
Finding Field of View Overlap by Motion
Analysis

(A Master Thesis at Axis Communications AB)

Fredrik Sydvart
dat12fsy@student.lu.se

Hampus Altvall
tpi11hal@student.lu.se

September 28, 2017

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Fredrik Andersson, fredrik.y.andersson@axis.com
Cristian Sminchisescu, cristian.sminchisescu@math.lth.se

Examiner: Kalle Åstrom, kalle@maths.lth.se

mailto:dat12fsy@student.lu.se
mailto:tpi11hal@student.lu.se
mailto:fredrik.y.andersson@axis.com
mailto:cristian.sminchisescu@math.lth.se
mailto:kalle@maths.lth.se

Abstract

Network cameras has in the recent years becomemore powerful. Each camera
is independent and has its own surveillance task. It is reasonable that network
cameras in the future should cooperate together to increase surveillance ef-
fectiveness. There is a need to find cameras sharing the same field of view
in order for an operator to switch perspective. This thesis investigates how
multiple network cameras can cooperate by finding the shared field of view
between cameras. With the shared field of view, we implement an additional
knowledge above system of network cameras and new use cases arises. Our
method consist of applying a grid of cells on each camera’s video stream and
study movement detection. We gather contradicting proof of connectedness
between each cell in the whole network of cameras. Our method avoids prob-
lems with feature detection such as different perspectives or image quality. We
found that our method works with promising results and we can find shared
field of view between cameras. There is a limitation in memory of storing all
cells and we can only find overlap in regions with movement. This field has
not been researched so much, making evaluation hard, as many approaches
focuses on feature detection.

Keywords: surveillance network, network cameras, shared field of view, camera over-
lap, motion detection

2

Acknowledgements

We would like to thank our supervisor Fredrik Andersson for giving us the help and en-
couragement we needed. Especially for his drive to push the project forward and help us
open up our minds to tackle the problem. We would also like to thank any employees on
Axis we happened to come across and received help from. Lastly thanks to Axis for be-
ing an awesome, helping and welcoming company. Fredrik would like to especially thank
his family for giving him the encouragement to continue working on this thesis. Hampus
would like to thank his family and especially his dad for all the feedback.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 Problem Definition . 8
1.3 Motivation . 9
1.4 Requirements . 9
1.5 Related work . 10

2 Method 11
2.1 Coordinate systems . 11

2.1.1 Image pixel coordinates . 11
2.1.2 Spherical coordinates . 12

2.2 Cell generation . 12
2.2.1 Static camera . 12
2.2.2 PTZ camera . 13

2.3 Overlap computation . 15
2.4 Implementation . 16

2.4.1 Data gathering stage . 17
2.4.2 Occupancy vector building stage 18
2.4.3 Overlap calculation stage . 20

2.5 Assumption . 21

3 Evaluation 23
3.1 F1-score . 23
3.2 Experimental setup . 24
3.3 Problem with evaluating result . 25
3.4 Validate prototype theory . 26
3.5 Full overlap between two cameras . 28

3.5.1 Centroid and area method . 28
3.5.2 Test length . 30
3.5.3 Frame length . 30

5

CONTENTS

3.5.4 Cell size . 31

4 Conclusions 33
4.1 Discussion . 33
4.2 Limitation . 34
4.3 Future work . 34

Bibliography 37

Appendix A List of Abbreviations and Expressions 41

6

Chapter 1
Introduction

This chapter describes the background, introduces problem definition and lastly brings up
related work to see what other researches have found.

1.1 Background
Video surveillance is used by companies and governments for monitoring behavior and
activities with the purpose of protecting peoples and assets. In 2014 there were 245million
professionally active and operational video surveillance cameras globally [1]. Over 20
percent are estimated to have been network cameras and the number is increasing. A
network camera is defined as a static or dome camera with its own IP address and built-
in wired or wireless network capability. Network cameras is interesting because of its
agile capabilities. Each network camera enables software to be uploaded remotely and its
monitoring task to be altered easily.

Even for a smaller network of cameras human operators monitoring ongoing or past
activity require assistance from software to filter out relevant data. Adding new cameras
to a network does not necessarily increase effectiveness in monitoring since it puts more
load in filtering out relevant data for human operators.

