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Abstract

Brain activation mapping using fMRI data has been mostly focused on finding detec-
tions in gray matter. Activations in white matter are harder to detect due to anatomical
differences between both tissue types, which are rarely acknowledged in experimental
design. However, recent publications have started to show evidence for the possibil-
ity of detecting meaningful activations in white matter. The shape of the activations
arising from the BOLD signal is fundamentally different between white matter and
gray matter, a fact which is not taken into account when applying isotropic Gaussian
filtering in the preprocessing of fMRI data. We explore a graph-based description of
the white matter developed from diffusion MRI data, which is capable of encoding
the anisotropic domain. Based on this representation, two approaches to white matter
filtering are tested, and their performance is evaluated on both semi-synthetic phan-
toms and real fMRI data. The first approach relies on heat kernel filtering in the graph
spectral domain, and produced a clear increase in both sensitivity and specificity over
isotropic Gaussian filtering. The second approach is based on spectral decomposition
for the denosing of the signal, and showed increased specificity at the cost of a lower
sensitivity.
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Acronyms

AD axial diffusivity.

BOLD blood oxygenation level dependent.
DFT discrete Fourier transform.
dMRI diffusion MRI.

DSI diffusion spectrum imaging.

DTI diffusion tensor imaging.

FA fractional anisotropy.

fMRI functional MRI.

FWHM full width half maximum.
GLM general linear model.

GQI generalized Q-sampling imaging.
GRFT Gaussian random field theory.
gSPM graph-based SPM.

HCP Human Connectome Project.
HRF hemodynamic response function.

MD mean diffusivity.
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Acronyms

MNI Monteal Neurological Institute.

MRI magnetic resonance imaging.

ODF orientation distribution function.

QBI Q-ball imaging.

RD radial diffusivity.

ROC receiver operating characteristic.
rsfMRI resting state fMRI.

sgWSPM spectral graph WSPM.
SNR signal-to-noise ratio.

SPM statistical parametric mapping.
UMT uniform Meyer-type.

WSPM wavelet SPM.
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Chapter 1
Introduction

The capacity to study the activity of the brain in a non-invasive way has brought great
advances in the understanding of its inner workings. Magnetic resonance imaging
(MRI) constitutes a set of techniques with versatile application that are capable of
revealing different facets of the brain picture. In particular, functional MRI (fMRI)
is used to probe the activity of the brain both during the performance of specific
tasks and in a resting state, uncovering functional specialization in brain regions and
their collaborative activity in functional networks. Since its development in the early
1990s [1], fMRI has been instrumental as a tool of neuroscience, and has helped in
providing answers to numerous question related to the “wheres” and “hows” of neural
activity.

Up to this day, fMRI studies have overwhelmingly had a focus on determining
activations in the gray matter of the brain, and disregarded white matter activations
as noise. It has also been suggested that the vascularization density in white matter
may be so low as to render fMRI activity undetectable [2]. However, the number of
studies reporting white matter activations, although relatively small, has been steadily
increasing, and a case for measurable and meaningful white matter activations has
started to form, thoroughly presented in [3].

Clearly, the relative ease with which activations can be detected in gray or white
matter is directly related to their anatomical and physiological differences, such as the
significantly higher blood vessel density in gray matter [4], a differently shaped hemo-
dynamic response function (HRF) [5] and different optimal acquisition parameters
[6]. Nevertheless, these differences alone do not represent direct evidence against the
possibility of detecting functional activity in white matter. On the other hand, a fail-
ure to recognize these differences in the design of experiments may be at least partially
to blame for the scarcity of reports of white matter activations.

In this work we aim to present and address a further difference between white
and gray matter that could serve to increase the amount and quality of the activations
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detected in white mater, namely the shape of the activations themselves.

It is generally accepted that activations in the gray matter are isotropic in nature,
that is, they extend equally in all directions. This assertion is supported by the nature
of the dendritic connections of neural bodies found in gray matter, and corroborated
by the isotropic diffusion of water molecules in these regions, as shown by diffusion
MRI (dMRI) studies [7]. The isotropic Gaussian smoothing applied on functional
data, which is a staple of fMRI analysis, is only justified under this assumption, and
is required for increasing the statistical significance of the results.

However, it does not seem reasonable that such an assumption would naturally
extend to white matter regions of the brain, where individual fibers and fiber bundles
have clear directionality, and are not equally related in all three dimensions. Under
such circumstances, two fibers can be adjacent with only one of them being active,
and applying an isotropic filtering will tend to combine large amounts of inactive re-
gions with every potential activation. We hypothesize that a different form of filtering
which respects the directionality of fibers and their spatial boundaries could increase
the accuracy of detections in white matter. We develop such a method and test its
effectiveness on both synthetic and real data.

White matter comprises about 50% of the brain, and its functional significance
has been long established [8]. By improving the capacity of fMRI to produce results
in these regions a whole new realm of possible findings is enabled.

1.1 Goal

The goals of this work are to:

* Develop an approach to white matter filtering for fMRI preprocessing that
takes into account the directionality and spatial boundaries of axonal fibers in
the human brain.

* Validate the proposed approach on semi-synthetic data created from real struc-
tural and diffusion MRI with synthetic functional activations.

* Test the proposed approach on real fMRI data and compare the results with
those from the statistical parametric mapping (SPM) toolkit.

1.2 Contributions

The main contributions of this thesis are:

* A method for constructing spatial filters that adapt to the underlying structure
of white matter.



* Incorporation of the proposed method into a spectral graph decomposition
framework for denoising and significance testing of fMRI data.

* Performance improvements in spectral graph WSPM (sgWSPM) making it ap-
plicable for large graphs (graphs with more than 102-10 vertices).

* A method for constructing signal-adapted tight frames that is applicable for
large graphs.

* A tight frame construction derived from B-splines that provides kernels with
local support yet is easy to approximate with polynomials.

* Theoretical results showing that low-pass filtering with the heat kernel approx-
imates Gaussian smoothing for some regular graphs.

1.3 Previous work

Previous use of graphs in the context of neuroimaging has mostly centered around the
construction and analysis of brain networks [9, 10], and the relation between anatom-
ical and functional connectivity in the brain [11, 12]. However, our thesis ties in with
a different series of works based on the recently developed field of signal processing
on graphs [13, 14, 15]. Of particular relevance are [16, 17, 18], where the wavelet
SPM framework was extended to employ graph wavelets, and then used to perform
anatomically-adapted smoothing of gray matter regions for fMRI preprocessing. In
these works graphs were used to define the irregular domain of the gray matter.

Within the area of graph-based tractography, there have been several attempts
at describing the structure of the white matter using graphs weighted by diffusion
data [19, 20, 21, 22, 23, 24, 25]. In particular, to improve the angular resolution
of outgoing edges, larger neighborhood sizes have been considered (74-connectivity
[19], 124-connectivity [22] and 98-connectivity [23, 24]). To avoid excessive branch-
ing in crossing fiber populations [23] implemented a multigraph approach in which
multiple fiber bundles traverse each voxel, and the weights of the outgoing edges are
considered on an individual bundle basis.

Adaptive filtering approaches have also been developed outside of the graph do-
main, pointing out limitations in ordinary Gaussian smoothing [26, 27]. [26] used
bilateral spatial smoothing on fMRI data to preserve edges between voxels of different
intensity. This resulted in less mixing of gray matter, white matter and other anatom-
ical regions. In [28] the term fixe/ was coined, denoting a specific fiber population
within a voxel. A connectivity measure was introduced where fixels belonging to the
same fiber bundle had a stronger connection than others. A method for smoothing
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metrics defined on the fixels was also introduced. This is a form of diffusion-adapted
filtering, but it was not applied to MRI data.

On a different note, our work also joins a number of others in utilizing one MRI
modality to enhance the results of another [29]. One example is [30], where func-
tional connectivity from fMRI was combined with anatomical connectivity from DTI
to derive a single, more informative functional connectivity metric. Using a related
approach, [31, 32] introduced the concept of track-weighted functional connectivity,
in which DTI and fMRI data are used together to generate new functional connec-
tivity maps.

1.4 Disposition

This thesis begins with a background in Chapter [, followed by a description of the
methodology employed in Chapter f. Afterwards, Chapter f introduces the dataset
used to generate the results in Chapter f. Chapter [j then concludes the main body
of the work with a discussion of the results. Finally, a set of appendices is added in /i,
which serve to clarify or expand on concepts related to the work.



Chapter 2
Background

This chapter introduces the preliminaries required to understand the rest of the work.
The first topic explored is spectral graph theory and signal processing on graphs. Fol-
lowing is a brief treatment of the relevant aspects of brain anatomy and physiology.
The next section describes functional MRI and the processing required to derive ac-
tivation maps from it. Finally, a section regarding diffusion MRI is presented.

2.1 Graphs and their spectra

The main mathematical tools used throughout this work are graphs and spectral graph
theory. In recent years, several important successes have been achieved in bringing
some common signal processing methods (e.g., Fourier transform, wavelets) to the
graph domain [13, 15]. In this section we will provide an overview on graphs, their
spectra, and the processing of signals defined on graphs.

We define an undirected, weighted graph G = (V, €, A) asaset V of N, vertices,
a set £ of edges connecting pairs (4, j) of vertices, and an adjacency matrix A, whose
nonzero elements a; j represent the weights of edges (4, j) € €. Given that the graph
is undirected, a; ; = a;;, i.e., A is symmetric.

Additionally, we define a diagonal degree matrix D, with elements d; ; = ) ; @i
that is, the i-th diagonal element of D is the degree (sum of the edge weights) of the
i-th vertex of G.

These matrices can be used to obtain the Laplacian matrix of G, which can be
defined both in combinatorial form L and normalized form £[33]:

L=D-A (2.1)

L = DY2LDY?, (2.2)
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Figure 2.1: Axial slices of the six first eigenvectors (LRTB) of the white matter
graph presented in Section B.1. This clearly illustrates the relationship between
eigenvalues and frequency in the graph.

