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Abstract

Cameras mounted on boats and in other similar environments can be hard to use if
waves and wind cause unwanted motions of the camera which disturbs the desired
image. However, this is a problem that can be fixed by applying mechanical image
stabilization which is the goal of this thesis.

The mechanical image stabilization is achieved by controlling two stepper mo-
tors in a pan-tilt-zoom (PTZ) camera provided by Axis Communications. Pan and
tilt indicates that the camera can be rotated around two axes that are perpendicular
to one another.

The thesis begins with the problem of orientation estimation, i.e. finding out how
the camera is oriented with respect to e.g., a fixed coordinate system. Sensor fusion
is used for fusing accelerometer and gyroscope data to get a better estimate. Both
the Kalman and Complementary filters are investigated and compared for this pur-
pose. However, the Kalman filter is the one that is used in the final implementation,
due to its better performance.

In order to hold a desired camera orientation a compensation generator is used,
in this thesis called reference generator. The name comes from the fact that it
provides reference signals for the pan and tilt motors in order to compensate for
external disturbances. The generator gets information from both pan and tilt en-
coders and the Kalman filter. The encoders provide camera position relative to the
camera’s own chassi. If the compensation signals, also seen as reference values to
the inner pan-tilt control, are tracked by the pan and tilt motors, disturbances are
suppressed.

In the control design a model obtained from system identification is used. The
design and control simulations were carried out in the MATLAB extensions Con-
trol System Designer and Simulink. The choice of controller fell on the PID.

The final part of the thesis describes the result from experiments that were car-

3



ried out with the real process, i.e. the camera mounted in different setups, including
a robotic arm simulating sea conditions. The result shows that the pan motor man-
ages to track reference signals up to the required frequency of 1Hz. However, the
tilt motor only manages to track 0.5Hz and is thereby below the required frequency.
The result, however, proves that the concept of the thesis is possible.
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Abbreviations and symbols

MCPU Main Central Processing Unit

MCU Microcontroller Unit

HMI Human Machine Interface

IMU Inertial Measurement Unit

OIS Optical Image Stabilization

EIS Electronic Image Stabilization

PoE Power over Ethernet

NED North-East-Down

PID Proportional-Integral-Derivative

SISO Single-Input-Single-Output

IMC Internal Model Control

PTZ Pan-Tilt-Zoom

h Sampling time

I2C Inter-Integrated Circuit

LTH Lunds tekniska högskola

MPC Model Predictive Control

DC Direct current

ψ , θ , φ Euler angles relative NED

ψc, θc, φc Euler angles relative camera chassi

ψd , θd , φd Desired Euler anlges relative NED

7





Contents

1. Introduction 11
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Goals and problem formulation . . . . . . . . . . . . . . . . . . 12
1.3 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Individual contributions . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Image stabilization 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Optical image stabilization . . . . . . . . . . . . . . . . . . . . 15
2.3 Sensor shift image stabilization . . . . . . . . . . . . . . . . . . 16
2.4 Electronic image stabilization . . . . . . . . . . . . . . . . . . . 16
2.5 Mechanic-based image stabilization . . . . . . . . . . . . . . . . 16

3. Control and system overview 17
3.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Actuators, motor drivers & motion controllers . . . . . . . . . . 18
3.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 System architecture . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Control concept . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Disturbances at sea . . . . . . . . . . . . . . . . . . . . . . . . 20

4. Orientation and sensor fusion 22
4.1 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Attitude estimation with accelerometers . . . . . . . . . . . . . 25
4.3 Sensor fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5. Reference generation 36
5.1 Extracting Euler angles from a rotation matrix . . . . . . . . . . 37
5.2 Result and discussion . . . . . . . . . . . . . . . . . . . . . . . 38

9



Contents

6. Modelling 41
6.1 Physical modelling . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 System identification . . . . . . . . . . . . . . . . . . . . . . . 46

7. Trajectory generation 49
7.1 Motion profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Motion controllers . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8. Control and implementation 56
8.1 PID-control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 Control structures . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.4 Hardware implementation . . . . . . . . . . . . . . . . . . . . . 69

9. Results 74
9.1 Closed loop step response . . . . . . . . . . . . . . . . . . . . . 74
9.2 Closed loop sinusoidal response . . . . . . . . . . . . . . . . . . 76
9.3 Shake experiments . . . . . . . . . . . . . . . . . . . . . . . . . 78

10. Discussion and conclusions 84
10.1 Orientation and sensor fusion . . . . . . . . . . . . . . . . . . . 84
10.2 Reference generation . . . . . . . . . . . . . . . . . . . . . . . 84
10.3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.4 Control and implementation . . . . . . . . . . . . . . . . . . . . 85
10.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 87
A. Velocity trajectory generation 90

A.1 Velocity mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10



1
Introduction

Cameras mounted on vehicles are nowadays more common than before, mostly
because of the development in the area of autonomous systems. The role of the
camera can however be different but in many cases it is desired to keep the camera
image stable or even, if it is possible, to track certain objects. Moreover it must
not only concern autonomous vehicles but also conventional vehicles. In this thesis
image stabilization on boats has been of particular interest.

1.1 Background

Axis Communications [Axis, 2017] is a company that today is using cameras with
electronic image stabilization. However, it can only compensate for disturbances
with low amplitude as the electronic stabilization reduces the size of the image
shown. Due to this the stabilization could be improved by using mechanical image
stabilization as well, namely, control of the camera motors to compensate for exter-
nal disturbances. In this way it would be possible to suppress larger disturbances.
As mentioned above, the area of use that has been considered in this thesis is stabi-
lization onboard boats, where waves and wind affect the position of the camera in a
more dramatic way compared to land-based mountings. The disturbance frequency
is however smaller compared to many other environments, thereby making it espe-
cially suitable for mechanical stabilization which cannot operate that fast.
To measure the influence caused by disturbances, a set of sensors have been used.
All the sensors were already integrated in the camera shell and software for retriev-
ing data was also available.
The camera construction is similar to that of a gimbal, meaning that it can move
almost freely around two orthogonal axes (pan and tilt). This kind of setup is also
often used for handheld cameras where image stability is of importance. In Figure
1.1 the construction can be seen. Pan and tilt correspond to rotations around the
k-axis and e-axis, respectively.
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Chapter 1. Introduction

1.2 Goals and problem formulation

The final goal of this thesis is to have a camera that manages to stabilize the camera
image when it is exposed to disturbances between 0 and 1Hz and with respect to an
amplitude that is too large for the electronic image stabilization to handle. To reach
this main goal a set of problem formulations were set up:

• Orientation estimation: how can the camera orientation be measured?

• Reference generation: how can the pan and tilt motors be given commands
that keeps the camera in the right orientation?

• Control: how can the pan and tilt motors be controlled in order to follow the
command/reference signals?

1.3 Delimitations

In this thesis there has been no focus on optimizing code in the implementation that
was done. The main focus was instead to prove the concept and to obtain a working
prototype.
Regarding control only one controller type was investigated, meaning that the con-
troller implementation might not be optimal.

Figure 1.1 Two-axis gimbal system [Abdo et al., 2013]
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1.4 Individual contributions

1.4 Individual contributions

In order to make the work of the project more efficient it was divided between the
participants. Magnus focused on the orientation and sensor fusion, the reference
generation and the mechanical modelling, whereas Louis focused on the system
identification, the stepper motor modelling and the trajectory generation. The con-
trol design and the hardware implementation were done together, however, Louis
did a greater part in the hardware implementation and Magnus worked more with
the control design.

1.5 Outline of the thesis

In Chapter 2 image stabilization is described in general in order to give an introduc-
tion to the subject. Moreover, different techniques for stabilization are presented,
including mechanical image stabilization.

Chapter 3 gives an overall view of the system that has been used. Furthermore
a description of the control concept and possible disturbances are presented.

Chapter 4 describes the solution to the problem of finding camera orientation.
It begins with a presentation of coordinate systems and Euler angles. It also goes
into the area of sensor fusion and in the end experimental results are presented.

Chapter 5 presents reference generation which describes how compensation sig-
nals for disturbance suppression are produced. The compensation signals can also
be seen as reference signals since the pan and tilt motors are supposed to track them.

Chapter 6 and 7 present the modelling done in the project. Three different ap-
proaches are presented, namely: Physical modelling, system identification and
motion profiles.

Chapter 8 begins with a general description of control theory. Furthermore, the
control design for the pan and tilt motors is described and simulation results are
presented. In the end of the chapter hardware implementation for all project parts
are also described.

Chapter 9 presents experimental results regarding the pan and tilt motor control.
The results come from three different experiments.

In Chapter 10 a discussion and conclusion regarding the project as a whole is
presented. Moreover, possible future work is described.
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2
Image stabilization

2.1 Introduction

Image stabilization is a family of techniques used to reduce blurring associated
with the vibration on a camera or other image devices. These techniques will not
prevent motion blur caused by movement of the target subject but only rotational
movement of the image device itself. However, there also exist six-axes solutions
where also linear movement can be compensated for, but this is not considered here.
Three different rotations can compensated for depending on the technique used, see
Figure 2.1. Some of this techniques require vibration sensing, therefore sensors such
as gyroscopes and accelerometers are needed.

Figure 2.1 Axes of motion [ROHM-Semiconductor, 2017]
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2.2 Optical image stabilization

2.2 Optical image stabilization

Optical Image Stabilization, or OIS in short, is a mechanical technique that uses the
optic part of a camera. The two main methods of OIS in compact camera modules
are implemented by either moving the position of the lens (lens shift) or the module
itself (module tilt) [ROHM-Semiconductor, 2017]. For bigger camera models lens
shift is used [Golik, 2006]. Vibration on the camera module can cause misalignment
of the optical path between the focusing lens and the center of the image sensor. In
a lens shift method only the lens within the camera module is controlled and used
to realign the optical path to the center of the image sensor. In a module tilt method
the movement of the entire module is controlled, including the fixed lens and the
image sensor. This method allows for a greater range of movement compensation,
but the trade off is increased module height. Compared to other image stabilization
methods such as EIS, see more in Section 2.4, OIS systems reduce image blurring
without significantly sacrificing image quality, especially for low-light and long-
range image capture. However, due to the addition of actuators and the need for
power driving sources the OIS modules tend to be larger and as a result expensive
to implement. EIS just need some senors or no additional hardware depending on
what type of algorithm that is used. OIS can not compensate for camera roll because
of the symmetrical properties of the lens. Even if the lens is rotated its orientation
remains the same relative to the image sensor [ROHM-Semiconductor, 2017].

Figure 2.2 Main Methods of OIS Compensation [ROHM-Semiconductor, 2017]
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Chapter 2. Image stabilization

2.3 Sensor shift image stabilization

Sensor shift image stabilization system works by moving the camera’s sensor
around the image plane using actuators. With help of accelerometers and gyroscopes
it can then sense the vibration that occurs on the camera module. The advantage with
moving the image sensor, instead of the lens as in optical image stabilization, is that
the stabilization can be done regardless of the lens used. Another advantage is that
some sensor shift based image stabilization implementations are capable of correct-
ing camera roll rotation. A disadvantage compared to EIS is that shift modules tend
to be larger and as a result more expensive to implement due to the addition of
actuators and the need for power driving sources [Golik, 2006].

