows λ k, how should the
remaining flow variables f k and µk be chosen such that the constraints (3.7), (3.8)
and (3.9) are fulfilled? These flow variables are obtained if the total outflow from
each cell at each point in time, as well as the distribution of this outflow among
the outgoing links is specified. Thus, this is an alternative way to describe the flow
distribution.

The distribution of the outflow from cell i is described by the routing matrix R.
The matrix element 0≤ Ri j ≤ 1 (row i, column j) is the fraction of the total outflow
from cell i that goes to cell j at the current time. Thus, the sum of the elements
at row i in R is 1 if i is not a sink, i.e., if there is no external outflow from cell

38

3.3 Routing Matrix and Control Parameters

0 2 4 6 8 10

0

2

4

6

Cell traffic volume

M
od

ifi
ed

de
m

an
d

fu
nc

tio
n

Modified demand function for non-source cell

α i = 1
α i = 0.75
α i = 0.5

0 2 4 6 8 10

0

2

4

6

Cell traffic volume

M
od

ifi
ed

de
m

an
d

fu
nc

tio
n

Modified demand function for source cell

α i = 1
α i = 0.75
α i = 0.5

Figure 3.5 Modified demand function d̄i(x) according to (3.14) for a non-source
cell i /∈ R (left) and a source cell i ∈ R (right) with the control parameter set to
αi = 1, 0.75 and 0.5. The remaining values are chosen as di(x) = x, Ci = 5.

i. Furthermore, Ri j = 0 if there is no link between cell i and cell j. Expressed in
equations, the routing matrix thereby has the properties

0≤ Ri j ≤ 1, i, j = 1, . . . ,N, (3.10)
Ri j = 0 if (i, j) /∈ E , (3.11)

0≤
N

∑
j=1

Ri j ≤ 1, i = 1, . . . ,N, (3.12)

N

∑
j=1

Ri j = 1 ∀i such that µi = 0. (3.13)

In addition to the routing matrix, the outflow from each cell must be known in
order to determine the flow variables. The total outflow from cell i is limited by the
corresponding demand function di(xi) and by the supply functions s j(x j) belonging
to the cells connected by the outflow links from cell i according to (3.9) and (3.8).
Thus, modifying the demand functions is one way of controlling the outflows from
the cells. This is what will be used in the implementation of the optimal control. If
the set of sources, i.e., the set of cells for which λi 6= 0, is denoted by R, modified
demand functions are defined according to

d̄i(xi,αi) =

{
min{αidi(xi),Ci} if i ∈ E \R
min{di(xi),αiCi} if i ∈R

, (3.14)

where αi ∈ [0,1] are possibly time dependent control parameters, and Ci ≥ 0 are
possibly time dependent maximum flow capacities. These functions are illustrated
in Fig. 3.5.

The interpretation of the modified demand functions is as follows: For the non-
source cells, i ∈ E \R, the parameter αi changes the speed limit at free flow in the

39

Chapter 3. Dynamic Network Flow Optimization

cell. For a linear demand function di(x), an αi < 1 implies a decrease of the slope
of the demand function with the corresponding ratio, and the slope is in this case
equal to the free-flow speed limit.

For the source cells, i ∈ R, αi implies a limitation of the maximum outflow
allowed from the cell. This corresponds to implementing a ramp metering on the
source cell, so that the number of vehicles that can leave this cell per unit time is
limited.

For a given routing matrix R, the outflow from each cell will in the sequel be
assumed to be the largest possible flow which satisfies the supply and demand con-
straints (3.8) and (3.9), where the demand function d(x) is replaced by the modified
demand function (3.14). The total outflow from cell i, denoted by zi, will thus be
given by

zi =

{
µi = d̄i(xi,αi) for i ∈ S
βid̄i(xi,αi) for i ∈ E \S

, (3.15)

where S is the set of sink cells, i.e., cells for which it is allowed to have µi 6= 0, and
βi ∈ [0,1] is a parameter chosen such that, for a given routing matrix R, the outflow
from cell i is as large as it can be without violating the supply constraints (3.8) of
its out-neighbours. This is mathematically expressed as

βi = sup

{
β ∈ [0,1] : β · max

j:(i, j)∈E

E

∑
`=1

R` jd̄`(x`,α`)≤ s j(x j)

}
. (3.16)

The interpretation of this expression is as follows: For cell i, one of its out-neighbour
cells j is considered at a time. For each out-neighbour cell j, the total flow to this
cell is given by ∑` R` jz` = ∑` R` jβ`d̄`(x`,α`), i.e., the sum of the flows from the in-
neighbour cells ` to j. This total inflow is not allowed to exceed the supply function
s j(x j) of cell j. Thus, the coefficient β must be chosen sufficiently small for this
to be the case. On the other hand, the flow should be as large as it can be without
violating the constraints. Thus, β is chosen so that the total inflow to each of the
out-neighbour cells j of i is as large as it possibly can be while also satisfying
the corresponding supply constraint. Once the total outflows from the cells, z, are
known, the internal flows are given by

fi j = Ri jzi, (3.17)

according to the definition of the routing matrix.
In conclusion: for given external inflows λ and initial cell traffic volumes x1,

every choice of routing matrix R (with non-negative elements) fulfilling (3.10)–
(3.13), and control parameters αi ∈ [0,1], the cell traffic volumes x as well as the
flow variables f and µ are given by the CTM according to the equations (3.7)–
(3.17).

40

3.4 Problem Formulation

3.4 Problem Formulation

For every choice of routing matrix R and control parameters α (fulfilling the pre-
scribed constraints), the CTM gives feasible cell traffic volumes and flows when the
flows are determined according to the previous subsection. Thus, there are many
possible solutions, and the problem to be studied is which one of these solutions
should be chosen. In order to compare different solutions, a criterion consisting of
a cost function must be chosen. The cost function ψ is assumed to be a convex
function depending on x and it is also assumed to be separable with respect to the
cells and to fulfil ψ(0) = 0. It can thus be written as ψ(x) = ∑i∈N ψi(xi). The cost
considered is the value of this cost function summed over all times. The dynamic
traffic assignment problem can thus be stated as

minimize
α,R

K

∑
k=1

N

∑
i=1

ψi(xk+1
i)

subject to (3.7), (3.10)–(3.17)

x1
i = xinit

i , i = 1, . . . ,N

(3.18)

The problem (3.18) is non-convex, due to the flow limitation equation (3.16).
Because of this, the problem is difficult both to study analytically and to find nu-
merical solutions to. However, as proved in [Como et al., 2016], a convex relaxation
of this problem can be solved, after which the optimal solution of the convex prob-
lem can be mapped to a feasible point of (3.18). The convex problem is

minimize
x, f ,µ

K

∑
k=1

N

∑
i=1

ψi(xk+1
i), xk

i , f k
i j,µ

k
i ≥ 0, µ

k
i = 0 for i /∈ S

subject to xk+1
i = xk

i +h

(
λ

k
i −µ

k
i +∑

j
f k

ji−∑
j

f k
i j

)
,

k = 1, . . . ,K
i = 1, . . . ,N

x1
i = xinit

i , i = 1, . . . ,N

λ
k
i + ∑

j:(j,i)∈E
f k

ji ≤ si(xk
i), k = 1, . . . ,K, i = 1, . . . ,N

µ
k
i + ∑

j:(i, j)∈E
f k
i j ≤ di(xk

i), k = 1, . . . ,K, i = 1, . . . ,N

(3.19)

A convex problem is defined as a problem for which the following properties hold:
Firstly, if (x(1), f (1),µ(1)) and (x(2), f (2),µ(2)) both fulfil the constraints in (3.19),
then also (x(β), f (β),µ(β)), where x(β) = βx(1)+(1−β)x(2) and so on for any β ∈
[0,1], will fulfil the constraints. Secondly, it holds that

Ψ(x(β))≤ βΨ(x(1))+(1−β)Ψ(x(2)), ∀β ∈ [0,1],

where Ψ(x)≡∑
K
k=1 ∑

N
i=1 ψi(xk+1

i). The optimization will thus consist of solving the
problem (3.19).

41

Chapter 3. Dynamic Network Flow Optimization

When the solution of the convex problem (3.19) is obtained, this can be mapped
to a feasible point of the original problem (3.18), according to Proposition 1 in
[Como et al., 2016]. For a solution (x, f ,µ), the corresponding values of the routing
matrix R and control parameters α are

α
k
i =

zk

i /di(xk
i), i /∈R, di(xk

i)> 0
1, i /∈R, di(xk

i) = 0
zk

i /Ck
i , i ∈R

,

Rk
i j =

f k
i j/zk

i , (i, j) ∈ E , zk
i > 0

1/|{k ∈ E : (i,k) ∈ E}|, (i, j) ∈ E , zk
i = 0

0, (i, j) /∈ E
,

where zk
i = µk

i +∑ j f k
i j.

3.5 Lagrangian and Dual Problem

As in the static case, a Lagrangian will be used to solve the convex optimization
problem (3.19). The most significant difference from the static problem (2.4) is
that the dynamic problem not only has equality constraints, but also inequality con-
straints. The inequality constraints are treated in the same manner as the equal-
ity constraints when establishing the ordinary Lagrangian. The Lagrangian for the
problem (3.19) thus reads

L(x, f ,µ;γ,ξ ,η) =
K

∑
k=1

N

∑
i=1

ψi(xk+1
i)

+
K

∑
k=1

N

∑
i=1

γ
k
i

(
xk+1

i − xk
i −h

(
λ

k
i −µ

k
i +∑

j
f k

ji−∑
j

f k
i j

))

+
K

∑
k=1

N

∑
i=1

ξ
k
i

(
λ

k
i +∑

j
f k

ji− si(xk
i)

)
+

K

∑
k=1

N

∑
i=1

η
k
i

(
µ

k
i +∑

j
f k
i j−di(xk

i)

)
,

xk
i , f k

i j,µ
k
i ≥ 0 ∀i, x1

i = xinit
i ∀i, µ

k
i = 0 for i /∈ S.

(3.20)

Note that each term corresponding to an inequality constraint is obtained by writing
the constraint on the form ϕ ≤ 0 and then multiplying the expression corresponding
to ϕ with a Lagrange multiplier ξ k

i or ηk
i .

The dual function is defined as

θ(γ,ξ ,η) = inf
x, f ,µ

L(x, f ,µ;γ,ξ ,η). (3.21)

42

3.5 Lagrangian and Dual Problem

0 1 2 3

x

-2

0

2

4

6

ψ
(x

),
 L

(x
,1

)

Cost, constraint and Lagrangian for ξ = 1

cost ψ(x)

Lagrangian L(x,1)

0 1 2 3

x

-2

0

2

4

6

ψ
(x

),
 L

(x
,2

)

Cost, constraint and Lagrangian for ξ = 2

cost ψ(x)

Lagrangian L(x,2)

Figure 3.6 For the problem with cost function ψ(x) and constraint ϕ(x) = 1−x≤
0, it holds for the Lagrangian L(x;ξ) = ψ(x)+ ξ ϕ(x) for any ξ ≥ 0 that L(x;ξ) ≤
ψ(x) for all feasible x-values x≥ 1.

If the dual variables ξ and η are non-negative, then weak duality holds. This means
that for all feasible variable values x, f and µ , it holds that

θ(γ,ξ ,η)≤ ψ(x, f ,µ) =
K

∑
k=1

N

∑
i=1

ψi(xk+1
i). (3.22)

This follows from that, for each set of fixed dual variables γ , ξ ≥ 0 and η ≥ 0, the
Lagrangian is not less than the dual function, according to the definition (3.21). The
Lagrangian, in turn, is always less than or equal to the cost function for feasible
variable values. This follows from that the equality constraint terms are zero, while
the inequality constraint terms consist of a non-negative dual variable (ξ k

i or ηk
i)

multiplied with the left-hand side ϕ of the inequality constraint, which is less than
or equal to zero. An example of this is shown in Fig. 3.6. Expressed in equations:

θ(γ,ξ ,η)≤ L(x, f ,µ;γ,ξ ,η)≤
K

∑
k=1

N

∑
i=1

ψi(xk+1
i)

if x, f ,µ feasible and ξ ,η ≥ 0.

Thus, for any choice of γ ∈RN and ξ ,η ≥ 0, the dual function θ(γ,ξ ,η) constitutes
a lower bound to the solution of the optimization problem (3.19). The implication
of this is that the solution of the problem (3.19) has to be greater than or equal to
the the solution of the dual problem

maximize
γ,ξ ,η

θ(γ,ξ ,η)

subject to ξ ≥ 0, η ≥ 0
(3.23)

The problem to be solved, (3.19), is a convex problem. Convex problems usually
have strong duality, meaning that the solution of the dual problem (3.23) not only
is less than or equal to the solution of the primal problem (3.19) (which always is

43

Chapter 3. Dynamic Network Flow Optimization

the case), but that the solutions coincide. This can be formally proved by checking
constraint qualifications, and will in the sequel be assumed to hold.

