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Abstract

In this report we investigate parallel execution of queries in graph databases.

We analyse different methods of parallelization, how to introduce query par-
allelization to a graph database, which query operations that are suitable for
parallelization and if we can improve the execution time of a single query.
We do this by designing and implementing a parallel runtime for the Cypher
query language in the graph database Neo4j, but many of the design ideas and
operators investigated are applicable to any graph database.

We focus on increasing performance for a select few operators, while still
being fully integrated with Neo4j. We take much inspiration from a design
called morsel-driven parallelism. This means that we strive to split the work-
load into many small pieces, “morsels”, and then hand these morsels to the
threads executing the query. This is in contrast to a more classical paralleliza-
tion approach, where you split the workload into a few big parts of equal size.

We conclude that the operators best suited for parallelization are the oper-
ators that can be split into several smaller parts, where each part can be com-
puted independently. We successfully introduce parallel execution of Cypher
queries to Neo4j and by doing so we increase the performance of a single query
by up to 15 times under certain conditions.

Keywords: Neo4j, Cypher, query, graph database, parallel execution, parallel query,
parallel database, openCypher
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Chapter 1

Introduction

The Cypher query language is looking to become the standard for graph database queries.
Neo Technology, the company behind the graph database Neo4j, is the original creator of
Cypher and it is in their interest to show the capabilities of the query language as well
as of the database. Today all Cypher queries in Neo4j are executed sequentially and thus
not able to fully utilize a multi-core system, in the case where there is only a single agent
running queries.

We start by introducing our problem statement in section . In section |L.2 we specify
the authors’ contribution and in section |1.3 we present previous work done is this area.

1.1 Problem statement

One typical use case of a database system consists of multiple small queries, for example a
social network site being used by a large number of people simultaneously. The database
serves as a backend for a system or service, which is constantly updating and retrieving
small amounts of data. In scenarios like this, Neo4j is already able to utilize the full
potential of a multi-core machine by letting different threads serve different queries, and
thus achieving parallelism.

An analytical use case however, where a user typically runs a few or a single very time-
consuming query on a huge dataset, differs. Neo4j currently does not have any capabilities
to utilize multiple processing units for a single query, and is thus unable to fully utilize a
multi-core machine in this use case.

1.1.1 Purpose

Taking the above into account, we theorize that it is possible to shorten the execution time
of a single Cypher query when a Neo4j instance is used in an analytical fashion. We plan to
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1. INTRODUCTION

achieve this by making use of parallel execution of different parts of the query on modern
multi-core machines.
We aim to answer the following questions:

1. Which graph database query operations are suited for parallel execution?
2. How can parallel execution of Cypher queries be introduced to Neo4;j?

3. Can we increase query performance by introducing parallel execution of Cypher
queries in Neo4j?

1.1.2 Scope

We limit the scope in certain areas due to the time constraints of this project. We work with
the assumption that the database is accessed in a read-only analytical fashion, which means
that we will not have to consider the effects of concurrent writes to the database. This also
limits the amount of changes we will have to do in the Neo4j kernel, which currently does
not support multi-threaded access in the same transaction.

The changes needed in the Neo4j kernel to allow for multi-threaded access in a transac-
tion, safe from writes from other transactions are large enough to warrant another project
in itself. This mainly due to the fact that it has been designed from the ground up to only
support one thread per transaction, with all the assumptions and simplifications that this
fact entails.

Additionally, we choose to only support execution plans that are non-branching, i.e.
plans without joins, Cartesian products, apply operators, etc. Again, this is due to time
constraints.

Additional goals

If time allows, the implementation will be improved in one or more of the following man-
ners:

* Make the new implementation function on a non read-only database without intro-
ducing corruption or other errors.

* Determine the degree of parallelism used for executing the query based on the num-
ber of computing units the system has available.

* Determine the degree of parallelism used for executing based on the size and/or
characteristics of the current dataset.

* Make the query planner take the possibility of parallelism into account when plan-
ning a query.

* Parallelize all operators required for one or more Linked Data Benchmark Council
(LDBC) queries.

10



1.2 CONTRIBUTION

1.2 Contribution

Both of the authors of this thesis have very similar skill sets and experience. Ragnar
had prior experience of working with Neo4j. Most of the report and almost all of the
implementation was done together as a pair. Notable exceptions include:

* Felix implemented the parallel sort operator.

* Ragnar implemented the final rewrite of the parallel expand operator, but the authors
had implemented it several times together prior to this.

* Felix designed the dataset and queries used for the evaluation, as well as imple-
mented a generator for the dataset.

* Ragnar implemented the JMH benchmarks and the scripts to run them.
 Felix wrote large parts of chapter 4.
* Ragnar plotted the result graphs used in chapter 5.

* Ragnar wrote most of chapter 6.

1.3 Related work

Parallel databases are not in any way a new phenomenon, the idea started getting pop-
ular in the early 1990s [1]. Since then, the focus has shifted slightly, from parallelism
between machines to parallelism on the same multi-core machine, but many of the general

principles still apply.

In section we present the Volcano operator model style parallelism, whose paral-
lelism principles still are utilized in many modern Database Management Systems (DBMS)
[2]. We also introduce the more recent morsel-driven parallelism model in section .
In secti we present the recent work on parallelism done in PostgreSQL and in
section we present the parallel execution in Oracle Database Enterprise Edition.

All of these describe techniques utilized for parallelization in relational databases.
While there are many differences between relational databases and graph databases, many
of the ideas and techniques can be applied to graph databases, at least to some extent.

We were inspired by the work of Robert Haas that we described in section m He
chose to work with the store scan, similar to the all nodes scan in Neo4j. Initially his im-
plementation was similar to the common Volcano-inspired approach described in section
with an exchange operator (which he named Gather) interfacing the parallel scan to
other operators. Later in development the implementation was changed to let the split par-
allel pipelines execute several steps before gathering, akin to the architecture described in
section . When designing the parallel Cypher runtime we borrowed several concepts
from the morsel-driven parallelism outlined in . Not only did the idea itself sound
like it had merit, it also seemed to have worked very well for the developers of PostgreSQL
as mentioned in . Yet another thing to take into consideration is that Oracle Database
EE, which uses a more traditional work-splitting method, has a tendency to suffer from
skewed workloads when left unconfigured (see section ).

11



1. INTRODUCTION

1.3.1 Volcano operator model parallelism

Volcano is the name of a query processing system developed at the University of Col-
orado [3]. In the Volcano model, queries are expressed as algebra expressions, where
the operators are algorithms for query processing. All operators are iterators, and feature
anonymous inputs, meaning that they do not care which kind of other operator is feeding
them.

In order to introduce parallelism to the Volcano design, the exchange operator was
invented. This operator can be inserted anywhere in a query tree without otherwise mod-
ifying its structure or making other operators aware of the change.

For example, imagine two operators, A and B. We insert an exchange operator X be-
tween A and B. Normally A would call B for input, but now A will call X, which in turn
calls B. When the exchange operator X is called, it creates multiple instances of B. The
B operators work as normal while their input is distributed between them by a support
function.

Volcano also features vertical parallelism, which is when a producer and consumer run
in parallel. The exchange operator handles the transfer of data packets from the producer
to the consumer so that neither needs to be aware of the parallelism.

1.3.2 Morsel-driven parallelism

In [2], Leis et al. present an approach called morsel-driven parallelism, where the opera-
tors are kept largely unaware about parallelism and shared state is avoided, which differs
from the common Volcano-inspired model. With morsel-driven parallelism, work is di-
vided into several small parts (morsels) and dynamically distributed between threads. The
threads take the morsel as far through the pipeline of operators as possible, stopping only
where a point is reached where synchronization with other threads is needed. For example,
a morsel of nodes, might be scanned from the store, then filtered or otherwise processed
in the same pipeline. But, for example, when the results are to be sorted or aggregated the
pipeline has to end since the operation is dependent on the rest of the intermediate result
set.

Certain operations can increase or decrease the size of the result set. In order to make
sure that this does not lead to skewed morsel sizes, the data is repartitioned into equally-
sized morsels between pipelines of operators, instead of retaining the same morsel bound-
aries.

The degree of parallelism can change dynamically at any time (any morsel pipeline
boundary) by using a different number of threads to work with the morsels. For example,
this means that the system can at one point allocate all of its resources to a single query
and then reallocate the resources if another query arrives before the first is finished.

This approach is new and not widely adopted in database query execution. It can be
significantly harder to implement, and if a perfect split of the workload is possible it leads
to increased overhead without any tangible benefits.
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1.3 RELATED WORK

1.3.3 Parallel query execution in PostgreSQL

Through a series of blog posts, the PostgreSQL developer Robert Haas has outlined his
work with parallel query execution in PostgreSQL. Under the course of several years he
worked with altering the infrastructure of PostgreSQL to allow for local worker threads to
be spawned and to allow for dynamic shared memory for the intermediate results [4].

The first operation to get parallelized was the sequential scan, which returns all entries
in the database. Two different approaches were considered for this operation, ’fixed chunk”
where the store is split into equal partitions numbering the same as the number of workers.
The other is ”block by block™, where the store is split into numerous smaller blocks and
the worker threads scan them one by one. The second approach was chosen due to better
load balancing when the different worker threads worked at different speeds [5].

The implementation of the node scan introduced two new query operations, Paral—
lel Seq Scanand Gather. The Parallel Seqg Scan is executed in parallel on
the worker threads, and Gather gathers the result before passing it on to the next operator.
Performance testing showed good scaling for the first few worker threads, but dropped off
quickly for higher numbers [6]. Later work added several other parallel operations making
use of the Gather operation [[7].

1.3.4 Parallelism in Oracle Database EE

Oracle Database Enterprise Edition plans parallel operators in a way similar to PostgreSQL
. Parallel operators are planned as part of the query plan, and at the end of a parallel
subtree is a coordinator operation. Operators that contains buffering of results are marked
as such in the query plan.

The database does not utilize ideas similar to the morsel-driven parallelism described
in . Instead it determines a degree of parallelism, and utilizes that set number of
workers. This number has a tendency to be too large for a given system and query if left at
its default value. This approach also means that the system is susceptible to the problems
caused by skewed workloads between the parallel threads, where the system has to wait
for the slowest worker before continuing with the sequential part of the query [8, 9].
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Chapter 2
Approach

Our goal is to introduce parallel computing to parts of the the Neo4j query execution for
the purpose of decreasing query execution time for single queries. This work consists of
analysing methods of parallelization, identifying which query operation(s) to parallelize
and implementing multi-threaded versions of said operations. This should bring perfor-
mance benefits in terms of decreased query execution time for certain workloads, and will
hopefully encourage further work in this area. The results will be evaluated by comparing
the query performance of the multi-threaded implementation to the original one.

Before and during implementation of the different parts of our work we used a white-
board to sketch, define and coordinate our visions of the design. We worked as a pair when
implementing and used test-driven approach for our work.

We present the theory and terminology used in this project in section 2 . and in section

we present Neo4j. In section we describe our process for choosing which query
operator to work with initially.

