
Initialization Algorithms for
Coupled Dynamic Systems

Labinot Polisi

Master’s thesis
2017:E53

Faculty of Engineering
Centre for Mathematical Sciences
Numerical Analysis

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M

Abstract

In this master thesis the consistent initialization problem is stud-
ied and three different algorithms were developed regarding the sub-
ject area - a graph algorithm used for solving the initialization prob-
lem, a parallel algorithm to enable parallel computations when solv-
ing the initialization problem and lastly a genetic algorithm used as
a preprocessing stage for parallelization.

The thesis is based on the Python package PyFMI, a high-level
package developed by Modelon AB for working with models compli-
ant with the FMI standard.

The algorithms were tested on test cases consisting of several
synthetic examples as well as in a simulation of a real industrial
physical model. The analysis based on these test cases showed that
the graph algorithm outperformed previously algorithms in terms
of optimization, a speedup was achieved when using the parallel
algorithm and the genetic algorithm was able to further increase the
speedup factor.

Acknowledgments

Firstly, I would like to express my gratitude to my supervisors Emil Fredriks-
son at Modelon AB and Claus Führer at Lund University, Department of
Numerical Analysis for their guidance and support of this thesis.

I would also like to thank all the people on Modelon that have been
contributing to this thesis, especially Christan Winther who has been very
helpful through out the project.

Notation

x global state vector
xi ith global state
x[i] state vector of model i

x
[i]
j jth state from state vector of model i

u global input vector
y global output vector
f(x, u) global derivative function
g(x, u) global output function
c(y) coupling function

Contents

1 Introduction 1

2 Co-simulation and Functional Mock-up Interface 3
2.1 Co-Simulation . 3
2.2 Mathematical Description 4
2.3 FMI Overview . 9
2.4 PyFMI . 11

3 Graph Theoretical Tools for the Consistent Initialization
Problem 13
3.1 Directed Graphs . 14
3.2 Strongly Connected Components 16
3.3 Initialization with a Structural Approach 19

4 Reduction of Model Evaluations 23
4.1 Random Graph Generator 30
4.2 Exhaustive Search Method 30
4.3 Case Studies . 31

5 Parallelization of Model Function Evaluations 37
5.1 Basics of Parallel Computing 37
5.2 Outline for Parallel Algorithm 43
5.3 Case Studies . 46

6 Priming for Parallelization with a Genetic Algorithm 49
6.1 List Scheduling Heuristics 49
6.2 Basic Concepts of Genetic Programming 51
6.3 Case Studies . 55

7 Algorithm Implementation 57
7.1 Model Reduction Algorithm 57
7.2 Parallel Algorithm . 58

7.3 Genetic Algorithm . 60

8 Results and Benchmark 61
8.1 Model Reduction Algorithm 61
8.2 Parallel Algorithm . 64
8.3 Genetic Algorithm . 67

9 Conclusions and Further Development 69
9.1 Reduction of Model Function Evaluations 69
9.2 Parallelization of Model Function Evaluations 70
9.3 Parallelization with a Genetic Algorithm 72

Bibliography

Chapter 1

Introduction

When dealing with modeling of complex dynamic systems where the model
components are provided from different suppliers, there is a need for a
standardized model definition that can incorporate exchanges and coupling
between model components in a satisfactory way. The Functional Mock-up
Interface provides such a definition with support for both model exchange
and the ability to perform collaborative simulation, co-simulation, of com-
pound systems. Since the model content of each component is usually pro-
tected, it is not possible to make use of the standard selection of methods for
integrating and simulating the model equations. Instead, the simulation is
done in a distributed manner, orchestrated by a so called master algorithm.
Here, each model component solves its own set of equations internally and
the master algorithm’s objective is to organize the system as a whole and
step the simulation forward in time.

In order to begin the simulation procedure, the system model must be
initialized in a consistent manner. This is achieved by solving a system
of algebraic equations and the problem of solving these specific equations
is known as the consistent initialization problem. Although methods for
solving this problem already exist, there is more than one way of initializ-
ing a system in a consistent way. This opens up the possibility of different
approaches which might turn out to be more beneficial than others from a
computational perspective. This thesis presents an initialization algorithm
and its implementation within the FMI-standard via the python package
PyFMI. Moreover, in order to obtain further performance gains, two meth-
ods which make use of multiple computer processes in parallel are developed
and implemented. The objective of this thesis is to improve the computa-
tional time when solving the initialization problem by the use of these three
developed algorithms.

1

CHAPTER 1. INTRODUCTION 2

The report is structured as follows:

• Chapter 1 - Introduction

• Chapter 2 - A discussion of co-simulation is given along with its math-
ematical description and the consistent initialization problem is intro-
duced and explained. Moreover, an overview of the Functional Mock-
up Interface is given and lastly a brief introduction of the open-source
python package PyFMI.

• Chapter 3 - The graph theoretical concepts that makes up the base
theory behind the algorithms are presented. Moreover, solution meth-
ods to the initialization problem is explained.

• Chapter 4 - A conceptual evaluation reduction algorithm is explained
along with its motivation. The algorithm is tested on a real industrial
example and also synthetic examples.

• Chapter 5 - A brief introduction to parallel computation is given and
a parallel algorithm is outlined and tested for solving the initialization
problem.

• Chapter 6 - The basic components of genetic programming is ex-
plained along with the use of a genetic algorithm for priming a graph
for parallelization. The algorithm is outlined and tested.

• Chapter 7 - The implementation of the three different algorithms
within the python package PyFMI are explained.

• Chapter 8 - Presenting the results of the algorithms, which are tested
on real industrial examples and synthetic examples.

• Chapter 9 - A discussion of the results is given. Lastly, the conclu-
sions of this thesis is presented along with some remarks on future
development.

Chapter 2

Co-simulation and Functional
Mock-up Interface

In this chapter we will introduce the concept of co-simulation, its back-
ground and importance to modern simulation technology along with its
mathematical description. Moreover, a brief description of the FMI-standard
will be given, which is the chosen setting of co-simulation in this thesis.

2.1 Co-Simulation

Co-simulation is a well established simulation technique used for dynamic
systems. These systems are in general composed of weakly coupled sub-
systems (cf. Figure 2.2) i.e. the internal dynamics of each subsystem is in
general not known. Since complex dynamic systems often involve multi-
domain physics, the co-simulation approach has an inherit advantage of
being able to combine specialized simulation tools used for different fields
and signals in contrast to the monolithic approach [4].

A dynamic system is represented by the differential algebraic equation
(DAE)

ẋ = f(t, x, u)

y = g(t, x, u),
(2.1)

where x is the state vector, y is the output vector, u is the input vector, t
is an independent variable, g is the output function and f is the derivative
function.

Example 2.1 (Dynamic System). Schematic view of a single dynamic
system represented as a modular block pictured in Figure 2.1.

3

CHAPTER 2. CO-SIMULATION AND FUNCTIONAL MOCK-UP
INTERFACE 4

ẋ =f(t, x, u)
y = g(t, x, u)u

Figure 2.1: A single dynamic system.

2.2 Mathematical Description

Co-simulation is a simulation technique used for solving time-dependent
problems on finite time intervals [Tstart, Tend] which have two or more con-
nected subsystems. As mentioned in Section 2.1, the internal dynamics of
each subsystem is in general not known and subsystems communicate with
each other only through their inputs and outputs. Communication between
the subsystems is restricted to a finite number of discrete time points Tn,
(0 < n < N), with Tstart = T0 < T1 < . . . < TN = Tend, also known
as communication points. This restriction of data exchange between the
subsystems has the consequence that within each communication step, i.e.,
for t ∈ (Tn, Tn+1), all terms of the coupled problem that represent the cou-
pling of subsystems have to be approximated by the use of extrapolation or
interpolation techniques [4].

One distinguishes between a communication step Tn which is a step
forward in time for the whole system and a micro step tn,m, which is a step
forward in time for a given subsystem. The two different types of steps are
related such that Tn < tn,0 < tn,1 . . . tn,m < Tn+1 [2].

The subsystems are represented by modular blocks that are connected to
other subsystems of the coupled problem by subsystem inputs and outputs
cf. Figure 2.2. This modular method allows the subsystems of the coupled
system to be solved separately with specific methods and micro step sizes
for each subsystem. Such a method has an advantage over the monolithic
approach regarding flexibility [4].

Example 2.2 (Weakly Coupled Systems). A schematic description of a
coupled system pictured in Figure 2.2 consisting of three models.

CHAPTER 2. CO-SIMULATION AND FUNCTIONAL MOCK-UP
INTERFACE 5

Model A

Model B

Model C

external inputs

external output

external output

Figure 2.2: A system model consisting of three coupled models together with
their connections.

In this thesis, we consider N coupled subsystems of the type described
by Equation 2.1. Summarizing all the subsystems, we can express the DAE
of the global system as

ẋ =

 f [1](t, x[1], u[1])
...

f [N](t, x[N], u[N])

 (2.2)

y =

 g[1](t, x[1], u[1])
...

g[N](t, x[N], u[N])

 (2.3)

u =

 c[1](t, x[1], u[1])
...

c[N](t, x[N], u[N])

 (2.4)

CHAPTER 2. CO-SIMULATION AND FUNCTIONAL MOCK-UP
INTERFACE 6

x =



x
[1]
1
...

x
[1]
j1

x
[2]
1
...

x
[2]
j2

...

x
[N]
1
...

x
[N]
jN



, y =



y
[1]
1
...

y
[1]
k1

y
[2]
1
...

y
[2]
k2

...

y
[N]
1
...

y
[N]
kN



, u =



u
[1]
1
...

u
[1]
l1

u
[2]
1
...

u
[2]
l2

...

u
[N]
1
...

u
[N]
lN



, (2.5)

where x is the global state vector, y is the global output vector, u is the
global input vector, g is the global output function, f is the global derivative
function and c is the global coupling function. The superscript specifies
which subsystem is regarded and the subscript specifies the variable. For
example, x

[2]
1 indicates the first state variable in the second subsystem. The

same principle applies to the other DAE components [2].
Summarizing all components into vector form, we can express the global

DAE in the more compact form,

ẋ = f(t, x, u), (2.6a)

y = g(t, x, u), (2.6b)

u = c(y). (2.6c)

One distinguishes between an external input acting on the coupled sys-
tem and an internal input which is determined by the coupling of the system.
Consequently, the global input vector u consists of both external inputs and
internal inputs.

A state-space linearized representation of Equation 2.6 can be formu-

CHAPTER 2. CO-SIMULATION AND FUNCTIONAL MOCK-UP
INTERFACE 7

lated as,

ẋ = Ax + Bu (2.7a)

y = Cx + Du (2.7b)

u = Ly (2.7c)

with

A =

A
[1] . . . 0
...

. . .
...

0 . . . A[N]

 , B =

B
[1] . . . 0
...

. . .
...

0 . . . B[N]


C =

C
[1] . . . 0
...

. . .
...

0 . . . C [N]

 , D =

D
[1] . . . 0
...

. . .
...

0 . . . D[N]


where A is the state matrix, B is the input matrix, C is the output matrix,
D is the feed-through matrix and L is the coupling matrix which maps the
outputs y to the inputs u [2].

The simple case of a coupling is when we have a one-to-one coupling
which is illustrated in Example 2.3. When the system coupling is more
complicated, other methods may be required, cf. Section 3.2.

Example 2.3 (Simple Coupling) Consider two coupled subsystems de-
scribed by

ẋ[1] = −x[1] + u[1], ẋ[2] = −x[2] + u[2] (2.8)

y[1] = x[1], y[2] = −u[2] (2.9)

and the coupling matrix

L =

[
0 1
1 0

]
.

Then the coupling equations simply are[
u[1]

u[2]

]
=

[
0 1
1 0

] [
y[1]

y[2]

]
=⇒

[
u[1]

u[2]

]
=

[
y[2]

y[1]

]
.

Initialization

Simulating systems can in general be divided into three parts - initialization
of the system, computation of the states for each time step and lastly,
compiling the simulation results. In the FMI-standard these three parts
correspond to the following respectively,

CHAPTER 2. CO-SIMULATION AND FUNCTIONAL MOCK-UP
INTERFACE 8

1. Instantiation and initialization phase: The FMUs of the system are
unzipped, the XML descriptions parsed and loaded into memory along
with the binaries and lastly the master algorithm sets their initial
values and parameters. Mathematically, this corresponds to solving
Equation 2.10.

2. Computation phase: The master algorithm advances the simulation
forward in time. This is done by computing the states of the vari-
ables by calling the fmiGet and fmiSet functions and then calling
the fmiDoStep function on each FMU [1]. This corresponds to inte-
grating the state derivatives of the system, cf. Equation 2.6.

3. Termination phase: The simulation is completed and the results are
made available.

Due to Equation 2.6b, 2.6c which can be interpreted as algebraic con-
straints in the DAE, the input u cannot be chosen arbitrarily but has to be
consistent. Consider Example 2.3, with x[1](t0) = 1, u[1] = 1 and u[2] = −1,
we get

y[1] = 1

y[2] = 1.