2.4 Electronic image stabilization

Electronic image stabilization (EIS) is a stabilization method which uses algorithms
for comparing contrast and pixel location between frames. The comparing is done
between every frame and the differences are then used to create new frames which
suffer less from vibrational motion. The fact that this stabilization method is done
by software makes it inexpensive, however, the image quality will always be re-
duced. Moreover, under low light conditions or at full electronic zoom the EIS will
suffer compared to other stabilization methods [ROHM-Semiconductor, 2017].
Some EIS algorithms can reduce computing time if they are provided information
about vibrations from an accelerometer and angular velocity from a gyroscope.
[Alexandre Karpenko, 2011]

2.5 Mechanic-based image stabilization

In mechanic-based image stabilization the solutions is built around the camera mod-
ule. One method that is purely mechanical is "steadicam" [Golik, 2006]. Another
method is to build housing around the camera and compensate the vibration with
the help of actuators. To measure vibration, gyroscopes and accelerometers are used
in the same way as some of the prior technologies mentioned. Moreover, the tech-
nique can compensate for bigger amplitudes of vibration than the other technolo-
gies, but the drawback is the size of the housing with actuators and the need for
power driving sources, so it is not suited in small spaces.
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3
Control and system
overview

This chapter will give an overall view of the system that has been used. Furthermore
a description of the control concept and possible disturbances will be presented in
the end.

3.1 Platform

The platform that has been used is an Axis PTZ-camera (pan-tilt-zoom), model
number Q6155-E. The platform is mounted so that the camera dome is under the
camera housing, as shown Figure 3.1. Pan can move from 0° to 360° and then start
over from 0° thanks to the slip ring construction. The tilt is limited to 20° (above
horizon) and -90° (below horizon). This limit comes from the dome construction.

φPan (Limitless) (3.1)

−90°≤ θTilt ≤ 20° (At horizon) (3.2)

Figure 3.1 Axis PTZ-camera model Q6155-E [Axis, 2017]
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Chapter 3. Control and system overview

3.2 Actuators, motor drivers & motion controllers

The Q6155-E camera model has stepper motors as actuators for pan and tilt respec-
tively. The stepper motors do not directly drive the camera module but there is a
belt gear between them. Stepper motor drivers constitute the power electronics that
drives the stepper motors, and they are configured in micro-step mode to get a better
precision. Moreover a motion controller which is a trajectory generator for velocity
and position is used for the PTZ-camera. Its task is to make the movement smooth
and not so jerky. The pan and tilt speed limits are 700°/s and 500°/s respectively.

−700°/s≤ dφPan

dt
≤ 700°/s (3.3)

−500°/s≤ dθTilt

dt
≤ 500°/s (3.4)

3.3 Sensors

Three different types of sensors in the PTZ-camera have been used in this thesis.
These are:

• Inertial measurement unit (IMU), consisting of a three-axis gyroscope and an
accelerometer

• Pan and tilt encoders

The IMU can be used to measure camera orientation and the encoder provides
position feedback regarding pan and tilt.

Inertial measurement unit (IMU)
The IMU integrated in the camera is a model called MPU-6050. It consists of a
3-axis accelerometer and a 3-axis gyroscope. Moreover six 16-bit analog-to-digital
converters digitizes the sensor outputs.
Different ranges can be set for the gyroscope and the accelerometer and in this
thesis Axis default settings were used, i.e. ±250◦/s for the gyroscope and ±8g for
the accelerometer.

Encoders
Two encoders are mounted on the camera module side of the belt gear in the cam-
era. The encoders provide information about the angular position for both pan and
tilt by dividing a 360◦ rotation into discrete steps. A certain sensor value thereby
corresponds to a certain angle relative to the origin position.
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3.4 System architecture

3.4 System architecture

The system architecture seen in Figure 3.2 describes the motor control and the han-
dling of sensors in the Q6155-E model. The whole system is powered by Power
over Ethernet (PoE) and the heart of the system is the Main Central Processing Unit
(MCPU) that runs embedded Linux operative system. The MCPU handles all the
communication via Ethernet, for example sending video streams and settings. The
MCPU also handles data collection from the gyroscope and the accelerometer. This
data is today used by the EIS to remove low amplitude vibration with high frequency
in the video images. From an HMI (Human Machine Interface) motor commands
can be sent via Ethernet to the MCPU, the MCPU then forwards the commands
to the MCU (Microprocessor Unit) that executes the task as seen in Figure 3.2. If
needed, information about pan and tilt position can be obtained from an encoder.
However, the encoder data must be forwarded by the MCU in order to use it in the
MCPU. The communication protocol used between the MCU and the MCPU is I2C.

Camera
module

Belt gearStepper
motor

Stepper
motor
driver

Motion
controllerMCU

Encoder

Gyro

MCPU Accelerometer

PoE HMI

Figure 3.2 System architecture of Q6155-E
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Chapter 3. Control and system overview

3.5 Control concept

The basic idea in the control was that pan and tilt could be controlled independent
of each other. This lead to the control architecture shown in Figure 3.3. As seen, the
two control loops get one reference signal each and both receives encoder feedback.
The reference signals comes from a reference generator which creates compensa-
tion references with the help of data from the encoders and the IMU. A deviation
from desired camera orientation will change the reference signals in order to sup-
press the disturbance.
The controller types that were considered were two PID-controllers. Moreover a
model of the camera dynamics was needed for simulation and to obtain good con-
troller parameters.

∑ Controller ∑

Disturbances

System ∑

Noise

∑

Disturbances

Controller∑ System ∑

Noise

rPan ePan yPan

−

rTilt eTilt yTilt

−

Figure 3.3 Control concept

3.6 Disturbances at sea

Axis has made experiments at sea were IMU-data has been gathered in order to
study which disturbance frequencies that usually appear. The boat that was used
during the experiments and the camera mounting can be seen in Figure 3.4. Fur-
thermore, some of the collected data can be seen in Figure 3.5. The figure shows
integrated gyroscope data and thereby it gives information about how orientation
can change at sea. Note, however, that the axis of rotation is not known. As men-
tioned earlier the goal was to handle disturbance frequencies between 0 and 1Hz
and this seems reasonable since the figure shows frequencies with relatively high
amplitude in this interval. There are, however, frequency components with higher
frequencies but with smaller amplitude as well, but these are easier to handle with
the EIS.
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3.6 Disturbances at sea

Figure 3.4 Camera mounting during experiments at sea
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Figure 3.5 Example of integrated gyroscope data at sea
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4
Orientation and sensor
fusion

The first problem that had to be solved in the thesis was how to obtain the camera
orientation from the IMU. This problem lead into the area of sensor fusion and two
different methods for estimating orientation, the Kalman and Complementary filter.
The performance of them both was tested and compared in order to implement the
best one.
This chapter will describe the whole process of orientation estimation, starting out
by introducing necessary coordinate systems and ending with the presentation of
real orientation data.

4.1 Coordinate systems

In order to keep the camera stabilized in a fixed position it is important that the
camera position can be measured relative to something that is fixed, namely a
fixed reference frame (inertial frame). In this thesis the North-East-Down (NED)
reference frame has been used for orientation, where "down" is aligned with the
direction of gravity [CHRobotics, 2012].

The sensor measurements, however, cannot always be measured directly in the
inertial frame because the sensors measure quantities relative to their own frame of
reference, which is not fixed in space, see Figure 4.1. This means that a conversion
of measurement data has to be done to get an inertial frame representation. A way to
do this is to use Euler angles as a representation of how the sensor frame is oriented
relative to the inertial frame [CHRobotics, 2012].
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4.1 Coordinate systems

Figure 4.1 Inertial reference frame relative to unfixed sensor frame [Alves Neto
et al., 2009]

Euler angles
As mentioned above Euler angles can be used for describing the orientation of an
inertial frame relative to a moving frame. The angles are denoted ψ , θ and φ and
represents the result of three rotations about different axes [CHRobotics, 2012]. The
rotations are called yaw, pitch and roll and can be represented as rotation matrices
as seen in Equations 4.1–4.3. The lower and upper indicis represent the starting
and ending frame for the rotation. To get a rotation matrix representing all three
rotations, all three rotation matrices have to multiplied, but one has to be careful,
because the order of the multiplication matters. In this thesis the so-called aerospace
rotation sequence will be used [Pedeley, 2013]. In this sequence the order is yaw,
pitch, roll. This means that the the yaw rotation matrix rotates a vector from the
inertial frame (I) to what in this thesis is called the first intermediate frame (In1).
The pitch rotation matrix rotates from In1 to the second intermediate frame (In2)
and lastly the the roll rotation matrix rotates from In2 to the sensor frame (S). This
is expressed mathematically in Equation 4.4 and the final rotation matrix for the
aerospace rotation sequence can be seen in Equation 4.5, where c and s represents
cosine and sine respectively.

RIn1
I (ψ) =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 (4.1)

RIn2
In1(θ) =

cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 (4.2)
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Chapter 4. Orientation and sensor fusion

RS
In2(φ) =

1 0 0
0 cosφ sinφ

0 −sinφ cosφ

 (4.3)

RS
I (φ ,θ ,ψ) = RS

In2(φ)R
In2
In1(θ)R

In1
I (ψ) (4.4)

RS
I (φ ,θ ,ψ) =

 c(θ)c(ψ) c(θ)s(ψ) −s(θ)
c(ψ)s(θ)s(φ)− c(φ)s(ψ) c(φ)c(ψ)+ s(θ)s(φ)s(ψ) c(θ)s(φ)
c(φ)c(ψ)s(θ)+ s(φ)s(ψ) c(φ)s(θ)s(ψ)− c(ψ)s(φ) c(θ)c(φ)

 (4.5)

Equation 4.5 can be used for estimating the pitch and roll angles from ac-
celerometer readings which is described in Section 4.2 [Pedeley, 2013]. Gyro read-
ings however, cannot be represented in the inertial frame using 4.5. For this the
rotation matrix in Equation 4.6 is needed. The axes of the IMU-sensor frame in this
thesis are denoted Xs, Ys and Zs and when the camera is horizontal Xs is in the oppo-
site direction of gravity. Zs is in the optical axis direction and Ys is perpendicular to
them both. So if the angular velocities in the sensor frame are denoted xvel , yvel and
zvel the Euler angle rates can be calculated as in Equation 4.7 [CHRobotics, 2012].

D(φ ,θ ,ψ) =

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ/cosθ cosφ/cosθ

 (4.6)

φ̇

θ̇

ψ̇

=

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ/cosθ cosφ/cosθ


zvel

yvel
xvel

 (4.7)

An important thing to notice about Equation 4.7 is that a pitch angle θ of 90◦

will cause some matrix elements to diverge towards infinity. This is a phenomenon
called gimbal lock which sets a limitation for Euler angles. This leads to the con-
clusion that Euler angles should not be used in applications where the pitch angle
will get near ±90◦ [CHRobotics, 2012].
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4.2 Attitude estimation with accelerometers

4.2 Attitude estimation with accelerometers

Accelerometers can be used for both sensing linear acceleration and strength of
the gravitational field. The latter can be used for estimating attitude relative to the
ground, but only under static conditions, i.e. no linear acceleration. To do this Equa-
tion 4.5 can used as it describes the relationship between the inertial and sensor
frame vector representation [Pedeley, 2013]. Under static conditions the relation
looks as follows:

Zs
Ys
Xs

= RS
I (φ ,θ ,ψ)

 0
0
−1

 (4.8)

where -1 represents -1g. The minus sign is necessary in order to get alignment
between the sensor frame and inertial frame when all Euler angles are zero, i.e. no
rotation has been done. However, this only holds when the camera is mounted with
the chassi upwards, see Figure 3.1. In the opposite case the -1g needs to be replaced
with just 1g. This is however not how the camera is supposed to be mounted. More-
over, the vector elements in the sensor frame are also represented in the unit g. If
the multiplication in Equation 4.8 is carried out the following is obtained:

Zs
Ys
Xs

=

 sin(θ)
−cos(θ)sin(φ)
−cos(θ)cos(φ)

 (4.9)

Solving for θ and φ gives:

φ = atan2

(
−Ys,−Xs

)
(4.10)

θ = atan2

(
Zs,
√

Y 2
s +X2

s

)
(4.11)

where atan2(y,x) returns the arcus tangent of y/x with respect to sign of the
input parameters. Thereby the right quadrant is determined [Bilting and Skansholm,
2011].