2.1 Theory

This section describes relevant terms and technologies in order to understand our work
and how it differs from previous work. These include relational databases () Struc-

tured Query Language ( ) oraph databases ) Cypher (2 (-) openCypher (2 (-)
transactions ( ), LDBC ( .71) and JMH ()

2.1.1 Relational databases

Relational databases, also called relational database management systems (RDBMS), are
based on the relational model of data introduced in 1970 by Edgar F. Codd [10]. The
relational model organizes data into tables, where rows represent entities and columns
represent attributes. Each table contains one or more columns that make up the primary
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2. APPROACH

key. A primary key is an set of attributes that is used to identify an entity, and must
therefore be unique. A table can also contain foreign keys, attributes that make up the
primary keys of another table.[]1 1]

Imagine a database containing a table of movies and another table of actors. A movie
can feature many different actors, and an actor can star in many different movies. Data
entries that have many-to-many relationships like this require extra effort in the relational
model. Representing the relationships between movies and the actors starring in them with
only these two tables would be incredibly cumbersome. Instead, a third table is introduced,
known as a junction table, which stores the actor-film combinations. These three tables
can then be stitched together by join operations, if for example we want to look up horror
movies featuring blond actors [[11}, [12].

2.1.2 Structured Query Language

Structured Query Language (SQL) is a language used to modify or extract information
from relational databases. SQL commands are structured like sentences similar to English
to communicate with the database [[11]. An example of a typical SQL query can be found
in example Query .

SELECT name FROM Actors WHERE birthyear = 1977

Query 2.1: An SQL query that returns a list of names of actors
born in 1977.

2.1.3 Graph databases

Graph databases differ from relational databases by representing relationships between
entities as explicitly stored first-class citizens, meaning that individual relationships can
be referenced by key-value pairs just like objects or other items in the database. This allows
for greatly improved performance of queries that in RDBMS would rely heavily on join
operations, as they can be computed by simply following the relevant relationship pointers.
Each entity is represented by a node or vertex in the graph, while relationships take the
form of edges. It is possible for both vertices and edges to feature attributes. Querying the
database to explore relationships between entities is done by following the paths between
them, and does not involve any kind of matching or join operations. The many-to-many
relationships that require extra work in RDBMS are natively supported by graph databases
[13].

In order to provide some of the beneficial features of relational database schemas, some
graph databases support labels and schema indices. A label is like a tag that can be pinned
to an entity or relationship. This makes it possible to index entities under a shared label,
with the requirement that they all have at least one attribute in common. Labels can thus
be seen as a parallel to tables in relations database, with properties instead of columns
[[14].
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2.1 THEORY

2.1.4 The Cypher query language

Neo Technology has created the Cypher query language, which is similar to SQL but built
for graph databases. Cypher has been designed to be intuitive and easy to read. Its syntax
features ASCII art to make nodes and relationships look like their graphical representations
[13].

For example, if we take a look at Query , entities are encapsulated in parenthesis
to look like nodes. Square brackets are used for relationships, surrounded by hyphens to
make them look like edges, sometimes with a greater-than or less-than sign which indicates
direction. Attributes can be specified inside curly braces.

MATCH (john {name: ’Johan’})—[:friend]—>()—[:friend]—>(fof)
RETURN fof .name

Query 2.2: A simple Cypher query, returning friends of friends
for the node with ”Johan” set as name property.

2.1.5 openCypher

openCypher is a project initiated by Neo Technology that aims to deliver a full and open
specification of the Cypher query language. It is supported by several large actors in the
database sector, such as Oracle and Databricks [[15].

The project aims to deliver four types of artefacts:

Cypher language specification A technical expression of the Cypher language to sup-
port generation of parsers. The Cypher language specification is licensed under the
Creative Commons license.

Cypher reference documentation User documentation for the Cypher query language,
including tutorials and examples.

Reference implementation A fully functional implementation of key parts of the stack
needed to support Cypher, licensed under the Apache 2.0 licence.

Technology certification kit Used for self-certification purposes, the technology certifi-
cation kit consists of a number of tests to use in order to test the support for a given
version of Cypher.

The source for the openCypher project is available on GitHub at https://github.
com/opencypher.

2.1.6 Transactions

A database transaction is a term used to denote sequences of instructions that perform
read and/or write operations on the database. In order to protect the integrity of the
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database, transactions must have the following properties: atomicity, consistency, isola-
tion and durability (ACID) [[12].

Atomicity ensures that a transaction is either performed to completion, or not at all.
Consistency makes sure that transactions always leave the database in a valid state, mean-
ing that no rules or constraints are violated. Isolation requires that transactions produce the
same results when executed simultaneously as they would have done sequentially. Dura-
bility means that all changes made by a completed transaction must persist, even in the
event of a system crash or loss of power [[12].

2.1.7 LDBC

The Linked Data Benchmark Council started as an EU project in 2012 with the goal of
developing industry-strength benchmarks for graph DBMSes and other data management
systems. It is a joint open-source effort between academic researchers and actors from
the industry to create a industry-neutral entity developing and maintaining benchmarks as
well as auditing results [16].

LDBC is now an independent non-profit organization sponsored by IBM and Oracle
Labs and it is sustained by its members. LDBC maintains two benchmarks with different
sizes and workloads, the Semantic Publishing Benchmark (SPB) and the Social Network
Benchmark (SNB)[17]. These are available under the GNU general public license v3 at the
LDBC GitHub repository at https://github.com/1ldbc. Besides the benchmarks
themselves LDBC maintains several tools for generating the needed data and executing the
workload against a database [[18].

LDBC Social Network Benchmark

LDBC’s Social Network Benchmark (LDBC-SNB) is a collection of three different work-
loads designed to run on datasets produced by the LDBC-SNB Data Generator (DATA-
GEN). The purpose of DATAGEN is to provide realistic datasets with properties that
mimic those of social networks such as Facebook [19]. Synthetic data sets are poten-
tially more useful than the sources they are modelled after, as real data sets often comes
with privacy concerns and portability issues that make them more difficult to obtain and
handle. DATAGEN allows users to scale the dataset to their particular needs by specify-
ing a target size for the uncompressed CSV (Comma Separated Values) data. A feature to
note is the deterministic nature of the data generated; a given set of input parameters will
always result in the same dataset regardless of the machine used [20].

The datasets generated by DATAGEN have been found to share a large number of
properties with real life social network graphs in an analysis published in 2014 [21].

LDBC-SNB Business Intelligence Workload

The Business Intelligence workload is made up of complex queries meant to analyse user
behaviour for marketing purposes. As a result, the benchmarks focus highly on the perfor-
mance of query execution. The workload scales with the size of the database [22].
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2.2 Neo4s

2.1.8 JMH

The Java Microbenchmark Harness (JMH) is a tool for building, running and analysing
benchmarks targeting the JVM. It is developed and maintained by openJDK/Oracle [23].

The tool aims to help developers produce and analyse benchmarks while avoiding sev-
eral common benchmarking pitfalls such as loop optimizations, dead code elimination,
constant folding and inlining [24, 25, 26].

2.2 Neodj

Neo4j is an open source graph database developed by Neo Technology, Inc. that features
native graph storage and processing. The database is mostly written in Java, partly Scala,
and the entire source codeishostedathttps://github.com/neo4j/neo4j. Neodj
is currently the most popular graph database management system according to the database
ranking website DB-Engines [27]. The popularity score is derived from the number of on-
line mentions and frequency of related Google searches.

A major version of Neo4j is released roughly every six months, minor versions are
released whenever needed (due to bugfixes, etc.) and commits to the GitHub repository
are continuously made as a part of the ongoing development.

2.2.1 Cypher in Neo4j

Neo4j supports the Cypher query language, and performance comparisons have been made
between different ways of accessing Neo4j. In a study published in 2013, Holzschuher and
Peinl conclude that ’[...] Cypher is a promising candidate for a standard graph query lan-
guage, but still leaves room for improvements.” [28]. When they revisited the subject in
2016 they found that while there had been improvements to Cypher, it still performed
significantly worse than e.g. native access in some scenarios. They were not able to com-
pletely confirm their hypothesis that Cypher is the best graph query language, but they
point out that many indicators point in that direction [29].

2.2.2 Neo4j Cypher query execution plan

When a database server is tasked with a query, there are often a number of different ways
of performing the requested operations. The server will attempt to find the fastest way
to execute the query on the database, which is represented by what is called an execution
plan or a query plan. This plan contains the database operations to be performed and the
dependencies between them.

Finding the optimal query plan for a given query is an NP-complete problem [30].
The Neo4j cost query planner avoids this problem by utilizing a technique called Iterative
Dynamic Programming (IDP). IDP can be seen as a combination of dynamic programming
and greedy algorithms which produces optimal plans for simpler queries and good plans
for more complex ones [31].
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2.2.3 Neodj query operations

The Neo4j query operations can be divided into six different categories:

Starting point operators are used to find the starting points of the query. This is achieved
by either a scan of nodes in the database, an index seek for nodes or a combination
thereof.

Expand operators explores the graph by expanding graph patterns, following relation-
ships to and/or from the nodes. Examples include expanding all relations from a
node, or finding the path between two given nodes.

Combining operators are used to piece together other operators, optionally with filters.

Row operators transforms an incoming set of rows to another set of rows. Distinct (filter-
ing of duplicates), filtering, count, limit and sort are all examples of row operations.

Update operators updates the graph. CREATE, DELETE, MERGE and CREATE CON-
STRAINT ON are examples of actions that use these operators.

Shortest path operators computes the shortest or all shortest paths between given nodes.

In order to view the query plan for a query in Neo4j the EXPLAIN and PROFILE query
prefixes can be used [32].

2.2.4 Neodj Cypher runtime

The default Neo4j Cypher runtime, named the Interpreted runtime, is implemented in
Scala. It is a straightforward translation from a Cypher plan to something that access
the database and produce results. After a logical plan is produced, it is used to construct
an execution plan. The execution plan is a tree of pipes matching the logical plan, see
Figure for an example. In a tree without eager operators, the sections of the tree only
produce a row when asked for one by their parent. This is to avoid unnecessary work, but
some operators (e.g. aggregation, eager) need to process all rows available to them before
returning a row to their parent.
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2.3 CHOOSING QUERY OPERATION

» ModelndexSeek | | P NodeBylabelScan

1 row B raws

B rows

5 rows

5 nows

B rows

Result ]

Figure 2.1: An example of a Neo4j execution plan, with an index
seek and a label scan as leaves, and the produce results operator
as root.

These pipes does not contain any state. This is so that the tree of pipes can be reused
instead of rebuilt if the database is tasked with the same query again. These cached trees
are discarded if the structure and distribution of the underlying data changes beyond a
certain threshold, as the optimal plan for the query might have changed.

2.3 Choosing query operation

In order to answer the first point of our purpose in section and by doing so choos-
ing what query operation to start working with we held a discussion with several Cypher
developers from Neo Technology. We focused on finding an operation that:

* Was viable to implement given the time available for this project.

* Was deemed to be a costly operation, at least for some queries.
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* Had an internally independent workload, i.e. an implementation would require min-
imal inter-thread communication.

Initially we planned to benchmark a number of queries in order to see which query
operations were costly. However, we were unable to find a reliable way to get this infor-
mation.
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Chapter 3

Architecture

In this chapter we describe the architecture of our solution. In section we present the
design decisions for our implementation. In section we describe the interesting parts
of the implementation details and lastly in section 3.3 we highlight some of the trade-offs
made when building our solution.