The theoretical content in this subsection is obtained from [Boyd and Vanden-
berghe, 2009, Ch. 5].

44

4
Distributed Solution of
Dynamic Flow Optimization

In this chapter, a distributed algorithm for solving the problem described in the
previous chapter is derived. In Section 4.1, a reformulation of the dynamic flow op-
timization problem (3.19) is done, such that it can be solved in a distributed manner.
This formulation is inspired by the ADMM algorithm used for the static flow opti-
mization. After this, a solution algorithm is presented, which also is inspired by the
static ADMM optimization. In Section 4.2, a detailed description with all necessary
calculations is given of how the first step of the suggested algorithm can be carried
out in a distributed manner. This step consists of minimizing the augmented La-
grangian with respect to the primal varialbes. By making some assumptions about
the problem, explicit expressions are obtained for this solution procedure, which
allows for an efficient implementation. Finally, Section 4.3 describes the stopping
criterion that is used for determining when the iterative scheme should be stopped.

4.1 Distributed Formulation of the Dynamic Problem

The idea behind the augmented Lagrangian, as described for the static case in Sec-
tion 2.8, is to add a penalty term for each constraint to the objective function. This
term is zero for feasible variable values and greater than zero if the constraint is
violated. For the equality constraints present in the static case, the penalty term was
chosen as the square of the constraint residual (multiplied with a constant). Gen-
eralizing this to the case of inequality constraints, the extra term should be zero
when the constraint in question is satisfied and the square of the residual (times
a constant) when it is not. Thus, for each constraint on the form ϕ ≤ 0, a term
(ρ/2)(max{0,ϕ})2 is added to the Lagrangian.

The square terms in the augmented Lagrangian prevent both linkwise and cell-
wise decomposability of this function, as in the static case. This is again solved by
the same approach, consisting of adding a separate set of variables g which are re-
quired to be equal to f in optimality. The f -variables represent the inflows to each

45

Chapter 4. Distributed Solution of Dynamic Flow Optimization

cell, and the g-variables represent the outflows from each cell. By first minimizing
the Lagrangian with respect to the f -variables and then with respect to the vari-
ables g, each cell can be considered separately in each of these two steps. Since the
remaining variables, xk

i and µk
i , belong only to one cell each, and the Lagrangian

derivatives are affine functions of these, a cellwise decomposition can also be used
in the Lagrangian minimization with respect to these.

By the same approach as in the static case, a decomposition of the Lagrangian
minimization steps with respect to the cells (nodes) is thus possible to obtain. How-
ever, in the dynamic case it is also desirable to decouple the Lagrangian derivatives
with respect to time, in order to get minimization problems of small dimensions
which are easier so solve. The coupling of variables for different time points is a
result of the mass conservation constraints in (3.19), which contain both xk+1

i and
xk

i . These constraints relate the current cell traffic volume to the volume at the next
time point. As for the flow decomposition, a time decomposition is obtained by in-
troducing a new set of variables yk

i , k = 1, . . . ,K, which in this case represent the
cell volume one step ahead at time k. These variables are thereafter required to fulfil
yk

i = xk+1
i for k = 1, . . . ,K−1. The point of this is that the variables yk

i (k = 1, . . . ,K)
can replace the variables xk+1

i (k = 1, . . . ,K) in the mass conservation constraints,
after which these constraints only contain variables associated to time k. The equal-
ities yk

i = xk+1
i are then assured to hold by adding these as new constraints.

The distributed formulation of the problem (3.19) thus becomes

minimize
x,y, f ,g,µ

K

∑
k=1

N

∑
i=1

ψi(yk
i), xk

i ,y
k
i , f k

i j,g
k
i j,µ

k
i ≥ 0 ∀i, µ

k
i = 0 for i /∈ S

subject to yk
i = xk

i +h

(
λ

k
i −µ

k
i +∑

j
f k

ji−∑
j

gk
i j

)
,

k = 1, . . . ,K
i = 1, . . . ,N

f k
i j = gk

i j, k = 1, . . . ,K, (i, j) = e = 1, . . . ,E

xk+1
i = yk

i , k = 1, . . . ,K−1, i = 1, . . . ,N

x1
i = xinit

i , i = 1, . . . ,N

λ
k
i + ∑

j:(j,i)∈E
f k

ji ≤ si(xk
i), k = 1, . . . ,K, i = 1, . . . ,N

µ
k
i + ∑

j:(i, j)∈E
gk

i j ≤ di(xk
i), k = 1, . . . ,K, i = 1, . . . ,N

(4.1)

This differs form the original problem formulation (3.19) by that f k
i j have been

replaced with gk
i j for the outflows from cell i, and that the extra constraints f k

i j = gk
i j

have been added. Furthermore, xk+1
i have been replaced by yk

i while the constraints
xk+1

i = yk
i , k = 1, . . . ,K−1 have been added. Since xk+1

i does not appear explicitly in
the equations any more, it is enough to consider xk

i for k = 1, . . . ,K and then set xk+1
i

to yk
i in the final answer. The augmented Lagrangian for the distributed formulation

46

4.1 Distributed Formulation of the Dynamic Problem

(4.1) becomes

Lρ(x,y, f ,g,µ;γ,ν ,σ ,ξ ,η) =
K

∑
k=1

N

∑
i=1

ψi(yk
i)

+
K

∑
k=1

N

∑
i=1

γ
k
i

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))

+
K

∑
k=1

E

∑
e=1

ν
k
e (f k

e −gk
e)+

K−1

∑
k=1

N

∑
i=1

σ
k
i (y

k
i − xk+1

i)

+
K

∑
k=1

N

∑
i=1

ξ
k
i

(
λ

k
i +∑

`

f k
`i− si(xk

i)

)
+

K

∑
k=1

N

∑
i=1

η
k
i

(
µ

k
i +∑

`

gk
i`−di(xk

i)

)

+
ρ

2

K

∑
k=1

N

∑
i=1

(
xk+1

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))2

+
ρ

2

K

∑
k=1

E

∑
e=1

(f k
e −gk

e)
2 ++

ρ

2

K−1

∑
k=1

N

∑
i=1

(yk
i − xk+1

i)2

+
ρ

2

K

∑
k=1

N

∑
i=1

(
max

{
0,λ k

i +∑
`

f k
`i− si(xk

i)

})2

+
ρ

2

K

∑
k=1

N

∑
i=1

(
max

{
0,µk

i +∑
`

gk
i`−di(xk

i)

})2

,

xk
i ,y

k
i , f k

e ,g
k
e,µ

k
i ≥ 0, x1

i = xinit
i , µ

k
i = 0 for i /∈ S.

(4.2)

The solution procedure is executed analogously to the ADMM algorithm used
in the static case. First, the Lagrangian is minimized with respect to the inflows f ,
then it is minimized with respect to the outflows g, the external outflows µ , the fu-
ture cell volumes y and the cell volumes x. Thus, the Lagrangian minimization is
carried out in five different steps, instead of the exact minimization in the method of
multipliers that would require simultaneous minimization with respect to all vari-
ables. After this, the dual variables are updated by taking a step in the direction of
the dual function gradient. An important difference from the equality-constrained
static problem is that there now are some dual variables which have to be non-
negative, according to the dual problem formulation (3.23). If the dual function
gradient component in some ξ k

i - or ηk
i -direction is such that the updated value of

this dual variable would be less than zero, the new variable value is thereby instead
set to zero. The geometrical interpretation of this is that the dual function in the
direction of, e.g. ξ k

i , increases in the negative direction at ξ k
i = 0. The best choice

of the dual variable, with respect to maximizing the dual function, which fulfils
the non-negativity constraints in (3.23), is thus ξ k

i = 0. After these considerations,
the distributed algorithm for solution of the dynamic optimal control problem (4.1)

47

Chapter 4. Distributed Solution of Dynamic Flow Optimization

becomes

f (n+1) := argmin
f

Lρ(x(n),y(n), f ,g(n),µ(n);γ
(n),ν(n),σ (n),ξ (n),η(n)) (4.3)

g(n+1) := argmin
g

Lρ(x(n),y(n), f (n+1),g,µ(n);γ
(n),ν(n),σ (n),ξ (n),η(n)) (4.4)

µ
(n+1) := argmin

µ

Lρ(x(n),y(n), f (n+1),g(n+1),µ;γ
(n),ν(n),σ (n),ξ (n),η(n)) (4.5)

y(n+1) := argmin
y

Lρ(x(n),y, f (n+1),g(n+1),µ(n+1);γ
(n),ν(n),σ (n),ξ (n),η(n)) (4.6)

x(n+1) := argmin
x

Lρ(x,y(n+1), f (n+1),g(n+1),µ(n+1);γ
(n),ν(n),σ (n),ξ (n),η(n))

(4.7)

(γk
i)

(n+1) := (γk
i)

(n)+ρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
(νk

e)
(n+1) := (νk

e)
(n)+ρ(f k

e −gk
e)

(σ k
i)

(n+1) := (σ k
i)

(n)+ρ(yk
i − xk+1

i)

(ξ k
i)

(n+1) := max

{
0,(ξ k

i)
(n)+ρ

(
λ

k
i +∑

`

f k
`i− si(xk

i)

)}

(ηk
i)

(n+1) := max

{
0,(ηk

i)
(n)+ρ

(
µ

k
i +∑

`

gk
i`−di(xk

i)

)}
(4.8)

where f (n) symbolizes the values of f k
e for e= 1, . . . ,E and k = 1, . . . ,K at algorithm

iteration number n, and analogously for the other variables where (n) is used.
In the iterative algorithm, the primal variables x, y, f , g and µ are initiated

such that the initial solution is feasible. This is accomplished by choosing the flow
variables according to the flow rule (3.15)–(3.17) described in conjunction with the
CTM, with the routing matrix R chosen such that the flow form a cell is distributed
equally among its out links and with all parameters αi chosen as αi = 1. All dual
variables, γ , ν , σ , ξ and η are initiated as zero.

4.2 Lagrangian Minimization

Assumptions and Limitations
In order to carry out the Lagrangian minimizations (4.3)–(4.7), the derivatives of the
augmented Lagrangian (4.2) with respect to all primal variables are used. If some
assumptions about the problem are made, these derivatives become affine functions
of the sought variables, which makes it possible to find explicit expressions for the
minimizing variable values. The following assumptions are made:

• The cost functions ψi are chosen as either linear or quadratic functions of the
cell traffic volumes, i.e., ψi(x) = x or ψi(x) = x2.

48

4.2 Lagrangian Minimization

• The supply and demand functions, si(x) and di(x), are affine.

However, in the last subsubsection, a modification will be described which allows
the supply and demand functions to be affine with a capacity limit, i.e., piecewise
affine with two parts, where the largest part has slope zero.

Except for these assumptions, a third assumption will be made in the calcula-
tions:

• The number of inflow links as well as the number of outflow links from each
cell do not exceed two.

This simplifies the explicit calculations, but the exact same procedure should be
possible to extend to a larger number of in- and outflow links without any problem.

Minimization With Respect To f
Differentiating the augmented Lagrangian (4.2) with respect to f k

ji gives

∂Lρ

∂ f k
ji
=−hγ

k
i +ν

k
ji +ξ

k
i

−hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
+ρ

(
f k

ji−gk
ji

)
+ρ max

{
0,λ k

i +∑
`

f k
`i− si(xk

i)

}
.

(4.9)

The aim is to minimize the augmented Lagrangian with respect to all inflow vari-
ables f k

ji in the domain f k
ji ≥ 0. From the derivatives (4.9) it can be concluded that

each element of the gradient ∇ f Lρ only contains inflow variables f k
ji which are in-

flows to a particular cell i at a particular time k. Thereby, a decomposition in time
and a cellwise decomposition can be accomplished for the purpose of the minimiza-
tion, as desired. The subproblems to be solved are thus

• For each time point k = 1, . . . ,K and cell i = 1, . . . ,N:

minimize
f k

ji∈F
in
i

Lρ , where F in
i = { f k

ji : (j, i) ∈ E}. (4.10)

Solving all these problems separately is equivalent to minimizing the augmented
Lagrangian with respect to all f -variables simultaneously (i.e. (4.3)), due to the
separable structure of the augmented Lagrangian.