Given that both definitions of the Laplacian matrix are symmetric and positive
semi-definite, their eigendecomposition leads to a set of real non-negative eigenvalues:

AG) ={0=X <X < <Ay, DAl (2.3)

The associated eigenvectors {X,}ffl can be complex, but a real set can always be
found, given that the Laplacian matrices are real and symmetric. The eigenvectors
form an orthonormal basis, i.e., (Xi, Xx;) = i, and span the 02 (G) space, defined
in Section 2.1.1].

The set of eigenvalues of the Laplacian A (G) represents the spectrum of the graph.
The smallest eigenvalue is always 0, and the multiplicity of zeros matches the number
of connected components of the graph. The maximum eigenvalue is unbounded for
L, whereas for L it is always < 2. The spectrum of a graph shows similarities to
frequency in the classical domain, with the eigenvectors associated with higher eigen-
values being less smooth than those of lower eigenvalues [15] (see Figure 2.1)). How-
ever, as opposed to the complex exponential in the classical domain, the Laplacian
eigenvectors are not necessarily delocalized.



2.1.1 Graph signals
For a given graph G = (V, &, A), let £2(G) denote a Hilbert space of all square-

summable f € C™v vectors, with inner product

(fi, f2) = Zﬁ alm], Vi, f2 € £2(G) (2.4)

and norm
17113 = Z|f ?<oo, Vfer() 2.5)

A real graph signal f : V — R defined on the vertex set VV can be seen as a vector
f € (?(G) whose n-th component represents the value of the signal at the n-th vertex
of the graph.

2.1.2 Graph Fourier transform

The classical continuous Fourier transform is defined in terms of the complex ex-
ponential €%, which in turn represent the eigenfunctions of the one-dimensional
Laplacian operator:
d?
dz?
The inverse Fourier transform can therefore be seen as the expansion of a continuous
signal f in terms of the eigenfunctions of the Laplacian operator:

f@) = F ) =5 [ Fwred. @)

In analogy to this, Hammond et al. defined in [13] the graph Fourier transform as
the expansion of a graph signal in terms of the eigenvectors of the graph Laplacian. For
any graph signal f € ¢2(G), its graph Fourier transformed representation, denoted

f € £2(g), is defined as

eiwx — 7w26iwx. (26)

Ny

f=F{r = f Zf (2.8)

The corresponding inverse transform is given as

fil = F A = S filalil 29)
=1



8 Background

Using this definition for the graph Fourier transform, it can be shown that the
Parseval relation holds [13]:

(fi, f2) = (f1, f2).  Vf1, f2 € £2(9). (2.10)

2.1.3 Continuous spectral kernels

Having established the graph spectral domain and the graph Fourier transform, it is
possible to extend some general signal processing procedures from the classical Eu-
clidean setting to the graph setting. In particular, we are interested in filtering graph
signals with a filter defined by its spectral graph profile. A convenient way of defining
such a filter is by sampling a continuous function K : [0, Amax] — R, which we
denote as a spectral graph kernel:

~

k] =K(\), 1=1,...,N,. (2.11)

For a given graph G = (V, &, A), let L?(G) denote a Hilbert space of all square-
integrable C : [0, Apax] — R, with inner product
AlTla.x

(K1, Ka) = Ki(AN)Ka(N)dA, VK1, Ky € LQ(Q) (2.12)
0

and norm

Arﬂax
IKI2 = (K, ) = / CO)2dA < 00, VK € L2(G). (2.13)
0

2.1.4 Signal processing on graphs

For any two graph signals fi, fo € R™Vv, their convolution product is defined as
def -
(1 f2) [0 =) filll folllxaln]
=1

= F YA L} (2.14)

As can be seen, the convolution operation in the vertex domain is equivalent to
multiplication in the spectral domain, just like in conventional signal processing. The
filtering of a graph signal is then defined based on this operation. Given a graph signal



F € (%(G) and a spectral graph kernel k specified by its continuous representation
K € L%(G), the filtered signal (Fy f) is obtained as

(Fif) [0 & (k « £) [n]
Ny
=Y kU fixalnl. (2.15)
=1

The impulse response associated with a given spectral kernel k can be obtained,
as in conventional signal processing, by filtering an impulse signal 8. However, this
impulse response is not shift-invariant, and varies depending on the vertex m on
which the impulse is localized:

dmll] = (x1,0m) = x;[ml, (2.16)

=1
Ny A
= > Ekllx;[m]xin]. (2.17)

where i, denotes the impulse response, referred to as azom, associated to spectral
kernel k and localized at node m. Therefore, for a given spectral kernel there are N,
possible atoms, produced by filtering an impulse localized on each possible vertex of
the graph.

Finally, it can be shown that filtering a signal f with spectral kernel k is equivalent
to calculating the inner product between the signal and the atoms of the kernel:

N,
(Fif) [m] = > k[l flxi[m]
l;vl A A
= P[5
=1
= <77ZA)IC,m7 f>
i, £). (2.18)



10 Background

2.1.5 Spectral graph signal decomposition

A set of spectral kernels {/C; };V:sl forms a tight frame if
N
STIK NP =C YA€ [0, Amal. (2.19)
j=1

that is, if the squared sum of the values of each kernel is equal to a constant for every
A. In the case that C' = 1, the spectral kernels form a Parseval frame.

Given a set of spectral kernels {IC; ;-V:SI, (E-18) can be used to decompose a graph
signal f onto them, yielding the coefhcients

CKjm = <¢1Cj,ma I (2.20)

Provided the kernels form a Parseval frame, the original signal can be recon-
structed using

f[n] = Z Z Cle,m'lple,m[n]- (2,21)
j7 m

2.1.6 Polynomial kernel approximation

Both the filtering of graph signals and their decomposition onto sets of spectral ker-
nels are operations realized through (E.18). However, this equation depends on the
availability of the full set of atoms for every kernel, which in turn requires the cal-
culation of all the eigenvectors of the Laplacian matrix. Such and approach becomes
infeasible for larger graphs. Instead, a fast approximation algorithm can be used.

Let P € L?*(G) be a polynomial approximation of kernel X € L?(G). For a
graph signal f, its filtering with kernel K, or equivalently, its decomposition coefhi-
cients when projected on the atoms of X', can be found using P as

Ny
&=y P flllx (2.22)
=1 . A
=P(L) Y flllx (2.23)
=1
—PL)f (2.24)

where ¢ € (%(G) with éx[m] = cicm. In (£23) we use the fact that for any
polynomial P
Lxi = xi = P(L)xi = P(N)x- (2.25)
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This approximation has the benefit that it does not require the explicit calculation
of the eigenvectors. Instead, a polynomial of the Laplacian matrix is applied to the
signal, which can be efficiently implemented with matrix-vector multiplication. In
[13], a truncated Chebyshev expansion was used as it has the benefit of approximating
a minimax polynomial. This minimizes an upper bound on the approximation error
in the coefficients and is the method we used for this work.

2.2 The brain

MRI methods are both heavily reliant on and helpful in characterizing certain essential
aspects of brain anatomy and function. The tissues in the brain can be broadly divided
by their functions into those responsible for processing and those responsible for the
transmission of signals [34].

The processing burden of the brain is carried out in gray matter, and is distributed
among functionally specialized interdependent regions. This type of tissue is found
on the outermost layer of the brain (cerebral and cerebellar cortex) as well as in a series
of deep nuclei and the brainstem. Its constitution is mostly neuronal cell bodies.

The interdependent nature of gray matter regions relies on the existence of a chan-
nel for information transfer among them. This function is performed by the whire
matter, which comprises most of the subcortical regions of the brain. It is composed
of neuronal axons, which are covered in a myelin sheath that insulates the electrical
signals traveling though them. The left and right cerebral hemispheres are connected
through the corpus callosum, a large white matter structure.

Figure 2.2: (a) A T1 image of a sagittal slice of the brain. (b) Segmentation show-
ing cerebral gray matter in gray and white matter in white.
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2.3 Functional MRI

Functional MRI (fMRI) is a magnetic resonance technique that facilitates the non-
invasive study of functional activation in the brain. It most commonly works by
utilizing the so called blood oxygenation level dependent (BOLD) effect: when a brain
region is activated, it experiences an increase in the flow of oxygenated blood, which,
due to the magnetic properties of hemoglobin, is measurable through the application
of an electromagnetic gradient [35]. The acquisition process generates a time series of
3D brain volumes, each of them composed of multiple individual volume elements,
called voxels.
Two main modalities of fMRI can be distinguished:

* In task-based fMRI participants are subjected to a series of stimuli arranged in
time, referred to as a paradigm, with the purpose of eliciting in them a measur-
able BOLD response. The analysis of the resulting data can reveal which brain
regions are engaged in the performance of specific task or are responsible for
the actions of a given body part.

* In resting-state fMRI subjects are scanned in the absence of a paradigm, that is,
during rest. Because the subjects are not engaged in a specific task, spontaneous
brain activity can be detected, which can be used to find regions of correlated
behavior, revealing the functional organization of the brain [36].

2.3.1 fMRI activation mapping

The analysis of fMRI data is performed in the time domain, and it has the goal of
establishing temporal correlations in the BOLD signal of brain regions. Task-based
fMRI attempts to establish correlations between regions of the brain and the paradigm
used, while in resting-state fMRI the correlations are drawn between pairs of brain
regions [37]. This section will provide a description of the analysis techniques used
in the former, since that is the modality employed throughout this work.

SPM

SPM is a statistical framework for the analysis of functional imaging brain data. A
software toolkit with the same name is implementing the framework. It was developed
in the 1990s [38] and has become one of the most established tools for fMRI analysis.