To put into perspective the transportation market has, according to IHS data, an av-
erage of 12 surveillance cameras per building. This is twice as many as the government
vertical market and four times as many as in education and retail [1]. However, regional
differences in legislation and regulation in security requirements for government and cor-
poration buildings have an impact in this installation data. Many times a corporation,
government or school have multiple buildings which increases the size of the surveillance
network. Active surveillance might also be outsourced to security companies where a few
human operator will be responsible of multiple surveillance camera networks.

There is a need for extending camera networks to allow for better effectiveness by
utilizing each network camera’s capability. From here on in the report, if not explicitly

7

1. Introduction

written, when we mention camera we mean network camera.

1.2 Problem Definition
Since cameras usually reside on the same network and monitor objects from different per-
spectives, this property can be exploited to further extend utilization of current camera
network systems. The problem we have identified is:

"Find the shared vision topology of a surveillance network. The shared vi-
sion topology is a graph describing network camera’s field of views as edges
linking camera nodes, also called camera overlap."

Let us consider the example setup over a street in figure 1.1 in order to understand the
topology we want to find above. The setup consists of three different cameras PTZ, Pan
and S with its own respective field of view and capabilities. It is possible to derive the
shared vision topology and represent it as a graph where each camera is a node. Edges
represent that there is some subset in the field of view which is shared between the two
nodes. The example setup can be visualized as the following graph:

PTZ: [Pan]
Pan: [PTZ, S]
S: [Pan]

The topology must be up-to-date, easy to calibrate and accurate.

Figure 1.1: Example of a spatial camera setup. Each camera has
different capabilities and tasks. Pan is a static panorama camera
with wide field of view while S is a static camera with only zoom
capability.

8

1.3 Motivation

1.3 Motivation
This section aims to answer the question: I know the shared vision topology of a camera
network, what can I do with this information?

There are multiple uses of having a shared vision topology over a known camera net-
work. One example is together with tracking. When an operator follows a moving person,
the operator might want to see the person in another perspective to identify the face. A
shared vision topology gives a suggestion over an area in the current field of view that is
also present in another camera.

Another example usage could be optimizing an installation. Each surveillance camera
cost money to manufacture, install, maintain and use. Having too many cameras monitor-
ing the same area is a waste of resources and can thus be optimized by reinstalling cameras
with known overlapping field of view.

Another usage of the shared vision topology information could involve multiple cam-
eras working together for one purpose. Suppose there is a panorama camera monitoring,
through a wide field of view, a street together with multiple PTZ or static cameras nearby.
An operator could only monitor the panorama camera. If any interesting object is found,
the operator can get a list of cameras nearby to zoom in on the object.

1.4 Requirements
When solving the problem defined in section 1.2 we have some requirements:

1. The data gathering method for deriving the topology should not disturb with current
surveillance or at least have minimum impact.

2. It should be possible to derive the topology in a network that contains cameras with
different capabilities. One such capability is PTZ or panorama cameras.

3. It should be possible to find out which parts of a camera’s field of view that is over-
lapping.

4. The solution should be able to handle large surveillance networks.

5. The complete solution should work with existing installed camera systems with little
or no modification.

6. The complete solution should handle each camera malfunctioning, going offline or
being replaced.

9

1. Introduction

1.5 Related work
During our research we found different approaches for our problem definition, i.e. finding
shared vision topology in a system of network cameras.

One way is to utilize feature-detection for determining shared vision graph [2]. This
method requires SIFT or alike. The features can be passed around to other cameras and
compared to determine shared vision. However, when camera orientation or perspective
is significantly different from each other then SIFT fails. Feature detection can be tough
since light condition and exposure can change features. There is also a problem in which
similar looking objects can be interpreted as being in the same field of view as another
camera, e.g. street light.

Another method by Detmold et al. (2007) relies on dividing all camera streams into
a grid of cells, then assume all cells share the same field of view and find contradicting
proof of connectivity between cells until there is not enough contradicting data compared
by an empirically determined threshold [3]. Research by Detmold et al. (2007) currently
does not support PTZ. Their solution assumes everything is connected between cells and
new data creates exclusion. Their solution assumes area with no movement is connected
to other cameras unless disproved. Detmold et al. (2007) will, if there is no movement,
generate a lot of false positives since their solution assumes areas with no movement is
connected to all cells unless contradicting proof is presented.