Furthermore, since it is assumed that each cell has at most two inflow links, each
subproblem (4.10) in the minimization has at most two unknown variables. Thus,
explicit expressions for the minima can be derived for the case of one inflow link
and for the case of two inflow links. In order to handle the last term in the derivatives

49

Chapter 4. Distributed Solution of Dynamic Flow Optimization

(4.9), each of these cases is in turn divided into two cases, depending on whether
λ k

i +∑` f k
`i− si(xi) is less than or equal to, or greater than zero.

For the case of one inflow link, (j, i), to the considered cell i, the minimization
subproblem is one-dimensional. Since the augmented Lagrangian is a convex func-
tion of the variables f k

ji, the minimization on the domain f k
ji ≥ 0 can be carried out

as follows:

• If ∂Lρ

∂ f k
ji
(0)≥ 0, i.e., the derivative (4.9) evaluated at zero is non-negative, then

the convexity implies that the derivative and thus also the function will in-
crease for larger values of the variable f k

ji. Thereby, the minimizer on the
considered domain has to be f k

ji = 0.

• If instead ∂Lρ

∂ f k
ji
(0) < 0, then the convexity implies that the minimum, i.e.,

where the Lagrangian derivative is zero, must be attained for f k
ji > 0.

In conclusion, the minimizing variable value can be obtained by setting the deriva-
tive (4.9) equal to zero, solving for f k

ji and concluding that max{0, f k
ji} is the mini-

mizer on the domain f k
ji ≥ 0.

Proceeding according to this, by setting the derivative (4.9) to zero and solving
for the inflow variable to cell i at time k, the minimizing flow on the domain f k

ji ≥ 0
is obtained as:

• For one inflow (f k
ji) and λ k

i +∑` f k
`i− si(xi)> 0:

∂Lρ

∂ f k
ji
=−b+a f k

ji, where

b = hγ
k
i −ν

k
ji−ξ

k
i +hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i −∑

`

gk
i`

))
+ρgk

ji−ρ

(
λ

k
i − si(xk

i)
)
,

a = (h2 +2)ρ.

Minimizing flow: f k
ji = max{0,b/a}.

• For one inflow (f k
ji) and λ k

i +∑` f k
`i− si(xi)≤ 0:

∂Lρ

∂ f k
ji
=−b+a f k

ji, where

b = hγ
k
i −ν

k
ji−ξ

k
i +hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i −∑

`

gk
i`

))
+ρgk

ji,

a = (h2 +1)ρ.

50

4.2 Lagrangian Minimization

Minimizing flow: f k
ji = max{0,b/a}.

Since it is not possible to determine the sign of the condition λ k
i +∑` f k

`i− si(xi) a
priori, it is necessary to for each of the two cases above insert the solution candidate
f k

ji into the assumed condition λ k
i +∑` f k

`i− si(xi) > 0 or λ k
i +∑` f k

`i− si(xi) ≤ 0
respectively, to see whether this is fulfilled. If the assumed condition is not fulfilled,
the solution candidate is discarded. After this, the solution candidate corresponding
to the smallest Lagrangian is chosen.

For the case of two inflow links, (j1, i) and (j2, i), to cell i, the minimization
problem with respect to the inflows to cell i at time k is two-dimensional. The mini-
mum on the domain (f k

j1i, f k
j2i)≥ 0 is then either an inner point in the first quadrant

of R2 or a boundary point, which is a point at the non-negative part of one of the
axes in R2. Thus, all possible minima can be found by identifying inner points and
boundary points which satisfy the necessary conditions for being minima.

Solution candidates along the boundary are found by first assuming that one
of the two flows is zero and proceeding according to the described method for the
single inflow case to find the second flow variable which gives the minimum along
the non-negative part of the corresponding axis. After this, the other flow variable
is assumed to be zero while the first flow variable is chosen so that it corresponds to
the minimum along the non-negative part of the corresponding axis. These boundary
minima are saved as possible solution candidates.

For an inner point to be a minimum, the derivatives with respect to both flow
variables have to be zero. Thus, points satisfying this are collected, after that it has
been checked that they are inside the domain (f k

j1i, f k
j2i) > 0. By using (4.9), the

solution candidates corresponding to inner points are thereby obtained as:

• For two non-zero inflows (f k
j1i, f k

j2i) and λ k
i +∑` f k

`i− si(xi)> 0:

∂Lρ

∂ f k
j1i

=−b1 +a11 f k
j1i +a12 f k

j2i where

b1 = hγ
k
i −ν

k
j1i−ξ

k
i +hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i −∑

`

gk
i`

))
+ρgk

j1i−ρ

(
λ

k
i − si(xk

i)
)
,

a11 = (h2 +2)ρ, a12 = (h2 +1)ρ.

51

Chapter 4. Distributed Solution of Dynamic Flow Optimization

∂Lρ

∂ f k
j2i

=−b2 +a21 f k
j2i +a22 f k

j2i where

b2 = hγ
k
i −ν

k
j2i−ξ

k
i +hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i −∑

`

gk
i`

))
+ρgk

j2i−ρ

(
λ

k
i − si(xk

i)
)
,

a21 = (h2 +1)ρ, a22 = (h2 +2)ρ.

Solution candidate:[
f k

j1i
f k

j2i

]
=

[
a11 a12
a21 a22

]−1 [b1
b2

]
=

1
a11a22−a21a12

[
a22 −a12
−a21 a11

][
b1
b2

]
.

• For two non-zero inflows (f k
j1i, f k

j2i) and λ k
i +∑` f k

`i− si(xi)≤ 0:
Same as in the previous case, but with

b1 = hγ
k
i −ν

k
j1i−ξ

k
i +hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i −∑

`

gk
i`

))
+ρgk

j1i,

a11 = (h2 +1)ρ, a12 = h2
ρ,

b2 = hγ
k
i −ν

k
j2i−ξ

k
i +hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i −∑

`

gk
i`

))
+ρgk

j2i,

a21 = h2
ρ, a22 = (h2 +1)ρ.

After checking that each of the solution candidates satisfies the assumed condi-
tion and is inside the domain, these (for the boundary and inner points) are collected
and the solution candidate corresponding to the smallest augmented Lagrangian is
chosen. In order to find this best candidate, only the part of the augmented La-
grangian depending on the inflow variables f k

ji to cell i has to be considered. Thus,
the following function (which is the relevant part of (4.2)) is evaluated in order to
compare the solution candidates:

L f
i =− γ

k
i h∑

j
f k

ji +∑
j

ν
k
ji f k

ji +ξ
k
i ∑

j
f k

ji

+
ρ

2

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

j
f k

ji−∑
j

gk
i j

))2

+
ρ

2 ∑
j
(f k

ji−gk
ji)

2 +
ρ

2

(
max

{
0,λ k

i +∑
j

f k
ji− si(xk

i)

})2

.

(4.11)

The solution is the candidate (f k
j1i, f k

j2i) which minimizes (4.11).

52

4.2 Lagrangian Minimization

Minimization With Respect To g
The g-update (4.4) in the algorithm is carried out completely analogously to the
f -update. The derivative of the augmented Lagrangian (4.2) with respect to gk

i j is

∂Lρ

∂gk
i j
= hγ

k
i −ν

k
i j +η

k
i

+hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
−ρ(f k

i j−gk
i j)

+ρ max

{
0,µk

i +∑
`

gk
i`−di(xk

i)

}
.

(4.12)

As for the inflows in the f -update, each augmented Lagrangian derivative with
respect to gk

i j only contains outflow variables corresponding to outflows from a par-
ticular cell i at a particular time k. Thus, a timewise and cellwise decomposition is
possible also in this case, resulting in minimization problems of at most dimension
two, since each cell i is assumed to have at most two outflows. The subproblems to
be solved in this case are thus

• For each time point k = 1, . . . ,K and cell i = 1, . . . ,N:

minimize
gk

i j∈F
out
i

Lρ , where Fout
i = {gk

i j : (i, j) ∈ E}. (4.13)

Solving all these problems separately, which each has at most dimension two, is
equivalent to minimizing the augmented Lagrangian with respect to all g-variables
simultaneously (i.e. (4.4)), due to the separable structure of the Lagrangian.

For the case when there is only one outflow link, (i, j), from the considered cell
i, the minimizing outflow is according to (4.12) given by:

• For one outflow (gk
i j) and µk

i +gk
i j−di(xk

i)> 0:

∂Lρ

∂gk
i j
=−b+agk

i j, where

b =−hγ
k
i +ν

k
i j−η

k
i −hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i

))
+ρ f k

i j−ρ(µk
i −di(xk

i)),

a = (h2 +2)ρ.

Minimizing flow: gk
i j = max{0,b/a}.

53

Chapter 4. Distributed Solution of Dynamic Flow Optimization

• For one outflow (gk
i j) and µk

i +gk
i j−di(xk

i)≤ 0:

∂Lρ

∂gk
i j
=−b+agk

i j, where

b =−hγ
k
i +ν

k
i j−η

k
i −hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i

))
+ρ f k

i j,

a = (h2 +1)ρ.

Minimizing flow: gk
i j = max{0,b/a}.

As for the f -update, it is checked for each of these potential solutions that it satisfies
the assumed constraint. After this, the remaining solution candidate that gives the
smallest value of the augmented Lagrangian is chosen.

For the case when the considered cell i has two outflow links, (i, j1) and (i, j2),
the solution (gk

i j1 ,g
k
i j2) is either inside the first quadrant of R2 or on its bound-

ary, consisting of the non-negative part of the axes. First, potential minima on the
boundary are found by assuming that one of the two outflows at a time is zero,
and computing the other minimizing outflow according to the one-outflow case just
described. Then, possible minima inside the domain are found by setting the aug-
mented Lagrangian derivatives (4.12) corresponding to the outflow variables gk

i j1
and gk

i j2 to zero and solving for the flows. After this, it is checked that the solution
is inside the domain (gk

i j1 ,g
k
i j2)> 0. The solution candidates corresponding to inner

points are thereby given as:

• For two non-zero outflows (gk
i j1 , gk

i j2) and µk
i +∑` gk

i`−di(xk
i)> 0:

∂Lρ

∂gk
i j1

=−b1 +a11gk
i j1 +a12gk

i j2 , where

b1 =−hγ
k
i +ν

k
i j1 −η

k
i −hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i

))
+ρ f k

i j1 −ρ(µk
i −di(xk

i)),

a11 = (h2 +2)ρ, a12 = (h2 +1)ρ.

∂Lρ

∂gk
i j2

=−b2 +a21gk
i j1 +a22gk

i j2 , where

b2 =−hγ
k
i +ν

k
i j2 −η

k
i −hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i

))
+ρ f k

i j2 −ρ(µk
i −di(xk

i)),

a21 = (h2 +1)ρ, a22 = (h2 +2)ρ.

54

4.2 Lagrangian Minimization

Solution candidate:

[
gk

i j1
gk

i j2

]
=

[
a11 a12
a21 a22

]−1 [b1
b2

]
=

1
a11a22−a21a12

[
a22 −a12
−a21 a11

][
b1
b2

]
.

• For two non-zero outflows (gk
i j1 , gk

i j2) and µk
i +∑` gk

i`−di(xk
i)≤ 0:

Same as in the previous case, but with

b1 =−hγ
k
i +ν

k
i j1 −η

k
i −hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i

))
+ρ f k

i j1 ,

a11 = (h2 +1)ρ, a12 = h2
ρ,

b2 =−hγ
k
i +ν

k
i j2 −η

k
i −hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i

))
+ρ f k

i j2 ,

a21 = h2
ρ, a22 = (h2 +1)ρ.

After checking that these solution candidates satisfy the assumed constraints and
are inside the domain (gk

i j1 ,g
k
i j2)> 0, the candidates are collected together with the

possible minima on the boundary. Finally, the one of all these candidates that gives
the smallest value of the augmented Lagrangian is chosen as the solution. This can
be determined by inserting the candidates to the part of the augmented Lagrangian
that depends on the considered outflows from cell i at time k:

Lg
i = γ

k
i h∑

j
gk

i j−∑
j

ν
k
i jg

k
i j +η

k
i ∑

j
gk

i j

+
ρ

2

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

j
f k

ji−∑
j

gk
i j

))2

+
ρ

2 ∑
j
(f 2

i j−g2
i j)

2 +
ρ

2

(
max

{
0,µk

i +∑
j

gk
i j−di(xk

i)

})2

.

(4.14)

Thus, the solution candidate (gk
i j1 ,g

k
i j2) that minimizes (4.14) is the sought solution.