The calculations above show that only the pitch and roll angles can be estimated
using an accelerometer and the aerospace rotation sequence. This comes from the
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Chapter 4. Orientation and sensor fusion

fact that a yaw rotation does not change the static measurements of the accelerom-
eter in any way. It is also important to remember that the calculations do not hold
when linear acceleration is present. However, in this thesis, estimation has to be
done also when the camera is undergoing linear acceleration. This means that the
measurements from the accelerometer has to be complemented in some way. Fortu-
nately it was found that the gyroscope can do just that.

4.3 Sensor fusion

The idea of sensor fusion is to combine measurements from several sensors in or-
der to get more reliable information. Because of the unreliable attitude estimation
described in Section 4.2 it seemed reasonable to investigate if it was possible to
fuse measurements from the gyroscope and the accelerometer and thereby improv-
ing the estimation accuracy. Two different fusion algorithms were looked into, the
Complemtary filter and the Kalman filter.

Complementary filtering
When measuring attitude with gyroscopes and accelerometers each sensor has its
disadvantages. The accelerometer, as described above, does not provide reliable
measurements when the attitude is changing and the gyroscope suffers from a time-
varying bias. A way around this problems is to combine the best part of each sensor
to obtain an estimate that better corresponds to the real world. A fairly simple but
yet effective way to do this is to use the complementary filter [Zhi, 2016]. In the
frequency domain it can be described by

θ(s) =
1

1+ τs
A(s)+

τs
1+ τs

1
s

Ω(s) =
A(s)+ τΩ(s)

1+ τs
(4.12)

where A(s) is the frequency domain representation of accelerometer signal,
Ω(s) the gyroscope signal, θ(s) the attitude angle and τ the time constant of each
filter. So the idea with the complementary filter is to low-pass filter the data provided
by the accelerometer, integrate and high-pass filter the data from the gyroscope and
then add them up to give a more reliable attitude estimate. In this way the effect
that attitude changing has on the accelerometer is filtered out and complemented
with gyroscope data. The time-varying bias of the gyroscope is also filtered out and
complemented by accelerometer data. So in short, the filter provides an estimate
that is based on the best measurements of each sensor. Figure 4.2 shows the Bode
plot of both the high- and low-pass filter. It can easily be seen that the complemen-
tary filter can operate over larger frequency band than each sensor for itself [Zhi,
2016] [Higgins, 1975].

A problem with Equation 4.12 is that it is in continuous time and can thereby
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4.3 Sensor fusion

not be implemented on a computer. To discretize it, backward difference can be
used. Equation 4.12 then becomes
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Figure 4.2 Bode plot of high and low-pass filter that together constructs the com-
plementary filter, here with τ = 1

s =
z−1

zh
⇒ θ(z) =

(A(z)+ τΩ(z))h
(h+ τ)− τz−1 (4.13)

where h is the sampling interval. Conversion to the time domain gives:

θ(k) =
τ

h+ τ
(θ(k−1)+ω(k) ·h)+ h

h+ τ
·a(k) (4.14)

Setting α = τ/(h+ τ) gives:

θ(k) = α(θ(k−1)+ω(k) ·h)+(1−α) ·a(k) (4.15)

Equation 4.15 can easily be implemented on a computer, and moreover its sim-
plicity sets little requirements on computational capacity. In that sense it is a good
alternative to more complex filters, such as the Kalman filter [Zhi, 2016].

In this thesis the filter has been implemented according to Equation 4.15 but
note that the filter does not work directly with raw sensor data. Some processing
has been done before the filtering, see Figure 4.3. In order to obtain an Euler angle
from the accelerometer trigonometry has to be used, see Section 4.2. The gyroscope

27



Chapter 4. Orientation and sensor fusion

data also has to processed to get an earth frame representation, see Equation 4.7.
Note, in the figure, that this is done by using Euler angles estimated in the previous
sampling interval. Moreover, it needs to be integrated to get an Euler angle that can
be used by the filter.

Figure 4.3 Block diagram of the complementary filter, including raw data process-
ing

Kalman filtering
The Kalman filter is an iterative algorithm which combines noisy measurements
and predictions to provide an optimal estimate of the state of a dynamical system.
That the filter is optimal refers to the fact that it minimizes the estimation error
covariance. However, for the filter to work a mathematical model for prediction
is needed and moreover the noise covariance has to be estimated and included in
the algorithm. In short the algorithm can be described as a predictor-corrector al-
gorithm. This means that predictions are made by using the dynamical model and
these predictions are then "corrected" by measurements. So the measurements acts
as a feedback for the prediction [Elmenreich, 2002]. The dynamical model that is
needed can if linear be described by

xk+1 = Axk +Buk +wk (4.16)

where x is the state vector, A the state transition matrix, B the input matrix, u the
input vector and w the process noise. The process noise is modeled as white noise
meaning wk ∼ N(0,Qk) where Qk is the covariance matrix [Elmenreich, 2002].
Another equation is also needed in order to relate the measurements to the states,
which is given by

yk = Cxk +vk (4.17)
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4.3 Sensor fusion

where C is the observation matrix, y the sensor measurements and vk the
measurement noise. The measurement noise can also be described as white noise
vk ∼ N(0,Rk) with covariance matrix Rk. With the equations above the prediction
part of the algorithm can be described as follows:

x̂k+1 = Axk +Buk (4.18)

Pk+1 = APkAT +Qk (4.19)

where Equation 4.18 predicts the future state vector xk+1 and the second, Equa-
tion 4.19, predicts the estimation error covariance of the state. The next step of the
algorithm is the update, where the predictions are corrected by measurements. This
is done in the following way:

Kk+1 = Pk+1CT (CPk+1CT +Rk+1)
−1 (4.20)

xk+1 = x̂k+1 +Kk+1(yk+1−Cx̂k+1) (4.21)
Pk+1 = (I−Kk+1C)Pk+1 (4.22)

where K is known as the Kalman gain. This gain is what minimizes the state
estimation error when converged to a stationary value [Glad and Ljung, 2003].
Equations 4.18–4.22 contain all steps of the algorithm and after 4.22 it is repeated.
This iterative behavior and the fact that every iteration takes approximately the same
time makes the algorithm well-suited for real-time applications [Elmenreich, 2002].

In order to predict the pitch and roll angle, using the gyroscope and Equation
4.7 only, the following dynamical model was considered:

θk = θk−1 +(θ̇k−bk−1)h (4.23)

where θ represents the pitch angle, θ̇ the pitch rate, b the bias of the pitch rate
and h the sampling interval of the IMU [Sloth Lauszus, 2012]. The same model can
be applied to predict the roll and yaw angle.
In order to get a state space representation like the one presented in Equation 4.16
the following state vector can be chosen:

x =

(
θ

b

)
(4.24)

leading to the state space representation
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(
θk
bk

)
=

(
1 −h
0 1

)(
θk−1
bk−1

)
+

(
h
0

)
θ̇k +wk (4.25)

where the noise is assumed to be uncorrelated meaning that the covariance ma-
trix Qk looks as follows

Qk =

(
Qθ 0
0 Qb

)
(4.26)

where Qθ and Qb represents the variance of the noise that is corrupting the
estimation of θ and b respectively. In this case the noise in θ comes from the gy-
roscope measurements [Pycke, 2006]. Due to this fact that variance could be found
by experiment.

In the update step of the algorithm the accelerometer can be used to correct the
measurements made by the gyroscope [Sloth Lauszus, 2012]. This is done by using
the accelerometer as described in Section 4.2. The relation between the measure-
ments and the the states according to Equation 4.17 is then given by

yk =
(

1 0
)(

θk
b

)
+ vk (4.27)

where v is a scalar meaning that the measurement noise covariance matrix Rk is
just the variance of the measurement noise, i.e. the accelerometer noise. This value
could also be found experimentally.

Note that only the roll and pitch angles could be estimated with the Kalman filter.
Although the yaw angle could be predicted it could never be corrected by the ac-
celerometer. The same holds for the Complementary filter. This was a problem that
had to be solved in order to get the reference generator working.
To clarify it can also be mentioned that one Complementary/Kalman filter either
estimates roll or pitch. To obtain both, two filters are needed.

Figure 4.4 shows a block diagram of how the Kalman filter was implemented
in this thesis. As can be seen the implementation was done in the same context as
the Complementary filter.
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Figure 4.4 Block diagram of the Kalman filter, including raw data processing

4.4 Result and discussion

Separate use of gyroscope and accelerometer
To see the see the disadvantages of the attitude estimation using the accelerometer
a test using only the accelerometer was carried out. The result can be seen in Figure
4.5. Note that the estimation was done under static conditions although noise with
a standard deviation of 0.0098rad ≈ 0.56◦ is present. The experiment shows that
the accelerometer is corrupted with short-term fluctuations even under static con-
ditions. To remove this a low-pass filter can be used, and this is exactly what the
Complementary filter provides.
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Figure 4.5 Accelerometer estimation of pitch
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Figure 4.6 also shows an estimation of the pitch angle, the difference is that the
estimation is done by integrating the rotated gyroscope data. Note that the scale on
the y-axis is the same as in Figure 4.5 but the stationary value is different due to gy-
roscope bias and an incorrect initial pitch value. Remember that the pitch value can
only change during motion if a gyroscope is used. However, the interesting thing to
look at is the stationary behavior which differs significantly from the accelerometer.
It is clear that the gyroscope does not suffer from short-term fluctuations, but rather
from long time drift, which is a result of an accumulation of errors in the pitch rate
measurement. To remove this a high-pass filter can be used which also is provided
by the Complementary filter.
Note that similar results were obtained when estimating the roll angle.
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Figure 4.6 Gyroscope estimation of pitch, i.e. integration of pitch rate

Complementary and Kalman filtering
In order to decide which filter to use for the sensor fusion, experiments were car-
ried out with both filters. The experiments were carried out under both static and
dynamic conditions.

In Figure 4.7 the result of both filters are shown. This is for the static case and
an initial pitch angle equal to zero. It can be seen that the Complementary filter
converges faster than the Kalman filter which is partly a consequence of the choice
of initial estimation error covariance. In stationarity, however, the Kalman filter
suffers less from short-term fluctuations which most certainly is a consequence of
a better statistical description of the noise compared to the Complementary filter
where the filter is obtained by choosing a cut-off frequency only [Higgins, 1975].
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Figure 4.7 Kalman and Complementary filter estimation of pitch, under static con-
ditions

Figure 4.8 shows the result of the experiment carried out under dynamic condi-
tions, i.e. a changing pitch angle. It can be seen that the Kalman filter follows the
changing pitch angle in the same way as the Complementary filter. Moreover, from
Figure 4.9, it is clear that the Complementary filter suffers more from short-term
flucuations even in this case.
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Figure 4.8 Kalman and Complementary filter estimation of pitch under dynamic
conditions
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Figure 4.9 Kalman and Complementary filter estimation of pitch under dynamic
conditions (Figure 4.8 enlarged )

4.5 Conclusion

From the results it is clear that the sensor fusion gives more reliable information
about the current orientation. Moreover, the Kalman filter shows a less noisy esti-
mation than the Complementary filter, which gives reason for choosing the Kalman
filter in a final implementation. However, the Kalman filter requires more compu-
tation time but this is negligible since the sampling interval was chosen long enough.