3.1 The parallel Cypher runtime

We implemented multi-threaded execution of queries by implementing a new Cypher run-
time in Neo4j, henceforth called the parallel runtime. This section gives an overview of
the design of the parallel Cypher runtime, and the implementation is outlined in section

b4

3.1.1 Morsel-driven parallelism

As mentioned in section we used many concepts from the morsel driven parallelism
when implementing our parallel cypher runtime. There are several merits to this approach.
It is easier to account for operators such as expand or filter, which can drastically change
the workload size. In a tradition work-split scenario this can potentially leading to skewed
amounts of work for the different threads, where some might finish much sooner than
others. Using the morsel design ideas also allows us to process the morsels on-demand,
and thus not producing all rows of the query if the user only asks for the first few, but
instead only keeping a few morsels ready for reading. Related to this is the fact that,
in many cases, we can consume results at the same time as we produce them using this
scheme. The exception to this is when operators which needs all rows before it can start
providing results are involved. Sorting is an example of this, as it needs to too see all rows
it is to sort before being able to supply any rows to its child operators.
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Yet another argument for a morsel-driven approach is that in some cases it can be hard
to estimate the size of the query result. This leads to problems for a simple work splitting
approach as we would have to split a workload of unknown size into equal parts. With the
morsel-driven approach we avoid this problem by simply building fixed size morsels on
demand as more results are requested.

3.1.2 The ”parallel pipe builder”

Whereas the Interpreted Cypher runtime (section ) produces a tree structure of pipes,
the parallel runtime produces a tree structure of something we named Parallel pipe builders.
These generally follow the same principles as the pipes in the Interpreted runtime. They
are produced as the logical plan is parsed and they are stateless and reused in the same
way.

The usage differs, however. A single method call on a pipe from the Interpreted runtime
returns an iterator of rows ready to use. For a parallel pipe builder you first call a method to
build a "morsel pile” consisting of morsels of Cypher pipes (further described in section
), then you ask this pile for its single ProduceResults-pipe (this is always the case
for the topmost morsel pile, other morsel piles can contain multiple pipes) which is then
executed in order to retrieve the result iterator.

The parallel pipe builders also contain the functionality to create additional pipes to be
added to an existing morsel pile. This is used when the number of source rows is increased
while running the query, e.g. when the query contains expand operators.

3.1.3 The "morsel pile”

The morsel pile is the central collection of morsels for a given query. These morsels in
turn consists of a number of cypher pipes, which applies their respective operator as a
part of the row-producing pipeline (see Figure B.1)). This means that the morsel pile is
the central collection of work items for the query. In the best case scenario a query only
has one morsel pile. In this pile each morsel represents a small chunk of the rows to be
processed. When a morsel is processed by a thread it will pass thorough all the pipes of
the query, and the rows will be altered accordingly.

There can also be several morsel piles for a single query. This is the case when the
morsel can not pass through all of the pipes independently of each other. If the query plan
contains operators that cannot be computed independently, or increases the number of rows
in the working set, breaks are introduced in the pipeline. These breaks split the pipeline
into segments, and each of these segments have their own morsel pile. These morsel piles
are connected with monitors, which differ depending on the operation. These monitors
are responsible for synchronizing the data between the morsel pile producing results and
the one that wants to consume them. For example, sorting is an operation that breaks the
pipeline, since no sorted results can be produced until all rows have been sorted. Thus
the monitor for sorting operations blocks threads asking for sorted morsels until all results
have been sorted. The morsel pile following a sort monitor makes sure that the morsel
results are supplied to the following monitor in the correct order.

The morsel pile has a method for fetching a new morsel for execution if there is one
available. For morsel piles that are in the middle of the pipeline the morsel pile that pro-
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MorselPile
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Figure 3.1: An example of a typical morsel pile, featuring three
pipelines running in parallel.

vides results to the connecting monitor needs to produce some results before this pile can
return a morsel. In cases like this the morsel pile will delegate the call for another morsel
to that pile. The behaviour of this method varies between the morsel pile implementations
in order to satisfy the requirements of that specific part of the pipeline. For example, a
morsel pile following a sort operation will not return any of its own morsels before re-
turning all morsels that belong to the morsel pile with the sorting operation. The morsels
of the pile following the sorting pile would be unable to get any sorted results from the
monitor before all entries has been sorted.

The morsel pile also provides functionality for adding new morsels to itself and piles
that depend on it. This is needed for operations like expand that increase the amount of
intermediate results, and thus also increases the amount of morsels.

3.2 Implementation

We implemented the Parallel Cypher runtime in Java, as opposed to Scala which was used
for the Interpreted runtime. The primary motivation for this choice was our familiarity
with Java and Java parallelism combined with comparatively lacking experience in Scala.

One of the challenges with the parallel Cypher runtime is also one of its biggest fea-
tures; it is completely integrated with Neo4j and the Cypher planner. This has allowed us
to test it by running end-to-end queries in Neo4j. It also means that we have been able to
make a fair comparison of the performance compared to the default Interpreted runtime
by simply running queries with the two runtimes.

3.2.1 Initial operator

Looking back on , we worked with the Cypher team to reason about which operator to
work with. Given the pipeline nature of the Cypher runtime in Neo4j, we concluded that
we wanted to begin with a starting point operator. The reasoning behind this is that since
we will want to produce and consume multiple rows in parallel, it would make sense to
start with the most simple operation producing a large amount of independent rows. This
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would allow us to start processing the data in parallel immediately. Another benefit of the
all nodes scan is that we know the maximum amount of results from the start, and thus
also the amount of morsels that the operator can produce.

Despite the fact that all nodes scan is not necessarily common in well-optimized queries
on well-structured datasets we still choose to work with it. It is a very costly operation, as
it involves traversing the entire dataset, and its use is unavoidable for certain queries.

Another point speaking in favour of our choice is that the split workloads for all nodes
scan are completely independent. Simply scanning nodes from the database is not in any
way dependent on what is found in other parts of the database by other threads.

We were somewhat inspired by the work of Robert Haas that we described in section
. He chose to work with the store scan, similar to the all nodes scan in Neo4j, for what
we suppose might be similar reasons to ours. Initially his implementation was similar
to the common Volcano-inspired approach described in section with an exchange
operator (which he named Gather) interfacing the parallel scan to other operators. Later
in development the implementation was changed to let the split parallel pipelines execute
several steps before gathering, akin to the architecture described in section .

3.2.2 Additional operations

We continued our work with the filter operator, a simple, independent and common oper-
ator that is used to filter out nodes matching given criteria on the working set.

After implementing the first query operations, we changed our approach for selecting
query operations slightly. In addition to the above we also, took into account what ad-
ditional operations we would need to implement in order to run queries. We focused on
LDBC-queries, as these are the industry standard for benchmarking. We studied the plans
that the different queries produced and took these into account, in addition to the points
above, when we choose additional operators to implement.

We also found expand very interesting to look into for a couple of reasons. Expand
takes all of the nodes in a set and then adds their neighbours to the set. It is an operation
unique for graph databases, its nature of greatly increasing the number of results is spe-
cial as well. To our knowledge, no attempt to parallelize an expand operation in a graph
database has been made public before. The typical use case of starting with a single node
and then expanding one or multiple times to end up with a large result makes many of the
typical parallelization techniques inapplicable, since it is impossible to split the initial data
set consisting of a single entry between multiple threads. Thus you have to utilize other
techniques in order to split the dataset as it grows.

3.2.3 Implemented pipes
The following pipes have been implemented in our parallel runtime:

* All nodes scan
Node by label scan
Index seek

Index seek unique
Expand all
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e Filter

* Projection

e Sort

¢ Produce results

3.2.4 All nodes scan

The all nodes scan is a leaf operator, meaning that it is a starting point in the query plan.
As such, it communicates with the storage layer of the Neo4j kernel. This operator was
a prerequisite for implementing other operators, as we needed something that could feed
intermediate results in parallel to the next step. A pre-determined number of nodes, i.e.
a morsel, is loaded from the storage medium and passed on to the parent operator, upon
request. The standard morsel size was chosen to be a multiple of the number of records
per page in the store to optimize page cache usage. Because this operation is a leaf node,
it is also responsible for determining the total number of morsels that need to be created.
Similar operators are index seek (which finds matching nodes from an index) and node by
label scan (which finds all nodes with a certain label).

3.2.5 Expand all

The expand all operator follows the relationships connected to a collection of nodes and
adds whatever it finds to the result set. Because this operation has the potential to greatly
affect the number of rows in a morsel by adding new nodes, the result sets from all parallel
expand pipes are passed on to a common monitor and redistributed into new morsels of
the correct size.

Since the growth cannot be predicted prior to execution, we have to add more morsels
as the query is executed. Children (operators closer to the leaves) to the expand operator
are unaffected, but new parent operators have to be built for every new morsel added. The
way we do this is by splitting the tree at the point of the expand operator, so that we end up
with two separate morsel piles. The expand operator that bridges the piles, is broken into
two halves; a parent and a child. The child performs the expansion and passes the results
to a monitor, while the parent is responsible for relaying the results to the next operator,
see Figure .

Since the Neo4j kernel does not support multiple threads utilizing the same transaction,
we had to do some tricks in order to parallelize expand. The concept of a transaction in
Neo4j keeps track of changes that occurred in the current transaction and augments the
values retrieved from the store to reflect these changes. Since we have limited ourselves to
only work with read-only queries we can relax the use of the transaction objects in Neo4;.

We worked around the issue by letting each worker-thread executing the query have
their own transaction object. If an expand morsel results in more result rows than the
morsel size boundary, the morsel is returned and a new morsel added to the morsel pile.
However, another thread cannot later continue expanding this morsel, it must be done by
the same thread.

A simple solution to this problem would be to simply keep processing the expanding
morsel until it does not have any more results, and store the extra morsels in a buffer for
when other threads ask for more morsels. However, this buffer can become quite large - a
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Figure 3.2: Expand operators break the pipeline due to the
changed number of rows, and thus have pipes on both sides of
the break. ExpandAllPipe performs the expansion, while AllEx-
pandedPipe relays the results to the new, potentially larger morsel
pile.
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single morsel can expand into huge numbers. This means that that millions of rows will
be stored in relatively long-lived lists. In practice this leads to extreme garbage collection
times, in some scenarios we had runs which consisted of 75% garbage collection time.

Instead, we adopted an approach that makes use of the ThreadLocal Java class. It
allows to store a class field that is local to each thread. When we have expanded a morsel
worth of rows we take those and continue down the pipeline with them. We store the half-
expanded morsel in the ThreadLocal variable, and the thread will continue to use it
the next time it is asked for more rows. In this way we avoid storing large amounts of
intermediate results in memory.

3.2.6 Filter

Filter is an operation that removes rows that fail to fulfil certain criteria, for example if the
user requests nodes that feature a specific value on some attribute. Whenever the parent
pipe asks for more results, filter will request a row from its child until it finds one that
fulfils the given criteria and discard the rows that do not.

Since filtering affects morsel size, it would perhaps be of interest to redistribute the re-
maining rows among a new and potentially smaller pile of normalized morsels. We decided
against this, the reason being the increased overhead it would entail. This is something that
we feel should be explored further in future work.

