

Department of Automatic Control

RT-Bench, Improved Understanding
of Application Performance

with Memory Storage

Zsolt Demeter

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lund University Publications - Student Papers

https://core.ac.uk/display/289955546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MSc Thesis
TFRT-6043
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2017 by Zsolt Demeter. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2017

Abstract

By implementing efficient and smart schedulers in our software systems with
multiple threads we can make applications run faster and much more effi-
ciently. There is however a lot of caution when adopting and implementing
scheduling algorithms, like limited preemptive scheduling or PD2, due to the
uncertainty they may cause on advanced and complex systems. In fact, most
algorithms are tested to produce advantages in specific situations. This is one
of the reasons why there is a gap between the theoretical scheduling develop-
ment and the actual schedulers implemented in real operating systems. One
way to close the gap is to derive precise guarantees for the implementation
of scheduling algorithms, which is the purpose of rt-bench.

Rt-bench calculates characteristic values for a specified scheduling al-
gorithm and a specific task set, mainly in form of supply bound functions
based on the execution of the task set on a Linux-based hardware platform.
The characteristics can vary depending on the system and the setup, therefore
these are used to compare complete execution platforms rather than single
algorithms.

This thesis focuses on extending rt-bench to increase the realistic be-
haviour of the simulation of the application behaviour. Before this thesis,
rt-bench could simulate computations but not memory handling. Simulating
memory management is necessary to create realistic models and the purpose
of this thesis is to introduce this memory usage in rt-bench.

The results show a clear performance drop before the model reaches
a memory level equal to the cache size, due to other processes also using
the cache memory. This behaviour is what was expected and confirms that
the implementation is sufficient for measuring and evaluating performance
offered by different platforms.

3

Aknowledgements

I would like to express my gratitude to my supervisor Assoc. Prof. Martina
Maggio for her support and guidance throughout this thesis, for providing
me with the support and answers that I needed, and finally for her endless
patience when I decided to take a job offer during the thesis, prolonging the
process with an unforeseen postponement.

I would also like to thank my fellow student Nicolas for the company
and valuable discussions, work related or not, when we were both working
late hours with our theses at the university.

Finally I would like to thank my family and friends for believing in
me and supporting me when I needed it the most, and thank you Maria for
always reminding me that the end was just around the corner.

5

Contents

1. Introduction 9
1.1 Problem Statement . 10
1.2 Goal . 11
1.3 Constraints . 11
1.4 Thesis outline . 11

2. Theoretical Background 13
2.1 Scheduling in Linux Kernels 13
2.2 The Supply Function . 16

3. Implementation Background: rt-bench 20
3.1 Platform specifications 21
3.2 Rt-bench . 22
3.3 Alpha and Delta Characteristics 23
3.4 Job Phases . 24

4. Thesis Contribution 26
4.1 Memory Usage Phase 26
4.2 .json-file Configuration 28
4.3 Automating test generation and result collection 29

5. Test Process 31
5.1 Tests . 31

6. Results and Discussion 41
6.1 Albert Tests . 42
6.2 Bart, Bert and Burt Tests 46
6.3 Casper and Ceasar Tests 51
6.4 Dumble Tests . 55
6.5 Cache Size Consideration 59

7. Conclusion 63

7

Contents

Bibliography 64

Appendices 69
A. List of Support Files used with rt-bench 69
B. Deviations in Dumble tests 70

8

1
Introduction

The demand on good resource management techniques, that are quick and
fail safe, is high in many areas, especially in areas using real-time thread
schedulers. Even though there are many efficient scheduling algorithms
available, developers are being very cautious about adopting these, espe-
cially in more advanced and complex systems. The reason for this is that
most scheduling algorithms tend to be optimal in specific conditions, for ex-
ample when the load is less than a specific quantity, or to achieve specific
goals, for example enforcing fairness. This also makes it hard to choose a
scheduler for systems that run multiple applications.

Examples of algorithms that handle specific situations very well can be
found in schedulers that operate on mixed criticality system. These systems
have two or more levels of criticality, referring to the levels of assurance
against application failure (Automotive Safety Integrity Levels, Design As-
surance Levels) [Blanquart et al., 2012]. Adding more levels affects schedul-
ing parameters that can completely cripple scheduling algorithms, hence it is
important to use flexible schedulers addressing all desired situations [Burns
and Davis, 2016].

Several characteristics are relevant in the investigation of scheduling
algorithms, such as CPU busyness, number of processed jobs per time unit,
response time from task submission and fairness in sharing the CPU between
processes [Goel and Garg, 2012]. The overhead from the scheduling algo-
rithms due to schedule and computation context switching needs to be taken
in consideration as well [Katcher, Arakawa, and Strosnider, 1993] [Nahas,
2008]. Optimizing all these characteristics is not easy for a single scheduling
algorithm and a lot of flexibility would be needed.

Real-time scheduling algorithms usually lack this flexibility and have
a high complexity. They are usually optimized to deal with a designated

9

Chapter 1. Introduction

situation. This is one of the reasons why they are usually not implemented
in Linux, and more flexible scheduling algorithms are implemented instead.
Many scheduling policies are therefore not implemented in Linux or other
general purpose operating systems, creating a fundamental gap between the
theoretical research on scheduling algorithms and the currently implemented
solutions.

Some research has the aim to close the gap between theory and im-
plementation. An example of an application trying to do this is LITMUSRT

[Calandrino, Leontyev, Block, Devi, and Anderson, 2006]. LITMUSRT is
simplifying the the implementation of new schedulers to Linux platforms,
therefore making it easier to test a new scheduling policy.

Another approach to close the gap is determining real-time characteris-
tics of existing implementations. This is being done by extracting complex
guarantees on scheduling algorithms when they are run. This approach is be-
ing adopted by the application used in this thesis, called rt-bench [Maggio,
Bini, and Lelli, 2016].

This thesis extends rt-bench. Before this thesis began, rt-bench could be
used to simulate the behaviour of applications doing computations and tak-
ing and releasing locks on shared resources. During the course of this thesis,
rt-bench was improved introducing memory allocation and usage, allowing
the user to create more realistic application models in rt-bench.

This introduction will start by explaining the goal and aim of this thesis,
followed by the given constraints and a thesis outline.

1.1 Problem Statement
This thesis aims to improve the analysis capabilities of rt-bench by imple-
menting memory usage. The problem statement and questions before the
start of the thesis were:

• How does the amount of memory used interfere with the computing
performance delivered by the platform?

• How will the application memory consumption affect the real-time
execution characteristics?

• Can the same real-time guarantee be provided in case of memory us-
age?

10

1.2 Goal

1.2 Goal
The goal of this thesis is to introduce more accurate and realistic application
models in rt-bench. The result of that would be a better understanding of
the behaviour of specific applications in certain environments and with spe-
cific conditions. This would have a positive impact in the field of resource
management techniques and operating system developers would be able to
select efficient execution environments with the confidence of maintaining
the real-time guarantees.

By implementing memory usage in the simulated applications and let-
ting an application use not only computation power, but also memory, a
change in the timing results is expected. From this information a relation
between the amount of memory used and the provided real-time guarantees
during application scheduling will be obtained.

To predict application behaviour to different changes and implemen-
tations is not trivial, which makes it important to evaluate the changes and
implementations that are being made to an application if it has to deliver
real-time performance guarantees.

1.3 Constraints
When an operating system is executing, the results will vary depending on
several factors. Examples of these factor are:

• thermal stress,
• frequency scaling,
• interrupts from external devices.

This makes it hard to predict the result from simulations and the results
will differ depending on the equipment quality, thus making this application
more suitable for comparing schedulers among each other [Maggio, Bini,
and Lelli, 2016].