Another advantage of the Kalman filter is that it gives information about the bias
of the roll and pitch rates. This can be seen by plugging in the update of the bias in
Equation 4.21. The update is then given by:

bk = b̂k +Kk(θk− θ̂k) (4.28)

which means that the bias is obtained by integrating the error between the ac-
celerometer reading and the prediction made by the gyroscope. Due to the fact that
the bias can change over time, mainly because of temperature changes, the Kalman
filter has a clear advantage over the Complementary filter and because of this the
Kalman filter was implemented.

There was one major problem with the orientation estimation, the yaw angle.
As described earlier it cannot be obtained by sensor fusion due to the accelerom-
eter. This lead to the solution of just integrating the yaw rate given by the rotated
gyroscope data. The integration is given by:
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ψ =
∫ t

t0

dψ

dτ
dτ (4.29)

This means that the yaw angle always will be given the value zero initially,
regardless of true orientation relative to the north-east direction. Another issue is
the bias which will not be estimated continuously. To solve this a yaw rate bias
estimation was implemented to be carried out under static conditions. The idea of
the estimation was to gather as much yaw rate data as possible under a certain time
and then take the mean value of it in order to obtain a bias estimate. This gave
a decent result, meaning that the drift was reasonable. However, under changing
temperatures it might be worse.
The only way to solve the problem regarding true orientation is to provide additional
data to the camera, from a magnetometer for example. This data can then be fused
with the gyroscope in order to get a more reliable estimate. However, the integration
was enough to prove the concept of the thesis.

35



5
Reference generation

The estimation of the camera orientation opened up for the opportunity to create
a feedback path for the upcoming control design. This was the initial thought, but
this was later reconsidered since the camera actuators do not control pitch and yaw
directly, unless the camera chassi is horizontal. The actuators do rather control pan
and tilt which is the camera orientation relative its own chassi and not the NED-
frame. This fact lead to the idea of reference generation, which means that reference
signals for pan and tilt would be created in order to reach the desired NED-frame
orientation. To do this two new frames had to be introduced resulting in a total of
four frames, described as follows:

• NED-frame - North-East-Down inertial frame

• Sensor frame - frame which follows the movements of the sensor.

• Desired frame - frame which is oriented in the desired camera orientation
relative to the NED-frame.

• Chassi frame - frame which follows the movements of the camera chassi and
is thereby an inertial frame for pan and tilt motions.

With the frames defined the problem could be stated as follows: How does the
sensor frame need to be oriented relative to the Chassi frame in order to align with
the desired frame?

The first step of the solution requires a rotation matrix which describes the ro-
tation that has to be done relative to the Chassi frame. This can be expressed as
follows:

RDesired
Chassi = RDesired

NED RNED
SensorR

Sensor
Chassi (5.1)

where the matrices on the left have the same look as in Equation 4.5 and its
inverse, which means that three sets of Euler angles have to be known in order to

36
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get a matrix containing only numerical values. The angles that create the matrices
are the following:

• RDesired
NED - matrix defined by the desired Euler angles relative to the NED-

frame (φd ,θd ,ψd), which is given by the user.

• RNED
Sensor - matrix defined by the current Euler angles of the sensor frame rela-

tive to the NED-frame (φ ,θ ,ψ), i.e. the angles estimated with IMU-data.

• RSensor
Chassi - matrix defined by the current Euler angles of the sensor frame rela-

tive to the Chassi frame (φc,θc,ψc), where ψc and θc is given by the pan and
tilt encoders. φc is always equal to zero since a roll rotation cannot be done
relative to the Chassi frame.

This means that RDesired
Chassi can be created at any time. Furthermore, if it is possible

to find Euler angles relative to the Chassi frame that directly creates RDesired
Chassi these

can be used as references for pan and tilt. Obviously, Euler angle extraction is then
needed.

5.1 Extracting Euler angles from a rotation matrix

The extraction of Euler angles can be done by first expressing RDesired
Chassi as an arbi-

trary rotation matrix given by

RDesired
Chassi =

R00 R01 R02
R10 R11 R12
R20 R21 R22

 (5.2)

and then match the matrix elements in Equation 4.5 with it [Day, 2012]. The
roll angle can be extracted in the following way:

φc = atan2(R12,R22) = atan2(s(φc)c(θc),c(φc)c(θc)) (5.3)

Moreover the pitch angle can be extracted by first computing:

cos(θc) =
√

R2
00 +R2

01 (5.4)

and then

θc = atan2(−R02,c(θc)) (5.5)
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Lastly ψc can be obtained by inserting the pitch and roll angles into Equation
4.5 with ψc = 0. The transpose of the resulting matrix can then be multiplied with
RDesired

Chassi to get a result which can be matched with Equation 4.1. The matching
results in:

ψc = atan2(s(φc)R20− c(φc)R10,c(φc)R11− s(φc)R21) (5.6)

which completes the Euler angle extraction [Day, 2012].

The calculations made make it possible to use ψc as a reference for pan and θc
as a reference for tilt since those values will result in an alignment of the sensor
frame and the desired frame. Note, however, that the angle φc cannot be used as
a reference in this thesis due to the fact that the camera cannot do a roll rotation
relative to the chassi frame. This means that the desired orientation relative to the
NED-frame is not possible to reach in all cases.

5.2 Result and discussion

In order to test the reference generation a Simulink simulation was carried out under
the following conditions:

• (φd ,θd ,ψd) = (0,0,0)

• (φ ,θ ,ψ) = (0,Pd(t),0), i.e. a time varying pitch disturbance

Meaning that only a tilt reference was generated. Three different time varying pitch
disturbances were investigated, namely:

• Pd(t) = 0.3 · sin(πt), with amplitude in radians

• Pd(t) = 0.8 ·H(t−1), where H(t−1) is the Heaviside step function

• Pd(t) has the shape of a triangle wave with amplitude 1rad and frequency
0.5Hz

The results of the three cases can be seen in Figures 5.1 - 5.3. The figures show
clearly that the reference generator produces a tilt reference which suppresses the
disturbance completely. In reality however, there will be time delays. The compu-
tational time delay for the reference generation was measured to be around 0.7ms.
Moreover, the sampling interval was set to 50ms meaning that the computational
delay could be considered negligible. The reason for this choice was that the final
system could not operate at a faster rate. Another time delay of importance that had
to be investigated was the process time delay. This is described in more detail in
Sections 6 and 8.
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5.2 Result and discussion

As described in Equation 3.2 in Section 3 the tilt motion of the camera has a phys-
ical limit. This limit was implemented in the reference generator to not exceed the
mechanical limitation of the camera tilt.
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Figure 5.1 Tilt reference generation when pitch disturbance is sinusoidal
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Figure 5.2 Tilt reference generation when exposed by a pitch step disturbance
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Figure 5.3 Tilt reference generation when exposed by a triangle wave pitch distur-
bance
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6
Modelling

A model of the camera was needed for simulation and for finding appropriate con-
trol parameters for the controller. In this thesis this was done in three ways. The
first approach was to model the camera with a psychical model, i.e., with the laws
of nature. However, this was never used in the control design due to the extensive
work of finding the right physical parameters and also due to the fact that it was
actually the motion controllers that decided the behavior of camera movements.
This realization lead to the idea of modelling the camera with motion profiles, which
is what is used by the motion controller. This approach was however not used in the
final control design, due to lack of time. The idea will be presented in Chapter 7
though.
The third approach was to model the system with system identification. This was
done successfully and was later used in the control design.
In the sections below the physical modelling and the system identification is de-
scribed. The motion profile is as mentioned described in Chapter 7.
Even though the physical model and the motion profile was not used to reach the
final result of the thesis they are most relevant to describe since this can be used in
later projects which might go deeper into this.

41



Chapter 6. Modelling

6.1 Physical modelling

The Axis camera uses stepper motors for driving both pan and tilt. However, the
stepper motors do not drive the mechanical system directly. In between there are
belt gears. Due to this the physical modelling was divided into three parts as seen in
Figure 6.1. For the mechanical system block a two-axis gimbal model was investi-
gated. In the three upcoming subsections mathematical models for each subsystem
will be presented.

Actuators Gears Mechanical dynamics

Figure 6.1 Physical model of the system

Stepper motors
The Axis camera model uses stepper motors as actuators for moving pan and tilt.
The are three main types of stepper motors:

• Permanent magnet stepper motors

• Hybrid stepper motors

• Variable reluctance steppers motor

The Axis camera uses hybrid stepper motors and as the name applies it is a com-
bination of a permanent magnet and a variable reluctance stepper motor. In Figure
6.2 it can be seen that the windings create the stator poles and that a permanent
magnet is mounted on the rotor. Each pole has between two and six teeth and most
commonly there are eight stator poles. The windings are two in total and each wind-
ing is placed on four of the eight stator poles: winding A is placed on poles 1, 3, 5,
7 and winding B is placed on poles 2, 4, 6, 8. Successive poles of each winding are
wound in the opposite sense.
The rotor is a cylindrical permanent magnet, magnetized along the axis with radial
soft iron teeth.
The main principle of the motor is that when certain poles generate magnetic flux,
the rotor will move until the airgap reluctance of the flux path is minimized [Acar-
nely, 2002].
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Figure 6.2 Side view and cross-sections of the hybrid stepping motor [Acarnely,
2002]

Mathematical model
For a hybrid stepper motor the dynamics can be described with Equations 6.1–
6.4 and the same equations can be found in a number of publications [Kępiński et
al., 2015][Acarnely, 2002]. The four equations are non-linear ordinary differential
equations:

diA
dt

=
1
L
[VA−RiA +Kmω sin(NrΘ)] (6.1)

diB
dt

=
1
L
[VB−RiB +Kmω cos(NrΘ)] (6.2)

dω

dt
=

1
J
[−KmiA sin(NrΘ)+KmiB cos(NrΘ)−Bω− τl ] (6.3)

dΘ

dt
= ω (6.4)

where iA, iB, VA, VB are currents respectively voltages in phases A and B. R and
L are winding resistance and inductance. Km is the motor torque constant, B is a
viscous friction coefficient, Nr is the number of rotor teeth, J is the rotor moment of
inertia, τl is the load torque, ω is the rotor speed and Θ is its angular position.
Equations 6.1–6.2 determine the current in the motor windings, i.e. phase A and B.
Equations 6.3–6.4 correspond to Newton’s 2nd law of rotational motion.
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Belt Gear
A belt gear is placed between the stepper motors and the two-axis gimbal and does
thereby add more dynamics to the system. To transform angular velocity (ωn) and
torque (Mn) from the stepper motor side to the gimbal side the following equations
can be used:

M1 =±rM2 (6.5)

ω2 =∓rω1 (6.6)

Where r is ratio of circumference between the belt wheels, M1 the torque of wheel
1 and ω1 the angular velocity of wheel 1. The same notation is used for wheel 2 but
with the index 2 instead [Ljung, 2007].

Two-axis gimbal system
The equations of motion for the gimbal system were find in the article [Abdo et
al., 2013]. Due to the comprehensive calculations carried out in the article only a
brief derivation and the resulting equations will be presented here. Furthermore the
model was assumed to have no dynamic unbalance, i.e., symmetrical mass distribu-
tion.

In Figure 6.3 the gimbal is presented together with three coordinate systems fixed
to the platform, body A and body B. The platform frame (i, j,k) is the same as
the previously mentioned chassi frame, the B-frame (n,e,k) represents pan motion
relative to the platform and the A-frame (r,e,d) represents tilt motion which is done
relative to the A-frame. The A-frame coincides with the sensor frame. Also note
that, compared to the article, encoders are used to measure η and ε , and the gyro-
scope/IMU mounted on body A is as mentioned in Chapter 4 used for estimating
orientation relative to the NED-frame.