3.2.7 Sort

We implemented sort using merge sort with a monitor to handle the pairing of morsels as
well as the final merge. Just like expand, sort consists of two pipes, a parent and a child.
The child is tasked with sorting and merging before ultimately submitting its result to the
monitor. The parent’s job is simply to fetch a sorted morsel from the monitor and pass it
forward. In order to preserve the sorted order of rows while they are split into different
morsels, each parent pipe is assigned an ID when fetching a morsel from the monitor. This
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Figure 3.3: The sort monitor will flag the morsel pile as sorted to
let it know that the results need to be queued in order.

ID is later used to determine the proper order of the result during the final stages of the
query execution, as shown in Figure @

An executing child sort pipe will start out by sorting its rows before offering the sorted
results to the monitor. If the monitor does not already hold a result of the same scale, it
will buffer the offered rows and let the morsel shut down. However, if the monitor already
has a matching set of rows buffered, it will refuse the pipe’s offer and instead supply it
with the buffered rows. The pipes task is then to merge these rows with its own, and
then repeat the process by offering the merged set to the monitor. When all morsels have
finished executing, the monitor merges any leftovers that could not be paired before it starts
supplying the child pipes.

Example: Morsels A, B, C and D hold 3 rows each. For the sake of convenience,
say that the morsels will finish their sorting in the order they were mentioned. Morsel
A finishes first, and puts 3 sorted rows in the monitor’s buffer. When morsel B finishes,
there is already a sorted set of the same scale in the buffer, so it will combine this with its
own, before storing the resulting 6-row set in the monitor. Morsels C and D will behave in
the same way at first, but after they have been merged together by D, it is also up to D to
combine their 6 rows with the other 6 stored in the buffer, finally resulting 12 sorted rows.

3.2.8 Produce results

Produce results is the last operation of a query, and it works a bit differently than the other
operations. The goal of the produce results is, generally speaking, to filter out only the
columns the query requested from the intermediate result.

In the parallel runtime it is also responsible for aggregating the results from the execut-
ing morsels into a single iterator. It achieves this by utilizing the same morsel piles split
by monitors as the other operations detailed here, see Figure 3.4. The morsel pile after
the monitor, however, only contains a single morsel, regardless of the amount of morsels
before the monitor.

It is also at this stage that the executor threads are created. These are responsible
for creating the threads which will fetch and execute morsels from all the morsel piles.
The number of threads created to compute the query is equal to the number of processors
available to the JVM, in order to assure that we can use all of the available resources if
possible. Each of these threads will try to fetch a morsel from the morsel pile, execute it,
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Figure 3.4: Produce results filters the columns and consolidates
the query results to a single thread.

and repeat as long as there are pipes available.

3.3 Discussion

When we first drafted the architecture of the parallel runtime we took inspiration both
form the morsel driven parallelism outlined in section and the Interpreted runtime.
We wanted our trees of ParallelPipeBuilders to be stateless and reusable in the
same way that the tree of pipes generated by the Interpreted runtime is. This means that,
for a given query plan we do not need to rebuild the ParallelPipeBuilders each
time we are tasked with the query. All state is contained in the structures built by the
ParallelPipeBuilders. During our continued work, the key ideas behind the design
remained the same, but major implementation changes were necessary to adapt to the
requirements of the expand operator.

3.3.1 Expand operators

Expand operators has been, by far, the most challenging aspect of this thesis. On mul-
tiple occasions it has been the driving force behind shortcuts, hacks” and even several
redesigns of the parallel runtime. It would be a fair estimate that expand is responsible for
at least a third of the time spent on this thesis work.

While our ThreadLocal solution to the thread-bound transaction problem works, it
is far from ideal. There is some overhead of having to check and use the ThreadLocal
variables, but perhaps more importantly it adds a lot of complexity to the code. Not only
do we have to keep track of which morsels belongs to which thread, we also need to make
sure that we finish reserved morsels first and that we do not stop prematurely when we
only have reserved morsels left. This system introduces both complexity and additional
synchronization that could have been avoided otherwise.
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3.3.2 Choosing query operation

Initially we were planning on using another method of deciding what query operator to
work with. We were planning on first deciding on a query and dataset to work with and
use those as grounds for our decision on what query operator to use. By profiling our
query on the dataset we wanted do find out which query operation that was the most time-
consuming, and then work on improving that operation.

There were multiple flaws with this approach. Firstly, even though you can see the
number of database hits caused by each operation when you profile a query, these are
not directly connected to the actual time taken by that operator. It turns out that there
is (partly because of the pull-based piped Cypher runtime) no way of getting the actual
time consumed by the different operators. Additionally, even if we would have been able
to discern the most costly operators for our query, we would have no way of knowing if
these would be suited for parallel execution. There could possibly be other operators better
suited to parallel execution that weren’t a part of the execution plan for our chosen query.

Some of these concerns were raised by us, and some of them by developers at Neo
Technology when we discussed our approach with them. These discussions lead to our
new approach where we sat down with several developers from Neo Technology to dis-
cuss the pros and cons of choosing different operators, as well as different methods of
parallelization.

3.3.3 Store access in operators

There are several ways to access the store to fetch data in Neo4j. These all have different
performance implications. The only operator where we have tried to optimize store access
is the expand operator, where we managed to increase the performance of our implemen-
tation by an order of magnitude by not needlessly fetching data from the store multiple
times. There might be gains to be had for other operators as well.

3.3.4 Synchronization in the morsel pile

The synchronization of different methods in the morsel pile is not inherently a part of its
design, this part of the code organically grew as the design, needs and responsibilities of the
morsel pile changed. With the way it currently works, both getting a new pipe to execute
and handling results from already executed pipes synchronize on the same monitor. This
is because of the fact that these depend on some state that is shared. This leads to heavy
synchronization when using a large amount of threads, especially so when running expand
operations, as there are extra guards in order to properly distribute and reuse the morsels
in that case.

With a redesign of the morsel pile and kernel support for multi-threaded transactions
the synchronization could be significantly reduced, and probably split into two sections:
one responsible for results, an another responsible for handing out tasks.
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3.3.5 Attempt without transaction splitting

In our first iteration of implementing the parallel runtime we tried to use the current kernel-
API with minimal modifications. This meant that we worked with a single statement inside
a single transaction to access the stores.

In order to do this we had to remove some checks in the Neo4j kernel, such as the
one that checks that only the owning thread can access a transaction. Removing these
lead to sporadic failures related to thread safety, but this was not the biggest problem of
this approach. The biggest drawback was that we did not see any significant performance
improvements over the old Interpreted runtime. This might have been due to the fact that
transactions by design are constructed to only serve one thread with operations, and as
such only have a single entry point to the underlying store.

These problems made us choose the approach where we let each executing thread open
its own transaction.

3.3.6 Limit operator

In order to support the more advanced LDBC queries 2 and 8 in full, we originally at-
tempted to implement the limit operator which limits the maximum result size to a given
number of rows. This proved to be a greater task than anticipated due to certain aspects
of expanding and filtering operators. As such, the support for this operation had to be
abandoned due to time constraints.

Because expand and filter pipes have the potential to increase or decrease the interme-
diate row count, it is practically impossible to predict the number of morsels required to
complete a query prior to execution. As a result, we saw no other option than to blindly
feed the thread pool with more work until the result quota had been met. This became an
issue in cases where the limit was reached before all queued morsels had finished executing
because they would continue running in the background needlessly.

A possible solution to the problem would have been to implement a means of termi-
nating leftover morsels and discarding their results upon query completion.

3.3.7 Moving to a common thread pool

In the original implementation of the parallel runtime each morsel pile created their own
thread pool, instead of the current design with a thread pool common for the entire runtime.
This worked fine when testing and benchmarking locally on our own machines. But when
we started running benchmarks on our benchmarking server we quickly ran into problems.

The server executed queries faster than the worker threads managed to stop themselves
after having finished their work. This lead to our system racing to approximately 11,000
active threads before crashing due to low memory. To avoid this behaviour we made the
results monitor responsible for accessing the thread pool, and made it shared across the
entire Neo4j instance. This is also why we had to implement the pipe-serving mechanism
for the morsel pile and the special cases of morsel piles.
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Chapter 4

Evaluation

In this chapter we describe in detail how we evaluated our work. We describe our measure
of performance (), the queries (| and dataset (@) used, as well as the hardware,
tools and configuration settings used (#.4).

4.1 Measure of performance

Our target use case is of an analytical fashion, where a single user typically runs very large
queries in sequence. With this in mind, the most interesting metric to use as our measure
of performance is the execution time of a single query. We will compare this time between
our parallel runtime and the standard Interpreted runtime for our reference Neo4j version.

4.2 Queries

We used several queries to evaluate the performance of the parallel runtime. Two of these
are inspired by the LDBC benchmark and the rest were mainly created for the purpose
of evaluating the individual operators of the parallel runtime. The execution time for the
queries were compared between the parallel and Interpreted runtime.

4.2.1 LDBC-inspired queries

Since LDBC (Section ) provides an open and standardized measure of graph database
performance we wanted to include at least one LDBC query in our evaluation. We also
looked at the draft for the LDBC business intelligence benchmark, but there were no im-
plementations of these queries in Cypher for us to use. However, the business intelligence
benchmark as such might be more relevant to the analytical mindset and approach of this
project, so it would be very interesting to explore this in the future.
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We searched the LDBC SNB queries for a query that both lead to a relatively small
plan and where we had already implemented most of the operations and expressions. We
wanted a small plan in order to be able to implement the query operations within the time
frame of this project.

We decided to use LDBC social network benchmark query 2 (Query ), as it had the
characteristics we were looking for. Since the operators we have implemented allows us
to support LDBC query 8 we included that query as well (Query ).

CYPHER 3.0
MATCH (:Person {id:{1}})—[:KNOWS|—(friend:Person)

<—[ :POST_HAS_CREATOR | COMMENT_HAS_CREATOR|—( message : Message )
WHERE message . creationDate <= {2}
RETURN friend.id AS personld,

friend . firstName AS personFirstName,

friend .lastName AS personLastName,

message .id AS messageld,

CASE exists (message.content) WHEN true THEN message.content
ELSE message.imageFile END AS messageContent,
message . creationDate AS messageDate

ORDER BY messageDate DESC, messageld ASC

Query 4.1: Query inspired by the LDBC social network query 2

CYPHER 3.0

MATCH (start:Person {id:{1}})
<—[ :POST_HAS_CREATOR | COMMENT _HAS_CREATOR]—( : Message)
<—[ :REPLY_OF_POST |REPLY_OF_COMMENT ]— ( comment : Comment )
—[ :COMMENT_HAS_CREATOR]|—>( person : Person )

RETURN person.id AS personld,
person . firstName AS personFirstName,
person.lastName AS personLastName, comment.id AS commentld,
comment. creationDate AS commentCreationDate,
comment. content AS commentContent

ORDER BY commentCreationDate DESC, commentld ASC

Query 4.2: Query inspired by the LDBC social network query 8

The only difference between our "LDBC-inspired queries” and the actual LDBC queries
is that the actual queries have a limit operator limiting the number of result rows. This
change should not significantly affect performance, since both the queries we use sort the
results, which in turn requires all result rows to be computed.