10

Chapter 2
Method

This chapter aims to explain our method to find overlap between multiple camera streams
field of view. In order to do this, each camera’s field of view is divided into a grid of cells
and overlap is found between cells. We also implement our method as a prototype and
discuss any assumptions needed.

2.1 Coordinate systems
There are two ways of dividing a camera’s field of view into a grid of cells, depending on
the type of camera. If the camera is static, the cells boundaries is defined in image pixel
coordinates. If the camera has PTZ capabilities, the cells boundaries is instead defined in
spherical coordinates as pan and tilt values as degrees. These pan and tilt values is limited
by mechanical capabilities in the PTZ camera.

2.1.1 Image pixel coordinates
Image pixel coordinates has its y-axis oriented downwards and its origin in the upper left
corner as seen in the right image in figure 2.1. Normalized image coordinates has its
origin in the center of the image, and the perpendicular distance from the image edge to
the origin is 1. To convert normalized image coordinates to image pixel coordinates we
use the following equation:

x =
1 + xn

2
· Iw,

y =
1 − yn

2
· Ih

(2.1)

where x and y is image pixel coordinates, xn and yn is normalized image coordinates and
Iw and Ih is width and height of the image in pixels. Figure 2.1 illustrate usage of equation
2.1 for an arbitrary image.

11

2. Method

Figure 2.1: To the left is an image with normalized image coordi-
nates. This can be converted into image pixel coordinates as seen
to the right. Image pixel coordinates is limited by image width and
height in pixels.

2.1.2 Spherical coordinates
We need a way to transform image pixel coordinates to spherical coordinates. A PTZ
camera moves around by changing mechanical pan and tilt values. Panning is a horizontal
movement of the lens while tilting is a vertical movement. The camera can be visualized
as being inside a unit sphere. Every pixel in the image corresponds to an angle in relation
to the camera.

We use a spherical coordinate system (r, θ, ϕ) where r is the radial distance, θ is polar
angle and ϕ is azimuth angle. The coordinate system, in our case, is limited by:

r = 1,
0◦ ≤θ ≤ 180◦,
0◦ ≤ϕ ≤ 360◦.

However, other ranges is sometimes also used in this report depending on capability of
PTZ camera. Common ranges can be (−180◦, 180◦] for ϕ or (−90◦, 90◦] for θ.

2.2 Cell generation
Cell generation is the most important step in our method. The algorithm to find overlap
between cells is independent on camera type and therefore grid cell structure. As long
as each cell have a unique id they are distinguishable. Cell generation can be arbitrary
generated, as long as the cell generation is consistent. We will cover how we generate
cells on static and PTZ cameras.

2.2.1 Static camera
When defining where each cell’s boundaries are in a static camera, we use image pixel
coordinates. The image width and height is used from a camera stream to generate cells
with unique id. In the prototype we specify howmany cells fit in x- and y-axis. An example
of a generated grid of cells can be seen in figure 2.2. Generated cells for one static camera
from our prototype can be seen in figure 2.3. Depending on size of moving objects in a

12

2.2 Cell generation

real-world environment, cells in each camera can be bigger or smaller to increase overlap
computation accuracy.

Figure 2.2: Generated cells with unique ids for two static cameras.
Here 5 cells was used in x-axis and 3 in y-axis.

Figure 2.3: Cell generation for static camera from our implemen-
tation shown inside camera stream.

2.2.2 PTZ camera
Mechanical pan and tilt limits in degrees for a PTZ camera is used to generate cells with
an unique id. A PTZ camera can be thought as being inside a unit sphere. Pan and tilt
values can be defined as a 2-dimensional surface. Thus we generate uniform cells on that
2-dimensional surface as seen in figure 2.4. The concept is the same for static camera but
now it generates cells depending on supported mechanical pan and tilt values in degrees.
This idea can be visualized with an example PTZ camera that has 360◦ pan and 180◦ tilt
capabilities with 20 cells generated in each pan and tilt direction as seen in figure 2.5. Note
that cell generation is not optimal as cell area near equator is bigger than near the poles.
Generated cells for one PTZ camera from our prototype can be seen in figure 2.6.