1.4 Thesis outline
The structure of this thesis is designed to improve readability. In the first
chapters, the thesis presents all the information needed to fully understand

11

Chapter 1. Introduction

the extent of the work and the results obtained. In particular, Chapter 2 de-
scribes the starting point for this work and Chapter 3 presents the theoretical
background needed for the results interpretation.

These chapters are followed by Chapter 4, where the contribution to rt-
bench is described and Chapter 5, that covers the work process. The collected
information will be presented and discussed in the Chapters 6 and 7.

12

2
Theoretical Background

This chapter provides an overview of the theory needed to understand the
results of the tests performed with rt-bench. It starts with general information
about the platform being used and continues by explaining the numerical
background.

2.1 Scheduling in Linux Kernels
To run multiple processes, the Linux kernel uses an algorithm to decide the
order and duration of the processes’ execution. The algorithm must fulfill
several requirements, for example, a good response time, or an appropriate
amount of processing capacity to background jobs, or to avoid process star-
vation. This algorithm is usually composed of a set of rules, and is often
referred to as a scheduling policy [Bovet and Cesati, 2005].

Time Quantum
Scheduling in the Linux kernel is based on a time-sharing technique with a
multiplexing concept. The result of this technique can be visualized as the
CPU time between applications being divided into slices. A single processor
can only run one process at a given instant, so each processor is alternating
between the active processes [Bovet and Cesati, 2005].

Some scheduling algorithms use quanta to limit these time slices and for
dynamic scheduling. If the quantum of the current running process expires,
a context switch may take place if another process is waiting for the CPU.

The length of a time slice or a quantum is a critical parameter for system
performance since different lengths affect the performance of the running in-
frastructure. If the quantum is small, context switches will occur often, intro-
ducing high additional overhead. If the quantum is large the user experience

13

Chapter 2. Theoretical Background

will suffer and the user will not have the impression that different tasks are
executed in parallel [Bovet and Cesati, 2005].

Process Priority
To determine the order in which the processes will be run, in Linux each pro-
cess is associated with a scheduling policy and a static scheduling priority,
sched_priority. The latter is only used for scheduling decision for real-time
processes. For other processes the priority is set to 0, and scheduled depend-
ing on their nice value. Processes scheduled with a real-time policy will have
a priority value in the range of 1 to 100 where 1 is low priority and 100 is
high [Kerrisk, Zijlstra, and Lelli, 2016a].

Each CPU core for a Linux platform has a priority tree with 100 run-
queues to keep track of the priority of all processes. The processes are put in
the queue with the associated priority. The scheduler then runs the process at
the head of the highest nonempty queue. This means that a real-time process
will always run before a normal one. Within the queues the run order is de-
termined by a dynamic priority set by the scheduling policy associated with
the process. A scheduler can be preemptive or non-preemptive. In schedulers
that are preemptive, processes with higher priority are allowed to interrupt
processes with lower priority in order to run. All schedulers in Linux are
preemptive, meaning all scheduling in the runqueue is also preemptive, and
if a process is interrupted it will be returned to the appropriate runqueue
depending on its priority [Kerrisk, Zijlstra, and Lelli, 2016a].

As mentioned, there are both normal and real-time scheduling policies
available in the Linux kernel. The available normal policies are:

• SCHED_OTHER is the default Linux scheduler and increases its dynamic
priority each time quantum the process is ready to run, but denied
by the scheduler. It uses the standard scheduling algorithm in Linux,
called the Completely Fair Scheduler.

• SCHED_IDLE (introduced in version 2.6.23 of the Linux kernel) is used
for jobs with extremely low priority.

• SCHED_BATCH (introduced in 2.6.16) is similar to SCHED_OTHER but it
will always tell the scheduler that a process is CPU-intensive for it to
get a small scheduling penalty with respect to wake-up behaviour.

The available real-time policies are:

14

2.1 Scheduling in Linux Kernels

• SCHED_FIFO will run a process until it gets blocked, preempted or
calls kernel command sched_yield(2), stopping itself. The process
will be placed in the back of the list for its priority when it becomes
runnable, although if preempted it will stay at the head.

• SCHED_RR works like SCHED_FIFO except each process is only al-
lowed to run for a set amount of time before being put at the end of the
list. The time that passes, if the process gets blocked or preempted, is
not included.

• SCHED_DEADLINE (introduced in 3.14) is implemented using Global
Earliest Deadline First and Constant Bandwith Server. This policy
has the highest priority amongst all policies. When a process is run
with this policy it will always preempt a thread running with one of
the other policies. This would correspond a process with priority 100.
[Kerrisk, Zijlstra, and Lelli, 2016a]

When multiple cores are available, there is a runqueue for each core.
An entering process is put in one of these runqueues by the Linux scheduler.
To keep the efficiency high, a logical global runqueue is implemented. This
runqueue fires push and pull operations to balance the load on the cores.
If the head of a runqueue is modified, a push operation will be executed
to see if the new process at the head can be pushed to another runqueue.
If instead, a process suspends itself or lowers its priority, a pull operation
will be executed and check if there are processes on the other cores with
higher priority that can be migrated to this core [Lelli, Lipari, Faggioli, and
Cucinotta, 2011].

A process can also be restricted to specified cores by setting the affinity
property. In this case the push an pull operations will not affect this process
[Kerrisk, Zijlstra, and Lelli, 2016b].

Process classification
Processes, or threads, can be classified as I/O-bound (input/output-bound)
or CPU-bound. I/O-bound processes use communication devices or periph-
erals, such as mouse and keyboard, and spend a lot of time waiting for I/O
operations. On the contrary, processes that are CPU-bound perform compu-
tations and require CPU time. The processes can be divided into three other
classes that are relevant during process scheduling. These are interactive
processes, batch processes and real-time processes.

15

Chapter 2. Theoretical Background

Interactive processes are processes that interact constantly with users,
and spend a lot of time waiting for user operations. Because of the interaction
with users, the average delay of these processes must be low and have a short
variance. If these requirements are not satisfied the processes will be found
unresponsive.

The batch processes do not interact with users and are often run in the
background. There are no strict requirements for these and they are therefore
often penalized by the scheduler.

The real-time processes have very strict timing requirements due to ex-
pectations on response times and deadlines. The response time should be
deterministic with a minimum variance or disruptive consequences may oc-
cur [Bovet and Cesati, 2005].

2.2 The Supply Function
Supply functions are functions that capture some characteristics of schedul-
ing platforms. These characteristics are dependant on the scheduling policy,
the given task set and the hardware. The supply functions try to express the
computing capacity offered to a process, and as a supply lower bound func-
tions and a supply upper bound function can be computed, upper and lower
bounds of the computing capacity offered will also be expressed [Mok, Feng,
and Chen, 2001].

The operations of the scheduler can be modeled by a scheduling func-
tion si(t) and described as

si(t) =
{

1 τi runs at t
0 otherwise. (2.1)

The overall schedule s∗(t) over the platform P is defined as

s∗(t) = ∑
τi∈T

si(t). (2.2)

An example of a scheduling function can be seen in Figure 2.1 and is
represented by Equation 2.2.

16

2.2 The Supply Function

Figure 2.1: Example of a scheduling function where the process is occasion-
ally getting CPU power.

The overall schedule is limited by P such that only a certain number
of threads can run in parallel limited by the amount of available CPUs. If P
allows at most m threads to run in parallel then s∗(t)≤ m. An abstraction of
execution platforms can be given by a supply function.

Using 2.1 and 2.2 we can define two more functions called the sup-
ply lower bound function (slb f (t)) and the supply upper bound function
(sub f (t)) as presented below:

slb f (t) = min
∫ t0+t

t0
s(x)dx. (2.3)

sub f (t) = max
∫ t0+t

t0
s(x)dx. (2.4)

An illustration of how the supply lower bound function and upper
bound function are defined can be made from the scheduling function.