The basic idea for obtaining the equations of motion is to consider the tilt and
pan as rigid bodys. In this way Euler’s second law can be used, which states:

T = J · d
dt

ωωω(t)+ωωω(t)× (J ·ωωω(t)) (6.7)

where T is the torque vector applied and contains applied torques to either the
e-axis or the k-axis, i.e. tilt and pan. J is the inertia matrix in either the A or B-frame
and ωωω(t) is the angular velocity around every axis in either the A or B-frame.
So Equation 6.7 can be used for describing the signal relationship between applied
torque and angular position and moreover it describes how the pan and tilt system
affect each other. For details see the article [Abdo et al., 2013].
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6.1 Physical modelling

Figure 6.3 Two-axis gimbal system [Abdo et al., 2013]

If the equation is used for the tilt-system without considering any dynamic un-
balance the following is obtained:

Aeω̇Ae = Te +TD1−e +TD2−e (6.8)

where TD1−e and TD2−e are disturbance torques, Te the applied torque origi-
nating from the stepper motor, Ae the e-axis moment of inertia and ω̇Ae the e-axis
angular acceleration.
Since the encoder measures angular position around the e-axis the only thing that
has to be done to obtain ε is to divide both sides with Ae and then integrate two
times.

The pan-system is a little bit more complicated. Mostly because of the k-axis
moment of inertia which changes with movements in the tilt-system. The equation
obtained when applying Equation 6.7 is the following:

Jeqω̇Bk = Tk +TD1−k +TD2−k +TD3−k +TD4−k (6.9)

where Jeq is the k-axis instantaneous moment of inertia, Tk the applied torque,
ω̇Bk the k-axis angular acceleration and the other four terms are disturbance torques.
The disturbances do appear due to the cross-coupling between the pan and tilt sys-
tem.
Likewise the tilt-system η is obtained by dividing both sides with Jeq and integrat-
ing two times.

The model was investigated in simulation but was never used in the control de-
sign as mentioned earlier.
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Chapter 6. Modelling

6.2 System identification

System identification deals with the problem of creating dynamical models of sys-
tems by investigating the relation between input and output signals. There are sev-
eral methods for doing this, some more advanced than others. In some cases certain
things are already known about the system, for example physical constants. In other
cases there are no knowledge about the system. In these cases black box models can
be created [Ljung, 2007]. This is the system identification approach that has been
applied in this thesis.

Black box model
In contrast to a physical model a black box model only describes the relationship
between the input signals and output signals of a system and does not care about
the underlying physics [Ljung and Glad, 2004]. There are several methods that can
be used to describe the relationship and the method used in this thesis is called step
response identification.

Step response identification
Step response analysis is a simple and frequently used method for analyzing how
signals affect each other. The idea of the method is to change all input signals at
once and then study how the output signals are affected [Ljung and Glad, 2004].
The change of input signals, u(t), is done in the following way:

u(t) = u0, t < t0; u(t) = u1, t ≥ t0 (6.10)

Meaning that input signals gets the shape of a step. When investigating the effect
on the output signals the following can be looked at:

• Time delays

• Static gain

• Character of response, e.g., oscillatory, damped etc.

In this thesis this kind of experiment has been done on two systems, pan and
tilt, respectively. Moreover it was assumed that the two systems did not affect each
other meaning that two single-input-single-output (SISO) models were created.

To do the experiment a step generator was implemented in the camera software.
The signal that was generated was the stepper motor speed signal, giving it the
unit steps/s, and the output was measured with the gyroscope (rad/s). Due to this
the experiment was carried out with the sensor frame in alignment with the chassi
frame before starting the rotation. This was done to make sure that the gyroscope
would measure rotation around the pan- and tilt-axis, i.e., the k- and e-axis in Figure
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6.2 System identification

6.3. The gyroscope was used instead of the encoder since it had a higher sampling
rate.

Result and discussion
The results of the pan-experiment is presented in Figure 6.4. As can be seen there
are two responses to the step that is done at t = 0, the dashed blue line, i.e. the
experimental response, and the solid blue line, i.e. the model response. To get these
results a model match was done, meaning that a dynamical model with similar step
response was chosen to represent the real pan-system. The resulting model can be
seen in Figure 6.5. The best match was obtained when the parameters a and T was
set to 35 and 0.025s respectively. Furthermore the integrator was added in order to
get motor position instead of motor angular velocity because it is the position that
is going to be controlled.
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Figure 6.4 Experimental and simulated step response of the pan-system

In Figure 6.5 it can also be seen that the tilt-system is described by the same
model. This was not verified though, since the experiment was hard to perform on
the tilt-system because of the tilt limitation described in Equation 3.2. However, it
seemed like a reasonable assumption due to the similarities in mechanical setup and
in configuration of the motion profile in the motion controllers.
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1
s

a
s+ae−T s 1

s

Panvelocity PanPosition

Tiltvelocity TiltPosition

Figure 6.5 Model of the system
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Chapter 6. Modelling

Note that the models described above are valid only for a certain motion profile
configuration. This is because the motion profile is a trajectory generator for the
stepper motor. A change in configuration is thereby the same thing as a change in
dynamics. In Figure 6.6 the step responses of three different configurations are illus-
trated. It is clear that all three responses cannot be described by the same dynamical
model. However, the configuration shown in Figure 6.4 is the standard configura-
tion which is used in general. Due to that the dynamical models in Figure 6.5 can
be used for control design.
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Figure 6.6 Step response (pan) with three different motion profile configurations
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7
Trajectory generation

In robotics and motor control it is often required to generate a trajectory in order to
reach a desired velocity or position. How the trajectory looks is often set by con-
straints on the process or the actuators. Furthermore, trajectory generation can be
used in both open and closed loop systems as Figure 7.1 shows.
The PTZ-camera model Q6155-E uses two motion controllers that act as indepen-
dent velocity trajectory generators for the pan and tilt stepper motors, respectively.
Their location in the system architecture can be seen in Figure 3.2. This means that
the motion controllers decide how the pan and tilt systems are allowed to move. In
turn, it means that constraints are put on the physical models described in Chapter
6. Because of this, the behavior of the pan and tilt systems directly depend on how
the trajectories are generated, which is the topic of this chapter. Some details on
the calculations of phase durations are are collected in Appendix A. The generated
profile could furthermore be used in model predictive control, but that is outside the
scope of this thesis.

Trajectory
generation ∑ Controller ∑

Disturbances

System ∑

Noise

∑

Disturbances

Actuator
driver

System ∑

Noise

Trajectory
generation

r e y

−

r y

Figure 7.1 Closed (top) and open (bottom) loop system
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Chapter 7. Trajectory generation

7.1 Motion profiles

Two common motion profiles are the S-profile and the trapezoidal profile. Other
names are third order trajectory profile and second order trajectory profile. Figure
7.2 shows a comparison between the two. The order depends on where you want
to limit your system. The trapezoidal profile limits acceleration, and the S-profile
limits the time derivative of acceleration, often referred to as jerk. This means that
the order of the profile polynomial increases when n in Expression 7.1 increases.

dnx(t)
dtn n ∈ N n≥ 2 (7.1)

The limitation changes in a step-formed manner between time intervals, as can
be seen in the acceleration limitation for the trapezoidal profile in Figure 7.2. When
the order increases more time intervals (phases) will be present in the limitation
graph. The disadvantage of higher order trajectory profiles is increased complexity
and this will result in an increased trajectory execution time. However, this is usu-
ally compensated for, due to reduced settling time. One of the advantages is that
higher order trajectory profiles inherently have a lower energy content at higher fre-
quencies. This means that resonances at higher frequency ranges will not excite the
process very much. Other advantages are less demands on actuators and processes,
compared to step-formed references. This will result in less wear and tear.
More about this topic can be found in for instance. [Linderoth, 2013] [Lewin, 2007]
[Haschke et al., 2008] [Lambrechts et al., 2005] [Kröger et al., 2006] [Reflexxes,
2017] [Kröger and Wahl, 2010]

Figure 7.2 (1A) S-curve and (1B) trapezoidal profile [Lewin, 2007]
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7.1 Motion profiles

S-profile
To reach a target it is often desired to have a "smooth" transition. This is done by
limiting the derivative of acceleration with respect to time, also called jerk ( j). This
motion is often called an S-profile or S-curve in motor controller terms. The S-
profile can often be used in two different modes, velocity mode or position mode.
In velocity mode the goal is to reach a constant velocity whereas the goal of the po-
sition mode is to reach a certain position. The mode that is used decides the number
of constraints and phases that are needed. Figures 7.2 and 7.3 show the S-profile in
position mode. There are seven phases (i) that correspond to seven different time
intervals in Equation 7.2, and there are seven steps between the phases in the jerk-
profile, as seen in Equation 7.3.

∆ti i = {1, 2, 3 . . .7} (7.2)

~j = [±J1, 0, −J3, 0, −J5, 0, J7] (7.3)

The double sign for jerk J1 of the first phase shall indicate that J1 switches sign, if
the initial acceleration exceeds its limit, resulting in a double deceleration profile
within phases 1–3. Equations 7.4–7.6 show the set of polynomial equations for ac-
celeration, velocity and position, which have to be solved for obtaining the phase
durations ∆ti.

ai = ai−1 + ji∆ti i = {1, 2, 3 . . .7} (7.4)

vi = vi−1 +ai−1∆ti +
1
2

ji∆t2
i i = {1, 2, 3 . . .7} (7.5)

xi = xi−1 + vi−1∆ti +
1
2

ai∆t2
i +

1
6

ji∆t3
i i = {1, 2, 3 . . .7} (7.6)

Note that the left side of Equations 7.4–7.6 are the end values for each phase.
In position mode there are constraints on acceleration and velocity in some of the
phases, namely:

a3 = 0 a4 = 0 a7 = 0 v7 = 0 (7.7)

There are also limitations in maximum acceleration, maximum deceleration and
maximum velocity. This will set constraints on phases 2, 4 and 6:

a2 =±amaxacc a6 =∓amaxdec v4 =±vmax (7.8)

Note, that in order to calculate negative position the negative of ~j and the bottom
signs of Equation 7.8 can be used.
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Figure 7.3 An example of a S-profile in position mode

In velocity mode only three phases are needed in order to reach the target ve-
locity. This means that there are just three phase durations and jerk-profile steps, as
seen in Equations 7.9–7.10. Moreover, Equations 7.4–7.6 can be used to calculate
acceleration, velocity and position for the three phases. Equation 7.11 shows the
constraints and limits that are needed.

∆ti i = {1, 2, 3} (7.9)

~j = [±J1, 0, −J3] (7.10)

a2 =±amaxacc a3 = 0 (7.11)
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7.2 Motion controllers

7.2 Motion controllers

Axis uses the motion controller chip TMC4361A-LA from Trinamic and it is used
for controlling the stepper motors [Trinamic, 2017]. The chip has capability to gen-
erate both S-profiles and trapezoidal profiles. The current configuration is S-profile
motion and both the pan and tilt system are equipped with a motion controller in
an open loop configuration as Figure 7.4 shows. However, the encoders are used to
correct the position after a movement has been carried out. Moreover, the motion
controllers can be used in both velocity and position mode.

Figure 7.4 An open loop case with TMC4361A-LA [Trinamic, 2017]

In this thesis the motion controllers have been used in velocity mode for both
the pan and tilt system. The jerk profile was not changed because it was already op-
timized for Axis’ needs. This means that all phases in the jerk-profile are different,
as seen in Equation 7.12.