The parameters for the queries are randomly chosen from a list of applicable parameters
each time the query is run. Some of these parameters produce no or very few results, which
leads the query execution time to be very fast. It is thus of importance to run the query a
large number of times so that we use most, if not all, of the parameters.
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4.2.2 Small queries

In addition to the LDBC query we also created five small queries (SQ) that each are centred
around a specific query operator.

We wrote these queries as a means of gauging performance and multi-threaded scaling
of individual operators, in contrast to the LDBC-inspired queries that run several operators
in unison, and thus run the risk of being bottlenecked by operators that do not scale well.

We also created a query that consisted of most supported operators, but still remained
simple and did not rely on actions on properties as much as the LDBC-inspired queries
does.

Small Query 1 — Scan

SQI (Query @) is a simple query, consisting only of a scan of all nodes in the database.

This query is interesting as an example of how the parallel runtime performs with tasks that

are not computationally heavy, but rather I/O bound. Considering that other queries we

have chosen to benchmark also rely on A11NodesScan as a starting point, it also serves

as a reference for whenever other operations scales better or worse than this operation.
The pipes used in SQ1 are A11NodesScan and ProduceResults.

CYPHER 3.0
MATCH (n)
RETURN n

Query 4.3: SQ1 — Scan

Small Query 2 — Filter

SQ2 (Query @) is designed to test the scaling of the filter operator. Filter should in the-
ory be an operator that scales well in a multi-core environment due to the independent
nature of the operator. Unlike other operations which require communication and col-
laboration between morsels, filtering can be applied to morsels in complete isolation and
should therefore suffer minimally from overhead introduced by parallelization.

Pipes used in SQ2 are A11NodesScan, Filter and ProduceResults.

CYPHER 3.0

MATCH (n)

WHERE (n.id % 7) / (n.id % 5 + 1) > n.id % 3
RETURN n

Query 4.4: SQ2 — Filter
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Small Query 3 — Expand

SQ3 (Query @) uses a single node as its starting point followed by four consecutive ex-
pands. Expand is another operation which also has the potential to scale with core count,
though it comes with some added overhead due to morsel resizing. The results of the small
query 3 benchmarks are especially interesting to us as expand is an operation exclusive to
graph databases.

Pipes used in SQ3 are IndexSeekUnique, ExpandAll,Filter and Produc—
eResults.

CYPHER 3.0
MATCH (:LBL_ALL {id: 777})—()—()—()—(n)
RETURN n

Query 4.5: SQ3 — Expand

Small Query 4 — Sort

SQ4 (Query @) makes heavy use of the Sort pipe by sorting the entire dataset by the two
properties idMod7 (descending) and id (ascending). In contrast to filtering and expanding,
sorting is a task that does require pipe intercommunication. It is therefore interesting to
see how much can be gained in this case and how much the added overhead limits scaling.

Because sorting is such a taxing operation, we only sort the first 10 million nodes in the
dataset, which are available under the label LBL_10M. This brings execution time down
to more reasonable levels on par with other small queries.

Pipes used in SQ4 are A11NodesScan, Projection, Sort and ProduceRe-
sults.

CYPHER 3.0

MATCH (n:LBL_10M)

RETURN n

ORDER BY n.idMod7 DESC, n.id ASC

Query 4.6: SQ4 — Sort

Small Query 5 — Mixed workload

SQS5 (Query [71) features a larger selection of pipes working in tandem to showcase the
performance of the parallel pipeline in a slightly more complex scenario. In this scenario
all the different kinds of morsel piles and monitors are used in a single query and can be
viewed as a more basic alternative to the LDBC queries.

Pipes used in SQS5 are A11NodesScan, Filter, ExpandAll, Projection,
Sort and ProduceResults.
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CYPHER 3.0

MATCH (m)—— (n)

WHERE (m.id % 1113) = 7
RETURN n

ORDER BY m.idMod7 DESC

Query 4.7: SQ5 — Mixed workload

4.3 Dataset

In this section we describe the datasets used for the evaluation. We used different datasets
for the LDBC-queries and the queries we designed ourselves.

4.3.1 LDBC-SNB dataset

LDBC-SNB (Section M) datasets can be generated in different sizes, called scale fac-
tors. For example, the scale factor SFOO1 implies that the size of the generated dataset in
comma separated values (CSV) format has a size of 1GB. For this evaluation we use the
scale factor SF300, i.e. the CSV data was 300GB. This translates into roughly 870 000
000 nodes and 5 025 000 000 relationships.

The schema for the LDBC SNB dataset in Neo4j can be seen in Figure [33].

4.3.2 Small queries dataset

Our SQ dataset (Figure ) was designed to meet the technical requirements of the small
queries without unnecessary complexity. It therefore features the bare minimum number
of properties and labels required.

The set consists of 100 million nodes, all of them under the label ’LBL._ALL’. Each
node has two properties, 'id’ and ’idMod7’. The id property is an integer value unique
to each node and ranges from 0 to 99,999,999 whereas idMod7 is equal to the id value
modulus 7. The id property has been indexed under LBL_ALL to enable the use of unique
index seeking in our queries. The first 10 million nodes in the set are also available under
the label "TLBL_10M’. The set features a total number of 5 billion relationships, all of the
type 'REL_ONE’.

Each node in the dataset features 50 outgoing relationships leading to the next 50 nodes
in (id) sequence, with a wrap around from the end of the set to the beginning. To further
clarify, a node with an id property value of n has outgoing relationships to the nodes with
id values (n + k) mod 10000000,1 < k < 50,k € N. See Figure @ for a graphical
representation of the relationships.
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:RELATIONSHIP_TYPE

LBL_ALL >
LABEL ) ‘REL_ONE
|

T === | fiar Long
lp_i_y__y'_p_i_y_yiJ IidMod7: Integer:

Figure 4.2: The schema for our small query dataset.

Q
Q

Figure 4.3: Visualisation of entity relationships in the small query
dataset. Each node has outgoing relationships to leading to the
next 50 nodes the in series. The relationships loop around at the
end of the series, meaning that every node, including the first, also
has incoming relationships from the previous 50 nodes.
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4.4 Hardware and tools

This section contains a detailed description of the setup used for the evaluation. We specity
the hardware, tools, versions and parameters used.

4.4.1

Hardware

The benchmarks were run on a dedicated server with the specification outlined in Table .
We had exclusive access to the server, so no other jobs were running in the background.

Part # | Specification Note
Intel Xeon E5-2699v4, 22-Core,
CPU 2 In total 44 cores, 88 threads.
2.2/3.6GHz, 55MB cache
Samsung 32GB DDR4 ECC
RAM 16 Runs at 2133MHz, 512GB total.
REG 2400MHz x4 DR
. . 12Gb/s Eight-Port SAS
Disk controller | 3 | Supermicro AOC-S3008L-L8e
Internal Host Bus Adapter
) Samsung SM863 1920GB )
Disks 24 Raid 0
SATA SSD 520/485MB/s
Motherboard 1 | Supermicro X10DRI-T-B Intel C612 Express chipset
OS Ubuntu 16.04.1 LTS Kernel 4.4.0-38

Java version

Oracle Java 1.8.0_101

build 1.8.0_101-b13

Table 4.1: The machine used for the evaluation

4.4.2 Reference Neodj version

Choosing a reference version is a trade-off between recent software and stable software.
The software being more thoroughly tested and less changes being made are both argu-
ments to choose an older version, while a newer version might have additional features.
There is also a choice to be made whether a specific commit, minor version or major ver-
sion should be used. We decided to keep up to date with the current newest minor version,
keeping up to date with the latest commit would require too much overhead work, and
would make our evaluation harder to reproduce.

We thus used Neo4j 3.0.6 for our evaluation, which was the latest Neo4j version at
the time of testing. We used the default configuration settings with two exceptions; we
configured the page cache size to be 200GB and the heap size to be 64GB.
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4.4.3 numactl

We used the tool numactl in order to investigate the scaling of the parallel runtime. It
allows the execution of a program with limited access to the hardware of the machine. By
utilizing this we ran our benchmarks with several different core configurations.

We used three different series of core configurations for our small queries benchmarks:

1. Cores on one socket, no Hyper-Threading(HT). Starting with a single core, then 2,
4, then incrementing by 4 until the max of 22 is reached.

2. Cores on two sockets, no HT. Starting with two cores, then 4, 8, then incrementing
by 8 until the max of 44 is reached.

3. Cores on one socket, HT. The same as configuration 1, but including the hyper-
threaded core for each included core.

For reasons explained in section we only used 1, 2, 3 and 4 cores, without HT, from
the same socket for the LDBC benchmarks.

When running benchmarks on one socket only we disable access to the RAM attached
to the other socket. When running benchmarks on both sockets we enable all RAM, but
we keep the RAM configurations for the JVM heap and the page cache the same.

44.4 JMH

We used JMH (see section ) to write, run and analyse our benchmarks. The setup
for the benchmark includes starting the dataset and loading all the possible parameters
into memory. The time for the setup is not counted towards the benchmark results. When
running the LDBC benchmarks all of the possible parameters are stored in an array, and
when executing a query a random number generator chooses a parameter from the array
and passes it to the database along with the query.

Because of the complex and non-deterministic nature of JVMs we run multiple “forks”,
i.e. JVM invocations, for each benchmark. This is to minimize the effect of run-to-run
variance. JMH automatically aggregates the result of the diftferent forks for each individual
benchmark.

For the LDBC benchmark we used 5 forks, 15 warmup iterations, 10 iterations and 30
seconds for each iteration and warmup iteration. The high number of warmup iterations
is to make sure that we use most, if not all, of the possible parameters at least once during
warmup. These settings were chosen as they provided consistent results with low variance.

We used slightly different parameters for the SQ benchmarks, as their characteristics
differs. Where the LDBC benchmarks are comparatively very fast and contains a random
element, the SQ benchmarks are slower and more stable. Since the SQ queries always
access the same nodes, we do not need to run as many warmup iterations to make sure
that we load all necessary data into the page cache. And since the queries does not con-
tain any random element, and thus differ less in execution time, we do not need as many
measurement iterations. The iteration time, however, needs to be longer since the queries
take much longer to execute.

With the above in mind, we used 5 forks, 3 warmup iterations, 5 iterations and 100
seconds for each iteration for the SQ benchmarks. This was the highest we could set these
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parameters to in order to have our benchmark complete in reasonable time. I took roughly
three weeks for the benchmark to run with these parameters.
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Chapter 5

Evaluation results

In this chapter we present and discuss the results of our evaluation. As the LDBC bench-
marks oﬁ showed low levels of CPU utilization, we only briefly touch upon those in
section p. 1.

For the full results for the SQ benchmarks, including error, please see appendix A.
In general, the execution time for the two-socket runs were higher than for the single-
socket runs with the same core count. In some cases the two-socket benchmark never
reached the performance of the single-socket or Hyper-Threading runs, despite having
twice the number of cores. We attribute this to the fact that Java is completely unaware
of the consequences brought on by dual-socket configurations and thus does not distribute
work in a way that minimizes the need for inter-socket communication.