The SPM framework is summarized in Figure £.3. The procedure can be divided
into three main steps [39]:

Preprocessing of the raw data. A number of corrections are applied to the data,
both for quality control and in order to allow for proper statistical modeling.
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Figure 2.3: Overview of the SPM framework

These can include inspecting the raw data, distortion correction, motion cor-
rection (coregistration) and slice timing correction. Spatial alignment of the
volumes ensures that each voxel corresponds to the same region of the brain
across time. The final and essential step in preprocessing is the spatial smooth-
ing of the data, typically with a Gaussian kernel. The importance of this is
twofold: it increases the signal-to-noise ratio (SNR) of the data and it enables
the use of methods for the correction for multiple comparisons that are less
strict than Bonferroni correction, such as correction based on Gaussian ran-

dom field theory (GRFT).

Modeling of data. The BOLD value of each voxel throughout the volume series con-
stitutes a signal in time. Using a GLM, the temporal variation in the signal can
be described as a linear combination of experimental effects (i.c., the actions
that the subject is asked to perform), confounding effects (e.g., slight uncor-
rected movement, oscillations in the signal level) and residual variability.

For a series of Ny volumes consisting of IV, voxels, and with a set of K regres-
sors, the GLM of the timecourse of all voxels can be written in matrix form
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as

Y = XB+e (2.26)

where Y is a N; X N, matrix, each column representing the timecourse of a
voxel, X isa IV; X K matrix where each column contains one of the covariates
used to explain the variation in the data, 3 is a K x NV, matrix containing the
model parameters for every voxel, and € is a Ny X N, residuals matrix.

The known parameters are Y and X, and the goal of the GLM fitting is to
find a set of values for the parameters 3 that minimizes the residuals €. In the
case of €; € N(0, UJZI ), the solution in the least-squares sense is given by

B=XTx)"'xTy (2.27)
where, for voxel 7, E(,éj) = (3 and Var(,éj) = UJZ(XTX)_I.

Statistical inference on the modeled data. The significance of the estimated effect
size associated to each voxel is statistically tested, generating a volume in which
the voxel values represent some statistic, in our case a t-value. This volume is a
statistical parametric map.

The t-values are given by

t, =4 (2.28)
gj
where
is the effect size for voxel j,
6; = iCT()(T)()_lc (2.30)
J Ny — rank(X) ’ '

is an estimate of its standard error. ¢ denotes a 1 X K contrast vector used to
select the effects of interest from the set of covariates by linearly combining a
subset of the estimated parameters Bj- In the basic case when the effect size of
the i-th covariate is estimated, the contrast vector becomes 9;.

The final activation map is obtained by thresholding the statistical parametric
map according to some statistical significance level av. The resulting map con-
tains all voxels which have been found to have at least a (1 — «) probability of
being significantly different from the null hypothesis (11; = 0).



15

Multiple comparisons

SPM is a mass-univariate approach, in that every voxel forms a time series that has to
be individually tested for significance, resulting in IV, statistical tests. The statistical
significance level o of a test represents the probability of rejecting the null hypothesis
given that it is true. This is equivalent to the false-positive rate. However, for IV,
individual tests, the probability of at least one of them producing a false positive
becomes (1 — (1 — a)™v), which quickly approaches one as N, increases. This has
been dubbed the multiple comparisons problem.

A conservative solution to this problem is the application of Bonferroni correction,
by which a corrected significance level is calculated as & = «/N,,. Using this sig-
nificance level sets the probability of having at least one false-positive detection at cv.
However, fMRI volumes can commonly have upwards of 10% — 10 voxels, which
poses a very high requirement on the significance of the effects that can be detected.

A different approach, employed in SPM, relies on the use of GRFT in order to
exploit the spatial correlation in the brain volume [40], which is disregarded by Bon-
ferroni correction. The significance level is then corrected based on the number of
unique resolution elements (resels), which is related to the number or independent
values that the data takes, and can be far lower than the total number of voxels IV,,.
However, this method places an assumption on the smoothness of the data, and there-
fore requires the use of Gaussian smoothing in preprocessing. In effect, this supposes
a trade-off between the increased sensitivity of the test and the spatial specificity of
the shape and size of the detected activations. Furthermore, a number of studies have
shown that this approach yields higher error rates than expected from the significance

level [41, 42].

Spectral graph wavelet SPM

Advanced approaches to SPM have been developed in which the brain volumes are
subjected to wavelet decomposition and a GLM is used to model the time variance of
the resulting coefficients. This has the advantages of increasing the SNR and produc-
ing a sparse representation of the activation maps. One such approach, termed wavelet
SPM (WSPM) [43, 44], integrates wavelet-based processing with statistical testing in
the spatial domain. This approach is described adapted to a graph setting and employ-
ing a spectral graph decomposition in place of the discrete wavelet transform. This
modified approach is referred to as spectral graph WSPM (sgWSPM) [16, 17].

For a given graph G representing the brain volume, a set of spectral graph kernels
{K; };V:Sl with associated atoms {{Q/J;Cj,m}éy:sl 3 is defined. Each brain volume
in the fMRI time series, taken as a graph signal f, can be decomposed onto the atoms
using (2.20), yielding the set of coefficients cc; 1. The time series for all coefficients
are arranged into a matrix Y’, which is used in a GLM fitting according to (2.24).
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Optimal parameters are then estimated with (£2.27).

Effect sizes fixc; m, their standard error 61; m, and the corresponding t-values for
each coeflicient tc; , are calculated with (£.29), (2.30) and (2.28) respectively. Two
parameter maps are then defined: one with all effect sizes, and another with effect
sizes that are above a statistical significance threshold 77. Both of these contrasts are

reconstructed using (2.21)):

Ns Ny
Ri=Y > i, m¥K,mli (2.31)
j=1m=1
N Ns Ny
Ri = Z Z H(’tlcjvm| - TT)ﬂKj,mw/Cj,m[i] (232)
j=1m=1

where H (-) represents the Heavyside step function. The first of these reconstructed
maps corresponds to the parameter map that would have been obtained by running
ordinary SPM, while the second reconstructs only the coefficients that are deemed
significant in the decomposed domain. In order to avoid spatial bias in the result, the
final spatial parameter map is obtained as [44]:

{i; = min (RZ-, Rz-) . (2.33)

Finally, to find the activations, the estimated standard errors are reconstructed
with a modified transform, and are used in the thresholding of the spatial parameter
map:

1’1‘
u; = H — — — 75 | U (2.34)
(Zévgl sz:l U/Cj,m|¢lcj7m[l” >

This is a time consuming step, since it requires the calculation of every atom in
every subband. This work contributes with significant improvements in its computa-
tion time, which are described in Section B.5.

The values for the thresholds 77 and 75 are defined based on the desired statistical
significance level v, and are given by

=/ —-W_1(—-27a?), 715=1/mp (2.35)

where W_ is the —1-branch of the Lambert W -function.
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2.3.2 Activations in white matter

Previous studies using fMRI have mainly focused on finding detections in gray matter,
and as such, experimental designs have been tailored for this tissue type as opposed to
the white matter. Optimal acquisition parameters, for example, are not identical for
gray and white matter, and the HRF of each tissue may have a different shape. This,
in combination with a lower cerebral blood flow and cerebral blood volume, results in
weaker BOLD signals, making any potential white matter activations harder to detect
(3].

However, there is an increasing body of literature both presenting detected activa-
tions and examining the properties of the BOLD signal in white matter. Of particular
interest for this work is [45], where the authors performed a rsfMRI experiment show-
ing that, for the same separation distance, the BOLD signal of pairs of white matter
voxels belonging to the same fiber bundle is significantly more correlated than that of
random pairs of white matter voxels. These results were expanded in [46], where it
was shown that the magnitude of the correlations among voxels from the same bun-
dle is about twice as strong in a task-based study than in rsfMRI. Additionally, in
[47] the authors performed a clustering analysis on rsfMRI data, and produced func-
tional white matter networks that showed correspondence with streamlines produced
by diffusion tensor imaging (DTT).

Based on this evidence, we formulate the fundamental assumption and hypothesis
of our work:

Assumption: The BOLD signal in white matter shows a stronger spatial correlation
along the anatomical white matter tracts than in other directions.

Hypothesis: The use of an isotropic filter confounds genuine white matter activations
with the surrounding inactive regions. Therefore, adopting a filtering scheme
which adapts to the direction and spatial extent of the underlying white matter
tracts would increase the specificity and sensitivity in the detection of white
matter activations.

2.4 Diffusion MRI

Particles suspended in a fluid will naturally exhibit a Brownian motion, moving ran-
domly without the introduction of bulk motion (motion caused by pressure or tem-
perature differences). For example, if a drop of dye is introduced to a glass of water it
will diffuse and after some time the color of the water will be homogeneous.
Diffusion MRI (dMRI) is an MRI technique that measures the amount of dif-
fusion experienced by water molecules in the brain along a particular gradient. The
movement of molecules will be hindered by anatomical features and thus water will
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diffuse more or less in certain directions. Within the white matter, the diffusion is
assumed to be greater in the direction parallel to the axonal fibers than in the direc-
tion perpendicular to them. Based on this fact, one can infer the fiber structure of the
brain by sampling the diffusion along multiple gradients [48].

2.4.1 Diffusion tensors

The most common way of modeling the diffusion within a voxel is to use a diffu-
sion tensor, which is a real symmetric matrix D with eigenvectors X1, X2, X3 and
eigenvalues A\ > Ay > A3. The assumption being made in the model is that the dis-
placement distribution of water molecules in a given time is Gaussian with covariance
matrix D [49]. The eigenvalues are used to define various measures such as mean dif-
fusivity (MD), fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity
(AD). These find usage when studying diseases such as Alzheimer’s disease, autism,
schizophrenia and multiple sclerosis [50].