J1 6= J3 6= J5 6= J7 (7.12)

Depending on if J3 = J7 or J3 6= J7 the behavior motion controllers will be
different in the case of a u-turn1. If J3 6= J7 the behavior will be as shown in Figure
7.5 and in the case J3 = J7 the behavior will be as seen in Figure 7.6. It is clear that
J3 = J7 creates the fastest possible u-turn1. This is because the acceleration does
not have to be 0 when the velocity is 0. Furthermore, J3 = J7 can be described by
Equations 7.9–7.11. For the case J3 6= J7 it gets a little bit trickier, but this can be
solved with Equations 7.9–7.11 as well, by introducing some logics. This can be
done as follows:

First set the target velocity to 0 with the following constraints:

~jdcc = [±J5, 0, −J7] a2 =±amaxdec a3 = 0 (7.13)

Then use the end value, i.e., acceleration, velocity and position, as initial values and
also set the "real" target velocity with following constraints:

~jacc = [±J1, 0, −J3] a2 =±amaxacc a3 = 0 (7.14)

1A u-turn means that the sign and possibly the absolute value of the current velocity changes.
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Chapter 7. Trajectory generation

Figure 7.5 U-turn when J3 6= J7. The dashed line indicates where the velocity and
acceleration are equal to 0 [Trinamic, 2017]

Figure 7.6 U-turn when J3 = J7. The gray line shows the case J3 6= J7 [Trinamic,
2017]
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7.3 Discussion

When using a desired motion profile like the S-curve for the reference the problem
is to calculate the ∆ti, representing how long each phase is, based on the limits for
acceleration, velocity and jerk. Moreover, the initial values are known, i.e., a0, v0
and x0. The mode that is used will affect the complexity, i.e., the position mode
results in more phases, limits and constraints compared to the velocity mode. As
mentioned earlier, the velocity mode was used and in Appendix A a more detailed
calculation of ∆ti is provided. The motion controllers add additional complexity
depending on which of the cases J3 = J7 or J3 6= J7 that is used. For the latter case,
logics can be added to the calculations done in Appendix A. If the motion controller
behavior would have been used in the control design, a better controller performance
had most certainly been obtained.
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8
Control and implementation

The control design of the thesis was done in the MATLAB extensions Control Sys-
tem Designer and Simulink with the pan and tilt models described in Chapter 6. Due
to the assumption that the systems did not affect each other through cross-couplings
and their identical models only one controller had to be designed. The choice of
controller fell on the PID-controller which is a relatively simple but often very ef-
fective controller. It is typically used as shown in Figure 8.1, where the three left
blocks represents the controller. However, some modification of the algorithm was
needed to get a successful implementation.
The upcoming sections will describe general control theory, the design process and
the implementation of the whole control system, including orientation estimation
and reference generation. Moreover the resulting controller will be presented in a
simulation.

∑ K

K
Tis

sKTd

∑ System
r

e
u y

−

Figure 8.1 A typical PID control setup
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8.1 PID-control

PID-control is a frequently used method for controlling dynamcial systems. Much
for its simplicity and intuitive behavoiur. In its most simple form it can be described
by the equation

u(t) = K ·

[
e(t)+

1
Ti

t∫
0

e(τ)dτ +Td
de(t)

dt

]
(8.1)

where e is the control error, Ti the integral time, Td the derivative time and
K the proportional gain. The name PID refers to the three terms in Equation 8.1,
proportional, integral and derivative [Wittenmark et al., 2014]

The proportional term of the controller gives a contribution to the control sig-
nal that is proportional to the control error. This means that a higher value of K will
result in a greater control signal and therefore in most cases also a faster process
response. However, the stability of the closed loop system will decrease with an
increasing value of K. Another issue with the proportional part is that it can give a
steady state error [Thomas, 2008] [Åström and Murray, 2008].

The second term in Equation 8.1 is the integral term. The integral time Ti is a
design parameter which decides the level of contribution that the integral term will
have on the control signal. The advantage with this term is that it can take care of
the steady state error which the proportional part cannot handle and compensate
for the stationary effect of load disturbances. An intuitive way to realize this is to
think of the integral term as an accumulation of past errors, which will not stop
accumulate until the error is zero. However, a low value of Ti can cause a very
fast accumulation and can therefore give overshoots in the process output. More-
over the accumulation can in the worst scenario cause the actuator to saturate. In
this case the feedback will stop working because the process output can change
without a reaction from the actuator. This is known as integrator windup and can
be avoided with different kinds of anti-windup methods [Åström and Murray, 2008].

The third and last term in Equation 8.1 is the derivative term which contains the
design parameter Td . The term provides two properties. The first is an increasing
speed of the control loop and the second is improved stability. Increasing speed can
be realized in the case of an increasing error. In this situation the derivative part will
give the control signal an extra contribution meaning that the error can be reduced
faster. Improved stability can be realized in the opposite situation, namely when
the error is decreasing. In this case the derivative term will decrease the control
signal and thus giving a smaller overshoot. In other words the derivative term can
be described as a predictor [Thomas, 2008] [Årzén, 2014].
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Chapter 8. Control and implementation

Anti-windup
One method to solve the problem with integrator windup is a method known as
tracking. The block diagram in Figure 8.2 describes the PID-controller with tracking
included. The idea of the method is to provide an extra feedback path that measures
the difference, es, between the calculated and actual control signal and then feds it to
the integrator. This will then force the integrator output towards a value that makes
the integrator input equal to zero. This will however, only happen when there is an
actuator saturation, i.e. u1 6= u2. Moreover the gain 1/Tt is called the tracking time
constant and decides how fast the integrator output will converge towards the value
that makes the input zero [Årzén, 2014].

KTds

K ∑
Ke

1
s∑

Actuator model Actuator

∑

1
Tt

K
Ti

u1 u2

− +

−y

e = r− y u

es

Figure 8.2 Anti-windup

Derivative filtering
In practical implementations of the PID-controller the derivative term is usually
low-pass filtered because of high frequency measurement noise. In this way large
amplification of high frequencies is avoided, resulting in better control and less
wear on actuators [Årzén, 2014] [Thomas, 2008]. The derivative term is thus ap-
proximated by

sTd ≈
sTd

1+ sTd
N

(8.2)

The approximation holds for low frequencies with the design parameter N set-
ting the limit, as it decides the maximum gain of the filter. Figure 8.3 illustrates the
approximation in a Bode plot.
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Figure 8.3 Illustrates the approximation of the derivative term with N = 10 and
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Set-point weighting
In the original PID-controller, presented in Equation 8.1, the set point and the mea-
sured value are treated in the same way. However, this is not the way the PID-
controller usually is implemented in practice, due to empirically results showing
that treating them differently gives improved performance. Treating them differ-
ently does in this case mean that only a fraction of the set point value is used in
the proportional and derivative term. For the derivative term this means that step
changes in the set point value will not saturate the control signal [Årzén, 2014]. The
modified version of the PID-controller in the frequency domain, including deriva-
tive filtering and set-point weighting, is given by

U(s) = K ·

[
βR(s)−Y (s)+

1
sTi

(R(s)−Y (s))+
sTd

1+ sTd
N

(γR(s)−Y (s))

]
(8.3)

where β and γ are the set-point weights, R(s) the set point and Y (s) the measured
output [Årzén, 2014].

Discrete PID-control
The PID-controller described above is expressed in continuous time and can thereby
not be implemented in the camera software. To implement it a discretization of each
of the three terms is needed. The proportional part however, can be implemented
just as it is. It is the derivative and integral terms that need to be approximated.
This can be done by using backward and forward Euler approximation, which in
the frequency domain are described as:
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s≈ z−1
zh

(8.4)

s≈ z−1
h

(8.5)

where Equation 8.4 is backward Euler, 8.5 forward Euler and h the sampling
interval of the control algorithm [Wittenmark et al., 2014]. If the derivative term is
approximated with backward difference and the integral term with forward differ-
ence the control law described in Equation 8.3 will result in:

U(z) =

K ·

[
βR(z)−Y (z)+

h
(z−1)Ti

(R(z)−Y (z))+
z−1
zh Td

1+
z−1
zh Td
N

(γR(z)−Y (z))

]
(8.6)

which is the control law that was finally implemented in camera software, but
of course, converted to the sampled time domain first.

8.2 Control structures

Instead of using the PID-controller as shown in Figure 8.1, it can be put in a control
structure, meaning that the controller then will operate together with other con-
trollers. The structures can vary depending on the type of system that is to be con-
trolled and the set of controller requirements. It can be a system where disturbance
compensation is of most importance or a system where actuators have different lim-
its and by combing them a better control performance is achieved. Some examples
of controller structures are cascade control, mid-ranging control and internal model
control (IMC).
Two controller structures that was of interest to investigate in this thesis was:

• Cascade control

• Mid-ranging control

Cascade control
Cascade control is a control method that is commonly used when the process that
is to be controlled can be split into two or more separate processes in series. In
the case of two processes two control loops can be constructed, see Figure 8.4. The
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8.2 Control structures

main advantage with this structure is that the disturbance to left can be compensated
for before it reaches the output y [Thomas, 2008].

∑ Controller ∑

Disturbances

Controller Subsystem ∑

Disturbances

Subsystem
r e1 e2

−

y

−

Figure 8.4 Cascade control

In this thesis cascade control was relevant since there was a possibility to create
a feedback path of the pan and tilt angular velocity. Either by converting gyroscope
rates to pan and tilt rates or by taking the derivative of the encoder signals. This
control structure was, however, discarded due to the fact that disturbances do not
primarily enter the system in this way. More about this in Section 8.3.

Mid-ranging control
Mid-ranging control is a control method that can be used when two actuators can be
used for controlling the same control variable but one of them is easier to saturate
than the other one. The concept is shown in Figure 8.5. The idea is to let the con-
troller C2 control the actuator which can affect the control variable more, to make it
possible for the controller C1 to work in the middle of its control interval. By doing
this C1 will not saturate equally easy when trying to track the reference signal r1
[Forsman, 2005].

∑ C1 P1 ∑

P2C2∑

r1 = Ref value for y u1
− y

r2 = Ref value for u1 u2

Figure 8.5 Mid-ranging control

In this thesis Mid-ranging was considered since the camera already uses elec-
tronic image stabilization which cannot compensate for disturbances with large am-
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plitude. This can, however, be done more successfully with the mechanical stabi-
lization. A Mid-ranging solution then seemed reasonable to give the best stabiliza-
tion possible. Unfortunately this was never tested due to lack of time. The primary
objective was to get the mechanical stabilization to work.

8.3 Control design

The control design was done in continuous time and then discretized to get the
final controller. This approach was taken mainly because of greater experience in
continuous than discrete control design.

To study the controller performance the feedback loop in Figure 8.6 was con-
sidered, where C represents the PID-controller, P the pan or tilt process described
in Chapter 6, F a feedforward which in this case was set to one, d a load disturbance
and n encoder measurement noise. Note that the load disturbance is a disturbance
that acts directly on the pan and tilt and not on the whole camera body.

F ∑ C ∑

d

P ∑

n

r e u v x y

−

Figure 8.6 General feedback system

To obtain the controller parameters frequency domain design was used. The idea
of the method is to change the open loop gain, i.e. L = PC, to obtain the desired
closed loop properties [Åström and Murray, 2008]. However, there are more signal
relationships than just the relation between r and y that can be investigated. The
influence from all external signals on the internal signals in Figure 8.6 is given by:

X =
P

1+PC
D− PC

1+PC
N +

PCF
1+PC

R (8.7)

Y =
P

1+PC
D+

1
1+PC

N +
PCF

1+PC
R (8.8)

U =− PC
1+PC

D− C
1+PC

N +
CF

1+PC
R (8.9)

E =− P
1+PC

D− 1
1+PC

N +
F

1+PC
R (8.10)

V =
1

1+PC
D− C

1+PC
N +

CF
1+PC

R (8.11)
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where the uppercase notation of the signals indicate frequency domain repre-
sentation. As mentioned above F = 1, meaning that the transfer functions reduce
to:

S =
1

1+PC
PS =

P
1+PC

T =
PC

1+PC
CS =

C
1+PC

(8.12)

which are known as the Gang o f Four [Åström and Murray, 2008].