By calculating the integral of the scheduling function, a curve
similar to a supply function is obtained. The difference, when calcu-
lating the supply lower and upper bound functions, is that the time
interval being integrated is placed dynamically on the x-axis to mini-
mize or maximize the integral values.

17

Chapter 2. Theoretical Background

Starting with the supply upper bound function, the ∆t will be
computed dynamically on the schedule axis so that the total time when
the process receives CPU is maximized. As ∆t is increased it will be
placed optimally to maximize the integrated area which is illustrated
in Figure 2.2.

Figure 2.2: ∆t being placed where the total CPU time is maximized, depend-
ing on the size of ∆t.

The same derivation is applied to the lower bound function, but
instead calculated with the minimum integrated area, as seen in Figure
2.3. The resulting curves can be seen in Figure 2.4.

Figure 2.3: ∆t being placed where the total CPU time is minimized, depend-
ing on the size of ∆t.

In summary, the x-axis shows a time interval, ∆t, and the y-axis

18

2.2 The Supply Function

shows the total amount of processing capacity that is being received in
seconds for the specific time interval. An example of a supply lower
bound function and a supply upper bound function is illustrated in
Figure 2.4.

Figure 2.4: Example of lower and upper bound supply functions

The supply lower and upper bound functions from a single test
does not show the exact behaviour of it. Instead these indicate a range
for how the actual process has behaved meaning that if the functions
are close to each other the interval between the two functions repre-
sent a good approximation of the resources given to the task.

19

3
Implementation
Background: rt-bench

This chapter introduces rt-bench, which is used to perform experi-
ments on a specific task set using some scheduling algorithm and on
a specific architecture. The data collected during these experiments
is then analyzed to provide some insight on the schedulers’ behavior.
The chapter includes a description of the status of rt-bench prior to this
thesis, while the specific contribution of this work is then described in
Chapter 4.

The rt-bench application intends to investigate if real-time guar-
antees are provided from existing algorithm implementations by de-
termining their real-time characteristics, mainly a characteristic called
supply function. The investigation takes place when rt-bench executes
a model created of a system or an application. To retrieve valuable
results it is of great importance that realistic application models are
being used thus the possibility to create realistic models needs to be
implemented and available.

When rt-bench executes, several actions are performed. Rt-bench
starts with running an experiment for a set amount of time, with a
specified application, on a chosen platform, and with a chosen sched-
uler. During the process, timestamps are extracted at critical moments
and analyzed to determine the real-time behaviour of the run.

Rt-bench analyzes the supply functions described in Section 2.2.
The results given from the supply functions vary with the amount of
CPU that is offered to the threads during the tests and that in turn

20

3.1 Platform specifications

depends on the machine, operating system, choice of scheduling al-
gorithm, and application characteristics.

3.1 Platform specifications

The experiments are executed on two computers with a Linux op-
erating system, one is a launcher and one is a target machine. The
launcher’s purposes are:

1. to tell the target what tests to execute,
2. to analyze the logs.

This results in the target machine not being affected by software and
memory usage on the launcher. This lets the launcher contain scripts
to run multiple tests, stored data, etc. An illustration of the setup can
be seen in Figure 3.1.

Figure 3.1: Execution flow for running the rt-bench application.

Because of this the only relevant specification needed is the one
of the target machine, which follows:

• Intel(R) Core(TM)2 Duo Processor
• Clock speed at 3.00GHz

21

Chapter 3. Implementation Background: rt-bench

• Cache size of 6144 kB
• Disk space, 648 GB
• 32-bit Ubuntu 14.04 LTS

3.2 Rt-bench

Rt-bench’s task is to monitor the execution of a synthetic application
regulated by a chosen scheduling algorithm and executed on a top
of a specific architecture. This application is composed of a set of n
threads specified by the user itself and denoted with T = {τ1, ...,τn}.
The threads have a job body that is executed in a loop until the
user-defined test duration is over. The job bodies of thread i con-
sist of pi sequentially defined job phases. The phases are denoted by
φi,1,φi,2,...,φi,pi and each of them belongs to a set of available phases,
φi,pi ∈Φ. The available phases are listed and described in Section 3.4.

In an iteration of a job body, the entire sequence of job phases is
executed. Each time before evey job begins an event will be fired. To
record these events an external timestamping tool called trace_cmd
[TRACE-CMD(1), man page 2015], is used. The test flow can be seen
in Figure 3.2.

Figure 3.2: Test flow and time stamp initiation.

22

3.3 Alpha and Delta Characteristics

To define and run these threads, the user has to create a json
test configuration file. The json-file contains information about all the
threads that are going to be executed by the rt-bench application. The
exact structure and information of this file is described in Section 4.2.
The threads will be executed over a platform P which is character-
ized by a computing capacity, a scheduler and an operating system.

3.3 Alpha and Delta Characteristics

Rt-bench generates empirical supply functions based on the execution
of the threads during the experiments and extrapolates two parame-
ters, α and ∆. Other names that are used for these are the bandwidth
and the delay. Thes e two values are defined in pairs and are con-
nected with a supply lower bound function slb f (t) or supply upper
bound function sub f (t) if

∀t, slb f (t)≤ αlower(t−∆lower) (3.1)

∀t, sub f (t)≥ αupper(t−∆upper). (3.2)

With an obtained α and ∆ it is possible to approximate and inter-
pret the supply functions with a line and a slope instead of the gen-
erated "staircase" function. This will make it easier to relate to the
variables, thus creating a greater understanding for the results.
Using the definition in [Buttazzo, 2011], the bandwidth α for any of
the given supply functions can be defined as the asymptotic bandwidth
in an arbitrarily large interval for t with

αlower = lim
t→∞

slb f (t)
t

(3.3)

αupper = lim
t→∞

sub f (t)
t

(3.4)

while ∆ is defined as

∆lower = sup
t≥0

{
t− slb f (t)

αlower

}
(3.5)

23

Chapter 3. Implementation Background: rt-bench

∆upper = inf
t≥0

{
t− sub f (t)

αupper

}
. (3.6)

For our experiments the time intervals will not be arbitrarily large
since that is only theoretically possible. The intervals will be lim-
ited, but to adapt to the experiment length another definition has been
adopted. Figure 3.3 shows an example of the adapted definition.

Figure 3.3: Adapted interpretation of Alpha(α) and Delta(∆).

3.4 Job Phases

The job phases are created separately so that each phase is represented
by a function in the code. The reason for this is easier reproduction
of application code. When using rt-bench a real application will be
in focus, and from this application it is desired to extract a model to
be used. Depending on what the application does the correct phases

24

3.4 Job Phases

should be used to create a model that resembles the real application
[Maggio, Bini, and Lelli, 2016, sec. IV-A]. The job phases are fur-
ther customized by the user by having input arguments that decides
how the simulated application will behave during execution. The two
available phases when this thesis started were the compute phase and
the lock phase.

Compute Phase
The compute phase covers the most basic purpose of an application
by doing computations. The computation is simulated by executing
mathematical operations and using the CPU in the lightest way. The
computation consist of addition, subtraction and library calls. The
data produced is not being used anywhere other than temporarily be-
ing saved on the stack as a local variable.

All applications use computing similar to this when manipulating
data and this phase is used to simulate the parts of a process where this
is the only thing being performed. Some examples that partly need the
compute phase to be simulated are image and sound processing and
execution of a controller.

The input argument for the compute phase is an amount of oper-
ations to be made in the job phase before it is considered done.

Lock Phase
The lock phase comes in use when there are applications using multi-
ple threads that have shared resources. Besides doing the same com-
putations as the compute phase it also acquires a resource, blocking
other threads that are waiting for the same resource.