A common way of visualizing a tensor is by using an ellipsoid (see Figure .4)
where the principal axes are v/A;X;, i = 1,2, 3. The largest eigenvalue corresponds to
the direction of greatest diffusion and thus a probable direction for axonal fibers [51].
However, a limitation of the tensor is that it can only represent a single fiber direction,
and to assume that a voxel only contains a single fiber direction is a strong assumption
to make, as it has been estimated that 33%-90% of voxels contain multiple fiber
populations [50].

2.4.2 ODFs

More advanced approaches have been developed for reconstructing the dMRI data,
such as diffusion spectrum imaging (DSI) [52], Q-ball imaging (QBI) [53] and gen-
eralized Q-sampling imaging (GQI) [54], which result in the generation of orientation
distribution functions (ODFs) (see Figure .5). An ODF is a probability distribution
defined on the sphere that indicates the probability of a water molecule at a given
point in space diffusing in a certain direction. Thus, the ODF effectively captures the
local fiber structure. One of the main benefits of the ODF over other common rep-
resentations (e.g., diffusion tensors [49]) is that it is capable of representing crossing

fibers [55].
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Figure 2.4: (a) An isotropic tensor. (b) An (anisotropic) prolate tensor. (c) An
oblate tensor arising from two crossing fibers. Note that is it is not possible to
discern the individual directions of the crossing fibers.

(@ (b) (©

Figure 2.5: (a) A very anisotropic ODE (b) The same ODF normalized by sub-
tracting its minimum value. (c) A normalized ODF containing two fiber directions
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2.4.3 Tractography

One of the main uses given to dMRI data is to reconstruct sets of plausible pathways
within the white matter, based on the assumption that water diffusion is strongest
in directions parallel to the underlying axonal fibers. This process is known as trac-
tography. Although many different tractography methods have been developed, our
discussion will focus only on deterministic tractography [56], which is the approach
used in this work.

In deterministic tractography, the calculated fibers are seen as 3D curves, called
streamlines, whose direction is always tangential to an underlying vector field. This
vector field represents the directions of maximum diffusion at each point, and can be
defined by, for example, finding peak directions in the ODFs.

The process of producing each streamline starts by selecting a seeding point, from
which the streamline will start. Then, small steps are taken in the direction of max-
imum propagation of the voxel in which the seeding point is located. When the
streamline transitions into a new voxel, its direction of maximum propagation is fol-
lowed. This process is repeated until some termination criteria are met, which usually
involve a minimum anisotropy in the traversed voxel or a maximum turning angle for
the streamline [57]. An example streamline is shown in Figure 2.4.



21

Figure 2.6: A coronal slice illustrating a single streamline passing through the
corpus callosum overlaid on the constructed ODFs for that slice. The seeding
point is indicated with a red diamond.
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Chapter 3
Methodology

In this work we explore two different approaches for the filtering of white matter in
fMRI data. Both of them rely on the use of a graph for the description of the white
matter, which enables the encoding of the underlying directionality of the axonal
fibers. The design of a suitable graph is described in Section B.1].

The first filtering approach consists in replacing the isotropic Gaussian filter-
ing commonly used in fMRI data preprocessing with a heat kernel filtering in the
graph spectral domain. Filters designed in such a way retain approximately Gaussian
isotropic behavior in isotropic white matter regions, but are also capable of adapting
their shape to the anisotropic regions. Section B.7 describes the use of the heat kernel
and its properties.

The second approach is based on spectral decomposition of the data, using the
WSPM framework adapted to the graph domain. Within this framework, a signal-
adapted procedure for the design of spectral kernels was adopted, which is presented in
SectionB.3. An efficient implementation of this procedure requires the fast estimation
of the ensemble energy spectral density of the fMRI volume series. This was achieved
by employing a B-spline kernel design, described in Section B.4. Finally, a series of
improvements in the efficiency of the graph domain WSPM framework are shown in

Section B.3.

3.1 White matter graph design

Let G = (V, &, A) denote a graph where the vertex set V is taken to be all voxels that
are classified as white matter. Edges are added from a voxel to all 124 voxels within a
5 x5 x b neighborhood. A smaller neighborhood, such as 3 x 3 x 3, has worse angular
resolution in the edges and would not be able to model the directions of the axonal
fibers with the same accuracy. On the other hand, a larger neighborhood, in addition

23
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(a) (b) (©

Figure 3.1: (a) An ODF sharpened by taking it to a power of popr = 1, (b)
popr = 20 and (c) popr = 40.

to increased complexity, could result distant connections that are not justifiable as a
series of local ones. The weighting of the edges is similar to that in [20] and [23]:

aij = aji = Prmat(1) Prat(5) [Paig (i, 7i5) + Paig (3, 75i)] (3.1)

where the Py,4¢ factor is derived from probability maps of the white and gray matter.
In our construction we are assuming a binary classification of the white matter and
thus the factor reduces to Pyq¢(7) = 1Vi € V. Py;sy is determined by integrating
the ODF over a solid angle w = 47/98 around 77> where 77} is a vector pointing
from vertex i to vertex j. Since the ODF is sampled at a discrete set of points, we
approximate the integral with a sum:

Q
1 1
Pyise(i,755) = - / ODF(i,7)dS ~ 7 g ODF (i,7y) - ASy. (3.2)
(2 w (2 q_l

where Z; is set such that max;|(; jyee Paifs(i,7ij) = 0.5. A slight modification to
the above formula is that, prior to integrating, we sharpen the ODFs by taking them
to some power popr (see Figure B.1)).

3.2 The heat kernel

In order to improve the results of the filtering of fMRI data over those obtained from
the typical isotropic Gaussian [58], it is necessary to design a filter kernel that would
mimic its behavior in particularly isotropic regions of the white matter, while at the
same time adapting its shape to follow the underlying fibers in anisotropic regions.
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Figure 3.2: (a) an atom associated with a Gaussian kernel and (b) an atom asso-
ciated with a heat kernel at vertex m = 200 in a cycle graph with N,, = 400
vertices.

The graph setting allows for the design of filters with such level of adaptation, but the
problem of eliciting Gaussian behavior in the atoms becomes nontrivial.

In Fuclidean continuous and discrete domains, the Fourier transform of a Gaus-
sian signal is another Gaussian, with the pair following simple and well known rela-
tions [59, Table 1.14.1]. Thus, it is easy to obtain Gaussian signals by specifying their
spectral representation. However, this property does not extend to atoms and spectral
kernels in a graph setting. This can be shown empirically to be the case by examining
atoms produced by a Gaussian kernel on a cycle graph. The results, presented in Fig-
ure B.2d, show that the atoms oscillate, have negative values, and do not resemble the
shape of a Gaussian.

The cause of this disparity between the classical and graph domains is that their
Fourier transforms, while produced in an analogous way as expansions into the eigen-
functions of the Laplacian operator, are not entirely similar in their behavior. For
example, as opposed to Fourier elements in the Euclidean setting, the spectral ele-
ments (eigenvalues) in the graph setting are non-uniformly spread across the spec-
trum. Moreover, the basis (eigenvectors) are not guaranteed to be delocalized as their
Euclidean counterparts (complex exponentials) are [15].

Instead of a Gaussian kernel, a heat kernel

K = e (3.3)

where T is a free parameter, produces results that more closely resemble the Gaussian
filters of the Euclidean domain. Atoms produced by such a kernel will always be
non-negative [33, Lemma 10.4] and are approximately Gaussian for some regular

graphs (see Figure B.2H). In Appendix A.T we show this for unweighted grid graphs
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of any dimension and derive a relation between the parameter 7 and the standard
deviation of the atoms. In particular, a 3D grid graph with 6-connectivity produces
approximately Gaussian atoms with standard deviation 0 = /7/3.

Unfortunately, the Gaussianity of the atoms is dependent on the topology and
weighting of the graph, as well as on the 7 parameter. In particular, the shape of
the atoms in lattice graphs closely resembles a Gaussian, but with an additional com-
ponent of variable prominence at the center voxel. This peak is nonexistent in a 3D
6-connectivity configuration, but gets emphasized by incorporating additional neigh-
borhood directions and increasing the weights for these additional directions. The
peak becomes significant for the 124-connectivity used in this work. This poses a
compromise between angular resolution in the atoms and their Gaussianity.

3.3 Signal-adapted filter design

The description of sgWSPM in Section .3.1] leaves out the design of spectral kernels
required for the decomposition step. For the decomposition to be meaningful we
do not want all the energy of the signal to be confined to a single or just a few of
the subbands. Rather, a good system of spectral kernels would divide up the energy
evenly between the subbands. For this to work for an arbitrary signal the design has
to be able to adapt to the spectral content of the signal.

n [60], a method for creating a signal-adapted system of spectral kernels was
1ntroduced First, a prototype uniform system of spectral kernels { ' } , forming a
Parseval frame is designed such that

A7774041
/O Ki(NdA=C, j=1,....N, (3.4)

for some C' € RT.
The method makes use of the so called ensemble energy spectral density, defined as

< X ||f||>

A continuous warping function T'7(A) : [0, Aaz] — [0, Adnaz] is obtained
through monotonic cubic interpolation of the set of points

2

ex[l I=1,....N,. (3.5)

Ny
ixFma g

M\, # > Ze}- (3.6)

r=iy k= =2
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Figure 3.3: (a) A UMT filter design with 7 subbands. (b) The same design warped
using T7(A) = v/ AmazA. This kind of warping could arise from a signal with

more energy in the lower frequencies.

together with (Aq,0), where my, is the multiplicity of the eigenvalue \; and iy, is
the index of its first occurrence. The signal-adapted system of kernels is then given by
the warped kernels

Kij(A) = K;(Tr(N), j=1,...,Ns (3.7)

See Figure B.3 for an example using the uniform Meyer-type (UMT) filter design
presented in [60].