Unfortunately the JVM is completely Non-uniform memory access(NUMA )-unaware.
This means, among other things. that the runtime.availableProcessors () call
does not reflect the actual number of processors available to the JVM. Even if the num-
ber of processors is restricted by e.g. numactl, the JVM still reports the total number of
processors for the machine it runs on.

In this case, it means that the parallel runtime always spawns 88 threads per query,
which may potentially degrade performance slightly.

5.1 LDBC results

The results and for the LDBC query 2-inspired query can be seen in Figure m and the
results for the query 8-inspired query in 5.2. These figures clearly show lack of scaling
when we increase the number of cores used. There is even a hint of negative scaling as the
amount of cores used increases.
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LDBC query 2

B Interpreted
W Parallel

Time, seconds

Mumber of cores

Figure 5.1: Execution time for the LDBC query 2-inspired query,
with error bars

LDBC query 8

0.003
B Interpreted

W Parallel

0.0025
0.002

0.0015

Time, seconds

0.00

0.0005

MNumber of cores

Figure 5.2: Execution time for the LDBC query 8-inspired query,
with error bars
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5.2 SMALL QUERY 1 (SCAN) RESULTS

In order to understand these results, some knowledge on the characteristics of the
benchmarked queries is needed. These queries result in a relatively small number of rows,
even in the intermediate steps of the execution, only enough for one or a few morsels. This
by itself limits the parallelism possible with our approach.

By looking at the resource utilization when running the queries it is very clear that
CPU is not the bottleneck of these queries, even when running with the Interpreted run-
time. The usage is around 25% of a single core. This means that the benefits from paral-
lelization is negligible, but we still see the disadvantages of the additional synchronization

and overhead. We are not entirely sure of what causes the bottleneck, but we suspect it to

be something related to properties, as these queries heavily rely on properties, which in
turn leads to many disk accesses to the property store.

5.2 Small Query 1 (scan) results

The execution time for SQ1 can be seen in figure @ The first thing that stands out from
this graph is that the single-core results for the parallel runtime is much slower than for

the Interpreted runtime. This is the only query that behaves this way, for all other queries
the parallel runtime is faster than the interpreted even when the core count is 1. This is

an indication that we are doing something unnecessarily costly in our nodescan-pipe, and
this is something that we would have investigated had time allowed it
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Figure 5.3: Execution time for SQ1, linear scale.

With a core count of around 8 the parallel runtime starts to outperform the Interpreted
runtime, and the performance continues to improve as the number of cores increases. The

45



5. EVALUATION RESULTS

best speed up for SQ1 is 2.16 times faster at 22 cores with hyper-threading. Thus the
single CPU with Hyper-Threading outperforms the two cores without hyper-threading at
the same number of hardware threads. The two CPUs does however outperform the single
CPU without hyper-threading.

The results were plotted on a logarithmic scale in figure @ in order to show the scaling
of the runtime. We see that the scaling does not decrease as we increase the core count,
with the exception of the single processor with HT for very high core counts.
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Figure 5.4: Execution time for SQ1, logarithmic scale to show
scaling.

5.3 Small Query 2 (filter) results

The execution times for SQ2 can be seen in @ For SQ2 the parallel runtime is generally
faster than the interpreted even for the single-core scenario. We attribute this to differences
between Java and Scala as well as the reduced overhead the parallel runtime has due to its
limited functionality.
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SQ2 - All nodes scan with filter
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Figure 5.5: Execution time for SQ2, linear scale.

At its best the parallel runtime is 15.4 times faster than the interpreted. This is for
the two-core setup with 40 and 44 cores. That the two-core setup outperforms the hyper-
threading setup for SQ2 is probably related to the very independent workload SQ?2 has,
with a scan followed by a filter. This would mean that the effects of the slow inter-socket
communication is limited, since such communication is not necessary.

Looking at the logarithmic graph in figure @ we see a very steep and straight line for
the parallel runtime, indicating very good scaling even with higher core counts.

5.4 Small Query 3 (expand) results

Looking at the results for SQ3 in figure @ we see something very interesting. Up to 8
cores the execution time decreases, but further increasing the number of cores actually

increases the execution time. For very high number of cores the execution time decreases
again, but not down to the level of 8 cores.

This behaviour is probably due to the heavy synchronization of the expand pipes, which
is required due to the lacking support of multi-threaded transactions (see section and

). At its best the parallel runtime is 5.2 times faster compared to the interpreted, for
8 cores across two sockets.
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As for the scaling shown in figure @ we see that we start out with decent scaling for a
small number of cores, but also that it drops off quickly. Towards the end of the graph we
even experience some negative scaling. One interesting thing to note is that SQ3 is the only
query that generally performs worse with hyper-threading than without. This supports our
theory that synchronization is a major problem for SQ3, as Hyper-Threading adds a new
thread contending for the monitors without adding the compute power of a dedicated core.
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Figure 5.8: Execution time for SQ3, logarithmic scale to show
scaling.

5.5 Small Query 4 (sort) results

The results for the SQ4 benchmark can be seen in figure @ The first thing to note is
that Interpreted runtime also scales with core count. This is because sorting is done with
a multi-threaded library function in the Interpreted runtime. Another thing to note is that
the results for the parallel runtime stabilizes at around 8 seconds. We believe that the
node by label scan is partially responsible for this. Even though the node by label scan is
supported by our runtime it is not parallelized. It is only implemented as a multiplexer,
the actual store access is still single-threaded. This means that the execution time for the
10-million node by label scan is constant regardless of the core count, which would explain
the diminishing returns of increasing the core count.

For around 8 - 12 cores the parallel runtime is 4 times faster than the interpreted. By
looking at the scaling graph in figure we see that even if the Interpreted runtime scales,
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Figure 5.9: Execution time for SQ4, linear scale.

the parallel runtime shows slightly better scaling with a steeper slope. We also clearly see
how the scaling drops oftf when the execution time approaches 8 seconds.

5.6 Small Query 5 (mixed) results

While the results for SQ5 might not be as interesting for evaluating single operators it
shows how the parallel runtime behaves in a slightly more complex scenario. The result
can be seen in figure . We see that the parallel runtime is significantly faster, even if
the execution time for the interpreted also decreases somewhat due to the sorting.
Looking at the scaling in figure m we see some very good scaling for 1 to 8 cores. Af-
ter that we see some negative scaling, which is most probably the expand operator showing
the same characteristics as we saw in the results for SQ3. At its best the parallel runtime
is 6.4 times faster at 16 cores. That we keep having good scaling even with at larger query

tree shows that our way of using a common fixed-sized thread pool for the entire query is
a scalable solution.
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Chapter 6

Conclusions

6.1 Query performance

In general we are satisfied with the query performance of the parallel runtime, with some
exceptions, as it showed significant scaling capabilites.

6.1.1 LDBC query performance

The LDBC query performance does not in any way speak in favour of the parallel runtime.
However, after discussing the results with developers at Neo Technology, the queries and
the low resource utilization leads us to believe that the poor performance is due to some
other bottleneck in the neo4j kernel. After discussing this with neo4j engineers the prop-
erty handling in Neo4j was brought forward as a possibility. We conclude that this is a
problem in Neo4j, and not necessarily a characteristic of the parallel runtime.

6.1.2 SQ query performance

In general the parallel runtime showed good scaling and performance for the SQ queries,
with a few caveats. For SQ1 the baseline performance was poor, so even though the scaling
was good we only ended up with a 2x speed-up over the Interpreted runtime.

The SQ3 results are also not without concern. Even though we show good scaling for
lower core-counts it quickly drops off and even turns into negative scaling as the core-
count increases. We believe that this result had been different if Neo4j had supported
multi-threaded transactions, as this would have given us the opportunity to remove almost
all of the extra overhead and synchronization associated with the expand operator.

With the achieved performance gains taken into account, we conclude that the de-
sign used for the parallel runtime is viable for multi-threaded execution of graph database
queries.
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6.2 Designing for expand operators

Implementing the expand operator correctly has by far been the most difficult part of this
work, especially taking into account that we have had to work around the lack of support
for multithreaded execution in the Neo4j kernel.

We did not have the expand operator in mind when we made the original design for
the parallel runtime. When we later added support for the expand operator, we had to
introduce some shortcuts and references in the code that we think would be unnecessary
if the requirements of the expand operator was taken into account in an earlier stage in the
design process of the parallel runtime.

This mainly revolves around the increasing amount of intermediate results as the query
is being executed. More specifically, adding additional morsels requires the creator to
retain knowledge of the rest of the query following the expand operator, in order to create
the correct morsels. Originally, we discarded any such information after the query tree
was built.

We conclude that expand-like operations should be given a high priority when design-
ing a query runtime for a graph database. The expand operations are very different from
the operators that can be found in conventional relational databases. Being able to effi-
ciently start from a few or a single entity, and then effectively expanding a multitude of
relations to that entity is one of the key benefits of utilizing a graph database, as compared
to multiple-join queries.

6.3 Limitations

There are several limitations of the parallel runtime, some of which are intentional to limit
the scope of this thesis.

6.3.1 Limited operator support

Our parallel runtime only supports a select few query operations. The real-world usability
of the parallel runtime is thus almost non-existent. It is generally only able to run queries
specifically designed for it. It is more fitting to see our work as a proof-of-concept rather
than as a alternate cypher runtime for Neo4;.

6.3.2 Multiple transactions per query

Because of the lack of support for multi-threaded transactions in the Neo4j kernel we have
had to implement our parallel runtime by creating a new transaction for each thread that
is working with the query. Not only does this create additional overhead that might affect
performance, it also makes us loose all the other benefits that comes with the transaction
context such as transaction isolation.

Therefore we can not guarantee the correctness of a query executed with the parallel
runtime, if there are queries that can introduce changes to the database running in parallel.
This is one of the biggest limitations of our work.
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Furthermore, the lack of this support greatly added to the complexity of implementing
the expand operator. The way the Neo4j kernel works, if one thread fetches a result iterator
from the kernel it cannot later be utilized by another thread. Because of this we had to
utilize synchronization and thread-local buffers in order to implement the expand operator.
Had the Neo4j kernel supported these kind of operations, the implementation of expand
could have been a lot simpler and more efficient.

6.3.3 Synchronization

The synchronization in the parallel runtime is not something that has been designed, but it
has instead grown organically as needed. We believe that if one were to redesign e.g. the
morsel pile from scratch it would probably be possible to utilize several smaller monitors
for the different functionalities, instead of a single monitor for the entire class, as is the
case now. There might also be cases where we hold our exclusive access for longer that is
strictly necessary, and cases where volatile class members could be used instead of taking
exclusive access.

6.4 Conclusion

Looking back at the questions in section we draw the following conclusions:

1. Parallel execution of Cypher queries can be introduced to Neo4j by creating a new
cypher runtime that splits the workload across multiple threads. However, the lack
of support for multi-threaded transactions in Neo4j currently limits the viability of
this approach. We have worked around this problem, but we had to sacrifice both
performance and transaction isolation in the process.

2. The operations that are fully independent are best suited for parallel execution. One
such example is the filter operation, where we have achieved great speed ups. Other
operations, such as expand, does also show some potential for speed up, but not on
the level of the filter operation.

3. This work has shown that there are performance improvements to be had when run-
ning a single query in parallel, despite not having support for multi-threaded trans-
actions. The parallel runtime should be seen as a proof of concept, and a future
implementation of parallel runtime should be reimplemented from scratch, drawing
knowledge from this work and its conclusions.