The lock phase requires two arguments where the first one is the
amount of operations to be completed in the critical section, just like
in the compute phase, and the second one is a resource id. The re-
source id specifies what resource should be acquired by the thread.
Threads can depend on different resources which makes the lock
phase open for further customization.

25

4
Thesis Contribution

This chapter presents the contributory work that is aiming to make the
application model used in rt-bench more realistic. The contribution
consists in adding an additional phase called memory phase. The new
set of available phases then becomes Φ = {φ compute,φ lock,φ memory}.

The configuration of the phases using json-objects will be de-
scribed along with mentioning the automation that was used.

4.1 Memory Usage Phase

The aim of this thesis is to enable simulations with memory storage.
To do so the memory phase is added to the set of available job phases
Φ. It is not unusual that an application would want to store and use
data on the system and with the memory phase it will be possible to
execute more realistic models of these applications.

Whenever something is saved on a computer an action similar to
the memory phase will execute. Some simple examples are a text ed-
itor saving a document, or a recording application for a video camera
or microphone.

The memory phase takes two inputs when being executed and for
convenience the second argument will be explained first. The second
argument is the amount of the data type double that should be saved.
The size of a double is 8 bytes, meaning that the second argument rep-
resents the amount of sets with 8 bytes that should be stored. The first
argument that the memory phase requires is the amount of operations,

26

4.1 Memory Usage Phase

or times the amount of memory specified with the second argument
should be stored. The code for the memory phase can be seen below.

vo id memory (i n t ind , . . .) {
i n t memory_used , loops , i ;
do ub l e * a c c u m u l a t o r ;
s t r u c t t i m e s p e c * t _ s p e c ;
v a _ l i s t a rgp ;
v a _ s t a r t (argp , i n d) ;
t _ s p e c = v a_ a rg (argp , s t r u c t t i m e s p e c *) ;
memory_used = va _ a r g (argp , i n t) ;
va_end (a rgp) ;
l o o p s = t i m e s p e c _ t o _ u s e c (t _ s p e c) ;

a c c u m u l a t o r =(d ou b l e *) ma l l oc (memory_used *
s i z e o f (d ou b l e)) ;

f o r (i = 0 ; i < l o o p s ; i ++) {
a c c u m u l a t o r [i%memory_used] + = 0 . 5 ;
a c c u m u l a t o r [i%memory_used]−= f l o o r (

a c c u m u l a t o r [i%memory_used]) ;
}
f r e e (a c c u m u l a t o r) ;

}

The code show that the function malloc is being used. This means
that the data allocated will be stored on the heap. The heap is a dy-
namic memory storage unlike the stack that only stores temporary
variables only accessed by the local function [Shaw, 2015].

Since the purpose of this function is to simulate the usage of
memory, the purpose would be lost if the compiler optimized away
the operations. In order to prevent any unwanted compiler optimiza-
tion the stored values need to be used. By using the previous value in
the assigning operation (with the += operator) the compiler interpret
it as being used and execute the operation. Additionally, to prevent
unwanted overflows, the assigned value is reduced with the f loor()
function. This will keep the stored values at either 0 or 0,5.

27

Chapter 4. Thesis Contribution

4.2 .json-file Configuration

The JSON format is a text format that simplifies data exchange
between different programming languages. The word is short for
JavaScript Object Notation. By maintaining a simple file structure all
languages will be able to relate to the information [The JSON Data
Interchange Format 2013]. In rt-bench the JSON-structure is used to
parse and store experiment configurations.

{
" r e s o u r c e s " : 1 ,
" t a s k s " : {

" t h r e a d 1 " : {
" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m0" : { " l o o p s " : 10000 , " memory " : 1000000 }
"m1" : { " l o o p s " : 10000 , " memory " : 5000000 }

}
} ,
" t h r e a d 2 " : {

" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

" c0 " : { " l o o p s " : 150000 }
" l 0 " : { " l o o p s " : 100000 , " r e s " : 0 }

}
}

} ,
" g l o b a l " : {

" d e f a u l t _ p o l i c y " : "SCHED_OTHER" ,
" d u r a t i o n " : 50 ,
" l o g d i r " : " . / " ,
" logbasename " : " r t b e n c h " ,
" l o c k _ p a g e s " : t r u e ,
" f t r a c e " : t r u e

}
}

Example of a json-file used in rt-bench.

This example of a json-file consist of two threads called thread1
and thread2. Each of these threads has a job body and the phases that

28

4.3 Automating test generation and result collection

are to be executed are inside the phases section. The type of phase
depends on the name that is given to it and the names of the phases
here are m0, m1, c0, l0. Any name that starts with an m corresponds to
a memory phase, any name starts with a c corresponds to a compute
phase, and finally any name that starts with an l corresponds to a lock
phase.

The part named global in the example contains some information
designing the test, for example the scheduler to be used and test du-
ration. The duration time decides how long the application will run
meaning that each job body will keep rerunning until this time is over
and it is after these reruns that events are being fired.

The default_policy is set to SCHED_OTHER. This is the input that
decides what scheduling algorithm is being used during the test.
As in the example, all the tests run in this thesis will be using
the SCHED_OTHER option. This algorithm is the standard linux time-
sharing scheduler and has a dynamic priority which means that the
priority is set first inside the list [Kerrisk, Zijlstra, and Lelli, 2016a].

In this example the first thread is populated with two memory
phases and the second thread is populated with a compute phase and
a lock phase. So what happens in thread1 is that first the m0 phase
allocates 1000000 doubles and uses them 10000 times. When this
is finished the second memory phase will allocate 5000000 doubles
10000 times. When the second phase has finished it starts over.

Simultaneously thread2 will run it’s phases. First it will run a
compute phase c0 that performs 150000 operations and then it will
run a lock phase l0 that will perform 100000 operations while locking
a resource with resource id 0. When this is done the thread will start
over. This will continue like this for 50 seconds, the amount of time
set as the duration.

4.3 Automating test generation and result
collection

For the results contained in this thesis, several hundred tests were gen-
erated, therefore manually executing these tests as described above

29

Chapter 4. Thesis Contribution

would be nearly impossible. Several scripts have been made to con-
secutively run all the tests in an effective way and gather the data.
Some examples of this is the shell script xlaunch.sh that runs a set of
pre-specified set of tests automatically, and make_outputs that collects
and summarize the significant data from certain sets. This however is
nothing that affects the test results, but rather enables the tests to be
quantified. Documentation of all added scripts can be found in Ap-
pendix A.

30

5
Test Process

To execute rt-bench a shell script called launch.sh is used. This script
require some specific parameters to consecutively launch all scripts
and tools to complete the tests. The command line to do this in gen-
eral is:

$./launch.sh =< I p >< Port ><Uname >< json >< T name >

Where < I p > is the IP-adress to the target machine that will execute
the tests, < Port > is the port, <Uname > is the target machines user
name, < json > is the patch to the desired .json file to be executed
and < T name > is the userdefined name of the test.

5.1 Tests

The purpose of all the tests is to see how the usage of the newly im-
plemented memory phase affects the results and if the results have be-
come more realistic. The focus lies in comparing the upper and lower
supply functions with and without memory usage. In most tests the
amount of memory used is being varied to see the impact of this.

The tests are alphabetically ordered and are named after fore-
names. Tests which have names starting with the same letter are con-
nected to each other with the purpose of comparison.

The Albert tests are intended as an initial test suite where one
thread runs alone to get a base behaviour of the memory usage.

31

Chapter 5. Test Process

As opposed to the Albert tests, the Bart, Bert and Burt tests will
have an additional thread running to see how this would interfere with
the measured thread.

The Casper and Ceasar tests are run to see how the initialization
and termination of other threads effect the measured thread.