13

2. Method

Figure 2.4: Example of generated cells with unique ids for two
PTZ cameras. Here 5 cells was used in x-axis and 3 in y-axis.
Cell generation is dependent on mechanical limit for pan and tilt
values.

Figure 2.5: Illustration of a sphere divided into a grid of cells.
A PTZ camera is assumed to be in the middle of the sphere with
radius r = 1. When the PTZ camera moves, mechanical pan and
tilt values are updated and visible cells from current field of view
is derived. This sphere have 20 cells generated in each pan and tilt
direction yielding a total of 400 cells.

14

2.3 Overlap computation

Figure 2.6: Cell generation for PTZ camera from our implementation shown
inside camera stream. Mechanical limitation is −180◦ ≤ pan ≤ 180◦ and −90◦ ≤
tilt ≤ 0◦. 25 cells was generated in pan direction and 13 in tilt direction yielding
a total of 325 cells. Only a subset of all cells is visible.

2.3 Overlap computation
Time is divided into discrete time frames. Any event happening is converted to the closest
time frame. Frame length can be changed if needed. Events of interest is movement on
cells. If there is movement in one cell at a specific time frame, the cell is considered as
occupied at that time frame. A cell can either be in occupied or unoccupied state. If events
of movement have been collected during T frames, each cell will have a binary vector of
length T that stores all the states. These vectors are referred to as occupancy vectors.
Overlap is found by comparing the cells occupancy vectors. The occupancy vector is be
described with the following notation:

ui = {ui0, ui1, ui2, ..., uiT } (2.2)

where u can be either 1 or 0 if occupied or not, i denotes the cell index and T is the
number of total frames. A cell can either be present or not in each frame due to different
reasons. One reason appears when a PTZ pan or tilts to a new position and some visible
cells disappear which can cause contradicting data. Another reason could be information
lost in the network. To fix this problem we define an availability vector v for each cell that
is set to 1 if the cell was present in the frame or 0 if not. A cell is present if the cell’s state is
either occupied or unoccupied. Length of the availability vector is the same as occupancy
vector. If the cell was not present in the frame assign 0. The availability vector acts as a
filter, and is used to filter out cells that have not been active during the test. Reasons for
being non-active is typically camera downtime or if not being visible in a PTZ camera.
We use the following notation for availability vector:

vi = {vi0, vi1, vi2, · · · , viT }

15

2. Method

The filtered occupancy vector can be described with:

oi = ui ∧ vi

The core of our method is exclusion. We use an unidirectional exclusive or when com-
paring between occupancy vectors:

oit 	 o jt =

1, if oit = 1, o jt = 0
0, otherwise

The unidirectional exclusive or is used on all the values throughout the occupancy vectors
and then the result is summed up:

Ei j =

T∑
t=0

oit 	 o jt, E ji =

T∑
t=0

o jt 	 oit (2.3)

Ei j can be seen as the number of times cell i was occupied at the same time cell j was
unoccupied. In order to retrieve a certainty measure Ci j and C ji, regarding if cell i and j
is overlapping, we first must calculate the number of times cell i and j was occupied.

Si =

T∑
t=0

oit, S j =

T∑
t=0

o jt (2.4)

The next step is to calculate a measure of excluding data between cell i and j:

Ci j =
Si − Ei j

Si
, C ji =

S j − E ji

S j
(2.5)

If cell i and j do not overlap, then Ci j → 0 when Ei j → Si. Since the calculation of Ei j
and E ji values uses an unidirectional operator, Ei j and E ji is not symmetric. Therefore we
have two directed certainty values for each cell pairs. In order to strengthen the possibility
of an overlap we check both directed certainty values. We decide if two cells overlap with
the help of an empirically predefined threshold C∗ and the following boolean function:

Cell i and j overlap = Ci j > C∗ ∧C ji > C∗ (2.6)

Overlap between cells in the same camera is ignored. Change in frame length impact cell
overlap.