CS and PS were not investigated in particular because of little encoder noise, n,
and due to the fact that disturbances mostly do not enter the system where the load
disturbance, d, enters. Disturbances are rather handled by the reference genera-
tor which creates references that suppresses the disturbances if reference tracking
works properly. This means that the most important transfer to study was the the
Complementary sensitivity function, T , since it describes the relation between r
and y. S was also studied to look at the relationship between the signals r and e.

The controller was designed in Control System Designer which is a tool that
can be used to graphically modify the open loop gain, PC, and simultaneously
see the effect on the closed loop Bode plot and step response. However, a control
signal saturation cannot be set. Because of this the controller was also simulated in
Simulink. The discrete version of the obtained analog controller was also simulated.

Simulation result and discussion
In the control simulation three tests were made on the closed loop system, namely:

• Step response analysis

• Sinusoidal response analysis

• Ramp response analysis

All the tests were carried out with a discrete PID-controller with a sampling
interval of 50ms.

The step response result is shown Figure 8.7. As can be seen there is a small
overshoot, however, this was accepted due to reduction of rise time. Moreover it
can be seen that the error converges towards zero but not very quickly. The error is
however small enough after approximately 0.7s.
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Figure 8.7 Simulated closed loop step response

The sinusoidal response was studied for two frequencies, 1 and 1.5Hz. Figures
8.8 and 8.9 show the response them both. The 1Hz response has no reduction of
amplitude, but there is a time delay present due to the time delay in the dynamical
model. This made it impossible to get perfect tracking.
The 1.5Hz response shows a significant decrease in amplitude. This means that the
reference signal has higher frequency than the closed-loop bandwidth. However,
the requirement of the closed-loop bandwidth was set to 1Hz, meaning that the
controller worked properly.
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Figure 8.8 Simulated closed loop response with a 1Hz sinusoidal reference signal
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Figure 8.9 Simulated closed loop response with a 1.5Hz sinusoidal reference sig-
nal

Figures 8.10 and 8.11 show the ramp response and how the error changes over
time. It is clear that the error does not reach zero in 1.5s but Figure 8.11 shows that
it is decreasing. In Figure 8.12 the error is studied over a longer time and it can
be seen that it converges towards zero. However, the convergence time is too long
for short alternating ramp references as seen in Figures 8.13 and 8.14. The error
convergence can be made shorter though, if some of the controller parameters are
changed. This can be seen in Figure 8.15. The controller parameters were however
not used on the real process since the ramp response behavior was discovered during
real experiments. The ramp simulations were made afterwards, in order to solve the
problem.
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Figure 8.10 Simulated closed loop ramp response
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Figure 8.11 Error over 1.5s with a ramp reference signal
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Figure 8.12 Error over 200s with a ramp reference signal
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Figure 8.13 Simulated closed loop response with a triangle wave reference signal
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Figure 8.14 Error with a triangle wave reference signal
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Figure 8.15 Error with a ramp reference signal (changed controller parameters)
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In order to explain the difference in convergence in Figures 8.12 and 8.15 the
final value theorem can be used [Thomas, 2008]. First consider the transfer function
which describes the relationship between the reference and the error, which looks
as follows:

E(s) =
1

1+PC
R(s) (8.13)

where the open loop transfer function is described by:

PC = e−T s a
s+a

1
s
(K +

1
s

K
Ti
+ sKTd) (8.14)

If the reference signal is a ramp it can be described by:

R =
1
s2 (8.15)

These three equations make it possible to use the final value theorem in order to
investigate the error convergence. The final value theorem states the following:

lim
t→∞

e(t) = lim
s→0

sE(s) ⇐⇒ (8.16)

lim
s→0

s
s2 + e−T s a

s+a (sK + K
Ti
+ s2KTd)

= 0 (8.17)

This means that the error will converge to zero in both cases. However, if Ti
is small the convergence will be faster. This is also what the simulation shows.
Note that the final value theorem can not be used for the sinusoidal reference as the
closed-loop system final value does not exist in this case.

8.4 Hardware implementation

To get a final result of how the camera actually managed to compensate for distur-
bances, an implementation had to be done. However, it was first needed to study
existing code, in order to integrate the new in the best way possible. After the anal-
ysis the implementation was done on the camera MCPU and everything was written
in C-code.

Code structure
In Figure 8.17 a block diagram of the whole system structure is shown. It contains
all parts described in the thesis. Furthermore a flowchart representing the algorithm
that was implemented can be seen in Figure 8.16. The implemented program con-
tains the following parts:
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Initialization, Setup data cache communication and Setup System
In the setup phase the program is first initialized and then the data cache communi-
cation is setup. The data cache is an API that handles many different data structures
in the camera. Two examples are the IMU and encoder data. So with the data cache
setup it is possible to get the raw sensor data that is needed for the control system.

In the setup system block the parameters of the controller, Kalman and Com-
plementary filter are set. The user sets the parameters in the configure file seen in
Figure 8.16.

Measurements and orientation estimation
Measurements and orientation estimation is the first part of the main loop in the
program structure, which is set to run at 20Hz. Here the IMU data is read from the
data cache in chunks due to the fact that the IMU data gets updated at a frequency
of 500Hz. Moreover the Kalman or Complementary filter executes their algorithms
and the yaw rate is numerically integrated, as described in Chapter 4. The size of
the chunk decides how many estimation iterations that needs to be done in order to
obtain the latest Euler angles that is needed for the reference generation.

The encoder data is also read in this part, but it is updated at a frequency of
50Hz. However only the latest measurement is used for the reference generation.

Reference generation
The second part of the main loop is the reference generation. The generation be-
gins by creating the rotation matrix described in Equation 5.1 and then Euler angle
extraction is done as described in Chapter 5. Two of the extracted angles are then
forwarded as references for the PID-controllers.

PID-control
The PID-control is the final part of the main loop and it is implemented with the
time domain representation of Equation 8.6. If γ = 0 the conversion of the three
terms can be expressed as follows [Wittenmark et al., 2014]:

P(k) = K(β r(k)− y(k)) (8.18)

I(k+1) = I(k)+
Kh
Ti

(r(k)− y(k))+
h
Tt
(u2(k)−u1(k)) (8.19)

D(k) =
Td

Td +Nh
D(k−1)− KTdN

Td +Nh
(y(k)− y(k−1)) (8.20)

where the third term in Equation 8.19 adds tracking to the integral part, see
Figure 8.2. Moreover, the structure of the code looks as follows:
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u1(k) = P(k)+ I(K)+D(k) (8.21)
u2(k) = sat(u1,upperLimit, lowerLimit) (8.22)

I(k+1) = I(k)+
Kh
Ti

(r(k)− y(k))+
h
Tt
(u2(k)−u1(k)) (8.23)

where sat is a function that checks if the calculated control signal is within its
limits. If not within, the control signal is set to either the upper or lower limit of the
actuator, depending on its sign [Årzén, 2014]. In this case the limits are 700◦/s for
pan and 500◦/s for tilt.

System standby
After the PID-execution a wait function is implemented. This function sets the sys-
tem in standby mode until a certain time is reached. In this way the desired main
loop sampling frequency of 20Hz is obtained.
To keep track of time a time check is done just before the main loop is started and
in the end of the main loop the sampling time is added to that time. By doing this
in every main loop iteration the time will move forward and thereby it is possible to
use the wait function to set the system in standby until the time that is obtained from
the addition. However, if the system is supposed to sleep until a time that already
lies in the past, which might happen, a new time check will be made inside the wait
function and the addition will then start from there [Årzén, 2014].

Stop and Clear system
When the system is running a function that listens to certain user inputs is also
present. In this case this function is used for shutting down the system, meaning
that the main loop breaks, the data cache communication is closed and memory is
deallocated.
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Initialization
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Setup system

Measurements and orientation estimation

Reference generation

PID-control

Wait

Stop

Clear system

Configure file
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Calculated control signals are
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is sent to the system

Free allocated memory and close data cache communication

After standby
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Figure 8.16 Flowchart representing the final algorithm
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9
Results

The implementation made it possible to carry out experiments on the real pro-
cess/camera and compare it with the simulation results. However, the experiments
were carried out for both pan and tilt, which was not necessary in the simulation.
The following experiments were done:

• Closed loop step response

• Closed loop sinusoidal response

• Shake experiments

9.1 Closed loop step response

The results of the step response experiments can be seen in Figures 9.1 - 9.3. Note
that the simulated response is also present.

Both the pan and tilt experiment differ in overshoot compared to the simulation, see
Figures 9.1 and 9.2. However, the model seems to describe the system good enough
for these cases.
In Figure 9.3 though, it can be seen that the tilt overshoot varies depending on
step magnitude. This indicates that there is a nonlinearity present in the tilt system.
Hence a linear time invariant model might not be good enough in all cases. This
was however never investigated in depth due to lack of time.
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Figure 9.1 Real and simulated closed loop step response (pan)
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Figure 9.2 Real and simulated closed loop step response (tilt)
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Figure 9.3 Real closed loop step response with different step magnitudes and from
different positions (tilt)

9.2 Closed loop sinusoidal response

The results of the sinusoidal response experiments can be seen in Figures 9.4 -
9.6. As the requirement were to track reference signal frequencies up to 1Hz, the
1Hz-case was tested first.

The 1Hz-tracking for the pan-system shows a slight gain in the actual value and of
course the time delay which also were seen in the simulation is present, see Figure
9.4. However, the result does correspond to the simulation good enough. Hence, the
pan-system fulfills the tracking requirement.
The tilt-system though, does not show a behavior that fulfills the requirement. Why
the phenomenon seen in Figure 9.5 happens is not totally clear but a reasonable
guess would be that a nonlinearity, possibly caused by gravity or the nonlinear
property of the stepper motor, makes it hard for the PID-controller to perform the
tracking. In Figure 9.6 the same experiment is shown, but with a reference signal of
0.5Hz. In this case the tracking works to satisfactory.
Due to the problem with the tilt-system, 0.5Hz was considered good enough for this
thesis.
The result shows that the assumption done under the system identification phase
was not totally correct, i.e. the assumption that both the pan and tilt system had
identical dynamics. Unfortunately another model was never investigated due to
lack of time.
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Figure 9.4 Real and simulated closed loop response with a 1Hz sinusoidal refer-
ence signal (pan)
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Figure 9.5 Real and simulated closed loop response with a 1Hz sinusoidal refer-
ence signal (tilt)
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Figure 9.6 Real and simulated closed loop response with a 0.5Hz sinusoidal refer-
ence signal (tilt)

9.3 Shake experiments

The shake experiments were carried out in two ways and included the whole system
and not just the control part as seen in the two previous sections. The first test was
done by mounting the camera on a Shakespear, which is a shaking device that Axis
provided, it can be seen in Figure 9.7. The other experiment was carried out in
the Robotic lab at LTH. Here the camera was mounted on a robotic arm as seen
in Figure 9.8. This experiment made it possible to vibrate the camera with larger
amplitudes compared to the Shakespear.