Finally the Dumble tests have the intention of giving a visualiza-
tion of the overall behaviour of two threads where both have memory
allocation.

All tests have the intention of providing proof for the memory
phase being implemented in a correct way, and behaving in a pre-
dictable and realistic way.

Albert Tests
The following JSON data shows the characteristics of the Albert tests.

{
" r e s o u r c e s " : 0 ,
" t a s k s " : {

" t h r e a d 1 " : {
" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m0" : { " l o o p s " : 100000 , " memory " : X }
}

}
} ,
" g l o b a l " : {

" d e f a u l t _ p o l i c y " : "SCHED_OTHER" ,
" d u r a t i o n " : 50 ,
" l o g d i r " : " . / " ,
" logbasename " : " r t b e n c h " ,
" l o c k _ p a g e s " : t r u e ,
" f t r a c e " : t r u e

}
}

The scheduling policy will be set by the SCHED_OTHER option
and the duration for this test will be 50 seconds.

The thread used in this test have access to one CPU and con-
sist of one memory phase. This memory phase consist of 100.000

32

5.1 Tests

executions and the amount of memory X is being varied and X ∈
[10,100.000.000] with a logarithmic inclination (10, 20, ..,90 ,100,
200, ...,900,1000,2000, ...). The value of the varied amount of mem-
ory is inserted at the red X in the JSON data for each test. The total
amount of values in [10,100.000.000] with the logarithmic increase is
64, resulting in the Albert Test series consisting of a total of 64 tests.

Bart Tests
The following JSON data shows the characteristics of the Bart tests.

{
" r e s o u r c e s " : 0 ,
" t a s k s " : {

" t h r e a d 1 " : {
" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m0" : { " l o o p s " : 100000 , " memory " : X }
}

} ,
" t h r e a d 2 " : {

" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

" c0 " : { " l o o p s " : 100000 }
}

}
} ,
" g l o b a l " : {

" d e f a u l t _ p o l i c y " : "SCHED_OTHER" ,
" d u r a t i o n " : 50 ,
" l o g d i r " : " . / " ,
" logbasename " : " r t b e n c h " ,
" l o c k _ p a g e s " : t r u e ,
" f t r a c e " : t r u e

}
}

The scheduling policy will be set by the SCHED_OTHER option
and the duration for this test will be 50 seconds.

Thread1 in this test have access to one CPU and consists of

33

Chapter 5. Test Process

one memory phase. This memory phase consists of 100.000 ex-
ecutions and the amount of memory X is being varied and X ∈
[10,100.000.000] with a logarithmic inclination.

Thread2 also have access to one CPU and consists of one com-
pute phase. This compute phase is kept static consisting of 100.000
executions. The Bart Tests consist of a total of 64 tests.

Bert Tests
The following JSON data shows the characteristics of the Bert tests.

{
" r e s o u r c e s " : 0 ,
" t a s k s " : {

" t h r e a d 1 " : {
" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m0" : { " l o o p s " : 100000 , " memory " : X }
}

} ,
" t h r e a d 2 " : {

" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m1" : { " l o o p s " : 100000 , " memory " :
1000000 }

}
}

} ,
" g l o b a l " : {

" d e f a u l t _ p o l i c y " : "SCHED_OTHER" ,
" d u r a t i o n " : 50 ,
" l o g d i r " : " . / " ,
" logbasename " : " r t b e n c h " ,
" l o c k _ p a g e s " : t r u e ,
" f t r a c e " : t r u e

}
}

The scheduling policy will be set by the SCHED_OTHER option
and the duration for this test will be 50 seconds.

Thread1 in this test have access to one CPU and consists of

34

5.1 Tests

one memory phase. This memory phase consists of 100.000 ex-
ecutions and the amount of memory X is being varied and X ∈
[10,100.000.000] with a logarithmic inclination.

Thread2 also have access to one CPU and consists of one mem-
ory phase. This memory phase is kept static, consisting of 100.000
executions and have a memory usage of 1.000.000 doubles. The Bert
Test series consist of a total of 64 tests.

Burt Tests
The following JSON data shows the characteristics of the Burt tests.

{
" r e s o u r c e s " : 0 ,
" t a s k s " : {

" t h r e a d 1 " : {
" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m0" : { " l o o p s " : 100000 , " memory " : X }
}

} ,
" t h r e a d 2 " : {

" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m1" : { " l o o p s " : 100000 , " memory " : X }
}

}
} ,
" g l o b a l " : {

" d e f a u l t _ p o l i c y " : "SCHED_OTHER" ,
" d u r a t i o n " : 50 ,
" l o g d i r " : " . / " ,
" logbasename " : " r t b e n c h " ,
" l o c k _ p a g e s " : t r u e ,
" f t r a c e " : t r u e

}
}

The scheduling policy will be set by the SCHED_OTHER option
and the duration for this test will be 50 seconds.

35

Chapter 5. Test Process

Thread1 in this test have access to one CPU and consists of
one memory phase. This memory phase consists of 100.000 ex-
ecutions and the amount of memory X is being varied and X ∈
[10,100.000.000] with a logarithmic inclination.

Thread2 is identical to thread1 in such way that the memory used
in the tests will always be same. The Burt Test series consist of a total
of 64 tests.

Casper Tests
The following JSON data shows the characteristics of the Casper tests.

{
" r e s o u r c e s " : 0 ,
" t a s k s " : {

" t h r e a d 1 " : {
" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m0" : { " l o o p s " : 100000 , " memory " :
1000000 }

}
} ,
" t h r e a d 2 " : {

" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

" c0 " : { " l o o p s " : Y }
}

}
} ,
" g l o b a l " : {

" d e f a u l t _ p o l i c y " : "SCHED_OTHER" ,
" d u r a t i o n " : 50 ,
" l o g d i r " : " . / " ,
" logbasename " : " r t b e n c h " ,
" l o c k _ p a g e s " : t r u e ,
" f t r a c e " : t r u e

}
}

The scheduling policy will be set by the SCHED_OTHER option
and the duration for this test will be 50 seconds.

36

5.1 Tests

Thread1 in this test have access to one CPU and consists of
one memory phase. This memory phase is kept static, consisting of
100.000 executions and have a memory usage of 1.000.000 doubles.

Thread2 also have access to one CPU but consists of one compute
phase. The amount of executions Y for this thread is being varied and
Y ∈ [3000,300000] with a linear inclination. The Casper Test series
consist of 100 tests.

Ceasar Tests
The following JSON data shows the characteristics of the Ceasar tests.

37

Chapter 5. Test Process

{
" r e s o u r c e s " : 0 ,
" t a s k s " : {

" t h r e a d 1 " : {
" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m0" : { " l o o p s " : 100000 , " memory " :
1000000 }

}
} ,
" t h r e a d 2 " : {

" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

" c0 " : { " l o o p s " : Y }
}

} ,
" t h r e a d 3 " : {

" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

" c1 " : { " l o o p s " : Y }
}

} ,
" t h r e a d 4 " : {

" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

" c2 " : { " l o o p s " : Y }
}

}
} ,
" g l o b a l " : {

" d e f a u l t _ p o l i c y " : "SCHED_OTHER" ,
" d u r a t i o n " : 50 ,
" l o g d i r " : " . / " ,
" logbasename " : " r t b e n c h " ,
" l o c k _ p a g e s " : t r u e ,
" f t r a c e " : t r u e

}
}

38

5.1 Tests

The scheduling policy will be set by the SCHED_OTHER option
and the duration for this test will be 50 seconds.

Thread1 in this test have access to one CPU and consists of one
memory phase. This memory phase is being kept static consisting
100.000 executions and have a memory usage of 1.000.000 doubles.