From the coupling, we also have

u[1] = y[2]

u[2] = y[1].

We have an inconsistency since u[2] = −1 6= 1 = y[1].

Definition 2.1 (The Consistent Initialization Problem) To start the sim-
ulation of a system described by Equation 2.6 from a consistent initial state,
it is required to solve Equation 2.10,

y = g(T0, x, u)

u = c(y)
(2.10)

for global input vector u and global output vector y with global state vector
x fixed [2].

CHAPTER 2. CO-SIMULATION AND FUNCTIONAL MOCK-UP
INTERFACE 9

The coupling is assumed to be known and c ∈ C0. To find a sufficient
condition on solving the algebraic equation for coupled systems with di-
rect feed-through, we look at the state-space linearized representation, cf.
Equation 2.7b, 2.7c. Eliminating the input u in Equation 2.7b, we get

y = Cx + DLy =⇒ y = (I −DL)−1Cx.

This is solvable when (I −DL) is non-singular [2].

Definition 2.2 (Direct Feed-Through) ([2]). Let y[i] = g[i](t, x[i], u[i]) be

the outputs from model i. If output y
[i]
k depends on the input u

[i]
l such that

∂g
[i]
k (t, x[i], u[i])

∂u
[i]
l

6= 0, (2.11)

then model i has direct feed-through between variables u
[i]
l and y

[i]
k .

2.3 FMI Overview

The Functional Mock-up Interface (FMI) is a standardized interface for sys-
tem models which was developed under the European project MODELISAR
and is now developed and maintained as a Modelica Association project.
The FMI standard consists of two main types of protocols, FMI for model
exchange and FMI for co-simulation. The main difference between these
two is that if the system model being described is a continuous system, the
modular block unit of which the whole system is built upon called Func-
tional Mock-up Unit (FMU), are simulated using the tools in the imported
environment. A co-simulation FMU on the other hand is packaged together
with an internal solver [1]. Since this thesis main focus is on co-simulation,
FMI for model exchange will not be further discussed. For a more in-depth
read on FMI for Model exchange, cf. [1].

The interface defines the structure of the FMU as well as the state
machine of the FMU, i.e. which operations are allowed at any given point
and how the call sequence is defined. When modeling a system, the FMU:s
are usually the sub-systems that make up the whole system but they can
also be instances of other types, e.g. a coupling part of a simulation tool.
Each FMU is packaged as a zip-file consisting of two main parts, which are
the following,

• The C sources which contain the model equations and the run-time
libraries used in the model. These are usually packaged together into
binary form for the specific target machine.

CHAPTER 2. CO-SIMULATION AND FUNCTIONAL MOCK-UP
INTERFACE 10

• An XML-file that contains the definition of the variables according
to the standard, such as the name, type, value reference etc. The
XML-file also contains other information such as unit definitions, the
model name and which tool was used to generate the FMU [1].

An overview of the data flow between the environment and an FMU is
given in Figure 2.3. The red arrows correspond to the data that is provided
to the FMU, e.g. initial values and input ui for a given communication
point. Conversely, the blue arrows correspond to the data that is provided
from the FMU to the external environment e.g. other FMUs or a simulator
[1].

Figure 2.3: Data flow between the environment and an FMU. Blue arrows: In-
formation provided by the FMU. Red arrows: Information provided to the FMU
[1].

Features and Restrictions

In the FMI standard there are several key features and restrictions that
have an impact on which types of algorithms that can be used. In this
section, the most relevant features and restrictions to this thesis will be
presented.

Feature 2.1 (Dependency information) ([2]). Information about which
inputs directly impact the outputs is available.

Feature 2.2 (Save/Get state) ([2]). There is support for serializing the
internal state of an FMU.

Restriction 2.1 (FMU Serialization). There is not support for serializing
the entire FMU.

CHAPTER 2. CO-SIMULATION AND FUNCTIONAL MOCK-UP
INTERFACE 11

Restriction 2.1 has a very direct consequence on the problem that is
considered in this thesis. More specific, the restriction has consequences
on the design of parallel algorithms, which we will see later in Chapter
5, since there is no support to pass instances of FMUs between processes.
Essentially, one has to resort to either lock each FMU to one process or
load the same FMUs across multiple processes and synchronize the internal
states with Feature 2.2. Both methods have a degrading effect on the
performance of a parallel algorithm. This issue will be further discussed in
Chapter 5.

2.4 PyFMI

JModelica.org is an extensible Modelica-based open source platform for op-
timization, simulation and analysis of complex dynamic systems. The main
objective of the project is to create an industrially viable open source plat-
form for optimization of Modelica models, while offering a flexible platform
serving as a virtual lab for algorithm development and research. As such,
JModelica.org provides a platform for technology transfer where industri-
ally relevant problems can inspire new research and where state of the art
algorithms can be propagated from academia into industrial use. JMod-
elica.org is a result of research at the Department of Automatic Control,
Lund University, and is now maintained and developed by Modelon AB in
collaboration with academia.

PyFMI is a package for loading and interacting with FMUs, both for
Model Exchange and Co-Simulation. PyFMI offers a Python interface for
interacting with FMUs and enables for example loading of FMU models,
setting of model parameters and evaluation of model equations. PyFMI is
available as a stand-alone package or as part of the JModelica.org distribu-
tion. Using PyFMI together with the Python simulation package Assimulo
adds industrial grade simulation capabilities of FMUs to Python.1

1Citation from the official web page of JModelica.org.

CHAPTER 2. CO-SIMULATION AND FUNCTIONAL MOCK-UP
INTERFACE 12

Figure 2.4: Overview of the JModelica.org platform.

Chapter 3

Graph Theoretical Tools for
the Consistent Initialization
Problem

In this chapter we introduce the graph theoretical concepts and tools neces-
sary for understanding and solving the initialization problem, cf. Definition
2.1. The graph theoretical concepts introduced in this chapter are also used
for the initialization algorithm presented in Chapter 4 as well as the parallel
algorithm presented in Chapter 5.

In Section 2.2 the problem of initializing a system was presented where
we saw the need to solve Equation 2.10. However, solving the algebraic
equations explicitly is not alway required.

Consider the system illustrated in Example 3.1 with the coupling defined
as

y
[1]
1 = u

[2]
2 , y

[2]
1 = u

[1]
2 . (3.1)

A path which is free of cycles can be found by traversing the connections in
the system, starting from the external inputs Tenv and Tref to the external
output T which belongs to the model Plant. This means that the external
output T can be computed by evaluating the models in sequence. When
all values are set, the system has been initialized and the simulation can
begin.

This is a convenient way of initializing the system in contrast to the
other methods which makes use of non-linear solvers, e.g. Newton’s method,
and are thus faced with the problem of choosing a good initial guess [2].
This method of initialization will be discussed more in-depth in Section 3.3,
for now the reader notes that it is possible to initialize a system by using

13

CHAPTER 3. GRAPH THEORETICAL TOOLS FOR THE
CONSISTENT INITIALIZATION PROBLEM 14

its structural dependency information. This information is assumed to be
available due to Feature 2.1.

Example 3.1 (Graph of Controlled Temperature). In this example we see
a simple system with two coupled models, cf. Figure 3.1. The first model,
Controller, outputs variable On Switch to true or false based on the inputs T
and Tref . The second model, Plant, takes two inputs, Tenv and On Switch,
and outputs the temperature T .

Controller

Plant

Tref

Tenv

T

T

On Switch

Figure 3.1: A system consisting of two coupled models together with their con-
nections.

3.1 Directed Graphs

For compound systems there is usually a strict information flow that goes
from one variable to another. Therefore a directed graph is best suited for
studying how these variables are related to each other.

Definition 3.1 (Directed Graph). A directed graph or digraph GD(V , E) is
a set of vertices V and a set of edges E, where the edges are ordered pairs
of vertices of V.

Definition 3.2 (Cycle). A cycle of a graph G(V , E) is a subset of the edge
set E with at least two edges that forms a path such that the first node of
the path corresponds to the last.

Example 3.2 (Digraph with a Cycle). In this example we can see a digraph
pictured in Figure 3.2 where the vertices c, d and e form a cycle.

CHAPTER 3. GRAPH THEORETICAL TOOLS FOR THE
CONSISTENT INITIALIZATION PROBLEM 15

a b c

d

e

Figure 3.2: A digraph with a cycle.

Definition 3.3 (Directed Acyclic Graph). A directed acyclic graph or DAG
is a directed graph containing no directed cycles.

Example 3.3 (DAG). In this example we can see a digraph pictured in
Figure 3.3 which does not contain any cycles.

a b c

d

e

Figure 3.3: A digraph without cycles.

Definition 3.4 (Precedence Constraint). Given a directed graph D =
G(V , E) and an ordering L of the vertices where L(·) gives the index of the
vertex in L, we say that the condition

(v, w) ∈ E =⇒ L(v) < L(w),

is a precedence constraint on L.

As we will see later in Section 3.3, we will need to retrieve an ordering of
the vertices of a DAG such that the precedence constraints are respected.
Such an ordering is called a topological sort or topological ordering. There
exists a number of algorithms that can construct a topological ordering of
any DAG with a time complexity of O(|V|+ |E|), essentially by traversing
the graph such that each vertex is visited once and only once. In general,
this ordering is not unique and by Lemma 3.1 we are guaranteed that there
exists at least one topological ordering if the graph we are using is a DAG.

CHAPTER 3. GRAPH THEORETICAL TOOLS FOR THE
CONSISTENT INITIALIZATION PROBLEM 16

Definition 3.5 (Topological Ordering). A topological ordering of a DAG
G(V , E) is a ordering of all its vertices such that if (v, w) ∈ E, then v appears
before w.

Lemma 3.1 (Topological Ordering and Directed Graphs). A digraph G(V , E)
is acyclic if and only if there exists a topological ordering of its vertices.

Example 3.4 (Topological Ordering). A topological ordering of the DAG
defined in the previous example in Figure 3.3. As we can see in Figure
3.4, the vertex ordering is [a, b, c, e, d] and all precedence constraints are
respected.

a b c e d

Figure 3.4: A topological ordering of 3.3 from Example 3.4. Note that all edges
are directed from left to right.

3.2 Strongly Connected Components

Definition 3.6 (Strongly Connected Graph) ([2]). Let G(V , E) be a directed
graph. If for every pair of vertices v, w ∈ V there is a directed path from v
to w and w to v, then G(V , E) is a strongly connected graph.

Definition 3.7 (Strongly Connected Component) ([2]). Let G(V , E) be a
directed graph and let G(V̄ , Ē) where Ē = {(v, w) ∈ E | v, w ∈ V̄} be a
subgraph of G(V , E). If G(V̄ , Ē) is a strongly connected graph, then G(V̄ , Ē)
is said to be a strongly connected component of G(V , E).

A vertex is regarded as trivially strongly connected to itself. Every
non-trivial SCC contains at least one cycle. This is evident when recalling
Definition 3.2 which states that given a directed graph with at least two
vertices, we have a cycle if there exists a path such that we can return to
the vertex we started our path from. In the case of strong connectivity,
we are interested in all the cycles of a given graph. The fact that every
non-trivial SCC contains at least one cycle means that a digraph is acyclic
if and only if it has no strongly connected subgraphs with more than one
vertex.

Example 3.5 (Strongly Connected Component). In this example we see
the strongly connected components of a digraph marked in gray in Figure
3.5.

CHAPTER 3. GRAPH THEORETICAL TOOLS FOR THE
CONSISTENT INITIALIZATION PROBLEM 17

a

b c

d

e f

g

h i

Figure 3.5: SCCs of the digraph from Example 3.5.

Algebraic loops

Component based modeling can sometimes lead to systems where no explicit
evaluation sequence can be found to compute the outputs yj. This happens
when an input with direct feed-through is set by an output from the same
model, either directly or by a feed-back path through other models which
have direct feed-through. Such a loop is represented as a non-trivial SCC,
i.e. a SCC with more than one element, in the associated graph of the
coupled system, cf. Example 3.6 [2].

Example 3.6 (Algebraic Loop). A system with an algebraic loop.

Model A

Model B

Model C

external inputs

external output

Figure 3.6: A system model with an algebraic loop marked in dashed lines.

It is necessary to solve the arising algebraic equations of an algebraic
loop whenever they are present in a system. This is in general a non-

CHAPTER 3. GRAPH THEORETICAL TOOLS FOR THE
CONSISTENT INITIALIZATION PROBLEM 18

trivial problem. In PyFMI’s master algorithm, this is done by grouping the
variables that constitutes a loop into an SCC and solve them simultaneously
[2]. More specific, this means that we rewrite Equation 2.10 as

y − g(t, x, c(y)) = 0

and use the left-hand side as a residual function to calculate the output
vector y with a non-linear solver. The outputs are then used to set the
inputs as in the simple case, cf. Example 2.3.