Due to the explicit use of eigenvalues and eigenvectors for computing €, this
approach becomes computationally heavy for large graphs, and infeasible for exten-
sively large graphs whose corresponding Laplacian cannot be diagonalized. Here, we
instead approximate the ensemble energy spectral density by decomposing the sig-
nals using a uniform system of spectral kernels with a large number of subbands. We
start by removing the DC component of the signal, i.e., the contribution of the first
eigenvector:

gs = fs — (x1, fs) x1, (3.8)

where X1 can be found without doing a full eigenvalue decomposition of £ [61].
If there are multiple eigenvalues equal to zero the contribution of their respective
eigenvectors would also have to be removed in the same way.

With {IC;/}?EII denoting a system of N/ spectral kernels (e.g. the B-spline design
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presented in the next section) we approximate ensemble spectral energy density as

5’0
slml

2
ms , ':1,...,N;/ 3.9
<””C 9, ||>' J (-9

where C'is a normalization constant ensuring that >, éx[j] = 1.
Similar to before we define the points

j Ny
{ < i Z 1K, Amaz > €7 > } (3.10)
k=1 j=1

together with (0,0), where K = fo;"’l 1Kk (A)||?. Interpolation is performed re-
sulting in the warping function 7'z (), which is used to create the final signal-adapted
system of spectral kernels KCj(\) = K (Tx(N)), j = 1,..., N;.

3.4 B-spline system of spectral kernels

For the purpose of estimating the ensemble energy spectral density described in the
previous section we need a suitable system of spectral kernels. Such a system should
have smooth kernels of the bandpass type. The smoothness makes it possible to esti-
mate the kernels with polynomials of lower degree which speeds up the calculations.
It also results in more localized atoms [60], but that is of less importance for our usage.
In this section we propose such a design, derived from the B-spline basis functions.

Splines are piecewise polynomial functions defined with certain continuity re-
quirements. B-splines, or basis splines, are a particular kind of splines defined by the
recursion formula [62]

1 if g <u<a;
NY(u) = bod= s i 3.11)
0 otherwise
and
u — a; 1 — 1
N (u :7]\7" Lu) + ettt 78 e , (3.12)
i) Qin — Q4 () Qitnil — Wig1 1 ()
where n is the degree of the polynomials and ao, . . . , @ymn+1 is a sequence of non-

decreasing numbers called knots. The splines are C" ™" (n — r times differentiable) at
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Figure 3.4: (a) A Parseval frame consisting of 7 subbands constructed from
B-spline basis functions of degree 3 with uniform knot sequence [0,0,0,0,
0.5,1.0,1.5,2,2,2,2]. (b) A similar construction with 15 subbands illustrating
the local support of the kernels.

a knot of multiplicity . Additionally, N;* are non-negative, have compact support
[@i, @itn+1] and most importantly form a partition of unity:

ZNZL(U) =1, foru € [an,am+1). (3.13)

Using this property we define the filter kernels Kj(A) = /NI ;(A) for j =

1,..., Ny = m+ 1 which form a Parseval frame. In particular, with n = 3 and the
uniform knot sequence

aO:---:a3:0 (314)

1—3 .
a; mAma% i=4,...,Ns—1 (3.15)
aANg, = = AQNy43 = Amaz (3.16)

the kernels KC;(\) are C? for A € (0, Appqz) and are uniformly spaced, apart from the
ends of the spectra. Figure shows two such constructions where A\jpae = 2.
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3.5 Improving the performance of sgWSPM

In this section we present two methods for improving the performance of sgWSPM
(cf. Section .3.1)). In particular we are concerned with the spatial thresholding per-
formed in equation (£.34).

Using (2.17) we can derive a symmetric relationship between the atoms:

Ny
Yrmln) =Y kX [mlxiln] = i, [m]. (3.17)
=1
Applying this to (£.34) results in
Ej:bl Dt U’Cj:m|wlcj7i[m”

which has the benefit that only N atoms need to be constructed for a particular u;
and these atoms are not needed for any other u;. We can also note that in the absence
of the absolute value, the denominator becomes a graph signal reconstruction (cf.
Eq. (.21)).

Due to this absolute value the denominator requires explicit construction of all
atoms, which has been pointed out as a limiting factor and the most time consuming
stage in this kind of scheme [18]. This is unpractical for large graphs even when using
the approximation technique presented in Section P.1.3. Since the atoms are intrinsic
to the graph and independent of any signal, they could be precomputed and stored.
However, this still becomes a problem for large graphs and systems of spectral kernels
with many subbands.

Below follow two approaches for improving the performance. The first one works
by reducing the number atoms that needs to be calculated and the second one by
increasing the speed of the calculation.

3.5.1 Bounding the denominator

Since 0x;,m > 0 the denominator in (B.18) is always non-negative. A trivial way
of reducing the number of atoms created is thus to directly discard all negative %; as
they will never pass the positive threshold 7g. While this is useful, we can do better by
imposing upper and lower bounds on the denominator, which in turn put bounds on
the quotient. Quotients with an upper bound lower than 7g will for sure not pass the
thresholding and similarly, values with a lower bound above 7g will indeed survive
the thresholding. Explicit construction is then only required for the remaining u;.
The bounds of the denominator are presented in the following proposition:
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Proposition 3.5.1. Given a Parseval frame and 6x:; ;m > 0, the denominator in (B.18)

is bounded by
Ns Ny N
Z\ P00, < S0 bxcs v almll < 4| Y (6x,,6x,)  (3.19)
j=1m=1 7j=1

where 6xc; € (*(G) with 6x,[m] = 6x,m. The lower bound can be efficiently esti-
mated using N filter operations as described in Section 2.1.4.

Proof. 'The lower bound follows from

Z Z G, aml Ry mlil] 2 Z

iUKJ,m¢K 1 ]‘ =

j=1m=1 j=1 |m=1
N
= > (v, 6x,)] (3.20)
=1
The upper bound is given by the Cauchy—Schwarz inequality:
No Ny 2 /NN, N, N,
Z Z U]C]7m”llblc )i ” < Z Z &IQCj,m Z Z ’¢/Cj,i[m 2
j=1m=1 j=1m=1 j=1m=1
N
= Z <(5';Cj,6')<j> (3.21)
j=1
where the last equality follows from
N At
Z <¢IC],Z¢ICJ,Z> - Z <¢Kj,z¢ng,z>
j=1 j=1
iy R
=0 Y kX liali]
j=11=1
Ny Ns
= xililxali]) Y k3l = 1. (3.22)
=1 j=1
—_——
@,

In the last step we utilized the orthonormality property of the eigenvectors. O]
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3.5.2 Cropping the Laplacian

If the approximation technique presented in Section £.1.5 is used to calculate the
atoms, the main operation will be sparse matrix-vector multiplications [13]. These
have linear time complexity in the number of non-zero elements in £ [63], and con-
sequently, a reduction in the number of non-zero elements will provide a proportional
speed improvement.

Let dg(p, m) represent the geodesic distance between vertices p and m, i.e., the
length of the shortest path connecting p and m. With this notation we present the
following lemma:

Lemma 3.5.2 ([15, Lemma 2]). Given a polynomial kernel P € L*(G) of degree M,
dg(p,m) > M = 1pp p,[m] = 0.

In other words, atom p 4, is non-zero only on a local neighborhood surrounding
p. It is therefore reasonable to expect that only that part of the graph plays a role in
defining the atom. Because of this we propose an improvement in speed by reducing
the size of the Laplacian to only include rows and columns corresponding to vertices
in the set Ry pr = {m € V| dg(p,m) < M}. In practice this is done by extracting
the relevant rows and columns creating a smaller matrix, but here we instead set all
other rows and columns to zero, which is equivalent and simplifies the theory.

Proposition 3.5.3. For a polynomial kernel P of degree M we have

Yp, = P(L)d, = P(L,)8,, p=1,...,N, (3.23)
where
(»ép)m,n _ {Em,n mev n. € RPJV[ (324)
0 otherwise.

Proof. To prove (B.23), it is equivalent to prove that
L36, = L35, s=0,...,M, (3.25)
ie, (L)myp = (E;)mm Vm € V. For this, we use a proof similar to that in [13,

Lemma 5.2].
Matrix multiplication can be expressed as a sum of products:

(ﬁs)m,p = Z ﬁm,kl ﬁkl,kz T Ek‘s_l,p (326)

where the sum is taken over all s-1 length sequences k1, ka2, ..., ks with1 < k, <
Ny. Assume for contradiction that (B.23) is false, i.e., Im € V (L) p # (L£})m.p-
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Then there has to be a non-zero term in the sum above containing elements of £

that are zero in £,,. This is not possible as it would imply the existence of a path of
length less than or equal to s from p to a vertex not in Ry, s, i.e. a vertex m where

dg(p,m) > M > s. O
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Chapter 4
Datasets

In the proposed scheme we make use of structural MRI data for identifying the white
matter and dMRI data for constructing the white matter graph. Additionally, task-
based fMRI data constitutes what is to be analyzed using the proposed scheme. In
this work, the MRI data were provided by the Human Connectome Project (HCP)H,
but other datasets can be used as long as the previously mentioned MRI modalities
are available.

4.1 HCP Data

The MRI data used in the project was provided by the HCP, a collaborative endeavor
between multiple institutions, with the goal of studying and mapping the neural con-
nectivity of the human brain [64, 65].

The HCP is divided into two research consortia, with different but complemen-
tary goals. The WU-Minn-Oxford consortium is lead by Washington University in
St. Louis, the University of Minnesota and Oxford University, and has collected MRI
data from 1 200 subjects, consisting of twin pairs and their siblings from 300 families.
The MGH/Harvard-UCLA consortium is lead by the Massachusetts General Hospi-
tal, Harvard University and the University of California in Los Angeles, and focused
its efforts in further developing the acquisition and processing methods employed on
MRI data.

The HCP makes available multiple datasets for a single subject, including struc-
tural, task-based fMRI, resting-state fMRI, and diffusion data. The data is provided

!Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Inves-
tigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and
Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for
Systems Neuroscience at Washington University.