Minimization With Respect To µ

For the µ-update in the algorithm, (4.5), two main cases are distinguished. The first
case is if the cell i is not a sink, i.e., i /∈ S . Then, the corresponding variables µk

i
(k = 1, . . . ,K) are set to µk

i = 0, as defined in the domain of the objective function
in (3.19), as well as in the domain of the augmented Lagrangian (4.2). The second
case is then the cell i is a sink, i.e., i ∈ S. For this case, the augmented Lagrangian

55

Chapter 4. Distributed Solution of Dynamic Flow Optimization

(4.2) is differentiated with respect to µk
i :

∂Lρ

∂ µk
i
= hγ

k
i +η

k
i +hρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))

+ρ max

{
0,µk

i +∑
`

gk
i`−di(xk

i)

}
.

Each of these derivatives does not contain any other external outflow variables µk
i

than the one which the differentiation is with respect to, i.e., the one corresponding
to a specific cell i and time k. Thus, the µ-update step (4.5) can be carried out by
solving the following one-dimensional minimization problems:

• For each time point k = 1, . . . ,K and cell i = 1, . . . ,N /∈ S:

minimize
µk

i

Lρ . (4.15)

The minimizing µk
i -values for the sink cells i ∈ S are thus given by:

• For µk
i +gk

i j−di(xk
i)> 0:

∂Lρ

∂ µk
i
=−b+aµ

k
i , where

b =−hγ
k
i −η

k
i −hρ

(
yk

i − xk
i −h

(
λ

k
i +∑

`

f k
`i−∑

`

gk
i`

))

−ρ

(
∑
`

gk
i`−di(xk

i)

)
,

a = (h2 +1)ρ.

Minimizing flow: µk
i = max{0,b/a}.

• For µk
i +gk

i j−di(xk
i)≤ 0:

∂Lρ

∂ µk
i
=−b+aµ

k
i , where

b =−hγ
k
i −η

k
i −hρ

(
yk

i − xk
i −h

(
λ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
,

a = h2
ρ.

Minimizing flow: µk
i = max{0,b/a}.

56

4.2 Lagrangian Minimization

After that it has been checked that these solution candidates satisfy the assumed
constraints, the candidate that minimizes the µk

i -dependent part of the augmented
Lagrangian is chosen as the solution. Thus, the solution is the candidate that mini-
mizes

Lµ

i = γ
k
i hµ

k
i +η

k
i µ

k
i +

ρ

2

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))2

+
ρ

2

(
max

{
0,µk

i +∑
`

gk
i`−di(xk

i)

})2

.

(4.16)

Minimization With Respect To y
For the y-update in the algorithm, (4.6), the augmented Lagrangian (4.2) is differ-
entiated with respect to yk

i :

∂Lρ

∂yk
i
=

ψ
′
i (y

k
i)+ γ

k
i +σ

k
i

+ρ

(
−xk

i −h

(
−xk

i −h(λ k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
+ρ(yk

i − xk+1
i), if k < K

ψ
′
i (y

k
i)+ γ

k
i

+ρ

(
−xk

i −h

(
−xk

i −h(λ k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
,

if k = K.

(4.17)

Since the cost functions ψi are assumed to be either linear or quadratic, the deriva-
tives (4.17) are affine functions of yk

i . Furthermore, each derivative contains no other
y-variables than the yk

i that the differentiation is carried out with respect to. Thereby,
one again obtains a set of one-dimensional minimization subproblems:

• For each time point k = 1, . . . ,K and cell i = 1, . . . ,N:

minimize
yk

i

Lρ . (4.18)

The y-update step (4.6) is solved exactly by solving these subproblems separately.
For each cell i and time point k the subproblem (4.18) is solved by setting the

corresponding derivative to zero, solving for yk
i and taking max{0,yk

i } as the optimal
non-negative point. For the different cost functions and time points, the solutions are
thereby given as:

• If ψi(y) = y:

57

Chapter 4. Distributed Solution of Dynamic Flow Optimization

– For k < K:

∂Lρ

∂yk
i
=−b+ayk

i , where

b =−1− γ
k
i −σ

k
i

−ρ

(
−xk

i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
+ρxk+1

i ,

a = 2ρ.

Minimizing variable: yk
i = max{0,b/a}.

– For k = K:

∂Lρ

∂yk
i
=−b+ayk

i , where

b =−1− γ
k
i

−ρ

(
−xk

i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
,

a = ρ.

Minimizing variable: yk
i = max{0,b/a}.

• If ψi(y) = y2:

– For k < K:

∂Lρ

∂yk
i
=−b+ayk

i , where

b =−γ
k
i −σ

k
i

−ρ

(
−xk

i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
+ρxk+1

i ,

a = 2(1+ρ).

Minimizing variable: yk
i = max{0,b/a}.

– For k = K:

∂Lρ

∂yk
i
=−b+ayk

i , where

b =−γ
k
i −ρ

(
−xk

i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
,

a = (2+ρ).

58

4.2 Lagrangian Minimization

Minimizing variable: yk
i = max{0,b/a}.

Minimization With Respect To x
For the last Lagrangian minimization step (4.7), the augmented Lagrangian (4.2) is
differentiated with respect to xk

i for k = 2, . . . ,K (since x1
i are given):

∂Lρ

∂xk
i
=−γ

k
i −σ

k−1
i −ξ

k
i s′i(x

k
i)−η

k
i d′i(x

k
i)

−ρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
−ρ(yk−1

i − xk
i)

−ρ max

{
0,λ k

i +∑
`

f k
`i− si(xk

i)

}
s′i(x

k
i)

−ρ max

{
0,µk

i +∑
`

gk
i`−di(xk

i)

}
d′i(x

k
i), for k = 2, . . . ,K.

(4.19)

Each derivative does not depend on any other x-variables than the xk
i which the

differentiation is carried out with respect to. Thereby, the minimization of the aug-
mented Lagrangian with respect to x, i.e. (4.7), can be carried out in a distributed
manner by separately solving the one-dimensional subproblems

• For each time point k = 1, . . . ,K and cell i = 1, . . . ,N:

minimize
xk

i

Lρ . (4.20)

Furthermore, the supply and demand functions are assumed to be affine. Thus,
these functions and their derivatives can be written as

si(x) = ks
i x+ms

i ⇒ s′i(x) = ks
i ,

di(x) = kd
i x+md

i ⇒ d′i(x) = kd
i .

Inserting this into (4.19) gives

∂Lρ

∂xk
i
=−γ

k
i −σ

k−1
i −ξ

k
i ks

i −η
k
i kd

i

−ρ

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
−ρ(yk−1

i − xk
i)

−ρ max

{
0,λ k

i +∑
`

f k
`i− (ks

i x+ms
i)

}
ks

i

−ρ max

{
0,µk

i +∑
`

gk
i`− (kd

i x+md
i)

}
kd

i , for k = 2, . . . ,K.

(4.21)

59

Chapter 4. Distributed Solution of Dynamic Flow Optimization

This derivative consists of piecewise affine functions of xk
i . The points where the

derivative is zero can thereby be found by considering each of the affine parts of the
function separately. The following cases are thereby considered:

• For λ k
i +∑` f k

`i− si(xk
i)> 0 and µk

i +∑` gk
i`−di(xk

i)> 0:

∂Lρ

∂xk
i
=−b+a, where

b = γ
k
i +σ

k−1
i +ξ

k
i ks

i +η
k
i kd

i

+ρ

(
yk

i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
+ρyk−1

i

+ρks
i

(
λ

k
i +∑

`

f k
`i−ms

i

)
+ρkd

i

(
µ

k
i +∑

`

gk
i`−md

i

)
,

a =
(

2+(ks
i)

2 +(kd
i)

2
)

ρ.

Minimizing variable: xk
i = b/a.

• For λ k
i +∑` f k

`i− si(xk
i)> 0 and µk

i +∑` gk
i`−di(xk

i)≤ 0:
Same as the previous case, but remove the term ρkd

i
(
µk

i +∑` gk
i`−md

i
)

from
b and the term (kd

i)
2ρ from a.

• For λ k
i +∑` f k

`i− si(xk
i)≤ 0 and µk

i +∑` gk
i`−di(xk

i)> 0:
Same as the first case, but remove the term ρks

i
(
λ k

i +∑` f k
`i−ms

i
)

from b and
the term (ks

i)
2ρ from a.

• For λ k
i +∑` f k

`i− si(xk
i)≤ 0 and µk

i +∑` gk
i`−di(xk

i)≤ 0:
Same as the first case, but remove the terms ρkd

i
(
µk

i +∑` gk
i`−md

i
)

and
ρks

i
(
λ k

i +∑` f k
`i−ms

i
)

from b as well as the terms (kd
i)

2ρ and (ks
i)

2ρ from
a.

The solutions from these different cases that satisfies the assumed conditions are
collected as solution candidates. After this, the solution candidate that minimizes
the augmented Lagrangian is chosen as the solution. This is equivalent to that the
solution candidate minimizes the xk

i -dependent part of the augmented Lagrangian,

60

4.2 Lagrangian Minimization

which is

Lx
i =−γ

k
i xk

i −σ
k−1
i xk

i −ξ
k
i si(xk

i)−η
k
i di(xk

i)

+
ρ

2

(
yk

i − xk
i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))2

+
ρ

2

(
yk−1

i − xk
i

)2

+
ρ

2

(
max

{
0,λ k

i +∑
`

f k
`i− si(xk

i)

})2

+
ρ

2

(
max

{
0,µk

i +∑
`

gk
i`−di(xk

i)

})2

.

(4.22)

Modification of x-update for Capacity Limited Flows
The algorithm can be generalized to handle supply and demand functions which are
not just affine, but which also takes into account a limited flow capacity for the cell.
The functions are of the form

si(x) = min{ks
i x+ms

i ,Ci}, (4.23)

di(x) = min{kd
i x+md

i ,Ci}, (4.24)

where Ci is the maximum flow capacity for cell i. Thus, the supply and demand func-
tions are not simply affine, but piecewise affine. The minimization of the augmented
Lagrangian can again be carried out by considering the different cases correspond-
ing to the two different affine parts of the function.

All the different cases that should be considered in the augmented Lagrangian
minimization with respect to xk

i do now depend on whether four different conditions
are fulfilled or not. These conditions are

• c1: λ k
i +∑` f k

`i− si(xk
i)> 0,

• c2: µk
i +∑` gk

i`−di(xk
i)> 0,

• c3: si(xk
i) =Ci,

• c4: di(xk
i) =Ci.

If none of the conditions are satisfied, then the augmented Lagrangian derivative

61

Chapter 4. Distributed Solution of Dynamic Flow Optimization

(4.19) becomes

∂Lρ

∂xk
i
=−b+a, where

b = γ
k
i +σ

k−1
i +ξ

k
i ks

i +η
k
i kd

i

+ρ

(
yk

i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

))
+ρyk−1

i ,

a =
(

2+(ks
i)

2 +(kd
i)

2
)

ρ.

(4.25)

Setting this to zero gives the solution candidate xk
i = b/a if this is positive and the

conditions c1–c4 are not satisfied, as assumed.
The remaining solution candidates are found by considering all different combi-

nations of the conditions c1–c4 being satisfied and not being satisfied. For the cases
when some of the conditions are satisfied, (4.25) is modified as follows:

• If c1 is satisfied, then

– the term ρks
i
(
λ k

i +∑` f k
`i−ms

i
)

is added in b,

– the term (ks
i)

2ρ is added in a.

• If c2 is satisfied, then

– the term ρkd
i
(
µk

i +∑` gk
i`−md

i
)

is added in b,

– the term (kd
i)

2ρ is added in a.

• If c3 is satisfied, then

– ks
i is replaced with 0,

– ms
i is replaced with Ci.

• If c4 is satisfied, then

– kd
i is replaced with 0,

– md
i is replaced with Ci.

After the modifications, the solution candidate for each specific case is again ob-
tained as xk

i = b/a, if this is a non-negative value fulfilling the assumed conditions.
The solution is then chosen as the solution candidate which gives the smallest value
of the xk

i -dependent part of the augmented Lagrangian, (4.22), for the new supply
and demand functions.