Tarjan’s Strongly Connected Components Algorithm

As mentioned in Section 3.1, there exist several algorithms that can con-
struct a topological ordering of any DAG with a time complexity of O(|V|+
|E|). One such algorithm is the one proposed by Robert Tarjan which is
used in this thesis, cf. Algorithm 1 [8].

CHAPTER 3. GRAPH THEORETICAL TOOLS FOR THE
CONSISTENT INITIALIZATION PROBLEM 19

Algorithm 1 Tarjan’s strongly connected components algorithm [2]

Require: A directed graph G(V , E).
1: lowlink← {v : not numbered | ∀v ∈ V}
2: number← {v : not numbered | ∀v ∈ V}
3: i← 0
4: for v ∈ V do
5: if v not numbered then
6: STRONGCONNECT(v)
7: end if
8: end for
9: procedure STRONGCONNECT(x)

10: lowlink(x)← i
11: number(x)← i
12: stack.append.(x)
13: i← i + 1
14: for w|(x,w) ∈ E do
15: if w not numbered then
16: STRONGCONNECT(w)
17: lowlink(x) = min(lowlink(x),lowlink(w))
18: else if number(w) < number(x) andw ∈ stack then
19: lowlink(x) = min(lowlink(x),lowlink(w))
20: end if
21: end for
22: if number(x) = lowlink(x) then
23: create new strongly connected component.
24: while stack andnumber(last in stack) ≥ number(x) do
25: add last in stack to the component and remove from stack
26: end while
27: end if
28: end procedure

3.3 Initialization with a Structural

Approach

Solving the initialization problem, Definition 2.1, with a structural approach
is done by finding an evaluation order of the inputs uj’s. The evaluation
order can either be an explicit sequence of input-outputs, in which case the
algebraic equations can be solved by a forward evaluation, or we have at
least one an algebraic loop in the system in which case the relevant algebraic

CHAPTER 3. GRAPH THEORETICAL TOOLS FOR THE
CONSISTENT INITIALIZATION PROBLEM 20

equations needs to be solved together e.g. with a non-linear solver, cf.
Section 3.2 [2].

This is done by transforming the system into a directed graph. The
directed graph G(E ,V) is defined such that each output y

[i]
k ∈ y and input

u
[i]
l ∈ u correspond respectively to a vertex in G. An edge is added between

two vertices y
[i]
k and u

[i]
l whenever there exists direct feed-through from u

[i]
l

to y
[i]
k according to Definition 2.2. Further, an edge is added between yk

and ul if the variables are coupled, i.e. if

∂cl(y)

∂yk
6= 0 [2]. (3.2)

Constructing the graph with the vertices and edges as defined above,
we are both able to analyze the graph for structural loops, i.e. non-trivial
SCCs which correspond to algebraic loops in the system and we are also
able to retrieve a topological ordering of the graph which corresponds to
a proper evaluation order of the inputs. Identifying structural loops and
determining a topological ordering are the two main goals when solving the
initialization problem with a graph-theoretical approach. After identifying
which components of the graph constitute structural loops, the components
of that specific loop are then grouped together into an SCC [2]. This trans-
forms the digraph into a DAG where the vertices are instead the SCCs and
thus enables the use of Lemma 3.1.

As mentioned in the introduction, the main purpose of this thesis is to
find the optimal solution of the initialization problem, as given by Definition
3.8. Depending on which factors are considered, the means of achieving this
will change as we shall see in Chapter 5 and 6.

Definition 3.8 (Optimal Solution of the Initialization Problem). The op-
timal solution of the initialization problem, Equation 2.10, is the method
which initializes the system with minimal execution time.

Example 3.7 (Initializing Coupled System [2]). Consider a system where
we have two different models with the global state vector and output function
defined as

ẋ[1] = x[1] + u[1], ẋ[2] = x[2] + u[2] (3.3)

y[1] =
x[1]

2
, y[2] =

x[2]

2
+ u[2] (3.4)

with x[1](t0) = 2, x[2](t0) = −4 and the coupling function defined as

u[2] = y[1], u[1] = y[2]. (3.5)

CHAPTER 3. GRAPH THEORETICAL TOOLS FOR THE
CONSISTENT INITIALIZATION PROBLEM 21

Since we have values for the initial states x(t0), we can get the value of
y[1] with the output function in Equation 3.4. Via the coupling in Equation
3.5, we then get the value to set for input u[2]. Next, we get the value of y[2]

with the output function and lastly set u[1] via the coupling.
This results in the following initialization sequence.

1. Get y[1]: y[1] = 1

2. Set u[2]: u[2] = 1

3. Get y[2]: y[1] = −1

4. Set u[1]: u[1] = −1

Chapter 4

Reduction of Model Function
Evaluations

In this chapter we will present an algorithm for reducing the number of
model function evaluations during the initialization. The algorithm is then
demonstrated on a synthetic example as well as on a real industrial system.

Definition 4.1 (Model Function Evaluation). Given a model with model
number i, an evaluation of the internal dynamics of the model at a time
instance tn corresponds to solving the DAE

ẋ[i] = f [i](tn, x
[i], u[i])

y[i] = g[i](tn, x
[i], u[i]).

(4.1)

Since the evaluation order of a system model is a topological ordering,
the evaluation order is in general not unique. This property is important
since it allows for a reordering of the evaluation order which is more ben-
eficial from a computational standpoint without interfering with the ini-
tialization and simulation results. The underlying reason for the potential
of making performance gains by considering the evaluation order is that
if any input u

[i]
l has been set between retrieving outputs y

[i]
k , an internal

evaluation of the dynamics in the subsystem is triggered, cf. Definition 4.1.
This evaluation is assumed to be computationally expensive and thus by
reducing the number of such evaluations, we also reduce the computational
cost of the whole initialization procedure.

Assumption 4.1 If any input u
[i]
l has been set between retrieving out-

puts y
[i]
k , an internal evaluation of the dynamics in a co-simulation FMU is

triggered [2].

Assumption 4.2 Evaluation of a subsystem’s dynamics is expensive [2].

23

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 24

Example 4.1 (Non-unique Evaluation Order). Consider a system with
three coupled models with the input-output relations defined as

y
[1]
1 = u

[1]
1 + u

[1]
2 (4.2)

y
[1]
2 = u

[1]
3 (4.3)

y
[2]
1 = u

[2]
1 (4.4)

y
[3]
1 = u

[3]
1 + u

[3]
2 (4.5)

and the coupling defined as

u
[2]
1 = y

[1]
1 (4.6)

u
[3]
1 = y

[1]
2 (4.7)

u
[3]
2 = y

[1]
1 . (4.8)

The associated graph of the system shown in Figure 4.1 does not have an
unique evaluation order. Two different examples are given below:

Sequence 1:

[u
[1]
2 , u

[1]
1 , y

[1]
1 , u

[1]
3 , y

[1]
2 , u

[2]
1 , y

[2]
1 , u

[3]
2 , u

[3]
1 , y

[3]
1].

Sequence 2:

[u
[1]
2 , u

[1]
1 , y

[1]
1 , u

[1]
3 , y

[1]
2 , u

[3]
2 , u

[3]
1 , y

[3]
1 , u

[2]
1 , y

[2]
1].

u
[1]
1

u
[1]
3

u
[2]
1

u
[3]
2u

[1]
2

y
[1]
1

y
[3]
1

y
[2]
1

u
[3]
1y

[1]
2

Figure 4.1: Graph of the initialization problem in Example 4.2.

The problem of minimizing the model function evaluations can be seen
as a combinatorial optimization problem, since the objective is to find a
partition of the graph which will yield a minimal or near-minimal number
of SCCs as motivated by Assumption 4.2. Given Definition 3.8, the optimal
or near-optimal solution is achieved by minimizing the number of model

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 25

function evaluations, i.e. group together as many of y[i]’s as possible into a
SCC while respecting the precedence order constraints.

An algorithm for reducing the number of model function evaluations
has been given previously, shown in Algorithm 2. The basic outline of
the algorithm is to first group all output vertices from a model that are
not included in a feed-through term and then group all output nodes from
a model that are connected to inputs which are not included in a feed-
through term. After this, an evaluation sequence is computed along with
the identification of structural loops by deploying Algorithm 1. After these
steps, a procedure of modifying the evaluation sequence begins. This is
done by considering each SCC in the sequence which are single outputs
and check if it is possible to move it so that it is evaluated earlier without
violating any precedence constraints.

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 26

Algorithm 2 Computing a reduced initial evaluation order

Require: A directed graph G(V , E).
Require: Information about which nodes belong to same model, M .
Require: Information about which nodes are outputs.

1: {Group all outputs, from a model, that are not included in a feed-
through term.}

2: {Group all outputs, from a model, that are connected to inputs which
are not included in a feed-through term.}

3: F = Tarjan(G) {Compute the strongly connected components}
4: i← 0
5: while i < dim(F) do
6: fi ∈ F
7: b← 0
8: if dim(fi) = 1 andv ∈ fi|v output then
9: for j ∈ {0, . . . , i− 1} and ej ∈ F do

10: if dim(ej) = 1 and w ∈ ej|w output, w, v ∈M [k] and v not a child of w
then

11: fi ← {fi, ei} {Update the ith item in F , by joining fi and
ei into one}

12: b← 1 {Do not update the counter}
13: break
14: end if
15: end for
16: end if
17: if b = 0 then
18: i← i + 1 {Increment counter}
19: end if
20: G ← G/fi {Group nodes in a strongly connected component}
21: end while

In this thesis, an alternative algorithm for reducing the number of model
function evaluations has been developed. The goal of the algorithm is to
compute an evaluation order, group as many outputs which belong to the
same model as possible and detect algebraic loops. An outline for this
alternative algorithm is as follows. We construct a digraph as described
previously and modify the graph such that all vertices that are outputs,
belong to the same model and are on the same precedence order level are
grouped together. More formally, this means we form a collection of sets L
such that

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 27

L0 = {v ∈ V | ∀u ∈ V , (u, v) /∈ E}

Li+1 = {v ∈ V | ∀u ∈ V , (u, v) ∈ E =⇒ u ∈
i⋃

k=0

Lk}
(4.9)

so that all elements in a set Li ∈ L are said to belong to the precedence order
level i [5] [7]. For each Li we then check if there exists outputs belonging to
the same model, in which case we group these together into an SCC. These
vertices can be grouped together without creating any algebraic loop due to
how the sets were constructed. This first step will potentially decrease the
number of possible groupings from one SCC to another and thus simplify
the graph. This will be useful for the next step of the algorithm.

To further reduce the model function evaluations we now consider which
possible groupings exist from one SCC to another under the condition that
each one of these potential groups do not form an algebraic loop on its
own. In general, if there exists several possible groupings, it is not the
case that we can trivially group them all, since one grouping will affect
the precedence constraints of the graph and thus another possible group
might not be feasible afterwards, i.e. grouping all potential groups might
introduce algebraic loops. Because of this fact, the groupings are done in
an iterative manner where we calculate all the possible groups, pick one of
these possible groups according to some heuristic and perform the merge
and then start over again by calculate the possible groups in this newly
transformed graph. This iterative procedure continues until there are no
more possible groupings left to do.

The heuristic which is used to determine which possible group to actu-
alize was found experimentally. The basic principle is, given two or more
possible groups we first search for which yj belongs to the highest precedence
level order, i.e. the set Li with the highest index, and fixate it. Afterwards,
we consider all the other SCCs which can be potentially grouped together
with our fixated yj. We choose the SCC which has the highest precedence
level order, yi. The SCCs that are grouped together into one SCC in this
iteration are thus (yj, yi). The proposed algorithm is shown in Algorithm
3.

Example 4.2 (Outputs and direct feed-through). In this example we con-
sider the initialization problem represented by the graph in Figure 4.2. There
are two connected models where model 2 has multiple outputs. From the fig-
ure we note that the outputs from model 2 are connected to inputs which are
not included in a feed-through term (u[3]). Thus, the outputs from model 2

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 28

can be grouped, without creating an algebraic loop. Furthermore, this results
in a minimal number of model function evaluations. The resulting graph is
shown in Figure 4.3.

y
[2]
3

u
[1]
1

u
[2]
1

u
[2]
2

y
[1]
1

y
[2]
1

y
[2]
2

Figure 4.2: Graph of the initialization problem in Example 4.2.

u
[1]
1

u
[2]
2

y
[2]
3 , y

[2]
1 , y

[2]
2

u
[2]
1y

[1]
1

Figure 4.3: Graph of the solution of the initialization problem from Example 4.2
where all the outputs from the second model, y[2], have been joined.

Algorithm 3 Alternative algorithm for computing a reduced initial evalu-
ation order

Require: A directed graph G(V , E).
Require: Information about which nodes belong to same model, M .
Require: Information about which nodes are outputs.