The results of the Shakespear experiment can be seen i Figures 9.9 and 9.10.
In this case the Shakespear was set to vibrate sinusoidally in both yaw, pitch and
roll with the frequencies 0.40Hz, 0.20Hz and 0.30Hz respectively. The result shows
the tracking of the reference signal that is generated to suppress the disturbances.
As can be seen, the tracking is not perfect meaning that the disturbances are not
completely suppressed. Moreover it is important to keep in mind that the camera
lens vibrates a little bit as long as the third reference signal (φcRe f ), is changing over
time. A static value separated from zero will not result in vibrations, but cause an
error in desired orientation.
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Figure 9.7 The camera mounted on Axis Shakespear

The result of the robotic arm experiment can be seen in Figures 9.11 and 9.12.
As can be seen, the amplitude of the disturbances are significantly increased com-
pared to the Shakespear. However, the disturbances change more slowly.
Even in this case, the tracking is not perfect. This can be seen more clearly in Figures
9.13 and 9.14 which show the tilt tracking in a smaller scale. As in the simulations
the actual value lags a bit behind the reference value. As discussed in the simulation
the controller was not optimally designed for ramp references meaning that there
can be a better tracking than shown in the figures. Furthermore it can be seen that if
a ramp reference makes a sudden change to a constant value there is an overshoot
in the tracking.

79



Chapter 9. Results

Figure 9.8 The camera mounted on the robotic arm
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Figure 9.9 Reference tracking (pan) when mounted on Shakespear, with distur-
bances in yaw = 0.20Hz, pitch = 0.40Hz, roll = 0.30Hz
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Figure 9.10 Reference tracking (tilt) when mounted on Shakespear, with distur-
bances in yaw = 0.20Hz, pitch = 0.40Hz, roll = 0.30Hz
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Figure 9.11 Reference tracking (pan) when mounted on moving robotic arm
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Figure 9.12 Reference tracking (tilt) when mounted on moving robotic arm
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Figure 9.13 Reference tracking (tilt) when mounted on moving robotic arm (Fig-
ure 9.12 enlarged)
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Figure 9.14 Reference tracking (tilt) when mounted on moving robotic arm (Fig-
ure 9.12 enlarged)
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10
Discussion and conclusions

In this chapter the result of the thesis as whole will be discussed and concluded.
Moreover, possible future work will be presented.

10.1 Orientation and sensor fusion

The orientation estimation showed that the Kalman filter gave the best result but on
the other hand it is more complex and does thus require more computational capac-
ity. Moreover a great advantage of the Kalman filter is that it can estimate all states
in a dynamical model as long as the model is observable.
A problem with the orientation estimation was that the yaw angle relative the NED-
frame never could be measured due to the fact that only the gyroscope could be
used for that measurement. Another issue was the gyroscope range setting which
was set in the smallest possible, i.e. ±250◦/s. This setting can make the gyroscope
saturate relatively easy, and this does in turn affect the estimation, and in particular
the yaw angle since it cannot be corrected by the accelerometer. However, this was
mostly a problem under the test phase were more extreme cases were studied. In
a real situation with normal conditions as seen in Figure 3.5 disturbances change
more slowly and thus the risk for saturation decreases.
The fact that Euler angles were used for describing orientation introduced a prob-
lem called gimbal lock. A way around this problem is to instead use quaternions,
i.e. four-dimensional complex numbers, for describing orientation. This was inves-
tigated briefly but never tested.

10.2 Reference generation

The reference generator worked as intended in every test that was carried out. More-
over the same generator can be used for cameras that can make roll rotations relative
their chassi frame, since a reference signal for that is produced. This makes the de-
signed generator flexible and modular.
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10.3 Modelling

10.3 Modelling

The model obtained from system identification was as mentioned in the final results
not good enough for the tilt-system. The best approach for the modelling would
probably have been to use the motion profile as described in Chapter 7, but this was
realized in the end of the thesis.
The physical model is more general and would have been used if no internal motion
controller had been present. A particularly strong property of the gimbal model is
that it describes the cross-coupling between the systems, and this is not taken into
consideration when using the motion profile.
The hybrid stepper motors are as seen in Chapter 6 described by four non-linear
differential equations. This non-linearty could have been avoided if, for example,
brushless DC-motors had been used instead.

10.4 Control and implementation

The control concept has been shown to work, but the controllers can be better tuned
or even changed for another controller type. Gain scheduling can, for example, be
tested in order to handle the tilt nonlinearity. In the beginning of the project Model
predictive control (MPC) was also considered but was never investigated in depth
due to the model uncertainty.
The mid-ranging solution can also be used for future projects since it might be
desired to let the electronic image stabilization work together with the mechanical
image stabilization.

The code implementation was placed relatively high in the camera code struc-
ture. i.e., on the MCPU. If the PID-algorithm had been implemented on the MCU
instead delays could have been decreased. This because orientation estimation and
reference generation could have been done parallel to the PID-algorithm.
The code that is implemented can also be optimized in order to improve perfor-
mance.
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10.5 Future work

In order to improve the product, the code needs to be refined and a separation of the
different systems, i.e. making them work independent of each other, would improve
the controllers in particular.

Trying to get the EIS-system, that Axis already have implemented, to collabo-
rate with the mechanical image stabilization will improve the stabilization as it then
will be able to handle disturbances with higher frequency. A mid-ranging solution,
as the one described in Chapter 8, could perhaps be used for this purpose.

Another aspect that is more control related is to investigate other controller
types. As mentioned earlier this can for example be MPC, IMC or gain-scheduled
controllers.

Lastly, an investigation of the physical model will most certainly improve the
product since the current model is uncertain. Another advantage with this is that the
control system then can be implemented in other cameras, with similar construction,
more easily.

10.6 Conclusions

To conclude it can be said that almost all the goals that were stated in the intro-
duction were fulfilled. The only goal that was not fulfilled was the requirement of a
1Hz closed-loop bandwidth for the tilt-system. However, the result is good enough
to show that mechanical image stabilization is feasible with the Axis camera Q6155-
E. The camera was, however, never mounted on a boat but it can be concluded that
the stabilization will work as long as the disturbances is within the closed-loop
bandwidths. Moreover it is not guaranteed that the stabilization will work for other
cameras, since the dynamical model that has been used only holds for the current
motion profile configuration. As always, improvements can be made.
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A
Velocity trajectory
generation

This appendix contains a more detailed calculation of the velocity trajectory gener-
ator, or more specifically the so-called S-profile from Chapter 7. In velocity mode
the goal is to reach a target velocity (vt ). When that velocity is reached both the jerk
and the acceleration are zero. The procedure is described in Figure A.1 (1A). As
can be seen, the target velocity is reached with the help of 3 phases i.e. I, II and III.
The goal of the calculation is to obtain the unknown parameters ∆ti which represent
phase durations. The limits regarding acceleration and jerk-profile are known. The
same holds for the initial values, i.e., a0, v0, x0, and vt .

Figure A.1 (1A) S-curve and (1B) trapezoidal profile [Lewin, 2007]
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A.1 Velocity mode

A.1 Velocity mode

This section is based on the ideas presented in Chapter 7, [Kröger et al., 2006],
[Reflexxes, 2017], [Kröger and Wahl, 2010] and [Haschke et al., 2008], but calcu-
lations and notations from [Haschke et al., 2008] are derived and modified to fit the
presentation of this thesis.

Equation A.1 sets the direction of the jerk profile, i.e., Equation A.7. vconst rep-
resents the constant velocity that is reached in phase I, depending on the initial
values a0 and v0.

dv = sign(vt − vconst) dv ∈ {−1, 1} (A.1)

To calculate vconst it is necessary to know whether an acceleration or a decelera-
tion is needed for reaching zero in acceleration. This can be found by looking at the
sign of a0:

d = sign(a0) d ∈ {−1, 1} (A.2)

vconst can then be calculated as follows:

vconst =
a2

0
2dJ1

+ v0 (A.3)

There are some cases where the initial value of a0 is larger than the limit of
dvamaxacc . In these cases the acceleration needs to be pulled down to dvamaxacc in
phase I. This can be done by setting ±J1 depending on a0, amaxacc and dv. Equation
A.5 describes the conditions for this:

da =−1 I f : (a0 > amaxacc and dv = 1) or (a0 <−amaxacc and dv =−1)
da = 1 Else

(A.5)

Note thats amaxacc > 0.
The duration times of the 3 phases and the corresponding jerk-profile are de-

noted as
∆ti i = {1, 2, 3} (A.6)

~j = [daJ1, 0, −J3]dv J1 > 0 J3 > 0 (A.7)

Constrains & limitations:

a2 = dvamaxacc a3 = 0 (A.8)

Phase profiles:
ai = ai−1 + ji∆ti i = {1, 2, 3} (A.9)

vi = vi−1 +ai−1∆ti +
1
2

ji∆t2
i i = {1, 2, 3} (A.10)

xi = xi−1 + vi−1∆ti +
1
2

ai∆t2
i +

1
6

ji∆t3
i i = {1, 2, 3} (A.11)
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Appendix A. Velocity trajectory generation

A.2 Cases

There are two different cases that can appear in a velocity mode calculation. The first
case describes how the calculation is carried out when the acceleration is within its
limit. The other case describes the opposite, i.e., the calculations when there is a
saturation of acceleration.
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Figure A.2 S-profile in velocity mode when there is no saturation of acceleration
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Figure A.3 S-profile in velocity mode when there is saturation of acceleration

Case 1: No saturation of acceleration
When there is no saturation of acceleration, phase II will not exist, because in phase
II the acceleration limit is reached. This means that phase I reaches a target accelera-
tion (at ) but not the maximum acceleration. Phase III has the constraint acceleration
equal to zero, and thereby phase III needs to decelerate towards zero. In Figure A.2
this behavior is illustrated. Mathematically, this results in the following:

∆t1 =
at −a0

dadvJ1
∆t2 = 0 ∆t3 =

at

dvJ3
(A.12)
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Appendix A. Velocity trajectory generation

By inserting A.12 into A.10 for phase III the following is obtained:

vt = v3 =
(daJ1 + J3)a2

t − J3a2
0 +2dadvJ1J3v0

2dadvJ1J3
(A.13)

If A.13 is solved for at two solutions are found. However, there is only one
solution for this case, and it depends on the sign of dv:

at = dv

√
(vt − v0)2dadvJ1J3 + J3a2

0
daJ1 + J3

(A.14)

The solution from A.14 needs to be checked with A.15. If A.15 is true the assump-
tion regarding at is wrong and Case 2 needs to be solved.

|at |> amaxacc (A.15)

Note that Case 1 is not valid if the denominator of Equation A.14 is zero i.e.
daJ1 + J3 = 0. If this is the case, Case 2 needs be solved.

Case 2: Saturation of acceleration
In this case the acceleration is saturated, as seen in Figure A.3, and thereby the
acceleration target at is known, i.e., it is equal to the maximum acceleration. Thus,
both ∆t1 and ∆t2 are known from the following:

∆t1 =
at −a0

dadvJ1
∆t3 =

at

dvJ3
at = dvamaxacc (A.16)

In order to get ∆t2, Equation A.10 can be used for phase III. This gives the
following:

vt = v3 = v0+a0∆t1+
1
2

dadvJ1∆t2
1 +(a0+dadvJ1∆t1)∆t2−

1
2

dvJ3∆t2
3 +∆t3(a0+dadvJ1∆t1)

(A.17)
If A.17 is solved for ∆t2 the following is obtained:

∆t2 =
vt +

1
2 dvJ3∆t2

3 −
1
2 dadvJ1∆t2

1 −a0∆t1− v0

a0 +dadvJ1∆t1
−∆t3 (A.18)

94



Document name 

Date of issue 

Document Number 

Author(s) Supervisor 

Title and subtitle 

Abstract

Keywords 

Classification system and/or index terms (if any) 

Supplementary bibliographical information 

ISSN and key title ISBN 

Language Number of pages 

Security classification 