62

4.3 Stopping Criterion

4.3 Stopping Criterion

To determine when the iterative scheme should be stopped, a stopping criterion is
needed. For the static algorithm, the criterion was, as described in Section 2.3, cho-
sen as requiring that the duality gap is small in combination with that the constraints
are approximately satisfied. The same approach is used for the dynamic optimiza-
tion algorithm, resulting in the following criterion:∣∣∣∣∣ K

∑
k=1

N

∑
i=1

ψi(yk
i)−θ(γ,ξ ,η)

∣∣∣∣∣< gapTol, and

K

∑
k=1

N

∑
i=1

∣∣∣∣∣yk
i − xk

i −h

(
λ

k
i −µ

k
i +∑

`

f k
`i−∑

`

gk
i`

)∣∣∣∣∣
+

K

∑
k=1

E

∑
e=1
| f k

e −gk
e|+

K−1

∑
k=1

N

∑
i=1
|yk

i − xk+1
i |

+
K

∑
k=1

N

∑
i=1

max

{
0, λ

k
i +∑

`

f k
`i− si(xk

i)

}

+
K

∑
k=1

N

∑
i=1

max

{
0, µ

k
i +∑

`

gk
i`−di(xk

i)

}
< feasTol,

(4.26)

where θ(γ,ξ ,η) is the dual function, gapTol is the duality gap tolerance and
feasTol is the feasibility residual tolerance. The tolerances should be chosen as
small positive numbers.

63

5
Tests and Results

In this chapter, the algorithm is tested for two different problems. The first test
problem is rather simple and is described in Section 5.1. The second test problem
is a bit more complicated and is described in Section 5.2. The algorithm is tested
for these problems with different choices of the penalty parameter ρ . In order to
compare the results, the quantities described in section Section 5.3 are used. The
results of the tests are presented in Section 5.4 and Section 5.5 for test problem 1
and test problem 2 respectively.

5.1 Test Problem 1

In order to test the derived distributed algorithm (4.3)–(4.8) on a simple case, the
road network in Fig. 5.1 is considered. The arrows indicate the allowed driving
direction on the roads. This network is divided into four cells according to the figure,
which results in a graph representation according to Fig. 5.2. This graph is described
by the node-link incidence matrix

B =

+1 +1 0 0
−1 0 +1 0
0 −1 0 +1
0 0 −1 −1

according to the definition (2.1). It is assumed that vehicles enter the network from
the external world at cell 1, which is the only source. The external inflow is thus
given by λ1. Furthermore, it is assumed that vehicles can leave the network only at
cell 4, which thus is the only sink node. The external outflow is thereby given by
µ4.

The supply and demand functions for the problem are chosen as

s1(x) = 2∑
k

∑
i

λ
k
i , (5.1)

si(x) = 10− x, i = 2, . . . ,N, (5.2)
di(x) = x, i = 1, . . . ,N. (5.3)

64

5.1 Test Problem 1

Figure 5.1 Simple road network with a 4-cell discretization that is used for testing
the algorithm.

λ1 n1

n2

n3

n4 µ4

e1

e2

e3

e4

Figure 5.2 Model for the simple road network in Fig. 5.1 that is used for testing
the algorithm.

The function s1(x) is chosen as a constant that is guaranteed to always be larger than
the flow (since it is two times the total flow that goes through the network during
the entire simulation). This implies that the supply constraint always is fulfilled
for cell 1, and is equivalent to not having any supply constraint for this cell. The
purpose of this is that the problem might lack a feasible solution if the source cell
1 is supply-constrained and the inflow λ1 is large. By not having a supply function
for this cell, this is prevented. This can be interpreted as that cell 1 is an on-ramp
where arbitrarily large traffic queues can appear while waiting for the opportunity
to enter the rest of the network.

The tests will be carried out with the time step interval h = 1 and during 10 time
units, i.e., K = 10. Furthermore, it is assumed that the initial traffic volume is x1

i = 0
for all cells i.

The algorithm will be tested on this problem with some different configurations
as follows:

• The cost function will be chosen as a linear function ψi(x) = x or a quadratic
function ψi(x) = x2.

• The inflow will be chosen as either λ 1
1 = 1 and λ k

1 = 0 for k = 2, . . . ,K or as
λ k

1 = 1 for k = 1, . . . ,K.

• The optimization will be carried out for different values of the penalty pa-
rameter ρ that is used in the augmented Lagrangian and as step length in the
dual variable update.

65

Chapter 5. Tests and Results

Finally, it is examined how the algorithm handles a temporary traffic incident. It
is assumed that an incident occurs in the time interval t ∈ [3,5), which corresponds
to the intervals including and after the discrete time points k = 4 and k = 5, since
tk = (k−1)h for k = 1, . . . ,K according to (3.6). The incident causes a blockage in
cell 3 such that there cannot be any inflow to this cell during the considered time
interval. This is implemented by changing the supply functions s4

3(x) and s5
3(x) in

(5.2) to s4
3(x) = 0 and s5

3(x) = 0.

5.2 Test Problem 2

In order to test the distributed algorithm (4.3)–(4.8) on a slightly more complicated
problem, an example from [Como et al., 2016] is used. The used setup is different
from the one used in the reference by a small detail, namely that the capacity Ck

4 only
is changed for the supply function in the reference, while it in this implementation is
set to be the same for the supply and demand function. This gives slightly different
results when the capacity is changed, but the overall behaviour is similar and the
optimal values are close to each other.

In the test problem, the single-source single-sink network illustrated in Fig. 5.3
is studied. In this network, external inflows are prescribed at cell 1, and external
outflows are allowed only at cell 10. Demand constraints are imposed on all cells,
and supply constrains are imposed on all cells except for cell 1, in order to allow
for arbitrary external inflows λ1 as in test problem 1. This first cell can thus be
interpreted as the queue on the on-ramp of the road, which can be arbitrarily long.
The supply and demand functions are given by

si(xi,k) = min

{
wi(x

jam
i − xi)

Li
,Ck

i

}
, i = 2, . . . ,N, (5.4)

di(xi,k) = min
{

vixi

Li
,Ck

i

}
, i = 1, . . . ,N, (5.5)

where vi is the free-flow speed, wi the speed of the congestion wave, Ck
i the capacity

(at time step k), Li the cell length and xjam
i the jam traffic volume for cell i. The

values of the parameters are given in Tab. 5.1. The supply and demand functions
can be written on the forms (4.23) and (4.24) respectively with

ks
i =−wi/Li, ms

i = wix
jam
i /Li,

kd
i = vi/Li, md

i = 0.

The lack of supply function for the first cell is implemented by setting ks
i = 0,

ms
i = 2∑k ∑i λi and Ck

i = 2∑k ∑i λi in (4.23), so that the supply constraint always
is satisfied, which is equivalent to that there is no supply constraint for the cell in
question.

66

5.3 Test Quantities

λ1 n1 n2

n3 n4

n5

n6

n7 n8

n9 n10 µ10
e1

e2

e3

e4
e5

e6
e7 e8

e9

e10

e11

Figure 5.3 Network used for testing the dynamic optimization algorithm.

In the studied case, the maximum flow capacity is reduced for cell 4 at some time
points, in order to simulate a time dependent bottleneck. Furthermore, the sampling
time used is h = 10 seconds. The external inflow is given as λ 1

1 = 0.8, λ 2
1 = 1.6,

λ 3
1 = 0.8 and λ k

1 = 0 for k ≥ 4. The cost function is chosen either as the sum of the
total traffic volume in all cells for all time points: ∑

K
k=1 ∑

N
i=1 xk+1

i , i.e., ψi(x) = x, or
as the the sum of the squares of the traffic volumes in all cells at all time points, i.e.,
ψi(x) = x2.

Parameter Value
Free-flow speed vi 50 feet/s
Wave speed wi 50 feet/s
Length of cell Li 500 feet

Number of lanes `i
2 for i = 1,2,9,10
1 otherwise

Capacity Ck
i

0.6`i vehicles/s for i 6= 4

C5
4 =C6

4 = 0 vehicles/s

C7
4 =C8

4 = 0.3 vehicles/s

Ck
4 = 0.6 vehicles/s for k 6= 5,6,7,8

Jam volume xjam 10`i vehicles

Table 5.1 Cell parameters.

5.3 Test Quantities

In order to determine the accuracy of the results, the convex dynamic optimal flow
problem (3.19) was solved with the MATLAB-based software CVX [CVX Research
Inc., 2017], and the results from the algorithm were compared with this solution.
CVX solves the problem in a centralized, or non-distributed, manner. This means
that all decision variables are considered simultaneously, which makes the problem
difficult and very time-consuming to solve if the problem is of large scale. However,
the solution method works well for solution of small problems and can thus be used
as a reference solution in the cases tested here.

67

Chapter 5. Tests and Results

The accuracy of the cost is measured by the relative cost error

εψ =
|Ψ−Ψ∗|

Ψ∗
,

where Ψ = ∑
K
k=1 ∑

N
i=1 ψi(yk

i) is the optimal value of the cost function according to
the algorithm and Ψ∗ is the optimal cost according to CVX. The accuracy of the
cell traffic volumes is measured by the average cell volume error

ε̄y =
1

KN

K

∑
k=1

N

∑
i=1
|yk

i − (xk+1
i)∗|

and the maximum cell volume error

ε
max
y = max

i,k
|yk

i − (xk+1
i)∗|,

where yk
i is the cell traffic volume in cell i at time k+ 1 according to the derived

algorithm, and (xk+1
i)∗ is the same cell volume according to CVX.

For the case with the linear cost function, the solution is not unique. Thus, the
errors in cell volumes have not been included here, since the volumes could be
different from the reference calculations but still be a feasible solution with the
same optimal value of the cost function. However, since the quadratic cost gives
a strictly convex objective function in the cell volume variables, the optimal cell
volume variables are unique and can be compared with the reference. Thus, this
comparison is made for the quadratic cost case only.

5.4 Results from Test Problem 1

In order to examine how well the algorithm works for different values of the penalty
parameter ρ , it was run for test problem 1 with different values of this parameter.
First, the algorithm was tested with a unit pulse inflow: λ 1

1 = 1, λ k
1 = 0 for all k≥ 2,

and a linear cost function, ψi(x) = x. The stopping criterion (4.26) was chosen as
requiring that both the feasibility residual and the duality gap are less than 10−3. The
results from this are presented in Tab. 5.2. Furthermore, the cost function, feasibility
residual and duality gap are plotted as a function of number of iterations in Fig. 5.4.
The resulting cell traffic volumes are plotted in Fig. 5.5 for the case ρ = 1 only.
However, the cell volumes for the other tested ρ-values are so close to this case
that the different cases cannot be distinguished by looking at the figure in the given
scale.

Repeating the same procedure but with the only difference that the cost is chosen
as a quadratic function: ψi(x) = x2, gave the result presented in Tab. 5.3. The cost
function, feasibility residual and duality gap changed during the execution of the

68

5.4 Results from Test Problem 1

penalty parameter ρ 0.001 0.01 0.1
number of iterations 32630 3608 759
computation time [s] 237 25 6

relative cost err. εψ 56×10−6 1.9×10−6 142×10−6

penalty parameter ρ 1 10 100
number of iterations 519 187 90
computation time [s] 4 1 1

relative cost err. εψ 165×10−6 235×10−6 70×10−6

Table 5.2 Results for test problem 1 with λ 1
1 = 1, λ k

1 = 0, k ≥ 2, different penalty
parameters ρ , linear cost function ψi(x) = x, feasibility residual tolerance 10−3 and
duality gap tolerance 10−3.

algorithm as illustrated in Fig. 5.6. The resulting cell traffic volumes are shown for
some of the ρ-values in Fig. 5.7.

After this, the same test was repeated for both the linear cost ψi(x) = x and the
quadratic cost ψi(x) = x2, but with the inflow chosen to be constant at one, i.e.,
λ k

1 = 1 for all k. The result from this with the linear cost is given in Tab. 5.4. In
these tests, an upper limit of the number of iterations was chosen as 500,000. Thus,
in the cases where the number of iterations required to satisfy the stopping criterion
is larger than this, the results are presented for 500,000 iterations instead. The cost
function, feasibility residual and duality gap are illustrated in Fig. 5.8 and the cell
volumes for some ρ-values in Fig. 5.9. The result from the case with the quadratic
cost is given in Tab. 5.5. The cost function, feasibility residual and duality gap are
shown in Fig. 5.10 and the cell volumes for some ρ-values in Fig. 5.11.

Finally, the algorithm was tested on the modified problem, where the supply
function for cell 3 was changed for time points 4 and 5, such that s4

3(x) = s5
3(x) = 0.

This corresponds to simulating a blockage such that there cannot be any inflow to
cell 3 in the time interval t ∈ [3,5). In this test, the quadratic cost function ψi(x) = x2

was used. The result from this is reported in Tab. 5.6. The cost function, feasibility
residual and duality gap as a function of the number of iterations are shown in
Fig. 5.12 and the cell volumes in Fig. 5.13.