Thread2 also have access to one CPU but consists of one compute
phase. The amount of executions Y for this thread is being varied and
Y ∈ [1000,100.000] with a linear inclination.

Thread3 and thread4 are identical to thread2. The Ceasar Test
series consist of 100 tests.

Dumble Tests
The following JSON data shows the characteristics of the Dumble
tests.

39

Chapter 5. Test Process

{
" r e s o u r c e s " : 0 ,
" t a s k s " : {

" t h r e a d 1 " : {
" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m0" : { " l o o p s " : 100000 , " memory " : X1 }
}

} ,
" t h r e a d 2 " : {

" p r i o r i t y " : 10 ,
" cpus " : [0] ,
" p h a s e s " : {

"m1" : { " l o o p s " : 100000 , " memory " : X2 }
}

}
} ,
" g l o b a l " : {

" d e f a u l t _ p o l i c y " : "SCHED_OTHER" ,
" d u r a t i o n " : 50 ,
" l o g d i r " : " . / " ,
" logbasename " : " r t b e n c h " ,
" l o c k _ p a g e s " : t r u e ,
" f t r a c e " : t r u e

}
}

The scheduling policy will be set by the SCHED_OTHER option
and the duration for this test will be 50 seconds.

Thread1 in this test have access to one CPU and consists of one
memory phase. This memory phase consists of 100.000 executions
and the amount of memory X1.

Thread2 also have access to one CPU and consists of one memory
phase. This memory phase consists of 100.000 executions and the
amount of memory X2.

The amount of memory X1 and X2 is being varied seperately
and (X1,X2) ∈ [10000,1000000] with a logarithmical inclination in
thread1 and thread2. The Dumble Test series consist of 361 tests.

40

6
Results and Discussion

This chapter contains plots from all tests that has been executed with
rt-bench.

The desired results from rt-bench is to retrieve the behaviour of
the created model thus getting an estimated behaviour of the actual
application. Since rt-bench produces a lower and upper supply func-
tion it is only known that the model behaviour is somewhere between
these. This makes it crucial that the lower and upper supply functions
do not diverge too much. As long as the behaviour can be limited in-
side a small enough gap it will be possible to make safe conclusions
about algorithm and process behaviour.

The consistency of the supply functions are easiest visualized
with the α characteristics. As long as the supply lower and upper
bound functions do not diverge too fast, the behaviour of the real sup-
ply function will be somewhat known. If the α values of the supply
functions are close to each other the curves will not diverge rapidly.

If the α values differ a lot, meaning the lower and upper supply
functions are diverging fast, the estimation on the actual resource pro-
vided by the platform becomes unreliable. The edges of the upper and
lower supply functions would spread forming a cone and the range of
possible positions of the actual supply function would be too wide. If
the ∆-difference was the only characteristic that was large, the theo-
retical supply function would most likely still be within a reasonable
range, but as for two diverging curves the range would go towards
infinity.

41

Chapter 6. Results and Discussion

6.1 Albert Tests

The purpose of the Albert tests were to establish a base behaviour, and
to see that the addition of a memory phase would reflect the results.
An additional red line has been added to the plots to visualize what
the α and ∆ values would have been if the memory phase would not
have been present.

In these initial tests the α values were expected to be lower than
the red line. With the addition of the memory handling, the thread is
expected to be given less run time and give a lower slope to the α

illustration.

42

6.1 Albert Tests

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0.95

0.96

0.97

0.98

0.99

1

Memory(doubles)

L
o

w
e

r
A

lp
h

a

(a) Alphas from Lower Supply Functions

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0.95

0.96

0.97

0.98

0.99

1

Memory(doubles)

U
p

p
e

r
A

lp
h

a

(b) Alphas from Upper Supply Functions

Figure 6.1: Plotted alphas from Supply Functions, Albert Tests.

43

Chapter 6. Results and Discussion

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0

0.01

0.02

0.03

0.04

0.05

0.06

Memory(doubles)

L
o

w
e

r
D

e
lt
a

(a) Deltas from Lower Supply Functions

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
-0.08

-0.06

-0.04

-0.02

0

Memory(doubles)

U
p

p
e

r
D

e
lt
a

(b) Deltas from Upper Supply Functions

Figure 6.2: Plotted deltas from Supply Functions, Albert Tests.

44

6.1 Albert Tests

Figure 6.1 show the values for the upper and lower bound α val-
ues. The α values are around 0.998 while the memory allocation is
below 10.000 doubles, then dips to around 0.965.

In Figure 6.2 the values for the upper and lower bound ∆s can
be seen. They reveal that the amount of memory used during the tests
have an effect on the results. For memory allocation below 100.000
doubles the ∆ values are low and close to constant and for higher
memory values the ∆ values start to show some irregularities.

In all of the above results an unexpected dip in α values can be
seen for memory values below 500 doubles. This processor loss ap-
pears in all tests for these low amounts of memory, there is however
yet no explanation for this behaviour. A guess would be that the us-
age of malloc for low memory values result in some unexpected be-
haviour due to it’s optimistic memory allocation strategy[malloc(3)
2017]. Another guess would be that the minimum overhead for a mal-
loc memory chunk is noticeable for small amounts of memory[Lea
and Gloger, 2012]. The fact that this behaviour appears for as much
as 500 doubles makes these guesses a bit far fetched.

The α values also show processor loss for higher memory values.
There seem to be a memory usage where the thread is running opti-
mally between 500 doubles and 100.000 doubles.This effect occurs
during most tests with a varying amount of memory and can also be
seen in figures 6.4 and 6.5.

45

Chapter 6. Results and Discussion

A
lp

h
a
 D

if
fe

re
n
c
e

Memory(doubles)

0.0025

0.002

0.0015

0.001

0.0005

0

-0.0005
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10

Figure 6.3: Difference between lower and upper alphas from the Albert tests.

6.2 Bart, Bert and Burt Tests

The Bart, Bert and Burt tests were made to see how other threads
running at the same time would affect a running thread with memory
allocation. The additional threads had different configurations in each
test where the memory allocations would differ.

The Bart tests were not expected to differ too much from the
Albert tests since the additional thread did not have any memory al-
location, however lower alphas were expected for both Bert and Burt
where the memory allocation was added.

46

6.2 Bart, Bert and Burt Tests

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0.45

0.46

0.47

0.48

0.49

0.5

Memory(doubles)

L
o

w
e

r
A

lp
h

a

Bart

Bert

Burt

(a) Alphas from Lower Supply Functions

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0.45

0.46

0.47

0.48

0.49

0.5

Memory(doubles)

U
p

p
e

r
A

lp
h

a

Bart

Bert

Burt

(b) Alphas from Upper Supply Functions

Figure 6.4: Plotted alphas from Supply Functions, Bart, Bert and Burt Tests.

47

Chapter 6. Results and Discussion

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0

0.2

0.4

0.6

0.8

Memory(doubles)

L
o

w
e

r
D

e
lt
a

Bart

Bert

Burt

(a) Deltas from Lower Supply Functions

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Memory(doubles)

U
p

p
e

r
D

e
lt
a

Bart

Bert

Burt

(b) Deltas from Upper Supply Functions

Figure 6.5: Plotted deltas from Supply Functions, Bart, Bert and Burt Tests.

48

6.2 Bart, Bert and Burt Tests

The behaviour in the Figures 6.4 and 6.5 are similar to the be-
haviour in Figures 6.1 and 6.2 from the Albert tests. There is a pro-
cessor loss for memory allocation lower than 500 doubles and higher
than 10.000 doubles and the α values have a high variation above
10.000 doubles.

The α variation for high memory is greater for the Bert and Burt
test since the additional threads for these tests use memory allocation.