1: {Group all outputs, from a model, that are on the same precedence
order level.}

2: F = Tarjan(G) {Compute the strongly connected components}
3: while dim(S) 6= ∅ do
4: S ← compute possible groupings(Gi)
5: fi ← highest level(S)
6: G ← G/fi {Group nodes in a strongly connected component}
7: end while

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 29

Algorithm 3 Computing a further reduced initial evaluation order (con-
tinued)

8: procedure compute possible groupings(G(V , E))
9: P ← ∅

10: for i ∈ dim(V) do
11: N ← ∅
12: fi ← Vi
13: if v ∈ fi|v output then
14: for j ∈ {0, . . . , i− 1} and ej ∈ V do
15: if w ∈ ej|w output, w, v ∈M [k] and v, w not on the same path

then
16: Ni ← {v, w} {Update the ith item in N , by joining v

and w into one}
17: end if
18: end for
19: end if
20: if dim(N) > 0 then
21: Pi ← Ni

22: end if
23: end for
24: return P
25: end procedure

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 30

4.1 Random Graph Generator

In order to construct a large enough collection of examples, a random graph
generator was implemented. The purpose of the generator was at first to
simplify the search of graph instances where Algorithm 2 did not partition
the graph optimally. For the purpose of obtaining the optimal solution, the
generator was used in conjunction with an exhaustive search method.

The general idea behind the generator is to create a uniform spanning
tree with the use of a random walk and then randomly select nodes to create
the desired amount of edges. The algorithm starts by picking a random
vertex from the graph which is then followed by a random walk. For each
vertex which has not been encountered before, we form a new edge from
the previous vertex to the current and save it. When we have performed a
random walk on all vertices, we proceed by adding new random edges until
we have reached the desired number. This whole procedure is then repeated
for the desired number of times to produce the corresponding number of
disconnected components in the graph.

Definition 4.2 (Spanning Tree). A spanning tree TG of a graph G(E ,V) is
a connected graph with no cycles that includes every vertex of G(E ,V) and
every edge in TG belongs to G(E ,V).

Definition 4.3 (Uniform Spanning Tree). A spanning tree chosen ran-
domly from among all possible spanning trees with equal probability is called
a uniform spanning tree.

4.2 Exhaustive Search Method

An exhaustive search, also known as a brute-force search, is a method for
solving a problem by systematically searching for a solution in the entire
search space. This is done by simply evaluating each candidate solution and
check if the solution satisfies the problem constraints. A property to the
exhaustive search method is that given that a solution exists, we will always
obtain it by the end of the procedure. When the problem to be solved is an
optimization problem, one is usually forced to check all feasible solutions
to guarantee that the solution obtained is indeed optimal. This method is
for practical reasons not feasible as a solution to the problem of reducing
the model function evaluations. Instead, this is strictly used as a reference
when evaluating the performance of the heuristic algorithms. In this thesis,
the problem is to find a heuristic algorithm that provides a near-optimal
solution within a reasonable execution time.

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 31

4.3 Case Studies

Synthetic Test Case

In this example, six models with feed-through are connected. A graph of
the couplings is shown in Figure 4.4. The example is intended to illustrate
Algorithm 3 where the number of model function evaluations is reduced.

y
[5]
3

u
[0]
7

y
[1]
1

y
[0]
15

u
[0]
11

y
[0]
0

u
[0]
5

y
[2]
5 y

[0]
12

u
[0]
1

y
[5]
4

u
[0]
12u

[0]
2

y
[0]
10

u
[0]
13

y
[5]
11

y
[0]
2

y
[1]
7

u
[0]
19

y
[2]
8

y
[5]
14

u
[0]
3

y
[4]
6

y
[4]
13

u
[0]
18

y
[1]
9

u
[0]
8

u
[0]
16

Figure 4.4: Graph showing six coupled models where as many as possible of the
outputs for each model should be joined.

The first step in the algorithm is to group outputs which belong to the
same model and the same precedence order level, where the order levels are
computed according to Equation 4.9. In this case the only group of outputs
that satisfy these conditions are the outputs y

[5]
4 and y

[5]
11 which both belong

to the fourth level, cf. Figure 4.5.

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 32

y
[5]
3

u
[0]
7

y
[1]
1

y
[0]
15

u
[0]
11

y
[0]
0

u
[0]
5

y
[2]
5y

[0]
12

u
[0]
1 u

[0]
12 u

[0]
2

y
[0]
10 , u

[0]
18, y

[1]
9

u
[0]
13

y
[0]
2

y
[1]
7

u
[0]
19

y
[2]
8

y
[5]
14

y
[5]
11 , y

[5]
4

u
[0]
3

y
[4]
6

y
[4]
13

u
[0]
8

u
[0]
16

Figure 4.5: Result after the first steps of Algorithm 3 where vertices of the same
precedence level order has been joined and a cycle has been grouped.

The next step in Algorithm 3 is to compute a first evaluation order and also
to identify any cycles in the graph and when present, group them together.
This is done by applying Algorithm 1 on the graph. In this case, the vertices

y
[0]
10 , u

[0]
18 and y

[1]
9 form a cycle and are thus grouped together, cf. Figure

4.5.
After these two steps, a final iterative procedure follows which termi-

nates when all possible groupings have been exhausted. The first step in the
procedure is to identify the output which satisfies the conditions of having
the highest level and at least one other possible output to be grouped with.
The output with the highest level in this case is y

[4]
13 , but since grouping

this output with any of the outputs which belong to the same model would
yield in a cycle, this output does not satisfy our second condition for being
selected.

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 33

y
[5]
3

u
[0]
7

y
[1]
1

y
[0]
15

u
[0]
11

u
[0]
5

y
[2]
5

u
[0]
1

u
[0]
12

u
[0]
2

y
[0]
10 , u

[0]
18, y

[1]
9

u
[0]
13

y
[0]
2

y
[1]
7

u
[0]
19

y
[2]
8

y
[5]
14

y
[5]
11 , y

[5]
4

u
[0]
3

y
[0]
0 , y

[0]
12

y
[4]
6

y
[4]
13

u
[0]
8

u
[0]
16

Figure 4.6: Result after the first iteration of the while-loop in Algorithm 3 where
the vertices with the highest precedence order has been joined.

The output which satisfies both our conditions is y
[0]
0 . The next step is

to choose which other output it should be grouped with as there are two
options, y

[12]
0 and y

[15]
0 . Since y

[12]
0 has a higher level than y

[15]
0 , this will be

our pick in this iteration, cf. Figure 4.6.
After completing the iterative procedure, we are done with Algorithm

3. The final result is shown in Figure 4.7.

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 34

y
[0]
0 , y

[0]
12 , y

[0]
15

u
[0]
7

y
[1]
1

u
[0]
11

u
[0]
5

y
[2]
5

u
[0]
1

u
[0]
12 u

[0]
2

y
[0]
10 , u

[0]
18, y

[1]
9

u
[0]
13

y
[0]
2

y
[1]
7

u
[0]
19

y
[2]
8

y
[5]
11 , y

[5]
4

u
[0]
3

y
[4]
6

y
[4]
13

y
[5]
14 , y

[5]
3

u
[0]
8

u
[0]
16

Figure 4.7: Resulting graph after Algorithm 3 has been executed. As many as
possible of the outputs from the different models has been joined.

Race Car

In this example, the model describes a race car which has been provided
from the commercial Vehicle Dynamics Library supplied by Modelon AB,
cf. Figure 4.8. The race car is modeled together with a driver that tries
to maneuver the vehicle in a figure eight shaped path while increasing the
velocity. Simulations of this kind provides useful information of the dynamic
response of the vehicle. This information can then in turn be used to
optimize the lap time by calibrating the vehicle design [2].

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 35

Figure 4.8: Visualization of the race car from Section 4.3 [2] [3] c© Modelon

The coupled system consists of five models, the chassis and the four
wheels, which are coupled together by 172 connections, cf. Figure 4.9.
Additionally there is direct feed-through in the wheels. Considering the
outputs of the system which are direct feed-through, we end up with one
output for the chassis and the torques ti and forces fi, i = 1 : 4 gives us
6 outputs for each wheel in total. The reason the torques and forces are
vector valued is due to the fact that the couplings are spatial, i.e. we have an
output for each spatial dimension. This gives us that the minimal number
of model function evaluations is 5 and the maximum is 25 [2] [3].

By deploying Algorithm 3 on the coupled system, we find that there are
no none-trivial SSCs and thus no algebraic loops. Executing Algorithm 3
on the coupled system gives the optimal evaluation order [2].

CHAPTER 4. REDUCTION OF MODEL EVALUATIONS 36

Figure 4.9: Overview of the couplings between the wheels and chassis of the race
car from Section 4.3. Shown in the figure is the direct feed-through in the wheels
between the hubFrame and spinVelocity with t[1-4] and f [1-4]. Note that the
connections are vector valued [2] [3]. c© Modelon

Chapter 5

Parallelization of Model
Function Evaluations

In the previous chapters we have seen a new algorithm for reducing model
function evaluations, cf. Algorithm 3. The motivation behind reducing
model function evaluations lies in the assumption that computing the in-
ternal dynamics of a component is computationally expensive and by re-
ducing the number of such evaluations, the computation time is lowered.
With the ongoing trend of parallel computing in the computer and software
industry, multiple computer processor (CPU) cores are common enough in
standard consumer computers that designing software for parallel comput-
ing can often be a reasonable method of achieving lower computation time.
This however depends on a number of things such as the size of the frac-
tion of a program that can be parallelized and if the penalty of spawning
new processes is sufficiently small to justify a parallel execution instead of
a sequential one. Since this thesis ultimately revolves around speeding up
the initialization phase, a parallel method of initializing coupled systems is
considered.

This chapter introduces the general concepts of parallel programming,
both the static case of load balancing as well as the dynamic case. Moreover,
the model of the target parallel system is specified.

5.1 Basics of Parallel Computing

Concepts and Terminology

Parallel computing is the execution of a program using multiple CPUs con-
currently instead of using one processor exclusively, i.e. a parallel program.

37

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 38

In order to use multiple CPUs and orchestrate the execution in a desired
way, a parallel algorithm is needed. A parallel algorithm consists of a
collection of discrete section of computational work that is executed by a
processor. We call such a section of computational work a task. After ex-
ecuting the parallel algorithm, the final result should be a composition of
the output from the tasks. Graphs are a common way of formulating an
abstract representation of a parallel program, more specific task graphs are
used for this purpose.

Definition 5.1 (Graph Model) ([7]). A program consists of two kinds of
activity - computation and communication. The computation is associated
with the vertices of a graph and the communication with its edges. A task
can range from an atomic operation to compound statements such as loops,
basic blocks and sequences of these. All instructions or operations of one
task are executed in sequential order, i.e. there is no parallelism within a
task. A vertex is at any time involved in either computation or communi-
cation.

Definition 5.2 (Task Graph) ([7]). A task graph is a directed acyclic
graph GT(V , E , w, c) representing a program P according to the graph model
of Definition 5.1. The vertices in V represent the tasks of P and the edges
in E the communications between the tasks. An edge (v, w) ∈ E from vertex
v to w , v, w ∈ V, represents the communication from vertex v to vertex w.
The non-negative weight w(v), v ∈ V represents its computation cost and
the non-negative weight c((v, w)), (v, w) ∈ E represents its communication
cost.

The process of designing a parallel algorithm is in general non-trivial
and there are several components that need to be taking in consideration,
e.g. hardware architecture, problem decomposition, scalability and over-
head costs. In this thesis, only the necessary parts are introduced. For a
more thorough explanation on parallel computing, cf. [6] [7]. The process
of designing a parallel algorithm can in general be divided into three main
parts:

• problem decomposition,

• granularity,

• mapping.

These parts will be given a more detailed explanation further into this
chapter.

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 39

One of the most straightforward ways of evaluating the performance of
a parallel algorithm is in terms of speedup.

Definition 5.3 (Speedup) ([6]). Let n be the size of the input for a given
program and p the number of processors which will be used in parallel. We
say that T (n, 1) is the run-time of the fastest known sequential algorithm
and T (n, p) the run-time of the parallel algorithm executed on p processors
for the input size n. The speedup is then defined as

S(n, p) =
T (n, 1)

T (n, p)
. (5.1)

Ideally, one would like to have the speedup factor to equal the number of
processors, i.e. S(n, p) = p, although this is rarely achieved in practice. We
call this perfect speedup [6].

A way of estimating the potential speedup of a parallel program is by
using Amdahl’s law which can be formulated as,

SA(n, p) =
1

(1− r) + r
p

, (5.2)

where SA is the theoretical speedup of the execution of the whole task, r
is the fraction of the code that can be parallelized and p is the number of
processors used with a fixed input size n. [6].