69

Chapter 5. Tests and Results

100 101 102 103 104 105

Iteration number

0

1

2

3

4

C
o
s
t
fu

n
c
ti
o
n

Cost function

ρ = 0.001

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

ρ = 100

100 101 102 103 104 105

Iteration number

0

2

4

6

8

F
e
a
s
ib

ili
ty

 r
e
s
id

u
a
l

Feasibility residual

ρ = 0.001

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

ρ = 100

100 101 102 103 104 105

Iteration number

-1

-0.5

0

0.5

1

1.5

2

D
u
a
lit

y
 g

a
p

Duality gap

ρ = 0.001

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

ρ = 100

Figure 5.4 Cost function, feasibility residual and duality gap for test problem 1
with λ 1

1 = 1, λ k
1 = 0, k ≥ 2, different penalty parameters ρ , linear cost function

ψi(x) = x, feasibility residual tolerance 10−3 and duality gap tolerance 10−3.

70

5.4 Results from Test Problem 1

0 2 4 6 8 10

Time

0

0.5

1

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 1

0 2 4 6 8 10

Time

0

0.2

0.4

0.6

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 2

0 2 4 6 8 10

Time

0

0.2

0.4

0.6

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 3

0 2 4 6 8 10

Time

0

0.5

1

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 4

Figure 5.5 Cell traffic volumes for test problem 1 with λ 1
1 = 1, λ k

1 = 0, k ≥ 2,
penalty parameter ρ = 1, linear cost function ψi(x) = x, feasibility residual toler-
ance 10−3 and duality gap tolerance 10−3.

penalty parameter ρ 0.001 0.01 0.1
number of iterations 245037 24518 2465
computation time [s] 2394 207 20

relative cost err. εψ 424×10−6 442×10−6 409×10−6

mean cell vol. err. ε̄y 51×10−6 87×10−6 816×10−6

max cell vol. err. εmax
y 313×10−6 682×10−6 4.7×10−3

penalty parameter ρ 1 10 100
number of iterations 260 133 586
computation time [s] 2 1 5

relative cost err. εψ 2.3×10−3 23×10−3 16×10−3

mean cell vol. err. ε̄y 8.0×10−3 22×10−3 19×10−3

max cell vol. err. εmax
y 41×10−3 109×10−3 95×10−3

Table 5.3 Results for test problem 1 with λ 1
1 = 1, λ k

1 = 0, k ≥ 2, different penalty
parameters ρ , quadratic cost function ψi(x) = x2, feasibility residual tolerance
10−3 and duality gap tolerance 10−3.

71

Chapter 5. Tests and Results

100 101 102 103 104 105 106

Iteration number

0

0.5

1

1.5

2

2.5
C

o
s
t
fu

n
c
ti
o
n

Cost function

ρ = 0.001

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

ρ = 100

100 101 102 103 104 105 106

Iteration number

0

2

4

6

8

F
e
a
s
ib

ili
ty

 r
e
s
id

u
a
l

Feasibility residual

ρ = 0.001

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

ρ = 100

100 101 102 103 104 105 106

Iteration number

-0.5

0

0.5

1

1.5

D
u
a
lit

y
 g

a
p

Duality gap

ρ = 0.001

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

ρ = 100

Figure 5.6 Cost function, feasibility residual and duality gap for test problem 1
with λ 1

1 = 1, λ k
1 = 0, k≥ 2, different penalty parameters ρ , quadratic cost function

ψi(x) = x2, feasibility residual tolerance 10−3 and duality gap tolerance 10−3.

72

5.4 Results from Test Problem 1

0 2 4 6 8 10

Time

0

0.5

1

1.5

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 1

ρ = 0.001

ρ = 0.1

ρ = 100

0 2 4 6 8 10

Time

0

0.1

0.2

0.3

0.4

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 2

ρ = 0.001

ρ = 0.1

ρ = 100

0 2 4 6 8 10

Time

0

0.1

0.2

0.3

0.4

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 3

ρ = 0.001

ρ = 0.1

ρ = 100

0 2 4 6 8 10

Time

0

0.2

0.4

0.6

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 4

ρ = 0.001

ρ = 0.1

ρ = 100

Figure 5.7 Cell traffic volume for test problem 1 with λ 1
1 = 1, λ k

1 = 0, k ≥ 2, dif-
ferent penalty parameters ρ , quadratic cost function ψi(x) = x2, feasibility residual
tolerance 10−3 and duality gap tolerance 10−3.

penalty parameter ρ 0.001 0.01 0.1
number of iterations > 500000 > 500000 > 500000
computation time [s] 6475 6363 6342

relative cost err. εψ 72×10−3 2.9×10−3 46×10−3

penalty parameter ρ 1 10 100
number of iterations > 500000 820 283
computation time [s] 6320 6 2

relative cost err. εψ 87×10−3 117×10−3 12×10−3

Table 5.4 Results for test problem 1 with λ k
1 = 1 for all k, different penalty pa-

rameters ρ , linear cost function ψi(x) = x, feasibility residual tolerance 10−3 and
duality gap tolerance 10−3.

73

Chapter 5. Tests and Results

100 101 102 103 104 105 106

Iteration number

0

10

20

30

40
C

o
s
t
fu

n
c
ti
o
n

Cost function

ρ = 0.001

ρ = 0.01

ρ = 0.1

100 101 102 103 104 105 106

Iteration number

0

10

20

30

40

F
e
a
s
ib

ili
ty

 r
e
s
id

u
a
l

Feasibility residual

ρ = 0.001

ρ = 0.01

ρ = 0.1

100 101 102 103 104 105 106

Iteration number

-10

-5

0

5

10

15

D
u
a
lit

y
 g

a
p

Duality gap

ρ = 0.001

ρ = 0.01

ρ = 0.1

Figure 5.8 Cost function, feasibility residual and duality gap for test problem 1
with λ k

1 = 1 ∀k, different penalty parameters ρ , linear cost function ψi(x) = x,
feasibility residual tolerance 10−3 and duality gap tolerance 10−3.

74

5.4 Results from Test Problem 1

0 2 4 6 8 10

Time

0.5

1

1.5

2

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 1

ρ = 0.001

ρ = 0.1

ρ = 100

0 2 4 6 8 10

Time

0

0.5

1

1.5

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 2

ρ = 0.001

ρ = 0.1

ρ = 100

0 2 4 6 8 10

Time

0

0.5

1

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 3

ρ = 0.001

ρ = 0.1

ρ = 100

0 2 4 6 8 10

Time

0

1

2

3

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 4

ρ = 0.001

ρ = 0.1

ρ = 100

Figure 5.9 Cell traffic volumes for test problem 1 with λ k
1 = 1 ∀k, different penalty

parameters ρ , linear cost function ψi(x) = x, feasibility residual tolerance 10−3 and
duality gap tolerance 10−3.

penalty parameter ρ 0.001 0.01 0.1
number of iterations 334541 33467 3356
computation time [s] 4149 330 26

relative cost err. εψ 45×10−6 45×10−6 44×10−6

mean cell vol. err. ε̄y 57×10−6 56×10−6 51×10−6

max cell vol. err. εmax
y 461×10−6 458×10−6 431×10−6

penalty parameter ρ 1 10 100
number of iterations 352 24015 > 500000
computation time [s] 3 211 6754

relative cost err. εψ 2.3×10−3 155×10−3 127×10−3

mean cell vol. err. ε̄y 7.5×10−3 105×10−3 84×10−3

max cell vol. err. εmax
y 99×10−3 414×10−3 246×10−3

Table 5.5 Results for test problem 1 with λ k
1 = 1 for all k, different penalty param-

eters ρ , quadratic cost function ψi(x) = x2, feasibility residual tolerance 10−3 and
duality gap tolerance 10−3.

75

Chapter 5. Tests and Results

Figure 5.10 Cost function, feasibility residual and duality gap for test problem
1 with λ k

1 = 1 for all k, different penalty parameters ρ , quadratic cost function
ψi(x) = x2, feasibility residual tolerance 10−3 and duality gap tolerance 10−3.

76

5.4 Results from Test Problem 1

2 4 6 8 10

Time

0

0.5

1

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 1

ρ = 0.1

ρ = 1

ρ = 100

2 4 6 8 10

Time

0

0.2

0.4

0.6

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 2

ρ = 0.1

ρ = 1

ρ = 100

2 4 6 8 10

Time

0

0.2

0.4

0.6

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 3

ρ = 0.1

ρ = 1

ρ = 100

2 4 6 8 10

Time

0

0.5

1

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 4

ρ = 0.1

ρ = 1

ρ = 100

Figure 5.11 Cell traffic volumes for test problem 1 with λ k
1 = 1 for all k, differ-

ent penalty parameters ρ , quadratic cost function ψi(x) = x2, feasibility residual
tolerance 10−3 and duality gap tolerance 10−3.

penalty parameter ρ 0.01 0.1 1 10
number of iterations 35017 3632 381 4373
computation time [s] 262 27 4 32

relative cost err. εψ 33×10−6 42×10−6 2.2×10−3 42×10−3

mean cell vol. err. ε̄y 59×10−6 41×10−6 7.5×10−3 60×10−3

max cell vol. err. εmax
y 387×10−6 337×10−6 99×10−3 306×10−3

Table 5.6 Results for test problem 1 modified such that s4
3(x) = s5

3(x) = 0 with
λ k

1 = 1 for all k, different penalty parameters ρ , quadratic cost function ψi(x) = x2,
feasibility residual tolerance 10−3 and duality gap tolerance 10−3.

77

Chapter 5. Tests and Results

100 101 102 103 104 105

Iteration number

0

10

20

30

40
C

o
s
t
fu

n
c
ti
o
n

Cost function

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

100 101 102 103 104 105

Iteration number

0

10

20

30

40

50

F
e
a
s
ib

ili
ty

 r
e
s
id

u
a
l

Feasibility residual

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

100 101 102 103 104 105

Iteration number

-5

0

5

10

D
u
a
lit

y
 g

a
p

Duality gap

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

Figure 5.12 Cost function, feasibility residual and duality gap for test problem 1
modified such that s4

3(x) = s5
3(x) = 0 with λ k

1 = 1 for all k, different penalty param-
eters ρ , quadratic cost function ψi(x) = x2, feasibility residual tolerance 10−3 and
duality gap tolerance 10−3.

78

5.5 Results from Test Problem 2

2 4 6 8 10

time

0

0.5

1

1.5

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 1

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

0 2 4 6 8 10

time

-0.5

0

0.5

1

1.5

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 2

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

0 2 4 6 8 10

time

0

0.5

1

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 3

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

0 2 4 6 8 10

time

-0.5

0

0.5

1

1.5

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 4

ρ = 0.01

ρ = 0.1

ρ = 1

ρ = 10

Figure 5.13 Cell traffic volumes for test problem 1 modified such that s4
3(x) =

s5
3(x) = 0 with λ k

1 = 1 for all k, different penalty parameters ρ , quadratic cost func-
tion ψi(x) = x2, feasibility residual tolerance 10−3 and duality gap tolerance 10−3.

5.5 Results from Test Problem 2

The result for test problem 1 with a constant inflow λ1 and a linear cost function
ψi(x) = x (Fig. 5.8) shows that the optimization variables do not converge to one
feasible optimal solution even for small values of the penalty parameter. However,
the same test with a quadratic cost function ψi(x) = x2 converges for small ρ-values
(Fig. 5.10). Because of this, test problem 2 was tested with the quadratic cost func-
tion ψi(x) = x2.

The stopping criterion (4.26) used for test problem 2 was the same as for test
problem 1, i.e., requiring that both the feasibility residual and the duality gap are
less than 10−3. In order to handle cases with very slow convergence, an upper limit
of number of iterations was used. For the penalty parameter value ρ = 0.1, the limit
was 1,000,000 iterations, and for the parameter values ρ = 1, 10, 100 and 1000,
the limit was chosen as 100,000 iterations. Thus, for the cases where the number
of iterations for satisfying the stopping criterion is larger than the limit, the results
are presented for the limiting number of iterations. The results from test problem
2 are given in Tab. 5.7. The cost function, feasibility residual and duality gap as a
function of number of iterations for the different cases except ρ = 1000 are shown
in Fig. 5.14. For the case with ρ = 1000, the result is not converging and behaves
similarly to the red curves in Fig. 5.8. Because of that the oscillating curves in this
case make it more difficult to see the other results, this case it not included in the

79

Chapter 5. Tests and Results

penalty parameter ρ 0.1 1 10
number of iterations > 1000000 > 100000 11285
computation time [s] 84835 6962 765

relative cost err. εψ 3.5×10−6 34×10−6 13×10−6

mean cell vol. err. ε̄y 69×10−6 674×10−6 6.7×10−3

max cell vol. err. εmax
y 497×10−6 4.8×10−3 47×10−3

feasibility res. 2.9×10−6 29×10−6 5.6×10−6

duality gap 5.1×10−3 5.2×10−3 1.0×10−3

penalty parameter ρ 100 1000
number of iterations > 100000 > 100000
computation time [s] 6837 6799

relative cost err. εψ 168×10−6 145×10−3

mean cell vol. err. ε̄y 12×10−3 682×10−3

max cell vol. err. εmax
y 170×10−3 2.4

feasibility res. 10×10−3 4.5
duality gap 16×10−3 −325

Table 5.7 Results for test problem 2 with different penalty parameters ρ ,
quadratic cost function ψi(x) = x2, feasibility residual tolerance 10−3 and dual-
ity gap tolerance 10−3.

figure. Some of the cell traffic volumes obtained for ρ = 1 are presented in Fig. 5.15.
For the other converging cases, i.e., all cases tested except ρ = 1000, the resulting
cell volumes are similar enough to the case of ρ = 1 to be almost indistinguishable,
which is why only the latter case is plotted.