35
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in a preprocessed form that facilitates its use in research. A description of the extensive
preprocessing pipeline can be found in [66].

This project makes use of the structural, task-based fMRI and dMRI data for sub-
ject 100307. The specific task-based fMRI dataset used was generated from subjects
completing a motor task.

4.2 Preprocessing steps

The HCP datasets are provided in a mixture of three spatial resolutions, and two dif-
ferent spaces (ACPC and MNI): 0.7 mm?® ACPC for the structural data, 1.25 mm?
ACPC for the diffusion data and 2 mm?® MNI for the fMRI data. ACPC is the native
space of the subject and MNI is a standard space provided by the Monteal Neurolog-
ical Institute (MNI). For the purposes of this project it is necessary to reconcile the
three datasets into a single set of working parameters. However, the resampling pro-
cess and the nonlinear conversion between ACPC and MNI spaces have the potential
of negatively affecting the data. The number of voxels is also a parameter to be taken
into account, as it determines to a great extent the memory use and computation time
of the various processing steps.

From these considerations, it was deemed that the diffusion data was the most sen-
sitive to alteration, and that in general upsampling was less damaging to the data than
downsampling. Therefore, the chosen parameters were 1.25 mm? ACPC, which addi-
tionally provide a suitable balance between resolution and computational tractability.

The relevant structural data to be converted was a parcellated volume with labeled
white and gray matter regions (aparc+aseg.nii). After downsampling, the cerebral
white matter and corpus callosum regions were extracted to create the binary white
matter mask.

The fMRI data is provided as a temporal series of volumes. In order to convert
it into the working space it was necessary to apply a nonlinear transformation from
MNI space into ACPC, which requires the use of a displacement map, included with
the dataset.

4.3 Semi-synthetic data

To test the performance of the diffusion-adapted filtering we construct a set of semi-
synthetic phantoms for simulating streamline-shaped activations. We denote the
phantoms as semi-synthetic since the activation patterns were derived from real dif-
fusion data. The phantoms consist of random activations diffused along streamlines
gathered from deterministic tractography. A clean version is used as ground truth
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while Gaussian noise is added to actual phantoms. Below follows a precise descrip-
tion of the process.

Let S = {Si(r) € R3i = 1...Ng} denote the set of Ng streamlines ex-
tracted using deterministic tractography, where S;(z) represents the i-th streamline,
composed of Lg, points,and = 1... Lg, is the index of those points.

A random subset 7 C S of streamlines is selected to produce a phantom. Let Z7
be the index of the streamlines that form 7, i.e., T = {S;(z) € R3,i € Z7}. The
streamlines in this set are voxelized, forming a new set U = {u; € NFwi i € Tr},
where the u; are vectors containing indices of the voxels through which the original
streamline passes.

To model the activation centers of the voxelized streamlines, indicator vectors a;,
of the same length as the corresponding w;, are constructed. Each indicator vector
has one random element set to one, corresponding to the voxel where the activation
center in the associated streamline is found, while the rest of the elements are set to
zero.

After defining the activation center for each streamline, the activation is diffused
along the length of the streamline. In order to do this, a stochastic matrix Cj is
defined, describing the connections between the voxels in w;. Voxels are connected
to themselves and to the voxels in their 26-neighborhood, all with equal weight. For
example, if voxel w; (k) is adjacent to voxels w;(k — 1) and u;(k + 1), C; will on the
k™ row have three elements with the value 1/3 at columns k — 1, k and k + 1.

Having defined the indicator vector and the stochastic matrix for each streamline,
a diffuse activation pattern p; can be calculated by the following formula:

1 .
D; = —szlai (4.1)
Ci
where ¢; is a normalization constant such that maxy p;(k) = 1 and m; € Nisa

parameter controlling the extent of the diffusion, which can be set independently for
the different streamlines. For this work we used a value of 250.

Finally, to create the complete phantom embedded in a 3D volume P, the diffuse
activation patterns p; of each streamline u; are combined:

Pi=1- ] D 1 -pi(k)] where K;= {klui(k)=j} (4.2)
1€LT kEK;

where j is a linear indexing of the voxels in P. We treat P as our ground truth
activation patterns. Noise added versions of P are obtained by convolving it with
additive zero-mean Gaussian noise of standard deviation o:

P;=P+e, ecN(0,020). (4.3)



38 Datasets

A time-series phantom can then be created by combining a single volume phantom
P with different realizations of random noise.



Chapter 5
Results

In this chapter, we present results obtained using the proposed methods. A single
subject (subject ID: 100307) from the HCP is used throughout. MRI data from the
subject is used to define the white matter graph, and also serves as real data when
performing activation mapping.

The white matter graph was constructed as explained in Section B.1|. The ODFs
were reconstructed with DSI Studio (http://dsi-studio.labsolver.org), us-
ing the GQI [54] algorithm with default parameters. The ODFs were sharpened by
setting popF to 40, as this value showed good results in some initial tests.

5.1 Diffusion adapted atoms

In this section, we show some examples of how the atoms in the white matter graph
are adapted to both the topology of the white matter, i.e., tissue boundaries, and
to the varying microstructure within white matter. We start by inspecting how the
atoms behave in an unweighted graph defined on the whole brain volume. In such
a graph the atoms are not restricted to diffuse within the white matter alone, but
instead diffuse isotropically. Such an approach mimics the results obtained by using
a conventional isotropic Gaussian filter. A contour plot of such an atom is shown in
Figure p.1H.

In Figure p.1d, an unweighted version of the white matter graph (cf. Section B.1))
is used. It can be seen that the atom is confined to the boundaries of the white matter,
but is otherwise unrestricted and free to diffuse in any direction. Defining the graph
on the white matter only makes the resulting atoms adapt to the white matter topol-
ogy, but they still diffuse isotropically instead of reflecting the tissue microstructure.

In Figure p.1d the proposed white matter graph is used. It can be seen that the
atom adapts not only to the topology of the white matter, but also to the microstruc-
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ture of white matter tissue. This microstructure is presented in Figure p.1d) as the
directions of the axonal fibers found within white matter. Figures 5.2 and p.3 show
additional atoms in the same coronal slice.
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Figure 5.1: Coronal slices of atoms resulting from the heat kernel in different
graphs. (a) marks the region being shown in (b)-(d). In (b) the graph is unweighted
and is not confined to the white matter, causing the atom to diffuse isotropically in
all directions. In (c) the graph is still unweighted but is only defined on the white
matter. This causes the atom to adapt to the topology of the graph. In (d) the
white matter graph presented in Section B.]] is used and, as can be seen, the atom
adapts to both the topology of the graph and the diffusion data. (e) shows the
white matter fiber directions. Red, green and blue lines indicates fiber directions
normal to the sagittal, coronal and axial planes, respectively.
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two additional atoms from the coronal slice shown in Figure p.14 together with

Figure 5.2: (a) indicates what regions are shown in (b) and (c). (b) and (c) shows
the fiber d

irections.
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Figure 5.3: (a) indicates what regions are shown in (b) and (c). (b) and (c) shows

two additional atoms from the coronal slice shown in Figure p.14 together with

the fiber d

irections.
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5.2 Signal-adapted filter design

To test the signal-adapted approach described in Section B.3, we adapted a seven
subband UMT system of kernels to the spectral characteristics of a set of task-based
functional data. Specifically, we first selected ten random volumes from the motor
task acquired with right-to-left phase encoding, and then extracted our set of signals
{5310, as the signals defined on the white matter voxels of these volumes. The
ensemble energy spectral density was then estimated with (B.9), using a B-spline frame
consisting of N/ = 50 subbands. As can be seen in Figure p.4, most of the energy
is associated to eigenvalues in the lower range of the spectrum, leading to the UMT
system of kernels being warped accordingly (see Figure 5.5).

Next, we want to verify whether the kernels of the warped filter design capture
and approximately equal amount of energy from the signals. We start with a single
signal fs and remove the DC component as in (B.8) to produce the signal gs. The
relative energy captured by each subband is then calculated as

gs
e
< 7 | gsl

Figure p.g shows ey for the ten sampled signals before and after the warping. The
energy is much more evenly distributed across the subbands in the signal-adapted
system of kernels design than in the original UMT system of kernels.

Ny

esljl = Z

m=1

2
j=1,...,T. (5.1)
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Figure 5.4: (a) A B-spline frame with 50 subbands. (b) The estimated ensemble
energy spectral density.
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Figure 5.5: (a) A UMT system of spectral kernels with 7 subbands. (b) Signal-
adapted version of the system of kernels in (a). (c) The design in (b) within the
spectral range 0-0.25.
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Figure 5.6: Relative energy distribution for the ten selected volumes of fMRI data
before (a) and after (b) adapting the system of kernels to the spectral content of
the signals.
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5.3 Performance improvements to sgWSPM

The improvements presented in Section B.5 had a significant effect on the resulting
execution time of wavelet SPM (WSPM). Table p.]] shows the result from using the
bounds in Section B.5.1]. The explicit calculation of the vast majority of the atoms
could be avoided by recognizing that all voxels with negative %; are non-activations.
The upper bound provided an additional improvement while the lower bound pro-
vided no improvement. In the end, only 2.9 % and 2.1 % of the atoms were required
to be calculated explicitly for the semi-synthetic and real datasets, respectively. These
datasets are described in the next section.

To measure the improvement from cropping the Laplacian as presented in Sec-
tion B.5.2, we constructed atoms associated with a B-spline spectral kernel design with
seven subbands. The kernels were approximated using polynomials (cf. Section 2.1.6)
of degrees in the range 5-50. A random subset of 100 white matter voxels were then
chosen and the associated atoms were calculated, resulting in a total of 700 atoms. The
measured execution times are shown in Figure p.7. The proposed approach proved
most useful for lower polynomial degrees. For example, for a polynomial degree of
5, the calculated speed was an order of magnitude faster. For polynomial degrees
above 25 the proposed approach had an opposite effect and lead to an increase in the
execution time.