2.4 Implementation
Our implementation, also called prototype, will use a centralized solution. Meaning each
camera will stream its video stream and motion detection event data to a central computer
for cell overlap calculation. See figure 2.7 for a brief prototype overview. We will refer
one run of the prototype as a test. The test consist of several stages;

1. Data gathering.

16

2.4 Implementation

2. Occupancy vector building (defined in equation 2.2).

3. Overlap estimation calculation.

Each stage requires specific input. The data gathering stage only needs a list of IP-addresses
to the included cameras in the test. It then outputs a list of motion detection events for each
camera. The occupancy building stage takes these lists as input and then produces occu-
pancy vectors for each cell. The occupancy vectors are then used in the overlap estimation
calculation stage.

Figure 2.7: Brief prototype system overview.

2.4.1 Data gathering stage
The prototype utilizes Axis Video Motion Detection (VMD). VMD is an application in-
stalled on each camera and every time a motion is detected, an event will be sent from
the camera to the computer that runs the prototype. The event contains a timestamp and
normalized image coordinates for polygons to the bounding boxes surrounding the ob-
jects that triggered the event. This method works well with our requirements defined in
1.4 since VMD can run on existing camera network with little modification and does not
disturb current surveillance.

When running the prototype, there will be a thread running for each camera included
in the test. Each thread is responsible for collecting event data sent from its corresponding
camera. The data gathering method is centralized and only data sent from the camera to
the local machine are motion detection events:

{
"UtcTime": "2017-05-18T12:03:05.443660Z",
"polygons": "#00FF00

0.0290534,-0.9780274
0.1708984,-0.9780274
0.1708984,-0.6521004
0.0290534,-0.6521004

17

2. Method

0.0290534,-0.9780274;"
}

The event contains an UTC timestamp and a polygons string. The polygons string
consists of a color in hex format and a list of five floating point number pairs representing
a polygon’s bounding box in normalized image coordinates. Note that the polygons
string can contain multiple colors and floating point number pairs and is separated with
a semi-colon, thus multiple bounding boxes can be received. VMD can be configured to
minimize false alarms by adding multiple filters and ignore areas in the video stream. The
color in the event data represent if the polygon was an alarm (red) or acknowledge and
ignored (green) by VMD.

The polygon bounding box is always a rectangle, and we will hereafter refer to it as
movement rectangle. The event data is specific to the current field of view for the camera.
Depending on the type of camera, the movement rectangle coordinates must be converted
to different coordinate systems in order to derive which cells is included in the movement
rectangle during time frame.

For static cameras, movement rectangles must be converted to image pixel coordinates
to know which cell was included in each movement rectangle. In static cameras each cell
is always visible. The process to derive which cell is included from a movement rectangle
follow this conversion in coordinates:

normalized image⇒ image pixel⇒ list of included cells

For PTZ cameras, movement rectangles must be converted in a slightly different way since
cells is represented by mechanical pan and tilt values instead of image pixel coordinates.
The process follow instead this pattern for conversion in coordinates:

normalized image⇒ spherical⇒ list of included cells

However, for PTZ cameras only a small number of cells are visible at a time. Depending
on the current field of view for a PTZ camera certain cells may be visible or not as seen
in figure 2.8. It is necessary to know which cells that were visible for each frame during
the test. Without knowing which cells were visible, overlap could be over-written since
incoming data could be considered contradicting data by our method. Also, we want to
find overlap for cells that is only visible a fraction of the test.

2.4.2 Occupancy vector building stage
Useful data from events is timestamps and movement rectangle bounding box coordinates.
For each gathered rectangle, we calculate which cells in the generated grid it covers. We
have two methods of defining how a rectangle covers cells in the cell grid:

1. Centroid method: Calculate the centroid point of the rectangle. Find which cell
this centroid point belongs to.

2. Area method: Find cells that is covered by the rectangles area above a certain cov-
erage threshold.

18

2.4 Implementation

Figure 2.8: Illustration of a PTZ camera inside a half sphere. 9
cells is visible from the current field of view for the camera. Move-
ment rectangles can only be inside any of the 9 cells. Mechanical
limitation is 0◦ ≤ pan ≤ 180◦ and 0◦ ≤ tilt ≤ 180◦

Example of these two methods can be seen in figure 2.9. In the figure, a rectangle from
an event has been drawn over a cell grid. The rectangle touches cell index 3, 4, 8, 9, 13,
14, but only 8, 9, 13 and 14 are regarded as occupied since 3 and 4 doesn’t meet up to the
minimum required area coverage threshold of 49%. If a cell is covered, we say that the
cell is occupied at that time frame, specified by current timestamp. We will evaluate both
methods later.