Finally, the interpretation of the result in terms of turning ratios and control pa-
rameters α , i.e., ramp metering or speed regulation, was computed according to the
end of Section 3.4. According to the equations in this section, the calculations are
different depending on whether the demand function or the total outflow is zero or
greater than zero. Since these values sometimes can be slightly larger than zero even
if they should be zero, due to numerical inaccuracy, a tolerance must be chosen such
that the value in question is considered as zero if it is smaller than this tolerance. In
the present case, the limit 10−3 was used for this purpose, which can be compared
to the average flow on the links during the simulation and the maximum flow at any
link which are 0.07 and 1.2 respectively. The resulting turning ratios for the outlinks
from diverge cells are illustrated in Fig. 5.16 and the resulting control parameters
αi for all cells are presented in Fig. 5.17.

80

5.5 Results from Test Problem 2

100 101 102 103 104 105 106

Iteration number

0

500

1000

1500

2000
C

o
s
t
fu

n
c
ti
o
n

Cost function

ρ = 0.1

ρ = 1

ρ = 10

ρ = 100

100 101 102 103 104 105 106

Iteration number

0

50

100

150

200

F
e
a
s
ib

ili
ty

 r
e
s
id

u
a
l

Feasibility residual

ρ = 0.1

ρ = 1

ρ = 10

ρ = 100

100 101 102 103 104 105 106

Iteration number

-200

0

200

400

600

D
u
a
lit

y
 g

a
p

Duality gap

ρ = 0.1

ρ = 1

ρ = 10

ρ = 100

Figure 5.14 Cost function, feasibility residual and duality gap for test problem 2
with different penalty parameters ρ , quadratic cost function ψi(x) = x2, feasibility
residual tolerance 10−3 and duality gap tolerance 10−3.

81

Chapter 5. Tests and Results

0 50 100 150 200 250

Time [s]

0

5

10

15

20

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 1

0 50 100 150 200 250

Time [s]

0

5

10

15

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 2

0 50 100 150 200 250

Time [s]

0

2

4

6

8

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 3

0 50 100 150 200 250

Time [s]

0

1

2

3

C
e
ll
 t
ra

ff
ic

 v
o
lu

m
e

Traffic volume at cell 4

Figure 5.15 Cell traffic volumes in some of the cells for test problem 2 with penalty
parameter ρ = 1, quadratic cost function ψi(x) = x2, feasibility residual tolerance
10−3 and duality gap tolerance 10−3.

50 100 150 200 250

Time [s]

0

0.2

0.4

0.6

0.8

R
ij

Flow ratio at link 2

50 100 150 200 250

Time [s]

0

0.2

0.4

0.6

R
ij

Flow ratio at link 3

50 100 150 200 250

Time [s]

0

0.5

1

R
ij

Flow ratio at link 4

50 100 150 200 250

Time [s]

0

0.5

1

R
ij

Flow ratio at link 5

Figure 5.16 Turning ratios for test problem 2 with penalty parameter ρ = 1,
quadratic cost function ψi(x) = x2, feasibility residual tolerance 10−3 and dual-
ity gap tolerance 10−3.

82

5.5 Results from Test Problem 2

50 100 150 200 250

Time [s]

0

0.05

0.1

0.15

α

α
1

50 100 150 200 250

Time [s]

0

0.5

1

α

α
2

50 100 150 200 250

Time [s]

0

0.5

1

α

α
3

50 100 150 200 250

Time [s]

0

0.5

1

α

α
4

50 100 150 200 250

Time [s]

0

0.5

1
α

α
5

50 100 150 200 250

Time [s]

0

0.5

1

α

α
6

50 100 150 200 250

Time [s]

0

0.5

1

α

α
7

50 100 150 200 250

Time [s]

0

0.5

1

α

α
8

50 100 150 200 250

Time [s]

0

0.5

1
α

α
9

50 100 150 200 250

Time [s]

0

0.5

1

α

α
10

Figure 5.17 Control parameters αi for test problem 2 with penalty parameter
ρ = 1, quadratic cost function ψi(x) = x2, feasibility residual tolerance 10−3 and
duality gap tolerance 10−3.

83

6
Discussion

This chapter contains a discussion about both the simulation results from the test
problems and about the method used in general. Section 6.1 and Section 6.2 discuss
the results obtained in Chapter 5. In Section 6.3, the dynamic traffic flow optimiza-
tion algorithm is discussed in general.

6.1 Test Problem 1

Unit Pulse Inflow
The results from test problem 1 with unit pulse inflow (λ 1

1 = 1, λ k
1 = 0 for all k≥ 2)

and linear cost function, as reported in Tab. 5.2, show that the obtained cost value
is very close to the optimal cost obtained by CVX for all tested penalty parameter
values ρ . The largest relative cost error is 0.02 %, which is obtained for ρ = 10.
In Fig. 5.4 it can be seen that the cost function goes to the same solution, and that
the duality gap and feasibility residual go to zero in all cases. For smaller ρ-values,
more iterations are required, but besides this, the behaviour is very similar for all
small ρ-values. This is in accordance with the expectations, since ρ is the size of
the step taken in the domain of the dual function in the attempt to maximize this
function. Thus, if ρ is reduced to a tenth of its previous value, then ten times as
many steps should be needed in order to reach the maximum of the dual function.

The cases that differ most from the rest are the ones corresponding to the largest
penalty parameter values, 10 and 100. For ρ = 100, the cost function ends up very
close to the optimal value already in the first iteration. One fact that might contribute
to this result is that in the special case of test problem 1, the primal variables are
initiated such that they in fact are equal to the optimal values, while the dual vari-
ables are initiated as zero (according to the end of Section 4.1). Thus, the starting
point in the primal variable domain is the optimal point, which probably simplifies
the process of finding the optimal point in the dual variable domain, and makes it
possible to do so even for a large step size. Another reason that this is possible is
probably that the structure of test problem 1 is very simple and symmetric. It is
reasonable that the simple structure of the problem implies that the dual function

84

6.1 Test Problem 1

gets a simple and more regular structure as well (compared to a more complicated
problem), which makes it more probable to get a converging result even for a large
step size.

The obtained cell traffic volumes in Fig. 5.5 are as expected. Since the supply
functions are large enough to allow for the entire unit flow to enter any cell, the
entire flow unit will leave cell 1 already between time points 1 and 2, and enter the
connected cells 2 and 3. At the next time step, all flow in these cells will enter cell
4. In the last time step, the entire flow leaves the network from cell 4, which is the
only sink. The flow dynamics is thus such that all flow moves one step closer to the
sink at each time step, which is the fastest possible way that all flow can leave the
network, and thus an optimal solution.

When the linear cost function was replaced with a quadratic cost, the results in
Tab. 5.3 were obtained. Here, it is clear that larger penalty parameter values give
less good results. For example, ρ = 10 results in a cost value with a 2 % deviation
from the real optimum, while the maximum cell volume error is as much as 11 %.
On the other hand, the corresponding errors for ρ = 0.001 and ρ = 0.01 are less
than 0.1 %. It can be seen in Fig. 5.6 that the cost function, feasibility residual
and duality gap behave almost identically for the three smallest penalty parameter
values, but with a scaling of the number of iterations such that they increase with
the same proportion as the penalty parameter decreases. This consistency indicates
that the algorithm works well for the tested case as long as the penalty parameter is
small enough. In Fig. 5.7, it can be seen that also the obtained cell traffic volumes
are consistent for the small penalty parameter values 0.001 and 0.1.

The less good performance for large penalty parameters is reasonable, since a
large step in the dual variable domain might imply that the dual function has started
to decrease at the end of the step even though it was increasing at the beginning
of the step. That is, it is possible to move too far and end up beyond the maximal
function value in the step direction.

Constant Inflow
For test problem 1 with a constant inflow (λ k

1 = 1 for all k) and a linear cost function,
the results in Tab. 5.4 were obtained. It can be seen that the method converges, in the
sense that the stopping criterion is satisfied, only for the large penalty parameters
ρ = 10 and ρ = 100. However, the results for these large step sizes cannot be trusted,
since, e.g., the case with ρ = 10 gives an error in the cost function of 12 %.

The behaviour of the cost, feasibility residual and duality gap can be seen in
Fig. 5.8 for some ρ-values. It is clear that all these quantities start to experience
increasing oscillations after a certain number of iterations, even for small penalty
parameters. A probable explanation for this is the following: For the problem con-
sidered, there are infinitely many optimal solutions, since the outflow from cell 1
can be arbitrarily distributed between cells 2 and 3, as long as the supply constraints
are satisfied, and still give the same cost function value. Thus, in the different steps

85

Chapter 6. Discussion

of one algorithm iteration, which consist of updating the different variables, the dif-
ferent variables can be chosen such that they belong to different optimal solutions.
Thereby, the algorithm jumps between points that are closer to different optimal
solutions for different variables, which can give raise to an oscillating behaviour.

Inspecting the obtained cell traffic volumes for some penalty parameter values
in Fig. 5.9, it can be seen that the solutions for ρ = 0.001 and ρ = 0.1 are not
optimal, since the volumes at cell one and cell 4 then should be 1 for most time
points. However, for the case of ρ = 100, a solution that is close to an optimal
solution is found. As discussed for the case of the unit pulse inflow, this probably
depends on that the particular problem has a quite simple structure and is initiated
with optimal primal variables. If the algorithm would have proceeded as desired, the
same result should be obtained for smaller penalty parameter values, as this would
correspond to dividing the step in the dual variable domain into several smaller
steps. Thus, it is reasonable to assume that the result in this case is an effect of
the simplicity of the particular problem, and that the result for a more complicated
example would be bad also for large penalty parameters. The conclusion from this
test is that the derived algorithm cannot be trusted for linear cost functions, since
the result is not consistent for small penalty parameter values. This is probably due
to that the these cost functions are not strictly convex, which implies that there is
not a unique optimum. Thereby, the focus will in the remaining tests be on the case
of the quadratic cost function.

The same problem as just considered but with a quadratic cost gave the results
in Tab. 5.5. It can be seen that the result for the penalty parameters ρ = 0.001, 0.01
and 0.1 give both cost function errors of less than 0.01 % and maximum cell volume
errors of less than 0.1 %. Thus, the method seems to work fine for this case, as long
as the penalty parameter is chosen small enough. Also the case of ρ = 1 gives a
result that is quite accurate in terms of the discussed error quantities, but the tests
with larger penalty parameters result in large errors.

Inspecting the cost, feasibility residual and duality gap in Fig. 5.10 it shows that
the behaviours of these quantities are very similar for the ρ-values lower than or
equal to 0.1 except for that they are differently scaled. The results for these cases
also result in almost exactly the same cell traffic volumes, coinciding with the blue
curves in Fig. 5.11. In this figure, it can also be seen the case of ρ = 1 gives a
result which is quite close to the results for smaller penalty parameters, but different
enough to be distinguishable.

The conclusion it that the algorithm seems to work fine for solving test problem
1 with constant inflow and quadratic cost, as long as the penalty parameter is around
0.1 or smaller.

Modified Test Problem 1
When test problem 1 was modified to simulate an incident that blocks inflow to cell
3 in the time interval t ∈ [3,5), by changing two supply function values to s4

3(x) = 0

86

6.2 Test Problem 2

and s5
3(x) = 0, the results for some different penalty parameters were as shown in

Tab. 5.6. It is seen that for both ρ = 0.01 and ρ = 0.1, the relative cost errors are
again less than 0.01 % and the maximum cell volume errors are less than 0.1 %. The
corresponding cost functions, feasibility residuals and duality gaps behave again
consistently, according to Fig. 5.12.