The change in the values always occur around a set amount of
memory and can be associated with the cache size of the machine
running the tests. This set amount of memory is close to the total
cache size thus occurring when data needs to be stored in memory
space accessed slower than the cache, i.e. the RAM memory.

The behaviour of these tests additionally confirms that our im-
plementation is done in a correct matter. For an increased memory
allocation for an application the α values should decrease, meaning
that the memory causes delays when the threads are ready to run. The
upper δ values should increase and the lower should decrease, since
more delays are now possible.

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
-0.0001

0

0.0001

0.0002

0.0003

0.0004

Memory(doubles)

A
lp

h
a

 D
if
fe

re
n

c
e

Figure 6.6: Difference between lower and upper alphas from the Bart tests.

49

Chapter 6. Results and Discussion

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
-0.002

0

0.002

0.004

0.006

0.008

0.01

Memory(doubles)

A
lp

h
a
 D

if
fe

re
n
c
e

Figure 6.7: Difference between lower and upper alphas from the Bert tests.

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Memory(doubles)

A
lp

h
a
 D

if
fe

re
n
c
e

Figure 6.8: Difference between lower and upper alphas from the Burt tests.

50

6.3 Casper and Ceasar Tests

6.3 Casper and Ceasar Tests

The Casper and Ceasar tests were made to evaluate the effect on a
thread with memory allocation while other threads were being ini-
tialized and terminated. The fact that the original thread was using
memory allocation was not expected to have an effect on the results
where only the execution loops were modified.

51

Chapter 6. Results and Discussion

0 50000 100000 150000 200000 250000 300000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Loops

L
o
w

e
r

A
lp

h
a

Casper

Ceasar

(a) Alphas from Lower Supply Functions

0 50000 100000 150000 200000 250000 300000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Loops

U
p
p
e
r

A
lp

h
a

Casper

Ceasar

(b) Alphas from Upper Supply Functions

Figure 6.9: Plotted alphas from Supply Functions, Casper and Ceasar Tests.

52

6.3 Casper and Ceasar Tests

0 50000 100000 150000 200000 250000 300000
0

0.2

0.4

0.6

0.8

1

Loops

L
o

w
e

r
D

e
lt
a

Casper

Ceasar

(a) Deltas from Lower Supply Functions

0 50000 100000 150000 200000 250000 300000
-0.2

-0.15

-0.1

-0.05

0

Loops

U
p

p
e

r
D

e
lt
a

Casper

Ceasar

(b) Deltas from Upper Supply Functions

Figure 6.10: Plotted deltas from Supply Functions, Casper and Ceasar Tests.

53

Chapter 6. Results and Discussion

As seen in the Figures 6.9, 6.10, 6.11 and 6.12, both the α values
are static at around 0.73 and the ∆ values have static low values telling
us that the changing loop values does not affect the amount of CPU
used by the threads.

Loops

0.0005

0.0004

0.0003

0.0002

0.0001

0

-0.0001

-0.0002
300000250000200000150000100000500000

A
lp

h
a
 D

if
fe

re
n
c
e

Figure 6.11: Difference between lower and upper alphas from the Casper
tests.

54

6.4 Dumble Tests

Total Loops

0.00025

0.0002

0.00015

0.0001

5e-005

0

-5e-005
300000250000200000150000100000500000

A
lp

h
a
 D

if
fe

re
n
c
e

Figure 6.12: Difference between lower and upper alphas from the Ceasar
tests.

6.4 Dumble Tests

By running a large amount of scenarios for two threads with memory
allocation a good visualization of the overall behaviour could be ac-
quired. These tests also show how the measured thread is affected by
different memory allocations in a secondary thread while the memory
is kept constant in the measured thread.

A similar behaviour that was seen in the Albert, Bart, Bert and
Burt test is expected when the total amount of memory would reach
the cache size. A lowered α , a lowered ∆ for the upper bound function
and a increased ∆ for the lower bound function.

55

Chapter 6. Results and Discussion

(a) Alphas from Lower Supply Functions

(b) Alphas from Upper Supply Functions

Figure 6.13: Plotted alphas from Supply Functions, Dumble Tests.

56

6.4 Dumble Tests

(a) Deltas from Lower Supply Functions

(b) Deltas from Upper Supply Functions

Figure 6.14: Plotted deltas from Supply Functions, Dumble Tests.

57

Chapter 6. Results and Discussion

For low memory usage below 100.000 the α and ∆ values are
similar to the values in the Bart, Bert and Burt tests, being close to
0.50. The combined memory did however not seem to affect the thread
in a substantial matter, only the individual memory allocation.

A dip in the α values were seen around 10.000 doubles, just like
in the above tests, the values however did not stay low for higher
memory values, but rose and stabilized between 0.49 and 0.50.

A similar outcome could be seen in the ∆ plots where ∆ was was
being kept stable between at -0.02 for the upper and 0.02 for the lower
∆ in all executions.

Figure 6.15: Difference between lower and upper alphas from the Dumble
tests.

In Figures 6.3, 6.6, 6.7, 6.8, 6.11, 6.12 and 6.15 we can see the α-
difference for the Albert, Bart, Bert, Burt, Casper, Ceasar and Dumble
tests. In the α-difference plots belonging to the Albert, Bart, Bert and
Burt tests the memory interference appears as well. The biggest dif-
ference can be found in the Bert and Burt tests and these only reach
a difference of approximately 0,9%. When the difference rises above
5-10% the ability to provide an appropriate amount of resources to
smoothly run the tasks without delays could be compromised.

58

6.5 Cache Size Consideration

The α differences that go below zero is only a result of test in-
terference. These results are theoretically impossible when there is no
limit on running the test over an infinite amount of time. This would
indicate that the lower and upper supply functions intersected. Since
the differences is very close to zero the interference does not have to
be large to generate these results.

Additionally, in all figures belonging to the Dumble tests, Figures
6.13, 6.14 and 6.15, some distinct peaks can be seen. These could not
be explained, but the exact values were gathered and can be found in
Appendix B.

6.5 Cache Size Consideration

As stated in Section 3.1 the size of the cache is 6144 kB. Taking in
consideration that the size of a double, that is used to allocate memory
in the tests, is 8 bytes it will take 768,000 doubles to fill up the cache.
The cache size is featured in the following plots.

59

Chapter 6. Results and Discussion

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0.95

0.96

0.97

0.98

0.99

1

Memory(doubles)

L
o
w

e
r

A
lp

h
a

(a) Alphas from Lower Supply Functions

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0

0.01

0.02

0.03

0.04

0.05

0.06

Memory(doubles)

L
o
w

e
r

D
e
lt
a

(b) Deltas from Lower Supply Functions

Figure 6.16: Plotted lower bound values with the total cache size featured as
a red line, Albert Tests.

60

6.5 Cache Size Consideration

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0.45

0.46

0.47

0.48

0.49

0.5

Memory(doubles)

L
o
w

e
r

A
lp

h
a

Bart

Bert

Burt

(a) Alphas from Lower Supply Functions

1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8
0

0.2

0.4

0.6

0.8

Memory(doubles)

L
o
w

e
r

D
e
lt
a

Bart

Bert

Burt

(b) Deltas from Lower Supply Functions

Figure 6.17: Plotted lower bound values with the total cache size featured as
a red line, Bart, Bert and Burt Tests.

61

Chapter 6. Results and Discussion

In Figures 6.16 and 6.17 the total cache size has been featured as
a vertical red line. In these figures the change always occurs before
the memory used reaches the cache size limit. Since other processes
on the machine also uses the cache memory, the variance will not
occur exactly at the cache size. By running the tests on a separate ma-
chine the interference from other processes is brought to a minimum.
This means that the offset that can be seen in these tests are primarily
caused by the operative system being run.