Example 5.1 (Amdahl’s law). This example is intended to illustrate Am-
dahl’s law by showing how the speedup is affected by the number of processors
and the size of the parallel portion of the program, cf. Table 5.1.

p r = 0.50 r = 0.90 r = 0.95 r = 0.99

10 1.82 5.26 6.89 9.17
100 1.98 9.17 16.80 50.25
1000 1.99 9.91 19.62 90.99
10000 1.99 9.91 19.96 99.02
100000 1.99 9.99 19.99 99.90

Table 5.1: The theoretical speedup given from Amdahl’s law for different r and
p.

Problem Decomposition

One of the first steps into designing a parallel algorithm is to divide the
computational problem into smaller subproblems which can be computed

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 40

in parallel, i.e. tasks. This is known as the process of problem decomposi-
tion or partitioning. There are many ways of decomposing a problem where
some of the most common and well-known methods include functional de-
composition and data decomposition.

Functional Decomposition

In the functional decomposition approach to decomposition, the initial focus
is on the computations performed on the data rather than on the data
itself. The aim is to find a way of separating these computations into parts,
called functions, which can can be distributed to multiple processors for
simultaneous execution. The next step is to analyze what data is needed
to execute these functions. If the data requirements are disjoint, i.e. the
functions perform computation on different data, the partition is done. If
on the other hand there is a significant overlap on the data requirements for
the functions, one needs to take special considerations to avoid replication
of data [6].

Data Decomposition

When considering data decomposition, the focus is to first decompose the
data associated with a problem. The data is divided into a number of equal
parts where each part is typically associated with a certain type of opera-
tion. The decomposed data may be the input to the program, the output
computed by the program, or intermediate values. Data decomposition is
the most common approach to decomposing a problem for parallel compu-
tations and is typically used for problems which are associated with large
amounts of data [6].

Granularity of Computation

In parallel computing, granularity of a task is a qualitative measure of the
amount of the computational work which is performed by that task. The
problem decomposition has an affect on the granularity as it defines the
tasks. We say that a problem decomposition which yields many small tasks
has fine granularity and the computation is fine-grained. Likewise in the
opposite case, when the problem decomposition yields a small set of larger
tasks, we say that the granularity is coarse and the computation is coarse-
grained [6].

A concept related to granularity is that of degree of concurrency which
is the number of tasks that can be executed simultaneously. Evaluating the

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 41

degree of concurrency only on account of the number of tasks involved in the
parallel program is approximate. More accurate estimates are yielded by
considering the granularity of the program, in which case we are interested
in the average degree of concurrency. As the name indicates, this is the
average number of tasks that can be executed simultaneously during the
entire execution. Informally, the average degree of concurrency tells us how
many operations, on average, can be carried out simultaneously in every
step of computation [6].

In parallel computing, the critical path is the path which corresponds to
the longest series of sequential operations in a parallel computation and thus
also the theoretical minimal completion time of the program, cf. Definition
5.4. For this reason, minimizing this path is an important aspect when
designing a parallel algorithm.

Definition 5.4 (Critical Path Length). Given a task graph GT(E ,V ,w),
the critical path length CG is the path which is associated with the largest
sum of the vertex weights wi ∈ w.

Definition 5.5 (Average Degree of Concurrency). Given a task graph
GT(E ,V ,w), the average degree of concurrency davg is defined as

davg =

∑N
i=0 wi

CG
, N = |V|.

This corresponds to the average number of tasks that can be executed in
parallel.

Example 5.2 (Degree of Concurrency in Task Graph). In this example,
the graph shown in Figure 5.1 has a critical path length CG = 6+4+1 = 11
and a weight sum

∑N
i=0 wi = 2 + 4 + 3 + 6 + 5 + 4 + 1 = 25. The average

degree of concurrency is thus davg = 25
11

.

a

2

b

4

c

3

d

6

e

5

f

4

g

1

Figure 5.1: A directed weighted graph with its critical path colored in blue.

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 42

In general, a high degree of concurrency is related to a fine-grained
decomposition. One could get the impression that a problem should be de-
composed to be as fine-grained as possible in order to optimize the speedup.
However, taking communication costs into consideration shows that the
matter is more complicated. These costs commonly grow with the num-
ber of communicating tasks, which means that the degree of concurrency
and granularity needs a thoughtful analysis in order to determine a proper
balance between the two [6].

Definition 5.6 (Computation and Communication Costs) ([7]). Let GT(V , E , w, c)
be a task graph representing a program P according to Definition 5.1. The
vertex v ∈ V has an associated non-negative weight wv which represents
the computation cost of v. Similarly, the edge (v, w) ∈ E has an associated
non-negative weight w(v,w) which represents communication cost of (v, w).
These costs typically correspond to the time a computation or communica-
tion takes on the specified target system.

In the target parallel system considered in this thesis, computation costs
are assumed to be uniform and communication costs are assumed to be
negligible, cf. Assumption 5.1.

Assumption 5.1 Computation costs, i.e. model function evaluations, are
assumed to be uniform for all models and communication costs are assumed
to be negligible.

Assumption 5.2 The number of available slave processors are assumed to
be relative few, i.e. under 8. This motivates a coarse grained decomposition.

Mapping

The next step of designing a parallel algorithm is to determine a systematic
way of assigning tasks to processors involved in the parallel program. As
for any parallel program, the goal is to maximize the speedup which is done
by minimizing the execution time of the parallel program. A crucial aspect
in order to achieve this is to have a task-to-processor mapping such that
the time in which processors are not doing any computational work is min-
imized. This is also known as load balancing and the concept can roughly
be divided into two paradigms, static balancing and dynamic balancing [6].

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 43

Static Balancing

Static load balancing is done before the execution of the parallel program.
In order to determine how to assign the tasks to specific processors, several
factors need to be taken in consideration. Such factors include the compu-
tational cost of each task, identification of data dependencies and frequency
and latency for inter-process communication among others. These factors
are in general difficult to measure and finding the optimum assignment is an
NP-hard problem. The assignment is usually done with fast-acting heuris-
tic algorithms which give a near-optimal assignment if designed properly
[6] [7].

Dynamic Balancing

In contrast to the static case, in dynamic load balancing tasks are assigned
to processors during the execution of a parallel program. If important infor-
mation of hardware architecture and the software is dynamic or unknown,
dynamic load balancing is the preferred strategy since the load is more
uniformly distributed among the processors in this setting compared to a
static strategy. There are two main methods of dynamic load balancing,
centralized and decentralized. The latter will not be explained in this thesis
[6].

In the centralized method the tasks are stored in a central data structure
called work pool. By using a master processor, the tasks can be assigned to
the slave processors. The idea is that whenever a slave processor completes
execution of a task, it sends a request to the master processor to label the
task as complete and then assign the next available task to the slave pro-
cessor at hand. The centralized load balancing method is a suitable choice
of method when there are few available slave processors and the granularity
is coarse. In the opposite case, i.e. when we have many slave processors
combined with fine-grained tasks, the master processor needs to handle a
large number of requests which has a negative effect on performance [6].

5.2 Outline for Parallel Algorithm

Given Assumption 5.1 and 5.2, we have a rather coarse-grained decompo-
sition where the communication costs are negligible. A parallel algorithm
following a centralized method of dynamic mapping, i.e. a Master-Slave-
pattern, is considered in this thesis.

Restriction 2.1 puts a difficult constraint on the parallel design since we
are not allowed to send and retrieve FMUs between processes, i.e. each

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 44

FMU instance is locked to a given process. Although the actual initializa-
tion process would benefit greatly with a work-around by loading the same
FMU models into several processes, it is not clear that this solution yields
a better performance when also taking instantiation into account. Loading
an FMU into memory is in general expensive relative to the initialization
time and it is not desirable to repeat this process several times. The parallel
algorithm considered in this thesis locks each model to a given process.

The basic outline of the algorithm that solves the initialization problem
in parallel is as follows. The algorithm takes a task graph GT as input where
each vertex represent some task that we want to execute. In this particular
setting, the tasks, i.e. the vertices of GT will either be to set an input uj or
to compute an output yi of a given model, where the latter entails a model
function evaluation, cf. Definition 4.1.

A number of processes are spawned and assigned an available task to
be executed. More precisely, the task is chosen such that there are no pre-
decessors that have not already finished execution so that the dependency
constraints are respected. In this stage, the algorithm tries to execute as
many tasks as possible. If all processes have a task assigned or if there is no
available task to run while respecting the dependency constraints, the algo-
rithm enters an inner while-loop until a task has been finished. The inner
while-loop checks if any process has sent a message to the master declaring
that it has finished executing a task, in which case the task is removed from
the task graph GT and the master tries to assign a new task to the newly
available process. This procedure is then repeated until all tasks have been
executed. The proposed algorithm is shown in Algorithm 4.

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 45

Algorithm 4 Parallel algorithm

Require: A directed graph G(V , E).
Require: Information about which nodes belong to same model, M .
Require: Information about which nodes are outputs.

1: while dim(finished tasks) 6= dim(V) do
2: variable← None
3: model← None
4: no tasks← False
5: for v ∈ T do
6: if variable.dependencies = ∅ then
7: variable← v
8: model← model map[v]
9: end if

10: end for
11: if variable 6= None then
12: slave← worker map[model]
13: if ¬ slave.busy then
14: set or get variable(variable)
15: running tasks.append(task name)
16: else:
17: no tasks← True
18: end if
19: else
20: no tasks← True
21: end if
22: if no tasks or dim(running tasks) = dim(worker list) then
23: task done← False
24: while ¬ task done do
25: for slave ∈ worker list do
26: if slave.busy and has pending message(slave) then
27: message, data← get message(slave)
28: if message = ”FINISHED” then
29: variable← data
30: finished tasks.append(variable)
31: running tasks.remove(variable)
32: slave.busy← False
33: task done← True
34: end if
35: end if
36: end for
37: end while
38: end if
39: end while

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 46

5.3 Case Studies

Synthetic Test Case

In this example, seven models with feed-through are connected and we con-
sider multiple processors for solving the initialization problem by deploying
Algorithm 4. A graph of the coupling is shown in Figure 5.2. Since we
have seven models, the number of processors required for the initialization
is eight due to Restriction 2.1, i.e. seven slave processors and one master
processor.

The actual computations involved during the initialization are replaced
with a sleep-function in order emulate the computational task. The function
is defined as follows.

• Vertices which are inputs are assumed to take 0.01 seconds.

• Vertices which are outputs are assumed to take 1.0 seconds.

• Vertices which correspond to algebraic loops are assumed to take 5
seconds.

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 47

y
[5]
3

u
[0]
7

y
[1]
1

y
[0]
15

u
[0]
11

y
[0]
0

u
[0]
5

y
[2]
5 y

[0]
12

u
[0]
1

y
[5]
4

u
[0]
12u

[0]
2

y
[0]
10

u
[0]
13

y
[5]
11

y
[0]
2

y
[1]
7

u
[0]
19

y
[2]
8

y
[5]
14

u
[0]
3

y
[4]
6

y
[4]
13

u
[0]
18

y
[1]
9

u
[0]
8

u
[0]
16

Figure 5.2: Graph showing seven coupled models.

Comparing the elapsed initialization time for both the sequential case
and the parallel case we see that for the sequential case, the initialization
takes about 20 seconds while for the parallel case it takes about 6.7 seconds,
which gives a speedup factor of approximately 3. The evaluation order
was computed with Algorithm 1 and thus the number of model function
evaluations was not reduced.

Race Car

Revisiting the race car from Section 4.3 we now consider multiple processors
for solving the initialization problem. As in the synthetic test case in Section
6.3, the system is initialized by assigning a process for each model and
one for the master, i.e. six processors in this case. Comparing the global
output vector y and global input vector u after initialization for both the

CHAPTER 5. PARALLELIZATION OF MODEL FUNCTION
EVALUATIONS 48

sequential case and the parallel case, we notice the results are identical.
This means that the precedence constraints were respected and the system
was initialized properly.

Comparing the elapsed initialization time for both the sequential case
and the parallel case we see that for the sequential case, the initialization
takes about 0.26 second while for the parallel case it takes about 0.056
seconds, which gives a speedup factor of approximately 4. In addition, the
evaluation order was computed with Algorithm 3, which gives the minimal
number of model function evaluations.

The system was also initialized without reducing the number of model
function evaluations, i.e. by only using Algorithm 1 to compute the eval-
uation order. In this setting the sequential case takes about 1.0 seconds
while the parallel case takes about 0.26 seconds and thus again we have a
speedup factor of approximately 4.

Chapter 6

Priming for Parallelization
with a Genetic Algorithm

When considering multiple processors working in parallel for solving the
initialization problem, one should also take into account the average degree
of concurrency of the graph, cf. Definition 5.4. This is a consequence of the
fact that grouping output vertices affects the precedence constraints in the
corresponding task graph and by extension, the graphs inherent capacity
to make use of multiple processors. In essence, the objective of the method
presented in this chapter is to achieve a better solution according to Defini-
tion 3.8 by combining the strategy of reducing model function evaluations
as in Chapter 4 together with the concept of parallel initialization as in
Chapter 5. The problem is then to find the correct balance between re-
ducing models while still maintaining a high average degree of concurrency.
We call this notion priming for initialization. In terms of combinatorial op-
timization, this results in an additional constraint on the set of candidate
solutions.