The resulting cell traffic volumes in Fig. 5.13 for the two smallest ρ-values are
reasonable and as expected. Since the inflow to cell 3 must be zero in the time
interval t ∈ [3,5), the cell volume cannot increase between time points 3 and 4
as well as 4 and 5. As seen in the result, the algorithm manages to take this into
account. The outflow from cell 1 is during this interval instead redirected to cell 2,
which gives a feasible and optimal solution.

The results from the modified problem 1 show that the algorithm seems to work
fine even for this slightly more complicated case with a time-varying supply func-
tion, when a quadratic cost function is used, as long as the penalty parameter is 0.1
or smaller.

6.2 Test Problem 2

When applying the algorithm to the more complicated test problem 2, the results
were as shown in Tab. 5.7. When running 1,000,000 iterations with penalty parame-
ter ρ = 0.1, the relative cost error was very small (0.0004 %) and the maximum cell
volume error was 0.05 %. For 100,000 iterations with ρ = 1, both these quantities
were about ten times as big. The case ρ = 10 with a bit more than 10,000 itera-
tions gave again a ten times larger maximum cell volume error, i.e., 5 %, but a very
small cost error. Thus, all these three parameter values, and especially the first two,
give approximately the same solution. The similar behaviours for the cost function,
feasibility residual and duality gap can be seen in Fig. 5.14.

The resulting cell traffic volumes for some of the cells are shown in Fig. 5.15.
This result is reasonable since a large external inflow to cell 1 is present at the first
30 seconds, which leads to a large volume in this cell during this time interval.
The inflow is 0.8 vehicles/s the first ten seconds, then 1.6 vehicles/s for ten seconds
and again 0.8 vehicles per second during ten seconds. This explains the peak for
the traffic volume after 20 seconds. After the first two time steps of 10 seconds
(recall that the time discretization interval is h = 10 s), the traffic reaches cell 2 (see
Fig. 5.3), after 30 seconds it has reached cell 3, and so on.

The traffic volume at cell 4 is in agreement with the time-dependent capacity
Ck

4 in Tab. 5.1. According to this, and the supply and demand functions (5.4) and
(5.5), there cannot be any in- or outflow to or from cell 4 during the time interval
t ∈ [40,60), and the same flows are limited more than at the beginning for times
t ∈ [60,80). Thus, the fact that the cell volume is constant in the time interval t ∈
[40,60) shows that the algorithm handles this requirement.

The resulting turning ratios shown in Fig. 5.16 are reasonable. Initially, when

87

Chapter 6. Discussion

the cell traffic volume in cell 2 is large, the outflow is divided approximately equally
between link 2 and link 3 (see Fig. 5.3), which is reasonable since the flow is too
large to send along the shortest path along links 2, 4 and 9 only, and thus should
be divided so that flow is sent also along the longer path along links 3, 7, 8 and 10.
When the flow is blocked at cell 4, the flow must go either along links 2, 5 and 6
or along links 3 and 7. Since the latter path is shorter, most of the flow is directed
along this path during the time interval t ∈ [40,60). When cell 4 is unblocked again,
the flow in the first part of the network has decreased (since external flow only is
supplied during the first 30 seconds). Thus, one of the paths between cells 1 and 10
is sufficient for sending almost all of the remaining flow. Thus, the shortest path,
along links 2, 4 and 9, is chosen for this. This is why almost all flow from cell 2 is
directed along link 2 and almost none of it along link 3 after around 100 seconds.

The flow ratios for link 4 and 5 are also reasonable. First, when the flow is large,
the outflow from cell 3 is equally distributed among the two links, in order to utilize
the entire capacity of the network. When cell 4 is blocked, all flow is naturally
directed along link 5, and after this, when the flow is small, all flow is directed
along link 4 since this corresponds to the shortest path.

The control parameters in Fig. 5.17 also seem to be quite reasonable for the
first half of the simulation time interval. The first one, α1, is a measure of how
large flow is allowed to leave cell 1. This follows from the optimal traffic volume
at cell 1, shown in Fig. 5.15. The remaining control parameters correspond to speed
limitations. The value αi = 1 means that the speed is at the maximum allowed speed
for cell i, while smaller values mean that the speed is limited with the corresponding
proportion (since the demand functions are linear). These control parameters are at
1 initially, since no traffic flow has reached the cells yet, which implies that the
speed can be at its maximum.

As an example of an interpretation of the control parameters, it can be seen that
α6 for most times is much smaller than α4. This is reasonable, since the outflow
from cell 3 preferable should go to cell 4 instead of cell 6, because of the fact that
first alternative implies a shorter itinerary to the sink cell (after the times when
cell 4 is blocked). Thus, the traffic flow travelling through cells 6, 7 and 8 should
be slowed down compared to the traffic travelling through cell 4, since both these
flows compete about the space in cell 9, while the first alternative corresponds to
a shorter and more optimal path. This implies that the vehicles at the shorter path
are prioritized and allowed to drive faster compared to the vehicles along the longer
path, so that most of the flow and thus most of the vehicles can travel along the
shortest path.

Furthermore, the control parameters for cells 9 and 10, i.e., α9 and α10, are
always 1, which is reasonable since there is no reason to slow down the traffic in
these cells. The reason that the traffic sometimes is slowed down is in order to
allow vehicles along another path ending up at the same end cell to be prioritized.
However, since there only is one inlink to cell 10, there is no reason to limit the
speed in this case. The reason that the parameters sometimes are slightly larger than

88

6.3 General Discussion

1 is probably due to numerical inaccuracy. In this case, they should reasonably be
assumed to be 1.

From these observations, the values of the control parameters seem to be rea-
sonable in most aspects. However, at the latter half of the simulation time interval,
the control parameters are for most cells decreasing. This means that the speed is
decreased much even though it is known that the flow is small for these times. This
is probably a consequence of the combination of a quadratic cost function and a
quite short time horizon (number of time points K) used in the optimization. This
combination implies that it might be more optimal to retain small traffic volumes in
some cells during the simulated time horizon rather than to let all flow pass through
the network, which would result in larger cell volumes and a cost that increases
quadratically. This effect is clearly seen in the plot of the cell volumes in Fig. 5.15.
The conclusion of this is that the control parameters for the latter half of the time
interval probably are not very practically useful. In order to improve this result, a
larger time horizon should be chosen, possibly in combination with a better cost
function (e.g., one that is more similar to the linear function). A way to handle the
current result if it would be used in practice could be to simply ignore the control
parameters and instead use the maximum speed when the traffic volume in the cell
in question is very small.

6.3 General Discussion

The derived and tested algorithm (4.3)–(4.8) is based on a generalization of ADMM,
which is described in [Boyd et al., 2011, Ch. 3], and differs from this mainly in two
ways.

Firstly, the primal update step in ADMM consists of two steps only, while it
here consists of four independent steps (five steps, but where the updates of µ and
g can be considered as the same step, since both of these are outflows and they are
independent of each other since just one of them is non-zero for each cell and thus
for each subproblem). This implies that the theoretical background such as conver-
gence proofs and similar conclusions that hold for ADMM not necessarily applies
to the derived algorithm. However, the idea behind the approach is the same as for
ADMM, i.e., proceeding according to the method of multipliers but with the differ-
ence that the Lagrangian minimization step is carried out as several steps instead of
minimizing the augmented Lagrangian with respect to all primal variables simulta-
neously. This yields an approximation of the method of multipliers that presumably
should give similar results if the changes of the variables in each iteration, i.e., the
dual step length ρ and thus also the remaining variables, are small.

Secondly, the adapted algorithm contains not only equality constraints but also
inequality constraints, which complicates the procedure by requiring some of the
dual variables to be non-zero. However, when this is taken into account, the result
seems as a quite natural extension of ADMM.

89

Chapter 6. Discussion

A question that has been ubiquitous during the tests of the algorithm is how the
penalty parameter ρ should be chosen. A large value of ρ implies that deviations
from the constraints are penalized much in the cost function of the augmented La-
grangian (thus the name ‘penalty parameter’), which should be good in order to find
a feasible solution faster. However, it also implies that the step length in the dual
variable domain during the dual update is large. As have been seen in the results,
this can cause oscillations and hinder the algorithm from converging to the correct
solution. For all tests with quadratic cost functions, the optimal solution has been
found given that ρ is small enough. Thus, the conclusion is that it is better to choose
ρ smaller than to choose it large. The price to be paid for this is that the algorithm
requires more iterations and thus more computing time to find the solution.

90

7
Conclusions and Future
Work

7.1 Conclusions

In this work, a distributed algorithm, (4.3)–(4.8), for solving the optimal convex dy-
namic traffic flow control problem (3.19) has been derived. This problem, in turn, is
a relaxation of the dynamic traffic flow control problem (3.18), and the optimal so-
lutions for the convex problem supplied by the algorithm can be mapped to feasible
points for this problem.

The derived algorithm does not in general work well with cost functions that
are linear in the cell traffic volumes, i.e., ψi(x) = x. However, for quadratic cost
functions, ψi(x) = x2, the algorithm converges to the optimal solution for the tested
cases, given that the penalty parameter (which equals the dual ascent step length)
is chosen small enough. This is probably due to that the quadratic cost is strictly
convex in the cell traffic volumes, while the linear cost is not. A drawback with the
algorithm is that many iterations are required in order to obtain accurate results,
which is a known drawback also with the ADMM that was the starting point, ac-
cording to [Boyd et al., 2011, Ch. 3]. The number of iterations required increases
with decreasing penalty parameter values, which necessitates a trade-off between
convergence and computational speed in the choice of this parameter.

The tests show that the optimization problem with a quadratic cost function can
be solved for quite complicated problems. Even cases when the problem contains
time-varying supply and demand functions can be handled. Thus, problems where
the circumstances of the road network are time-varying can be solved.

7.2 Future Work

The most important step in further developing the results from this work, in order to
obtain a practically useful method, is to modify the method such that the number of
iterations is reduced. The algorithm converges consistently to the optimal solution

91

Chapter 7. Conclusions and Future Work

for the cases with quadratic cost function and small penalty parameter. However,
very many iterations are needed in order to reach the optimum, which is associated
with a large computational time. One approach that could be tested in order to speed
up the algorithm is to vary the step size, such that one starts with large steps and de-
creases the step size when the optimum is approached. Another idea could be to try
to incorporate second order information in the algorithm. In the derived algorithm,
the dual update uses only the gradient, and is thus a first order method. If it would
be possible to in some way use information about the exact or approximate second
derivatives, this could be useful for achieving faster convergence.

Another aspect that should be studied further is the theoretical aspects of the
algorithm. For example, it would be desirable to prove that the algorithm always
converges if some conditions are satisfied. The tests in this work indicate that con-
vergence seems to be obtained for quadratic cost functions and small penalty pa-
rameters, but this has not yet been proved.

92

Bibliography

Ba, Q., K. Savla, and G. Como (2015). “Distributed optimal equilibrium selection
for traffic flow over networks”. In: IEEE Conference on Decision and Control,
pp. 6942–6947.

Ba, Q. and K. Savla (2016). “On distributed computation of optimal control of traffic
flow over networks”. Fifty-fourth Annual Allerton Conference, Allerton House,
UIUC, Illinois, USA.

Boyd, S. and L. Vandenberghe (2009). Convex Optimization. Cambridge University
Press.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). “Distributed opti-
mization and statistical learning via the alternating direction method of multi-
pliers”. Found. Trends Mach. Learn. 3:1, pp. 1–122.

Como, G., E. Lovisari, and K. Savla (2016). “Convexity and robustness of dynamic
traffic assignment and freeway network control”. Transportation Research Part
B: Methodological 91, pp. 446–465.

CVX Research Inc. (2017). CVX: matlab software for disciplined convex program-
ming, version 2.1. http://cvxr.com/cvx.

Daganzo, C. F. (1994). “The cell transmission model: A dynamic representation
of highway traffic consistent with the hydrodynamic theory”. Transportation
Research B: Methodological 28B:4, pp. 269–287.

Seibold, B. (2015). A mathematical introduction to traffic flow theory. http://
helper.ipam.ucla.edu/publications/tratut/tratut_12985.pdf.

UN (2014). World’s population increasingly urban with more than half living in
urban areas. http : / / www . un . org / en / development / desa / news /
population/world-urbanization-prospects-2014.html.

Whittle, P. (2007). Networks: Optimisation and Evolution. Cambridge University
Press.

93

Document name

Date of issue

Document Number

Author(s) Supervisor

Sponsoring organization

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Blank Page
	regler-forstasida_A4.pdf
	Tom sida