Semi-synthetic dataset ~ Real dataset

Total number of atoms 207829 207829
Non-activations due to @; < 0 153377 154601
Non-activations due to upper bound < 7g 201766 203530
Activations due to lower bound > 7g 0 0
Atoms required to be calculated 6063 4299

Table 5.1: The result of implementing the bounds presented in Section B.5.] when
running sgWSPM using the signal-adapted system of kernels shown in Figure .5B.
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Figure 5.7: Execution time when calculating 700 atoms using polynomial ker-
nels of different degrees. The calculations were performed on an ordinary desktop
computer.

5.4 Experimental results

The capacity for discerning streamline-shaped activations of the two proposed diffusion-
adapted filtering approaches was tested against that of an isotropic 4mm full width
half maximum (FWHM) Gaussian filter. This was done using a semi-synthetic time-
series phantom. The filtering approaches were also tested on real fMRI data from the
HCP.

Three different approaches to the filtering of white matter fMRI data were imple-
mented:

* The data was masked with the white matter and subjected to the regular SPM
pipeline, using an isotropic 4mm FWHM Gaussian kernel for smoothing. This
approach represents a typical processing pipeline applied to fMRI data, and will
be referred to as SPM.

* A white matter graph was defined in the manner described in B.T], and used to
filter the data with a heat kernel. Afterwards, the filtered data was processed
with the regular SPM pipeline. This approach will be referred to as gSPM.

* The data was processed with the sgWSPM framework described in .31}, using
the white matter graph from B.T. A UMT system of seven spectral kernels was
used to perform the signal decomposition, and it was adapted to the energy
content of the signal using the procedure described in B.3. This approach will
be referred to as sgWSPM.

In order to match the amount of smoothing done by the SPM and gSPM ap-
proaches. This was done by first filtering the real data volume series with the isotropic
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Gaussian filter, and then using the SPM toolkit to estimate the smoothness of the
resulting filtered volumes. A value for 7 was then chosen that produced a similar
amount of smoothness when filtering the volume series with gSPM. For a FWHM of
4 mm, this resulted in a 7 of 2.2.

5.4.1 Semi-synthetic data

The filtering approaches were tested on a synthetic time series designed to mimic real
fMRI data. This time series had a length of 100 volumes, and consisted of a Gaussian
noise (0 = 1) background with two stretches of 18 volumes were activity was present.
The activations were created from a single 100 streamline phantom (see Figure p.8)
produced using the method described in Section B.3. The regressor corresponding to
the periods of activity in the time series is shown in Figure p.9.

The ensemble energy spectral density of the time-series phantom was estimated
in order to adapt the spectral kernels to the signal in the sgWSPM approach. The en-
semble energy density and the resulting signal-adapted system of kernels are shown in
Figure p.10. The signal-adapted system of spectral kernels was found to be inadequate
(see Section [), and thus a seven subband uniform B-spline kernel frame (identical to
Figure B.4d) was used for the remainder of the work.

A ground truth volume was created by thresholding and binarizing the 100 stream-
line phantom at a level of 0.5. The performance of the three approach was then
evaluated by thresholding at multiple levels the t-value parametric produced by each
approach and comparing the resulting detections with the ground truth volume. Each
threshold level produced a true positive and a false positive rate for each approach, and
these were collected in a receiver operating characteristic (ROC) curve, which relates
the two metrics for a given threshold value. Figure p.T1 shows the ROC curves for
the three approaches.

Figures p.12, p.13 and p.14 show the detected activations at a significance level
of @ = 0.05 for the three approaches.
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Figure 5.8: Semi-synthetic phantom used in the construction of the synthetic time

series.
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Figure 5.9: Regressor representing the periods of activity in the time series.
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Figure 5.10: (a) Ensemble energy spectral density of the time series phantom. (b)
Signal adapted system of spectral kernels.
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Figure 5.11: ROC curve for all three approaches. The circled positions show re-
sults obtained at statistical significance level & = 0.05. The dashed line represents
an equal true and false positive rate.

Figure 5.12: Activations from phantom detected with SPM, 4mm FWHM.
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Figure 5.13: Activations from phantom detected with gSPM, 7=2.2.

Figure 5.14: Activations from phantom detected with sgWSPM.
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5.4.2 Real data

The fMRI data from the HCP was subjected to the three filtering approaches de-
scribed, with the statistical significance level « set at 0.05. The paradigm involved
five different event types, of which two produced significant activations patterns (right
hand and tongue movement) [67]. The fMRI data was masked to include only the
white matter, so gray matter activations are absent from the results.

The SPM approach used a corrected statistical significance level obtained from
GRFT, while Bonferroni correction was used for both gSPM and sgWSPM.

The following set of figures presents the results obtained using the three approaches.

The detected activations are overlaid on a T1 weighted structural scan of the subject.
The Results for the ordinary SPM approach are presented in Figures p.13 and .14,
for graph SPM in Figures and p.18, and for sgWSPM in Figures and p.20.

Some of the detected activations appear very close to the white-gray matter bound-
ary, and can be reasonably assumed to be the result of nearby activations in gray mat-
ter. However, some isolated white matter activation were detected, most notably in
the corpus callosum, which can be seen in slices +-13 to +15 for the right hand event
results and slices +4 to 410 for the tongue results.
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Figure 5.15: Activations from right hand event detected with SPM, 4mm
FWHM.

Figure 5.16: Activations from tongue event detected with SPM, 4mm FWHM.
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Figure 5.18: Activations from tongue event detected with gSPM, 7=2.2.
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Figure 5.20: Activations from tongue event detected with sgWSPM.
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Chapter 6
Discussion

Figures 5.1], p.7 and p.3 show that the atoms produced in our white matter graph
construction indeed adapt to both the topology and the microstructure of the white
matter. This results in smoothing along the axonal fibers which is inline with our as-
sumption that the BOLD signals have a greater spatial correlation in those directions.

6.1 Performance improvements to sgWSPM

The combined improvement of the two proposed approaches will vary depending on
the functional data analyzed and the filter design used, but the results presented here
indicate that it is not unreasonable to achieve decreases in the execution time of the
spatial thresholding (cf. (2.34)) by a factor of 400. The performance improvement
is particularly significant when using spectral kernels with low requirements for their
polynomial estimation, such as the presented B-spline system of spectral kernels. This
contribution was imperative to running sgWSPM on the size of graphs we worked
on.

As was shown in Table p.T] the lower bound provided no reduction in the number
of atoms that needed to be calculated explicitly. The reasons for this is that the bound
was simply too conservative, being an order of magnitude lower than 7g for the real
dataset. However, even if the bound had been less conservative the performance gain
would have been limited as the number of activations found in the white matter is
relatively few compared to the total number of voxels.

Cropping the Laplacian offered a great improvement but only for polynomial
kernels of degree lower than 25. This is to be expected. When not cropping L the
execution time increases linearly in the degree M. However, when the cropping is
performed the relation becomes more complex as the set Ry, ps (cf. Section B.5.2)
grows cubically in M. Atsome point the overhead of exploring the graph to determine
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Rp,um cancels any potential gain. This is clearly the case, since for a sufhciently large
M Ry a = V. In our white matter graph the longest geodesic distance between any
pair of voxels (i.e. the diameter of the graph) is around 50. Thus, for M > 50 the
cropping will for sure not improve the performance, and in the case of a very central
voxel neither will an M > 25.

6.2 Semi-synthetic results

The ROC curve in Figure p.11] shows the increased sensitivity of graph-based SPM
(gSPM) compared to an isotropic Gaussian filter. In addition to this, comparing Fig-
ures and reveals a significantly improved spatial specificity in the detections.
These results become even more positive when considering that while SPM employed
the more lenient corrected statistical significance level obtained from GRFT, gSPM
managed to obtain better results using the more strict Bonferroni correction.

The specificity of sgWSPM can be seen to be high both from the ROC curve
results and from the sharpness of the detected streamlines in Figure p.14. However,
sgWSPM showed significantly lower sensitivity than the two other approaches. These
results can be caused by the use of Bonferroni correction in the determination of
significant activations, leading to excessively conservative detections.

6.3 Real data results

The performance of the three filtering approaches matches the conclusions from the
semi-synthetic data results. The activations produced by gSPM are generally narrower
and have a slightly greater spatial extent than those of SPM. sgWSPM also produces
activations with greater spatial specificity, but has a lower sensitivity than the other
approaches.

The results in general showed few and small activations, mostly located close to
gray matter regions, with the notable exception of the corpus callosum. This is not
unexpected, as according to [3] most reports of BOLD fMRI activations in white
matter involve the corpus callosum.

6.4 Signal-adapted kernels

The use of a signal-adapted approach was found to produce unsatisfactory results for
the semi-synthetic data. The purpose of the method is to find spatial patterns with
high energy in the data. However, the determination of what constitutes an activation
can only be made in regard to the temporal changes in the data. Therefore, a system
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Figure 6.1: Eigenvalue density distribution of the white matter graph.

of kernels that optimally adapts to the spatial distribution of energy is not necessarily
optimal at detecting temporal activations. If there is a large amount of noise present,
the signal-adapted system of kernels will adapt to the noise rather than the signal,
in which case spatial components that are significant in the temporal domain can be
removed due to being insignificant in the spatial domain.

In our case, the amount of noise seems to be excessive. The energy distribution
of the phantom (Figure p.104) mostly reflects the white noise adapting to the distri-
bution of the graph eigenvalues (see Figure [b.1]), which are centered around A = 1.
The relevant signal, however, is known to be concentrated in the low end of the spec-
trum, which is what justifies the use of a Gaussian filter to enhance detections. Due
to this, the signal-adapted kernels failed to produce meaningful detections. Neverthe-
less, the use of a more realistic noise model based on rsfMRI would have resulted in
a time series whose spectral profile is more strongly concentrated in the low spectral
range. Consequently, the signal-adapted system of kernels would have been centered
around the lower end of the spectrum, in which case we expect the approach would
have produce better results.