For solving this problem, a genetic algorithm (GA) is developed and
used. The general basic components and the problem specific components
of the GA, along with the use of simple scheduling heuristics are explained
in this chapter.

6.1 List Scheduling Heuristics

The dominant heuristic technique encountered in scheduling algorithms is
the so-called list scheduling. In its simplest form, the first part of list
scheduling sorts the vertices of the task graph to be scheduled according
to a priority scheme, while respecting the precedence constraints, i.e. the

49

CHAPTER 6. PRIMING FOR PARALLELIZATION WITH A
GENETIC ALGORITHM 50

resulting vertex list is in topological ordering. In the second part, each
vertex of the list is successively scheduled to a processor chosen for the
vertex. The chosen processor is the one that allows the earliest start time
of the vertex. This method is called start minimization time. Algorithm 5
outlines a simple form of list scheduling with the use of start minimization
time [7].

Algorithm 5 Simple List Scheduling algorithm [7]

Require: A directed graph G(V , E).
1: {Sort vertices n ∈ V into list L, according to priority scheme and prece-

dence constraints}
2: for n ∈ dim(L) do
3: schedule node(n)
4: end for
5: procedure schedule vertex(n)

Require: n is a free vertex
6: tmin ←∞
7: pmin ← none

8: for p ∈ P do
9: if tmin > max{tdr(n, p),tf(p)} then

10: tmin ← max{tdr(n, p),tf(p)}
11: pmin ← p
12: end if
13: end for
14: ts(n)← tmin

15: proc(n)← pmin

16: end procedure

Example 6.1 (List Scheduling). In this example, we apply Algorithm 5
on the directed weighted graph shown in Figure 6.1. The resulting schedule
is shown in Figure 6.2 and we get a completion time of 24.

CHAPTER 6. PRIMING FOR PARALLELIZATION WITH A
GENETIC ALGORITHM 51

a

2

b

4

c

4

d

5

e

4

f

3

g

2

h

5

i

4

j

3

k

2

Figure 6.1: A directed weighted graph.

Figure 6.2: Example of simple list scheduling using the graph from Figure 6.1:
(a) to (c) are snapshots of partial schedules; (d) shows the final schedule. The
node order is [a,b,c,d,e,f,g,i,h,j,k].

6.2 Basic Concepts of Genetic

Programming

Complex problems are sometimes solved with the use of randomized search
methods like genetic algorithms, swarm algorithms, simulated annealing
etc. The problem of priming a graph such that it is better suited for parallel
computing is a complicated task since one needs to develop a good strategy
for balancing the trade-off between reducing model function evaluations and
maintaining a high average degree of concurrency in the graph structure.

CHAPTER 6. PRIMING FOR PARALLELIZATION WITH A
GENETIC ALGORITHM 52

Moreover, models can vary in complexity and size which in turn affects the
trade off, i.e. such a strategy also needs to be flexible to be able to handle
different types of systems models. In this thesis, the problem of priming a
graph was solved by the use of a GA method.

A GA is a search algorithm that is based on the principles of evolution
and natural selection. A set of candidate solutions called the population,
creates new generations by two operators, crossover and mutation. The
method is constructed such that the better candidate solutions in the pop-
ulation are more likely to be selected and thus transmitting their inheritance
to the next generation [7]. This section studies how a GA can be applied
to the priming problem. As the area of genetic algorithms is very broad,
only the necessary concepts are introduced. For a thorough introduction
on genetic programming, cf. [7].

Algorithm 6 outlines a simple GA and the fundamental components are
described in the following.

• Chromosome: The generated candidate solutions to the problem are
called chromosomes. These are typically encoded as a problem specific
binary number or list [7]. In this setting, the chromosomes are en-
coded by traversing the graph and storing all pairwise possible vertex
groupings in a list all groupings. A chromosome will then consist
of a binary list where the elements of the list, called genes, indicate if
two SCCs on the corresponding index in all groupings should group
to form one combined SCC or not, cf. Example 6.2. In essence, each
chromosome is a variation of the original initialization graph where
the possible groupings of the vertices are explored, cf. Algorithm 2
and 3 which tries to group as many SCCs as possible.

• Population: A collection of chromosomes which make up all current
chromosomes is called a population. The initial population is gen-
erated randomly whereas the subsequent generations are generated
from the GA [7]. In this setting, the population will consist of several
chromosomes of the type described above.

• Evaluation: The evaluation stage is required in order to determine
the quality of each chromosome which is done with a fitness func-
tion [7]. The fitness function in this setting is to construct a graph
according to the chromosome i.e. which vertices should form SCCs
and then compute an approximation, i.e. a schedule, for how long it
would take to initialize the system with a structural approach by us-
ing the current graph representation of the system on a given number

CHAPTER 6. PRIMING FOR PARALLELIZATION WITH A
GENETIC ALGORITHM 53

of processors. This time length is then the assigned fitness score. The
motivation behind this is that we are interested in finding a graph
which best favors parallelism for a given number of processors. The
fitness of a chromosome is directly related to the length of the asso-
ciated schedule. Computing a schedule and its length is a fast way
of approximating the time it would take to solve the problem. The
schedule and its length is calculated by deploying Algorithm 5.

• Selection: Selection is the stage of the GA in which the chromosomes
are chosen from the population based on their fitness score.

• Crossover: Crossover is one of two operators used in the GA to vary
the programming of the chromosomes. The operator functions by
combining two existing chromosomes to form a new [7]. In this setting,
we take two chromosomes and simply split them in two respectively
at some randomly chosen index and then merge the sublists from the
different chromosomes to form two new chromosomes.

• Mutation: The mutation operator acts on a chromosome by randomly
changing a small portion of the encoding. The purpose of the muta-
tion operator is avoid convergence at a local point by slightly perturb-
ing the population [7]. In this setting, the mutation simply takes a
random chromosome and then swaps a random gene to the opposite
value, i.e. from 1 to 0 or 0 to 1.

After a specified number of iterations has been completed, the GA termi-
nates and returns the chromosome with the best fitness.

Algorithm 6 Priming GA

Require: A directed graph G(V , E).
Require: Population size Npop

Require: Generation size Ngen

1: populate() {Create initial population}
2: evaluation() {Calculate fitness of initial population}
3: for i ∈ range(Ngen) do
4: selection()
5: crossover()
6: mutation()
7: evaluation()
8: end for

CHAPTER 6. PRIMING FOR PARALLELIZATION WITH A
GENETIC ALGORITHM 54

Algorithm 6 Priming GA (continued)

9: procedure populate
10: all groupings← compute possible groupings(G)
11: for i ∈ range(Npop) do
12: population[i] ← create random binary list() {Create a

random binary list with same length as possible groupings}
13: end for
14: end procedure

Algorithm 6 Priming GA (continued)

15: procedure evaluation
16: for chromosome ∈ population do
17: G∗(V , E)← G(V , E)
18: to group← ∅
19: for gene ∈ chromosome do
20: if gene = 1 then
21: scc ← create scc(gene) {Create new strongly con-

nected component}
22: to group.append(scc)
23: end if
24: G∗(V , E) ← construct graph(to group) {Create new di-

graph with specific SCCs}
25: end for
26: score[chromosome]← dim(list schedule(G∗))
27: end for
28: end procedure

Example 6.2 (Chomosome Encoding). In this example we have a graph
pictured in Figure 6.3. Traversing the graph to get all possible SCC group-
ings, we form the list all groupings = [(y

[2]
1 , y

[2]
2), (y

[1]
1 , y

[1]
2), (y

[1]
2 , y

[1]
3)]. A

chromosome of the graph can then be constructed by either grouping these
vertices into a SCC or not depending on the value of the chromosome gene.
This is indicated by a 1 or 0, e.g. the chromosome c1 = [1, 1, 0] means that

(y
[2]
1 , y

[2]
2) and (y

[1]
1 , y

[1]
2) should merge while (y

[1]
2 , y

[1]
3) should not.

CHAPTER 6. PRIMING FOR PARALLELIZATION WITH A
GENETIC ALGORITHM 55

u
[1]
1

y
[1]
1 y

[1]
2 y

[2]
1

u
[1]
2

y
[1]
3 y

[2]
2

Figure 6.3: A graph of a coupled system with two models.

6.3 Case Studies

Synthetic Test Case

In this example, seven models with feed-through are connected where we
consider multiple processors and the structure of the graph for solving the
initialization problem by deploying Algorithm 6 and Algorithm 4.

The actual computations involved during the initialization are replaced
with a sleep-function in order to emulate the computational time of the
FMI-functions fmi2SetXXX and fmi2GetXXX. The function is defined as
follows.

• Vertices which are inputs are assumed to take 0.1 seconds.

• Vertices which are outputs are assumed to take 2.5 seconds.

• Vertices which correspond to algebraic loops are assumed to take 5
seconds.

Algorithm Reduced Evalutations Completion Time [s] Speedup
Algorithm 1 n/a 21.9 2.5
Algorithm 2 13 16.87 3.2
Algorithm 3 13 14.5 3.7
GA 7 13.78 3.9

Table 6.1: Completion time using list scheduling with seven slave processors and
one master processor and neglecting communication costs.

CHAPTER 6. PRIMING FOR PARALLELIZATION WITH A
GENETIC ALGORITHM 56

y
[5]
3

u
[0]
4 u

[0]
14u

[0]
7

u
[0]
0

y
[4]
1

y
[4]
20y

[5]
0

u
[0]
11u

[0]
5

y
[0]
12

u
[0]
6

y
[6]
5

u
[0]
1

y
[4]
4

u
[0]
12

y
[5]
10

u
[0]
13

y
[4]
2

y
[1]
11y

[5]
8

y
[0]
14

u
[0]
19

y
[6]
7 y

[6]
19

y
[3]
6

u
[0]
3

y
[5]
15

u
[0]
15

u
[0]
18

y
[6]
13y

[2]
9

u
[0]
9

y
[2]
16

u
[0]
8

y
[3]
17

u
[0]
20

u
[0]
16

y
[3]
18

(a) Original

y
[5]
3

u
[0]
4

u
[0]
14 u

[0]
15

u
[0]
0

y
[4]
20

u
[0]
11u

[0]
5

u
[0]
6

u
[0]
1

y
[4]
4

u
[0]
12

y
[0]
14 , y

[0]
12

u
[0]
13

y
[1]
11y

[5]
8

u
[0]
19

u
[0]
9

y
[6]
13 , y

[6]
7

u
[0]
3

y
[5]
0 , y

[5]
10 , y

[5]
15

u
[0]
18

u
[0]
7

y
[2]
9y

[6]
19 , y

[6]
5

y
[2]
16

y
[3]
6 , y

[3]
18

u
[0]
8

y
[3]
17y

[4]
1 , y

[4]
2

u
[0]
20

u
[0]
16

(b) GA

u
[0]
4 u

[0]
14

u
[0]
15

u
[0]
0

u
[0]
11

u
[0]
5

y
[6]
13 , y

[6]
19 , y

[6]
7 , y

[6]
5

u
[0]
6

u
[0]
1

y
[4]
2 , y

[4]
20 , y

[4]
4 , y

[4]
1

u
[0]
12

u
[0]
13

y
[1]
11

u
[0]
19

u
[0]
3

y
[0]
12 , y

[0]
14

u
[0]
18

u
[0]
7

y
[2]
9

u
[0]
9

y
[2]
16

y
[3]
17 , y

[3]
18 , y

[3]
6

y
[5]
8 , y

[5]
10 , y

[5]
15 , y

[5]
0 , y

[5]
3

u
[0]
8

u
[0]
20

u
[0]
16

(c) Alg. 3

u
[0]
4

u
[0]
14

u
[0]
15

u
[0]
0

u
[0]
11

u
[0]
5

u
[0]
6

u
[0]
1 u

[0]
12

u
[0]
13

y
[1]
11

u
[0]
19

y
[3]
6

u
[0]
3

y
[4]
2 , y

[4]
4 , y

[4]
1 , y

[4]
20

y
[6]
5 , y

[6]
7 , y

[6]
13 , y

[6]
19

y
[0]
12 , y

[0]
14

u
[0]
18

u
[0]
7

u
[0]
9

y
[2]
9 , y

[2]
16

u
[0]
8

y
[3]
18 , y

[3]
17

u
[0]
20

u
[0]
16

y
[5]
3 , y

[5]
0 , y

[5]
8 , y

[5]
10 , y

[5]
15

(d) Alg. 2

Figure 6.4: Structural comparison of different transformations of the same graph.

In Figure 6.4 we can see the structural differences depending on which
algorithm that was used to reduce the number of model function evalua-
tions. In Table 6.1 we notice that the GA outperforms the other algorithms
even though it reduced fewer model function evaluations. An important
point to be made here is that depending on the assumptions made about
the evaluation costs, the GA should adapt accordingly.