6.5 Future work

There are several topics that should be improved upon or investigated further, the most
prominent are listed here.
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6.5.1 Multi-threaded transaction support in Neo4j

Support for multiple threads accessing the same transaction in the Neo4j kernel would lead
to a lot of improvements. First and foremost a parallel runtime could be utilized in a normal
database context. This means that we would no longer be restricted to only executing in
a read-only environment, and would also enjoy the ACID-ness that comes with proper
transaction support.

Another main benefit would be the possible simplification and increased efficiency
of the parallel runtime itself. Without having to worry about the thread ownership, the
expand operator could be greatly simplified and also have a higher degree of parallelism
in certain scenarios.

6.5.2 Expand-centred design

If the parallel runtime were to be redesigned with the requirements of the expand operators
taken in consideration from the very beginning, we feel the the result would not only be
more maintainable than the current parallel runtime, but perhaps also more efficient.

6.5.3 Additional query operations

Finally, the parallel runtime only supports a very small subset of the query operators
present in Neo4j. This set needs to be greatly expanded before the parallel runtime is
viable for any usage in production.
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Appendix A

Evaluation results

This chapter contains the measured results of our small query benchmark runs. The tables
show the number of cores, result (execution time in seconds), error (standard error), group
(Interpreted/Parallel runtime with Hyper-Threading or dual-socket configuration), and the
speed-up factor for parallel runtime.
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sql_results

#Cores Result Error Group Parallel Speedup
1| 51.7375787008000| 2.603072044869490|Interpreted 0.3265885688
2| 44.5558117717333| 0.589485256933831|Interpreted 0.4794275028
4| 44.7769514569143| 1.410105148869580|Interpreted 0.6924275017
8| 43.1483151974400 1.295690935567100|Interpreted 0.8613277698
12| 43.4086975897600, 0.691282111179007|Interpreted 1.1420834495
16| 40.4863302587733| 0.455367200179784|Interpreted 1.2693060903
20| 41.0625717043200] 0.770204803243277|Interpreted 1.516374856
22| 40.9176165580800/ 0.291931764988163|Interpreted 1.7042194142
1/158.4182168024620| 39.006866734261200|Parallel
2| 92.9354521993846|14.986360479805300|Parallel
4| 64.6666276944314| 5.721256910310390|Parallel
8| 50.0951167580328 2.990890293269190 Parallel
12| 38.0083413423158| 1.540153092675650|Parallel
16| 31.8964279528247| 1.333508948574170Parallel
20| 27.0794332569600/ 0.824578717971269|Parallel
22| 24.0095941973333| 0.642806471198322Parallel
1| 43.9446737169067| 1.009599290874580|Interpreted HT 0.3148791132
2| 43.8757752832000| 1.504030295826280|Interpreted HT 0.4947164101

41.4858049399467

0.877519912687479

Interpreted HT

0.7299041045

43.2207927705600

0.430267311267751

Interpreted HT

1.1705257692

42.8333509290667

1.442302635181110

Interpreted HT

1.6120464955

40.3914830643200

0.337231694668282

Interpreted HT

1.9660496867

39.9512489164800

0.444424429315572

Interpreted HT

2.0340284492

41.9654096213333

0.399533198490517

Interpreted HT

2.1590945169

=

139.5604594952260

20.955705897231800

Parallel HT

88.6887404410435

5.748211420936180

Parallel HT

56.8373361427692

2.682045659733550

Parallel HT

36.9242556708571

2.533200861676050

Parallel HT

26.5707912567129

0.949772202464507

Parallel HT

20.5444874240000

0.451844150979395

Parallel HT

19.6414405764354

0.346043182747406

Parallel HT

19.4365782934069

0.411808563376046

Parallel HT

46.8084326400000

1.174256046326060

Interpreted 2 sockets

0.4545701407

45.6992977849863

1.281868669168840

Interpreted 2 sockets

0.6522351232

44.6989773482667

0.640496375170460

Interpreted 2 sockets

0.8627806563

41.7488716868267

0.435290693353756

Interpreted 2 sockets

1.1982792937

41.8634041480533

0.771264833784737

Interpreted 2 sockets

1.6604555149

43.4471733384533

0.911727902243424

Interpreted 2 sockets

1.9377366999

42.0360976247467

0.717950427032157

Interpreted 2 sockets

2.0072635604

41.4339074184533

0.802609594258328

Interpreted 2 sockets

2.051285721

N

102.9729594026670

15.181112477843100

Parallel 2 sockets

70.0656805478400

6.620005025528990

Parallel 2 sockets

51.8080430080000

3.574073101909460

Parallel 2 sockets

34.8406852266667

1.362360899311980

Parallel 2 sockets

25.2119998238532

0.436854530348620

Parallel 2 sockets

22.4216083333120

0.337223186017267

Parallel 2 sockets

20.9419920998400

0.258832269363484

Parallel 2 sockets

44

20.1989937309538

0.219929116194282

Parallel 2 sockets

Max. Speedup

2.1590945169




sq2_results

#Cores Result Error Group Parallel Speedup
1/102.3590224171710|4.591025274189470|Interpreted 1.1617020265
2/100.1227975818380| 6.188647616655800|Interpreted 2.1051502639
4| 97.3045791968780|4.682779110732640|Interpreted 3.6984508022
8| 92.3972346212174|3.969348889943980|Interpreted 5.815846786

12| 91.7721171740445|4.315484767450020|Interpreted 8.2570155924
16| 92.5188500371064|4.088241439619370|Interpreted 10.3476929607
20| 95.1695203607273|5.263161793410090|Interpreted 12.7579418397
22| 92.1533209055319|3.776764891882810|Interpreted 13.0201128561
1| 88.1112540774400| 1.538275916880840 Parallel
2| 47.5608792863562|0.764485167915958|Parallel
4| 26.3095507821714/0.570581594291866 Parallel
8| 15.8871507488555 0.147872284876995|Parallel
12| 11.1144415493447)0.148440324172658|Parallel
16/ 8.9410122999172/0.097607151961612|Parallel
20| 7.4596295826286|0.033164151069612 Parallel
22| 7.0777666771570/0.034206762130009 Parallel
1| 95.3145767543830|4.393560020962160|Interpreted HT 1.2500421337

98.8083381694359

3.888928406463770

Interpreted HT

2.4097002374

94.4601027450435

3.852466762171400

Interpreted HT

4.0267969714

95.6179295883636

5.354227078904780

Interpreted HT

7.1455004803

93.7439437671489

3.134223894276870

Interpreted HT

9.798636483

92.5583754705455

5.200053563970920

Interpreted HT

12.3454807852

96.3045752832000

6.504485159027500

Interpreted HT

14.5850012122

93.0397290496000

4.721185995149550

Interpreted HT

13.7927345294

76.2490912768000

3.164303963160340

Parallel HT

41.0044106888533

0.810330434275450

Parallel HT

23.4578756802645

0.293581163395137

Parallel HT

13.3815580661709

0.125042111513680

Parallel HT

9.5670396518400

0.113150143611575

Parallel HT

7.4973487935073

0.055591628272878

Parallel HT

6.6029871291603

0.044268515571261

Parallel HT

6.7455607770471

0.038777713561647

Parallel HT

96.6815034026667

4.295961528356290

Interpreted 2 sockets

1.8074858856

98.2439354157949

4.490604789634930

Interpreted 2 sockets

3.4260442732

99.7527919532973

3.259219803759640

Interpreted 2 sockets

5.9544929458

97.9278108769524

5.246808603937030

Interpreted 2 sockets

9.9249356153

98.7220493486829

5.203489854199670

Interpreted 2 sockets

12.2279406456

94.0957785367273

5.593329998952560

Interpreted 2 sockets

13.5818986684

93.2959098434783

4.304404559621160

Interpreted 2 sockets

15.4299172491

93.8948877165714

4.874542249737100

Interpreted 2 sockets

15.3988606609

53.4894928782222

1.629241293850830

Parallel 2 sockets

28.6756175872000

0.399845157542328

Parallel 2 sockets

16.7525250028679

0.146604494696998

Parallel 2 sockets

9.8668459597576

0.089129403929835

Parallel 2 sockets

8.0734812353208

0.090270285647818

Parallel 2 sockets

6.9280283142827

0.081675003271167

Parallel 2 sockets

6.0464296947953

0.052698504709900

Parallel 2 sockets

44

6.0975217442660

0.040192106926521

Parallel 2 sockets

Max. Speedup

15.4299172491




sq3_results

#Cores

Result

Error

Group

Parallel Speedup

1/108.0972262895480| 7.188817553813780|Interpreted 2.0745814539
2| 97.0459645502439| 3.029331009355150|Interpreted 3.5086122155
4| 91.6653395148800 1.362727629873600|Interpreted 3.7327969742
8| 89.9419838873600 1.564548037606690 Interpreted 4.5343003648
12| 90.9029828198400, 1.335283899188850 Interpreted 3.2558716365
16| 88.5085385523200, 0.613110342476589 Interpreted 2.8260411963
20| 88.6266501529600 0.458650762635206|Interpreted 3.0106575783
22| 89.9392995328000 0.379257605603497|Interpreted 3.3235169908
1 52.1055589717333| 2.525465774187690Parallel
2| 27.6593589113535| 0.758868011351117|Parallel
4| 24.5567439503360 5.924161073843540 Parallel
8| 19.8359121920000, 3.593478453331130Parallel
12| 27.9197072147692 3.762771032602650 Parallel
16| 31.3189130680430, 2.404526488683390 Parallel
20| 29.4376387379200 0.653855400960734 Parallel
22| 27.0614832969505K 0.624159000724954 Parallel
1 94.5724955033600] 1.072189205754890|Interpreted HT 0.8055222623
2| 92.6746568294400| 0.969490633980406|Interpreted HT 1.4308444403