62

7
Conclusion

The purpose and goal of this thesis was to enhance the features of
rt-bench by including memory usage on the threads and increase the
area of application. The aim was to provide a more realistic execution
of a simulated application, increasing the flexibility for testing the
behaviour of platforms and set of threads.

As seen in the tests, the memory usage of the tests impact the
behaviour at certain memory levels. These memory levels were an-
ticipated and confirm the assumptions of realism in the simulations.
When reaching storage limits, changes in behaviour are to be ex-
pected.

The change in behaviour can also be seen in the α-difference
plots and it is also concluded that the α-difference is a highly relevant
characteristic to consider when observing simulations on an execution
platform. When the bound supply function curves keep diverging the
estimation of an actual supply function will be impossible.

The importance of accurate models is high when making assump-
tions from the results of simulated runs in rt-bench and the possibility
of simulating memory usage has made this a lot easier.

63

Bibliography

Blanquart, J.-P., J.-M. Astruc, P. Baufreton, J.-L. Boulanger, H. Delseny, J.
Gassino, G. Ladier, E. Ledinot, M. Leeman, J. Machrouh, P. QuÃl’rÃl’,
and B. Ricque (2012). Criticality categories across safety standards in
different domains.

Bovet, D. P. and M. Cesati (2005). Understanding the Linux Kernel. Cover-
ing version 2.6, 3rd. OâĂŹReilly Media, Inc.

Burns, A. and R. I. Davis (2016). Mixed Criticality Systems - A Review.
Tech. rep. University of York, York, UK.

Buttazzo, G. C. (2011). Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Springer New York Dordrecht
Heidelberg London.

Calandrino, J. M., H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson
(2006). LITMUSRT : A Testbed for Empirically Comparing Real-Time
Multiprocessor Schedulers. Tech. rep. The University of North Carolina
at Chapel Hill.

Goel, N. and R. Garg (2012). “A comparative study of cpu scheduling algo-
rithms”. International Journal of Graphics & Image Processing 2:4.

Katcher, D. I., H. Arakawa, and J. K. Strosnider (1993). “Engineering and
analysis of fixed priority schedulers”. IEEE Transactions on Software
Engineering 19:9.

Kerrisk, M., P. Zijlstra, and J. Lelli (2016a). sched - overview of scheduling
APIs. [Accessed April 22, 2017]. URL: http://man7.org/linux/
man-pages/man7/sched.7.html.

Kerrisk, M., P. Zijlstra, and J. Lelli (2016b). sched - overview of scheduling
APIs. [Accessed April 23, 2017]. URL: http://man7.org/linux/
man-pages/man2/sched_setaffinity.2.html.

64

http://man7.org/linux/man-pages/man7/sched.7.html
http://man7.org/linux/man-pages/man7/sched.7.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
http://man7.org/linux/man-pages/man2/sched_setaffinity.2.html

Bibliography

Lea, D. and W. Gloger (2012). Malloc implementation for multiple threads
without lock contention. source code. Version ptmalloc2-20011215.
URL: https : / / github . com / lattera / glibc / blob / master /
malloc/malloc.c#L104.

Lelli, J., G. Lipari, D. Faggioli, and T. Cucinotta (2011). An efficient and
scalable implementation of global EDF in Linux. PhD thesis. Sant’Anna,
School of Advanced Studies, Pisa, Italy.

Maggio, M., E. Bini, and J. Lelli (2016). “A tool for measuring supply
functions of execution platforms”. RTCSA, pp. 39–48. DOI: 10.1109/
RTCSA.2016.14.

malloc(3) (2017). Linux man-pages. URL: http://man7.org/linux/man-
pages/man3/malloc.3.html.

Mok, A., X. Feng, and D. Chen (2001). “Resource partition for real-time
systems”, pp. 75–84. DOI: 10.1109/RTTAS.2001.929867.

Nahas, M. (2008). Bridging the gap between scheduling algorithms and
scheduler implementations in time-triggered embedded systems. PhD
thesis. University of Leicester.

Shaw, Z. A. (2015). Learn C the Hard Way: A Clear & Direct Introduction
to Modern C Programming. Addison Wesley, 2015.

The JSON Data Interchange Format (2013). [Accessed October 20, 2015].
Ecma International. Ecma International. URL: http : / / www . ecma -
international.org/publications/files/ECMA-ST/ECMA-404.
pdf.

TRACE-CMD(1), man page (2015). [Accessed November 10, 2015]. Linux
man-pages. URL: http://man7.org/linux/man- pages/man1/
trace-cmd.1.html.

65

https://github.com/lattera/glibc/blob/master/malloc/malloc.c#L104
https://github.com/lattera/glibc/blob/master/malloc/malloc.c#L104
http://dx.doi.org/10.1109/RTCSA.2016.14
http://dx.doi.org/10.1109/RTCSA.2016.14
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://dx.doi.org/10.1109/RTTAS.2001.929867
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://man7.org/linux/man-pages/man1/trace-cmd.1.html
http://man7.org/linux/man-pages/man1/trace-cmd.1.html

Appendices

A
List of Support Files used
with rt-bench

xlaunch.sh - Run multiple tests automatically.

make_outputs.sh
- Collect result data from the first
thread.

make_mult_outputs.sh
- Collect result data from multiple
specified amount of threads.

gen_plot.sh - Generate customized plot.

gen_3Dplot.sh
- Generate customized plot from in-
put, specifically made for 3D-plots.

plot_template.m
- Template used by gen_plot.sh and
gen_3Dplots.sh.

69

https://github.com/ZDemeter/rt-bench/blob/master/xlaunch.sh
https://github.com/ZDemeter/rt-bench/blob/master/make_outputs.sh
https://github.com/ZDemeter/rt-bench/blob/master/make_mult_outputs.sh
https://github.com/ZDemeter/rt-bench/blob/master/gen_plot.sh
https://github.com/ZDemeter/rt-bench/blob/master/gen_3Dplot.sh
https://github.com/ZDemeter/rt-bench/blob/master/build/plot_template.m

B
Deviations in Dumble tests

Memory
(Thread 1)

Memory
(Thread 2)

Alpha Delta

70 100 0.484306 0.018046

700 100 0.484065 0.020903

900 200 0.487457 0.116806

Table B.1: Supply Lower Bound Functions, Diverging Alphas

Memory
(Thread 1)

Memory
(Thread 2)

Alpha Delta

70 100 0.484304 -0.019425

700 100 0.484006 -0.019347

900 200 0.486524 -0.092376

Table B.2: Supply Upper Bound Functions, Diverging Alphas

Memory
(Thread 1)

Memory
(Thread 2)

Alpha Delta

900 200 0.487457 0.116806

Table B.3: Supply Lower Bound Functions, Diverging Deltas

70

Appendix B. Deviations in Dumble tests

Memory
(Thread 1)

Memory
(Thread 2)

Alpha Delta

900 200 0.486524 -0.092376

Table B.4: Supply Upper Bound Functions, Diverging Deltas

71

Document name

Date of issue

Document Number

Author(s) Supervisor

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Introduction
	Problem Statement
	Goal
	Constraints
	Thesis outline

	Theoretical Background
	Scheduling in Linux Kernels
	The Supply Function

	Implementation Background: rt-bench
	Platform specifications
	Rt-bench
	Alpha and Delta Characteristics
	Job Phases

	Thesis Contribution
	Memory Usage Phase
	.json-file Configuration
	Automating test generation and result collection

	Test Process
	Tests

	Results and Discussion
	Albert Tests
	Bart, Bert and Burt Tests
	Casper and Ceasar Tests
	Dumble Tests
	Cache Size Consideration

	Conclusion
	Bibliography
	Appendices
	List of Support Files used with rt-bench
	Deviations in Dumble tests

	Blank Page