In the case of real data, the signal-adapted system of kernels was concentrated
around the low spectral range, which, we hypothesize, should have made it suitable
for discerning the types of activations present in the fMRI data. Nevertheless, the
procedure did not detect any significant activations for the right hand event. The
tongue event was not tested due to the long computation time required to run signal-
adapted sgWSPM with a UMT system of kernels. The cause of such unexpected
behavior is not clear to us, but multiple runs of sgWSPM with different systems of
kernels could clarify this issue. The fact that a non-signal-adapted B-spline system
of kernels managed to produced results may suggest that the problem resides in the
UMT system of kernels and not in the signal adaption itself.

6.5 Conclusions

The activation shape arising from the BOLD signal is fundamentally different between
white matter and gray matter. We have developed a graph-based description of the
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white matter that is capable of encoding the underlying structure of the axonal fibers.
Based on this description, we have examined two approaches to the filtering of white
matter fMRI data, achieving better results than those of the commonly used isotropic
Gaussian filtering with one of them. In addition, several general developments were
made for the use of sgWSPM with graph signals, including an approach to the esti-
mation of the ensemble energy spectral density of a volume series, a B-spline frame
with very low requirements for polynomial approximation, and several performance
improvements on the framework itself.

6.6 Future work

There are a number of ways in which the work done in this thesis can be expanded
upon. An immediate improvement would be achieved by testing the filtering ap-
proaches on a larger number of subjects and paradigms, in order to guarantee that the
results seen here are not spurious, but an actual reflection of the performance of the
methods.

The white Gaussian noise used in the semi-synthetic dataset may not ideally rep-
resent the types of noise seen in rel fMRI data. Therefore, it could be interesting
to explore different noise models, for example, using resting state fMRI (rsfMRI)
(42, 68].

An interesting avenue for development would be to extend the graph description
to the whole brain. This would require careful consideration on the weighting scheme
of the graph in order to adequately represent both gray and white matter, and could
potentially show activations that extend isotropically through the gray matter but
become anisotropic after transitioning into white matter.

The signal-adapted filter design could be modified to adapt to the spectral com-
ponents that show temporal correlation with the regressors of the general linear model
(GLM). This could result in a more meaningful decomposition and avoid the prob-
lems that arise from the mismatch between the energy distribution of the signal in
the spectral domain and the temporal correlation of certain spectral components to a
given regressor.

The use of bounds in the spatial thresholding (cf. (2.34)) is something that poten-
tially could be applied in other methods. For example, in [60] the Euclidean norm of
the atoms were used to determine a threshold used for denoising in the graph spectral
domain. This too requires explicit calculation of the atoms and thus suffers from the
same limitations as sg\WSPM.

The B-spline frame could possibly be developed further. Although the knots are
uniformly space, the kernels do not have the same L'-norm nor L2?-norm. This
could be desirable properties and might be achievable by using a non-uniform knot
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sequence.

Figure 5.3H illustrates a possible limitation in our approach in that it does not
explicitly handle crossing fibers. An atom localized in a region of crossing fibers will
spread along all fiber bundles which may or may not be desirable. More research is
need to determine the spatial correlation in the fMRI data in such regions.
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Chapter A
Appendix

A.1 The heat kernel and its Gaussianity

In this section, we reintroduce the heat kernel as a spectral graph kernel, and show
that its associated atoms are approximately Gaussian on lattice graphs. To do this we
utilize some nice properties of circulant graphs. Throughout this section zero-based
indices are used to simplify the notation.

The heat kernel is given by

K =e ™ (A1)

where 7 is a free parameter.

A.1.1 Circulant graphs

A circulant graph has a circulant adjacency matrix where each row is a circular shift
of the one above. Consequently, the Laplacian is circulant as well:

Co €1 €2t CN,-1
CN,—1 €0 €1 " CN,—2
£ - CNv_2 CNv_l €o Y CNU_3 . (AZ)
c1 ca c3 - C
In the case of an undirected graph, £ is symmetricand ¢;, = ¢y, —m, m =1,. .., Ny—

1. A useful property of circulant matrices is that the eigenvectors and eigenvalues are

given by [69]
1

xailml =

wm, (A.3)
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Ny—1
N= Y Wi, (A4)

m=0

where W) = e~ 2ml/Nv_ Worth noting is that the eigenvector matrix x = [xo, - - -,
X N,—1] form the transformation matrix for the discrete Fourier transform (DFT) and
that the eigenvalues \; are the (unnormalized) DFT of the vector ¢ = [cy, . . ., cn, —1].
Additionally, only the eigenvalues depend on ¢, meaning that the eigenvectors are the
same for all circulant matrices.

A.1.2 The Gaussianity of the atoms

The construction of an atom can be seen as the DFT of the kernel k[I] modulated by
xi[m]:

= 1
VN,

> ket Ny n). (A.5)
=0

The modulation results in a circular shift property in the resulting atomsl:

Yiem[n] = Yiol(n —m) mod Ny (A.6)

The resulting atoms will have the same vertex spread relative to the vertex they are
located at. Thus, it is sufficient to show that i o is Gaussian. We can also use the

property that the Fourier transform of a Gaussian is itself a Gaussian. If k is Gaussian
with standard deviation o, 9k o is Gaussian as well with standard deviation [59,

Table 1.14.1]

1
k

A.1.3 1D case - the cycle graph

A cycle graph is a circulant graph consisting of a single closed chain of nodes (See
Figure AT)). Its Laplacian is defined as in (A.2) with ¢ = 1 and ¢; = ¢cn,—1 =

'In the context of the DFT, the kernel k is actually in what is commonly regarded as the time or
space domain, while the atoms ¢k, are in the frequency domain.
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Figure A.1: (a) a cycle graph with 4 vertices and (b) the 2D analog — a torus grid
graph.

—1/2, and has the eigenvalues

A4 1 1 2 l
A €3 1-— §T/Vl — §VVl_1 =1 —cos <]\7;> . (A.8)
v

Using the truncated Taylor expansion of cosax atx = 0

2.2
cosar ~1— a; (A.9)
the eigenvalues can be approximated as?
1 (2nl)?
N |— | . A.10
1R < NU> (A.10)
Inserting (A.10) into the heat kernel (A1) yields
. 1 (2m)?
k] =e ™ ~e (%) (A.11)

which shows that k[l] is approximately Gaussian with mean zero and standard devia-
tion 0, = 1/4/7. Using (A7), we can calculate the standard deviation of the atoms
as

oy =T (A.12)
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Figure A.2: If G and H are the graphs in (a) and (b) respectively, (c) shows
G O H.

A.1.4 2D case - the torus grid graph

The general idea here is to use the nice properties of the cycle graph and extend it
to two dimensions using graph products. In the following, we will show that this
generates similar results as in the previous section but using the two-dimensional DFT.
Let u ~ v indicate the existence of an edge between vertices u and v, X denote
the Cartesian product of two sets and ® denote the Kronecker product. Additionally,
let A(+) and D(-) denote the adjacency and degree matrix of a graph respectively.

Definition A.1.1 (Cartesian product of graphs). 7he Cartesian product G O H of
two graphs G and H is a graph with vertex set V(G O H) = V(G) x V(H) where
(u,v) ~ (v, V") ifu = v andv ~ v orv="1"andu ~ .

The adjacency matrix for G O H isgiven by A(G O H) = A(G) @ I + I ®
A(H) [70]. If z and y are eigenvectors of A(G) and A(H) respectively, with cor-
responding eigenvalues A and y, then (2 ® y) is an eigenvector of A(G [0 H) with
eigenvalue A + 1. These properties also apply when swapping the adjacency matrix
for the unnormalized Laplacian. See Figure [A.7 for examples.

Let Ch, and Cl, denote two unweighted cycle graphs with N1 and N vertices,
respectively. The Cartesian product of C'y;, and Cly, will become a torus grid graph
(see Figure A.T)), T, n, = Cn, O Ch,, with a set of N1 x N3 normalized Laplacian

eigenvectors and eigenvalues given as

1 _2m~(m1ll maly
e N1 + Ng

NN }11:1,.A.,N1;z2:1,...,N2

“Strictly speaking the approximation only holds for I € [~N,/2, N, /2 — 1] if N, is even and
l € [-(Ny —1)/2,(Ny, — 1)/2] if Ny is odd. However, A; and x; are periodic in [ so (A3 will
produce the same result for these ranges as for [ € [0, N, — 1].

{X(zl,b)[(ml, mg)] = (A.13)
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1 27l 1 27l
{A(ll l,) = 1 —  cos <7r1> — —cos <M> } . (A.14)
’ 2 M 2 Ny l1=1,...,N1;la=1,...,No

Note that the eigenvectors are still vectors but are for better interpretation indexed
using tuples. Constructing the atoms we have

N1—1 No—1

Ui () (1, m2)]) B2 D> R 1)1 1) 1, malX gy i) (01, n2)]-
11=0 l2=0

(A.15)

Similar to as in the 1D case, cf. (A.5), it can be seen that (A.T5) represents a DFT; in

particular the 2D DFT.
Using the same approximation approach as in (A.I() we obtain
1 (2n11\2, [2xly\2
I%[(ll,lg)] _ e—TA(llh) ~ 6_7—1((1\771) (T2> ) (A.16)

which is a bivariate Gaussian with covariance matrix 3 = o, 1. Again, using the
reciprocal relationship between the standard deviations of Gaussian kernels, we have

Oy = — — = (A17)

It is straight-forward to extend this property to higher dimensions, which leads
to the relation

1 T
= — =4/ = A.18
UTZJ O’,;: D ( )

where D denotes the dimension of the space.
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