90.0815703244800

0.930718096057494

Interpreted HT

2.8297197306

88.6883903078400

1.971253541617330

Interpreted HT

3.8332071764

92.6818151082667

3.841101931539370

Interpreted HT

3.3820381653

88.8494515814400

1.060665750539070

Interpreted HT

3.7604746089

87.8696621670400

0.644527938050019

Interpreted HT

3.8599139202

88.0924635955200

0.589198646237445

Interpreted HT

3.9322046084

=

117.4051915452630

31.900919289310800

Parallel HT

64.7692049687273

16.626946943232800

Parallel HT

31.8340962713600

6.273139500147690

Parallel HT

23.1368632650323

3.475238258832950

Parallel HT

27.4041304615385

2.032468178002940

Parallel HT

23.6271909326452

0.436906967175828

Parallel HT

22.7646688460800

0.282875850793187

Parallel HT

22.4028178513920

0.427689956239847

Parallel HT

101.0252771452120

4.808312579168200

Interpreted 2 sockets

3.3770545982

97.2380595814400

0.764459318786519

Interpreted 2 sockets

4.2638688525

94.8949840989091

2.075637462480910

Interpreted 2 sockets

5.2433363063

95.8725448515919

1.394235367935170

Interpreted 2 sockets

3.8656174576

95.2033188249600

1.068025897746650

Interpreted 2 sockets

3.8925918523

95.1657378611200

1.130042626866550

Interpreted 2 sockets

3.8498311333

91.8935096524800

2.347481122293310

Interpreted 2 sockets

3.8184774957

95.3986740976327

1.398013818451530

Interpreted 2 sockets

4.0862318344

29.9152039761702

1.738321569601740

Parallel 2 sockets

22.8051243943307

4.257740560249030

Parallel 2 sockets

18.0982066674872

2.797937408141960

Parallel 2 sockets

24.8013534455172

3.286929070436780

Parallel 2 sockets

24.4575651486897

1.634579916851640

Parallel 2 sockets

24.7194577027523

0.881283305536306

Parallel 2 sockets

24.0654841506341

0.459762114092037

Parallel 2 sockets

44

23.3463684792320

0.367983975008637

Parallel 2 sockets

Max. Speedup

5.2433363063




sq4_results

#Cores

Result

Error

Group

Parallel Speedup

1/135.3256573584910|86.295091467969200|Interpreted 2.7554467824
2| 89.1290521825055|35.839428842894700|Interpreted 3.7570760216
4| 57.9225158274510)19.579272776062800|Interpreted 4.0323760273
8| 41.0000663829533|11.688422551963600 Interpreted 4.2301203992
12| 34.1570959159216| 8.116314060630900 Interpreted 4.2148900201
16| 31.1482996053333 6.283242943928350 Interpreted 4.0866038531
20| 27.9925306957576| 5.091271047505050|Interpreted 3.5732566761
22| 25.0598626357895 3.176417108290810|Interpreted 3.2001492542
1 49.1120562449067|14.005373408625700|Parallel
2| 23.7229834240000| 0.512304877318731|Parallel
4| 14.3643636989247 0.292343761105292 Parallel
8| 9.6924112114036, 0.174416624348990 Parallel
12| 8.1039115500308 0.143037215002617 Parallel
16| 7.6220501730233 0.216845712658008 Parallel
20| 7.8338986625542 0.500956381884809 Parallel
22| 7.8308418280727) 0.475223588009562|Parallel
1/1083.1250728277330|57.156795140893800|Interpreted HT 3.2191330344
2| 71.8577379530550(29.011028927705900|Interpreted HT 4.0430080787
4| 46.7155878524272/15.017949642207400|Interpreted HT 4.1607168763

33.3991605107451

7.657284114232470

Interpreted HT

4.1030885169

28.8173764143505

5.423201914931850

Interpreted HT

4.0116288423

23.6572167372800

2.564291618033900

Interpreted HT

3.2138472038

23.0869256110080

2.387412740072440

Interpreted HT

3.0715554448

23.1885284311040

2.373396125480960

Interpreted HT

3.1278971586

32.0350453760000

0.835690871537820

Parallel HT

17.7733352379733

0.330928620441737

Parallel HT

11.2277737806009

0.211470871770053

Parallel HT

8.1400048703210

0.136618674950110

Parallel HT

7.1834602719106

0.122909845201603

Parallel HT

7.3610272166328

0.310726172499549

Parallel HT

7.5163629716406

0.399910539509750

Parallel HT

7.4134561512727

0.363547380047310

Parallel HT

74.8431605760000

39.641625995984400

Interpreted 2 sockets

2.6412703676

63.6827039325591

22.956876716647500

Interpreted 2 sockets

3.6325154836

45.5162446158368

12.324708020958800

Interpreted 2 sockets

3.9189050555

33.4228720487921

6.043752346712970

Interpreted 2 sockets

3.6537080764

28.1766631833600

3.838903898182540

Interpreted 2 sockets

3.3552029614

25.2475747979636

2.478316527598710

Interpreted 2 sockets

3.0407961075

25.1071821422056

2.439596356154660

Interpreted 2 sockets

2.9890622508

25.0173985395315

2.345827709522370

Interpreted 2 sockets

2.9985596455

28.3360467353600

0.828770580705732

Parallel 2 sockets

17.5312959351467

0.422029728053291

Parallel 2 sockets

11.6145310924800

0.278709643545974

Parallel 2 sockets

9.1476580366525

0.189412341260289

Parallel 2 sockets

8.3979012618039

0.186441014063915

Parallel 2 sockets

8.3029489334511

0.210119972719906

Parallel 2 sockets

8.3996852644103

0.274301275218233

Parallel 2 sockets

44

8.3431385388026

0.267703877414175

Parallel 2 sockets

Max. Speedup

4.2301203992




sq5_results

#Cores Result Error Group Parallel Speedup
1/220.0454911317330/116.689220147353000 Interpreted 3.2103600428
2/111.3885126283640| 28.487079138115000|Interpreted 3.2291004595
4| 96.6703185920000, 24.560453302192500|Interpreted 4.8532549695
8| 77.1233367505455 12.635241279770700/Interpreted 5.8761085394

12| 73.0240310125714) 9.708726119369250|Interpreted 6.3238318574
16| 64.1614426931200, 6.524607389031380|Interpreted 5.4931341569
20| 62.5293551206400| 5.141143730130940Interpreted 4.9884174394
22| 61.7978685030400| 3.290373255475440Interpreted 4.7994667204
1/ 68.5423093350400, 2.718764618258830 Parallel
2| 34.4952143872000, 0.686712686418548 Parallel
4| 19.9186564892444) 0.248213435918878|Parallel
8| 13.1248999628800 0.104960541986731 Parallel
12| 11.5474340019649, 0.171283748415780|Parallel
16| 11.6802977792000, 0.274429383375299|Parallel
20| 12.5349082910622| 0.216442588675934|Parallel
22| 12.8759864592077| 0.240597778320894|Parallel
1/132.3655233536000| 49.438708357859100|Interpreted HT 2.4737263068

105.4264646727440

31.996769363951600

Interpreted HT

3.6447462309

79.0298385687273

14.670789004104000

Interpreted HT

4.6965438831

68.6644474675200

6.901187519018210

Interpreted HT

6.0814254427

64.7385789235200

5.314340379517660

Interpreted HT

6.0479777652

58.9121873510400

2.719487347771130

Interpreted HT

4.6003201465

60.0490115072000

2.193854780133700

Interpreted HT

4.3779168255

59.0584846745600

2.765764135222520

Interpreted HT

4.184101867

53.5085562976604

1.872428488874650

Parallel HT

28.9255981056000

0.438437608871721

Parallel HT

16.8272330752000

0.135150569742513

Parallel HT

11.2908475347478

0.094194681599835

Parallel HT

10.7041694657814

0.212508711589955

Parallel HT

12.8061059827573

0.241077444997548

Parallel HT

13.7163436176080

0.186925034580616

Parallel HT

14.1149729503179

0.143728041335781

Parallel HT

136.7244414494120

48.073928865092000

Interpreted 2 sockets

3.6106634197

103.4288054653020

23.872431882476700

Interpreted 2 sockets

4.7932713672

88.3386750928372

17.741522277070200

Interpreted 2 sockets

6.2212646891

70.3958561587200

6.123363574464190

Interpreted 2 sockets

6.4435310077

66.2646344908800

3.580206676808860

Interpreted 2 sockets

5.5287706004

64.9305102745600

3.258008161065660

Interpreted 2 sockets

4.4485172222

63.4044547072000

3.085763780780900

Interpreted 2 sockets

4.0014278713

63.7735534592000

2.727882943185820

Interpreted 2 sockets

4.0054553337

37.8668476006400

0.915847187279720

Parallel 2 sockets

21.5779156951040

0.325577286080034

Parallel 2 sockets

14.1994722146878

0.132868717041492

Parallel 2 sockets

10.9250434389333

0.095321165915031

Parallel 2 sockets

11.9854194141867

0.165820545739397

Parallel 2 sockets

14.5959894119551

0.127770184909761

Parallel 2 sockets

15.8454573582629

0.127126165906616

Parallel 2 sockets

44

15.9216738538057

0.144130964307417

Parallel 2 sockets

Max. Speedup

6.4435310077
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Parallelliserad sokning i grafdatabas

POPULARVETENSKAPLIG SAMMANFATTNING Ragnar Mellbin, Felix Akerlund

Grafdatabaser blir allt vanligare, samtidigt som antalet processorer i moderna datorer
okar mer och mer. Vi tittar i detta arbete pa hur parallelliserad sokning kan leda till
prestandavinster i den populara grafdatabashanteraren Neo4;j.

Datorer dr idag tusentals ganger kraftfullare d4n
de var for tjugo ar sedan, mycket tack vare de
framsteg som gjorts i tillverkningen av centralpro-
cessorn, den komponent som star for utforandet av
alla logiska berdkningar i maskinen. P4 senare tid
har dock fysikaliska begransningar satt hinder for
hur fort man kan kora processorn, darfér har man
istéllet borjat bygga datorer som innehaller flera
processorer. Detta gor det mojligt for datorn att
arbeta pa flera uppgifter samtidigt. For att dra
full nytta av denna sortens design, krévs dock att
mjukvaruutvecklare skriver sina program sa att de
kan delas upp i mindre bestandsdelar som kan ut-
foras parallellt.

En typ av databas som vuxit i popularitet pa
senare tid ar den sé kallade grafdatabasen. Graf-
databaser gor sig av med den traditionella tabell-
strukturen och anvénder istéllet noder och ba-
gar for att representera data. Ett exempel pa
data som lampar sig for denna struktur ar sociala
nitverk som Facebook eller Twitter. Varje an-
vandare i nitverket kan representeras av en nod,
medan vinskapsrelationer eller foljare represen-
teras av bagar som binder samman noderna.

Den populdra grafdatabasen Neo4j har i
dagslaget stod for att besvara flera sokningar par-
allellt och klarar pa sa sétt av att utnyttja en mod-
ern processor fullt ut. Varje enskild sokning kors
dock bara som en enda uppgift, vilket innebér att
processorn kan ha delar som star outnyttjade om

antalet aktiva sékningar ar for 1agt.

For simpla fragor som tar millisekunder att
besvara sd ar detta sdllan ett problem, speciellt
nir det finns tusentals anvindare som anvénder
databasen samtidigt. Vill man ddremot berdkna
nagot tyngre, sa som att analysera vildigt stora
mangder data, dr det vanligt att man sitter som
ensam anvandare och kor nagot som tar flera tim-
mar eller till och med dagar att fa svar pa. Det
dr i detta fallet intressant att se om man pa nagot
sitt kan fa sOkningen att utnyttja all den extra
processorkraft som annars gar till spillo.

For att ta reda pa om det gar att parallellisera
en enskild sokning i en grafdatabas och hur stor
paverkan detta da har pa svarstider, skapade vi
var egen modifierade version av Neodj. Vi bor-
jade med att ta reda pa vilka delar av mjukvaran
som bast lampade sig for parallellisering, med hén-
syn till hur ofta de férekom i s6kningar samt hur
pass stora krav de stillde pa processorn. Efter
att ha valt ut ett antal av dessa sa gick vi vidare
med att ta fram metoder for att dela upp dem i
mindre uppgifter som kunde koras i olika delar av
processorn samtidigt, for att slutligen infora dessa
dndringar i Neo4j.

Resultatet ar en version av Neo4j som under
ratt forhallanden ger upp till 15 ganger snabbare
svar pa enskilda sOkningar.
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