Chapter 7

Algorithm Implementation

In this chapter, a more detailed description of the algorithm implementa-
tions within the open-source project PyFMI is given. The algorithms have
previously been outlined in pseudo code, cf. Algorithm 3, 4 and 6, in Chap-
ter 4 5 and 6 respectively, but without any implementation details such
as a description of the data structures, classes and the integration within
PyFMI. Although such a description is given here, the algorithms are just
one part of chain of operations. Therefore, only the parts essential to the
algorithms are presented here.

7.1 Model Reduction Algorithm

Classes and Data Structures

The two main classes from PyFMI used for this thesis are the following,

• Master - This class contains the master algorithm that is responsible
for orchestrating the computations of the subsystem and sets up the
coupled system for all stages of the simulation.

• Graph - This class contains the graph representation of the system and
methods to compute the SCCs along with an evaluation order. The
algorithm for reducing model function evaluations, i.e. Algorithm 2,
is also a part of this class as method compute evaluation order.

The Master instantiates an instance of the Graph class by first construct-
ing the necessary information and then pass the information as an input
argument. The graph is represented by a list of tuple pairs, where the first
element of a tuple is the source vertex and the second element is the desti-
nation vertex. Adding Algorithm 3 to PyFMI required only to add a new

57

CHAPTER 7. ALGORITHM IMPLEMENTATION 58

method to the Graph class called compute evaluation order and then also
adding the possibility to call this method form the Master class.

7.2 Parallel Algorithm

The parallel method for initialization of coupled systems was implemented
within a master-slave pattern, where the master is represented by a class
MasterParallel and the slave is represented by a class Slave.

Serialization

An important aspect for understanding the implementation of the parallel
algorithm is the concept of serializing, also known as pickling. Serializing is
the process of converting structured data into a byte stream such that it can
be stored and reconstructed later in the same or another computer environ-
ment. The inverse of this process, deserializing or unpickling, is the process
of converting a byte stream into structured data. The built-in serialization
module for Python is called Pickle [9]. Since Pickle does not have sup-
port for serialization of FMUs, a work-around had to be implemented. The
work-around involved loading the FMUs into specific processes such that
each process is locked to a specific FMU.

Python Multiprocessing Module

The parallel framework that was used for this thesis is the native multipro-
cessing module for Python. The module is a package that supports spawn-
ing processes and effectively side-stepping the Global Interpreter Lock by
using subprocesses. The processes are spawned by the use of the Process

class where an instance of the class will represent an activity that is run in
the newly spawned process [9].

The multiprocessing module also offers two methods of communication
between processes, the Queue class and Pipe class. In this thesis, the com-
munication between master and slave is handled by the Pipe class. The
motivation behind this lies in the simplicity of the class which enables for
fast communication and also due to the fact that the extra features of the
Queue class are redundant [9].

The Pipe() function returns a pair of connection objects connected by
a pipe which by default is duplex. The two connection objects returned
by Pipe() represent the two ends of the pipe. Each connection object

CHAPTER 7. ALGORITHM IMPLEMENTATION 59

has methods to send and receive messages under the condition that the
messages are represented by pickable objects [9].

Classes and Data Structures

The implementation consists of 3 main parts,

• MasterParallel - This class contains the Master parallel algorithm
which orchestrates the parallel computations by communicating with
the slaves and delegating tasks.

• Slave - This class is an abstract representation of an instantiated
FMU along with other methods and attributes that are important.

• Run - This is not a class but an helper function called by Slave via
the Process class. The new processes execute Run and communicate
with the main process by sending piped messages back and forth to
Slave, which in turn sends the message to the MasterParallel.

The slave acts as a wrapper for a FMU and stores an instance of the
Python Process class by spawning a new process. The newly created pro-
cess will load a FMU and communicate with the main process in which the
slave is located, e.g. typing slave.get real() will trigger a message to
the subprocess to call the corresponding FMI-function and then send the
value back to the slave. The master’s responsibility is then to orchestrate
the triggering of such function calls and ensure the slaves execute the tasks
according to the dependency constraints, cf. Figure 7.1.

CHAPTER 7. ALGORITHM IMPLEMENTATION 60

Figure 7.1: UML diagram of the Python classes used for parallel model function
evaluations.

7.3 Genetic Algorithm

Classes and Data Structures

The implementation consists of 2 main parts,

• GeneticAlgorithm - This class contains the GA and the components
of the GA as methods.

• ListScheduler - This class is used in the evaluation of the GA by
constructing the schedule of a specific chromosome and evaluating the
length of the schedule.

Chapter 8

Results and Benchmark

The main purpose of this thesis has been developing different algorithms
which manages to speedup the initialization. We have already presented
some performance results in the qualitative test cases in Section 4.3, 5.3
and 6.3. In this chapter, the performance of the algorithms are instead
tested on several aspects by generating a large number of random graphs,
cf. Section 4.1. The results are compared with Algorithm 1 and 2 and in
some instances there is also a comparison with the optimal solution which
has been computed with an exhaustive search method, cf. Section 4.2.

An important remark regarding Algorithm 2 is that due to how the
graphs are generated, the algorithm will be unfairly penalized and pro-
duce results which are misleading in some test cases. To counter this
problem, a small correction has been added by running the procedure
compute possible groupings from Algorithm 3 in Chapter 4. By doing
so, any potential reduction which has been left out is also reduced. The
algorithm including the correction is called Algorithm 2.1.

8.1 Model Reduction Algorithm

In this section, the performance and results of Algorithm 3 are presented.
The main objective of Algorithm 3 is to speed up the initialization by
reducing the number of model function evaluations. The algorithm is tested
on both how well it reduces the number of model function evaluation as
well as how the execution time scales up for larger graphs. The graphs that
are used to test the algorithm are randomly generated where a number of
parameters can be specified to control the generation.

61

CHAPTER 8. RESULTS AND BENCHMARK 62

Reducing Model Function Evaluations

In Table 8.1 and 8.2 we compare the different algorithms with each other on
how well they reduce the number of model function evaluations where the
optimal solutions have been computed with an exhaustive search method
for reference. The number of graphs that were generated was n = 100 for
both tables but with different parameter settings in the graph generation.
In the second column we see the total number of model function evaluations
that are in excess compared to the optimal. In the third column we see how
many times the algorithm did not find an optimal solution.

Algorithm No. Missed Model Evals No. Missed Optimal Solutions
Alg. 2 21 of 274 18 of 100
Alg. 2.1 10 of 274 8 of 100
Alg. 3 2 of 274 2 of 100

Table 8.1: Performance of reducing number of model function evaluations with
the parameter settings: number of disconnected components was set to 1, the
number of inputs was set to 10, the number of outputs was set to 10 and the
number of models was set to 5.

Algorithm No. Missed Model Evals No. Missed Optimal Solutions
Alg. 2 39 of 570 35 of 100
Alg. 2.1 24 of 570 20 of 100
Alg. 3 6 of 570 6 of 100

Table 8.2: Performance of reducing number of model function evaluations with
the parameter settings: number of disconnected components was set to 2, the
number of inputs was set to 12, the number of outputs was set to 16 and the
number of models was set to 5.

Execution Time

In Figure 8.1 and 8.2 we compare the execution time of Algorithm 2 and
3 on graphs of increasing size, i.e. an increased number of vertices where
the number of edges are kept proportional to the number of vertices. The
number of outputs are set equal to the number of inputs. For a given graph
size we take the average execution time out of three randomly generated
instances, increase the size of the graph with a factor of 2 and repeat the
procedure.

CHAPTER 8. RESULTS AND BENCHMARK 63

0 50 100 150 200 250 300
Number of vertices

0

50

100

150

200

250

300

Ex
ec

ut
io

n
tim

e
[s

]

Algorithm 2
Algorithm 3

Figure 8.1: Execution times of Algorithm 2 and 3 for different graph sizes. The
number of models is set to 5 and the number of disconnected components is set
to 2.

CHAPTER 8. RESULTS AND BENCHMARK 64

0 50 100 150 200 250 300
Number of vertices

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ex
ec

ut
io

n
tim

e
[s

]

Algorithm 2
Algorithm 3

Figure 8.2: Execution times of Algorithm 2 and 3 for different graph sizes. The
number of models is set to 5 and the number of disconnected components is
increased with a factor of 2.

8.2 Parallel Algorithm

In this section, the performance and results of Algorithm 4 are presented.
The main objective of Algorithm 4 is to speed up the initialization by mak-
ing use of multiple processors to solve the initialization problem in parallel.
The algorithm is tested on both instantiation of FMUs and initialization.

As in Section 8.1, the graphs that are used to test the algorithm are ran-
domly generated where a number of parameters can be specified to control
the generation. Since the graphs that are used for testing the initialization
do not have corresponding real FMUs, a sleep-function is used to emulate
the computational time of the FMI-functions fmi2SetXXX and fmi2GetXXX.
The function is defined as follows:

• Vertices which are inputs are assumed to take 0.1 seconds.

• Vertices which are outputs are assumed to take 2.5 seconds.

• Vertices which correspond to algebraic loops are assumed to take 5
seconds.

CHAPTER 8. RESULTS AND BENCHMARK 65

Instantiation

In Table 8.3 we compare the time it takes to instantiate different systems
in parallel and sequentially. Three different systems are used for this test,
Race Car from Section 4.3, Controlled Temperature from Section 3.1 and
2 instances of the chassis model from Race Car. The number of processors
working in parallel is equal to the number of FMUs for each system.

System No. of FMUs Instantiation [s] Speedup
Controlled Temp. 2 0.8 0.7
Race Car 5 3.5 0.96
Race Car Chassis x 2 2 3.3 1.6

Table 8.3: Instantiation time for different systems.

Initialization

In Table 8.4, 8.5, 8.6 and 8.7 we compare the time it takes for the initial-
ization. The number of graphs that were generated was n = 100 and the
number of models was set to equal the number of slave processors for all
four tables.

The graphs for Table 8.4, 8.5 and 8.6 were generated with the following
the parameter settings: number of disconnected components was set to 3,
the number of inputs was set to 18, the number of outputs was set to 24.

In Table 8.7 the parameter settings were: number of disconnected com-
ponents was set to 3, the number of inputs was set to 18, the number of
outputs was set to 24 and the number of models was set to equal the number
of slave processors for each case.

The first column specifies if the graph was first prepared by merging ver-
tices which belong to the same model, i.e. reducing the number of model
function evaluations by deploying Algorithm 3. In the second column we
see the average completion time for the initialization. In the third column
we see the average speedup compared to the worst case, i.e. the sequen-
tial completion time for the graph where the number of model function
evaluations has not been reduced.

Evaluations were reduced Avg. Completion Time [s] Avg. Speedup
No 35.6 1.4
Yes 13.7 1.3

Table 8.4: Average completion time of parallel initialization with 2 slave proces-
sors and 1 master.

CHAPTER 8. RESULTS AND BENCHMARK 66

Evaluations were reduced Avg. Completion Time [s] Avg. Speedup
No 26.0 1.9
Yes 14.8 3.3

Table 8.5: Average completion time of parallel initialization with 4 slave proces-
sors and 1 master.

Evaluations were reduced Avg. Completion Time [s] Avg. Speedup
No 18.9 2.6
Yes 15.2 3.2

Table 8.6: Average completion time of parallel initialization with 7 slave proces-
sors and 1 master.

Evaluations were reduced Avg. Completion Time [s] Avg. Speedup
No 42.8 2.3
Yes 21.3 4.6

Table 8.7: Average completion time of parallel initialization with 6 slave proces-
sors and 1 master.

Simulation

In order to ensure that the initialization is carried out properly, the system
Race Car from Section 4.3 was initialized by first deploying Algorithm 3
to reduce the number of model function evaluations and then initialized in
parallel by deploying Algorithm 4 The solution is compared with a reference
solution which was computed from initializing the system using a sequential
method.

Both solutions were computed using a relative and absolute tolerance
set to 10−8, step size H = 0.005 and an simulation time tf = 25.0 s. The
result of the simulations are shown in Figure 8.3.

CHAPTER 8. RESULTS AND BENCHMARK 67

Figure 8.3: Simulation result for Race Car with tf = 25 [s], a tolerance of 10−8

and step size H = 0.005.

8.3 Genetic Algorithm

In this section, the performance and results of Algorithm 6 are presented.
The main objective of Algorithm 6 is to speed up the initialization by
making use of both multiple processors as well as taking the graph structure
in consideration.

In Table 8.8, 8.9 and 8.10 we compare the time it takes for the initial-
ization. The number of graphs that were generated was n = 100 and the
number of models was set to equal the number of slave processors for all
three tables.

In the first column we see the average number of reduced model function
evaluations, in the second column we see the average completion time for the
initialization and in the third column we see the average speedup compared
to the worst case, i.e. the sequential completion time for the graph where
the number of model function evaluations has not been reduced.

As in Section 8.1, a sleep-function is used to emulate the computa-
tional time of the FMI-functions fmi2SetXXX and fmi2GetXXX. This time
the function is defined as follows.

• Vertices which are inputs are assumed to take 0.1 seconds.

• Vertices which are outputs are assumed to take 1.0 seconds.

CHAPTER 8. RESULTS AND BENCHMARK 68

• Vertices which correspond to algebraic loops are assumed to take 5
seconds.

The GA has a multitude of parameters that can be adjusted. The
two main parameters are the size of the population Npop which was set to
Npop = 250 and the number of generations Ngen which was set to Ngen = 50.

Algorithm Avg. Reduced Evals Avg. Completion Time [s] Speedup
Algorithm 1 n/a 8.8 1.8
Algorithm 2.1 6.4 5.8 2.6
Algorithm 3 5.9 5.1 2.8
GA 3.4 6.9 2.4

Table 8.8: Average completion time of parallel initialization with 4 slave proces-
sors and 1 master with the parameter settings: number of disconnected compo-
nents was set to 3, the number of inputs was set to 21, the number of outputs
was set to 15.

Algorithm Avg. Reduced Evals Avg. Completion Time [s] Speedup
Algorithm 1 n/a 9.3 2.3
Algorithm 2.1 7.5 5.8 2.9
Algorithm 3 7.0 5.1 3.1
GA 3.7 7.3 3.0

Table 8.9: Average completion time of parallel initialization with 7 slave proces-
sors and 1 master with the parameter settings: number of disconnected compo-
nents was set to 4, the number of inputs was set to 28, the number of outputs
was set to 20.

Algorithm Avg. Reduced Evals Avg. Completion Time [s] Speedup
Algorithm 1 n/a 7.7 2.4
Algorithm 2.1 8.9 4.9 3.8
Algorithm 3 8.9 4.5 4.1
GA 5.3 5.3 3.5

Table 8.10: Average completion time of parallel initialization with 7 slave pro-
cessors and 1 master with the parameter settings: number of disconnected com-
ponents was set to 7, the number of inputs was set to 21, the number of outputs
was set to 21.

Chapter 9

Conclusions and Further
Development

In this thesis, the problem of initializing weakly coupled dynamic systems
has been studied. The main purpose of this thesis has been to speedup the
computation time of the initialization. This has resulted in three different
methods of achieving the speedup.

9.1 Reduction of Model Function

Evaluations

In Chapter 4, a method for initializing coupled systems is presented in Al-
gorithm 3. The method computes an evaluation order of the inputs and
outputs, detects structural cycles, i.e. algebraic loops in the system in case
these are present and most importantly for this thesis, reduces the number
of model function evaluations by rearranging the evaluation order. The
performance of Algorithm 3 was compared to the performance of Algo-
rithm 2 and 2.1 and to the optimal solutions which were computed with an
exhaustive search method.

In Table 8.1 and 8.2 we see that Algorithm 3 clearly outperforms Algo-
rithm 2 and 2.1 in terms of reducing the number of model function eval-
uations. An observation of these results is that the performance of all
algorithms decreases as the graph increase in size. This is not surprising as
the number of possible groupings of the model outputs increases very fast
with graph size. Although the optimal solution is in general not unique,
any given grouping still has the potential of making the optimal solution
unattainable and the likelihood of doing so is much higher when dealing
with a larger graph.

69

CHAPTER 9. CONCLUSIONS AND FURTHER DEVELOPMENT 70

In Section 4.3 the proposed algorithm was also demonstrated on an
real industrial example for which it was able to find the optimal solution.
Although the example has a relative large number of connections, i.e. 172
connections, the structure of the graph is also very symmetric. This means
that finding the optimal solution is near-trivial and further testing with
other industrial examples should be done in order to evaluate the practical
benefits of Algorithm 3 compared to Algorithm 2.

Studying the results of the execution time of Algorithm 2 and 3 in Figure
8.1 and 8.2, one notes that for practical purposes both algorithms have an
execution time which is reasonable. The graphs used in Figure 8.1 have
a more vertical structure and increase in size while keeping the number
of disconnected components fixated at 2. In contrast, the graphs used
in Figure 8.2 increase in size by adding disconnected components. From
these results one concludes that Algorithm 2 has a better execution time
on graphs that have a more vertical structure and Algorithm 3 has a better
execution time on graphs that have a horizontal structure. This due to the
first step in Algorithm 3 which tries to group all outputs which are on the
same precedence order level. If the graph has a more horizontal structure,
this leads to a larger number of initial groupings and thus less iterations in
the while-loop are required.

9.2 Parallelization of Model Function

Evaluations

In Chapter 5, a parallel method for initializing coupled systems is presented
in Algorithm 4. The method instantiates the FMUs in parallel as well as
initializes the system in parallel while respecting the precedence constraints.
The performance of Algorithm 4 was compared to the sequential case to
measure the speedup.

In Table 8.3 we have three different systems of various sizes which are
instantiated. We notice that parallel instantiation of Controlled Temper-
ature and Race Car is more costly than the sequential method. This is
expected since Controlled Temperature is a considerably small system and
the overhead of starting up new processes is big in relation to instantiating
a subsystem. In the case of the Race Car, the chassis is the only subsystem
which is of considerable size whereas the wheel subsystems are relatively
small. Since this creates a bottleneck which combined with also having to
deal with the extra overhead involved in starting up new processes, the re-
sult is reasonable. In the last system we used two instances of the chassis

CHAPTER 9. CONCLUSIONS AND FURTHER DEVELOPMENT 71

from the Race Car. The previous bottleneck is thus eliminated and we see a
big improvement in the speedup. We can conclude that in order for parallel
instantiation to be beneficial it is preferable if all subsystems are large and
do not differ much in relative size from each other.

In Table 8.4, 8.5 and 8.6 we see that without using Algorithm 3 to reduce
the number of model function evaluations, the speedup is increased with
the number of slave processors used. However, the speedup increases at a
considerably lower rate than one would expect from an idealized parallel
program, i.e. where the speedup is equal to the number of slave proces-
sors used. This is due to the precedence constraints which prohibits a task
from being executed before its predecessors. An interesting observation is
that the speedup seems to approach 3, which is the same as the number of
disconnected components. A hypothesis is that a higher number of discon-
nected components favors parallelism. This is also backed up in the result
from Table 8.7 where the number of disconnected components was set to 6.
Comparing Table 8.7 with Table 8.6, we see that the former has a higher
speedup than the latter while the number of slave processors is the same in
both cases, i.e. 7.

In Section 5.3 the proposed algorithm was also demonstrated on the
industrial system Race Car where a speedup of 4 was achieved. Considering
that the system requires 5 slave processors, a speedup of 4 is very close to
the ideal speedup of 5. This is a considerable better performance in terms
of efficiency compared to the synthetic test cases from Table 8.4, 8.5, 8.6
and 8.7. A reason for this might be the symmetric structure of the graph
which allows for better parallel computations whereas in the synthetic test
cases, the generated graphs had a more complex and randomized structure
which introduces more constraints.

In Figure 8.3 we see that the simulation result of the Race Car is iden-
tical to the reference result which was computed in a sequential manner.
We conclude that the system was initialized properly and that the prece-
dence constraints were respected. Since each slave processor is assigned a
subsystem, it should be possible to extend the parallelization to include
the computations involved during the simulation. Such parallel methods
already exists within PyFMI but without parallel instantiation and initial-
ization. A proposal for future work is to parallelize the whole procedure,
i.e. from instantiation to simulation. Moreover, the parallel algorithm as
designed in this thesis does not have support for algebraic loops. This could
also serve as a proposal for future work.

CHAPTER 9. CONCLUSIONS AND FURTHER DEVELOPMENT 72

9.3 Parallelization with a Genetic

Algorithm

In Chapter 6, a genetic method for initializing coupled systems is presented
in Algorithm 6. The method computes an evaluation order of the inputs and
outputs by finding a balance between reducing the number of model function
evaluations and maintaining a parallelizable program. The performance of
Algorithm 6 was compared to the performance of Algorithm 2, 3 and to the
sequential case of Algorithm 1 to measure the speedup.

In Table 8.8, 8.9 and 8.10 we see that Algorithm 3 outperforms the
other algorithms, including Algorithm 6. This is not what was expected
since Algorithm 6 tries to compute a more sophisticated evaluation order
which takes more factors in consideration. A possible explanation for the
underperformance of Algorithm 6 is that the parameter settings were far
from optimized. Genetic algorithms are very flexible, wherein lies both
their strength and weakness and optimizing the parameters requires a lot
of empirical testing.

An observation of the results is that Algorithm 6 reduced roughly half
of the model function evaluations compared to Algorithm 3 and 2.1 but
still managed to achieve a considerable speedup. Factoring in the time
penalty of fewer reduced model function evaluations of Algorithm 6 does
not explain the time gap between the performances of the algorithms, thus
one can conclude that Algorithm 6 had some success with considering the
structure of the graph to allow for parallel computations.

Other factors that come into play is the execution time of the algorithm
and what kind of assumptions that are made of the evaluation costs. If the
evaluation cost of an output is many orders of magnitude more expensive
than that of an input, there is probably a stronger incentive to reduce the
number of model function evaluations. In this case Algorithm 3 is probably
preferable. The same holds if the execution time is not very small relative
to the evaluation costs. The execution time will obviously depend on what
parameter settings that are used. During our tests, the execution time was
about 0.5 s which corresponds to half of the evaluation cost of an output.

In this thesis, only a simple GA was used for Algorithm 6 and the
results should be viewed more as a proof of concept rather than a fully
implemented method. There is room for big improvements for the use of a
genetic algorithm to solve the initialization problem that could yield signif-
icant computational gains. An example of such an improvement is that one
could optimize the performance by feeding the output from Algorithm 3 and
2 into the initial population of Algorithm 5. Doing so, the algorithm has a

CHAPTER 9. CONCLUSIONS AND FURTHER DEVELOPMENT 73

much better starting point than the random solutions which are currently
used as the initial population. Moreover, such an improvement would also
ensure that the algorithm would find a solution which is at least as good as
the other algorithms. Other suggestions for improvements are optimizing
the parameters of the GA, using a more sophisticated fitness function in-
stead of a simple list scheduling technique, and speeding up the execution
time by parallelizing the algorithm. These improvements are suggested as
a proposal for future work.

Bibliography

[1] Functional mockup interface 2.0: The standard for tool independent
exchange of simulation models. Proceedings of the 9th International
Modelica Conference, 2012.

[2] C. Andersson. Methods and tools for co-simulation of dynamic systems
with the Functional Mock-up Interface. Doctoral theses in mathemat-
ical sciences. Lund : Centre for Mathematical Sciences, Faculty of
Engineering, Lund University, 2016.

[3] J. Andreasson and M. Gäfvert. The vehicledynamics library - overview
and application. Proc. 5th Int. Modelica Conf. Modelica Association,
2006.

[4] M. Arnold, C. Clauß, and T. Schierz. Error analysis and error estimates
for co-simulation in fmi for model exchange and co-simulation v2.0.
Progress in Differential-Algebraic Equations, 2014.

[5] E. Coffman and R. Graham. Optimal scheduling for two-processor
systems. Acta Informatica, 1, 1972.

[6] Z. J. Czech. Introduction to parallel computing. Cambridge : Cam-
bridge University Press, 2016.

[7] O. Sinnen. Task scheduling for parallel systems. Wiley series on parallel
and distributed computing. Hoboken : Wiley-Interscience, 2007.

[8] R. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[9] G. van Rossum and F. Drake. Python reference manual. 2017. [Ac-
cessed 8-April-2017].

[10] K. J. Åström and R. M. Murray. Feedback systems: an introduction
for scientists and engineers. Princeton : Princeton University Press,
2008.

Master’s Theses in Mathematical Sciences 2017:E53
ISSN 1404-6342

LUTFNA-3042-2017

Numerical Analysis
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Co-simulation and Functional Mock-up Interface
	Co-Simulation
	Mathematical Description
	FMI Overview
	PyFMI

	Graph Theoretical Tools for the Consistent Initialization Problem
	Directed Graphs
	Strongly Connected Components
	Initialization with a Structural Approach

	Reduction of Model Evaluations
	Random Graph Generator
	Exhaustive Search Method
	Case Studies

	Parallelization of Model Function Evaluations
	Basics of Parallel Computing
	Outline for Parallel Algorithm
	Case Studies

	Priming for Parallelization with a Genetic Algorithm
	List Scheduling Heuristics
	Basic Concepts of Genetic Programming
	Case Studies

	Algorithm Implementation
	Model Reduction Algorithm
	Parallel Algorithm
	Genetic Algorithm

	Results and Benchmark
	Model Reduction Algorithm
	Parallel Algorithm
	Genetic Algorithm

	Conclusions and Further Development
	Reduction of Model Function Evaluations
	Parallelization of Model Function Evaluations
	Parallelization with a Genetic Algorithm

	Bibliography