The goal is to create an occupancy vector for each cell. The element at each index in
the occupancy vector represents the cell’s state at that current time frame. The length of
the occupancy vectors is calculated as:

start − end
frame length

(2.7)

Where start is the start time of the test, end is the end time of the test and frame length is
the length of a frame, measured in seconds, in the test. We chose frame length 1 second,
but this can be changed depending on real-world camera network environment and how
well each camera’s time is synced. The occupancy vectors is initialized as a long vector
of zeros, and then filled with ones at indexes that have a corresponding timestamp. The
mapping between an individual timestamp and occupancy vector index can be done in a
similar way as equation 2.7:

start − timestamp
frame length

The timestamp can not be taken after the end of the test, or else it will be mapped to an
index that exceeds the length of the occupancy vector.

19

2. Method

Figure 2.9: Cell coverage example. On the left is method 1, as
described above, and to the right is method 2. Method 2 uses area
coverage threshold 49%, meaning at least 49% of the cell area
must be covered by the movement rectangle.

Figure 2.10: Example of a moving object with area coverage
method threshold 5%. Cell 36, 44 and 52 is considered occupied
at this time frame.

2.4.3 Overlap calculation stage
During this stage all occupancy vectors are compared with each other using equations
2.3, 2.4, 2.5 and 2.6 described in section 2.3. Result is a list of overlapping cells that the
prototype has found. For example, consider the overlap found in figure 2.11, the prototype
would output:

14: 15
15: 14

Note that from the output above there is also additional information not seen, i.e. all
other cells not present in the list does not overlap with any cell. This information must
be considered when evaluating our prototype. The output can directly be used to check
against a predefined ground truth for evaluation.

20

2.5 Assumption

Figure 2.11: Example cell grid setup and overlap for two cameras.

2.5 Assumption
Our approach can only find shared field of view by movement inside the field of view.
Thus it can not find shared field of view when e.g. observing walls or buildings. It is
a reasonably assumption since surveillance usually is important in places where there is
movement. However, movement in new places in a camera stream requires additional
training and basically gives a new ground truth. For evaluation we can not assume new
ground truth is generated after time.

Currently our approach is centralized for cell and occupancy generation but can easily
be decentralized by allowing each camera to be responsible for it’s own cell generation and
handling of motion detection. Each camera then only sends out occupied cell id together
with corresponding timestamp.

Our prototype assumes the surveillance network is online using configured motion
detection for the current scene to minimize detections that generates contradicting data
(e.g. flag swaying in one camera while a person is walking in another camera which could
generate shared field of view in our algorithm).

Our prototype also assumes all cameras in the network have clock synchronized. Any
clock drift can be handle in the algorithm by padding additional frames in time or change
frame length, however it could generate false positives. It is a reasonably assumption to
make that every camera is synchronized.

21

2. Method

22

Chapter 3
Evaluation

In this chapter we evaluate our prototype of finding overlap. We start by introducing F1-
score, together with precision and recall, as a benchmark tool. Then we explain our ex-
perimental setup. We also explain some evaluation problems and lastly we evaluate the
prototype.

3.1 F1-score
F1-score measures a binary classification test’s accuracy. With F1-score one can compare
different binary classification methods. F1-score is the harmonic mean of precision and
recall. Precision is a fraction of relevant items that has been selected over the total amount
of relevant items, while recall is a fraction of how many relevant items are selected from
the total amount of relevant items. The possible outcomes from a binary classification,
compared with a ground truth, is:

• True positive (tp): Test predicted true. Ground truth is true.

• False positive (fp): Test predicted true. Ground truth is false.

• False negative (fn): Test predicted false. Ground truth is true.

• True negative (tn): Test predicted false. Ground truth is false.

From this formulate precision and recall as:

Precision =
∑
tp∑

tp +
∑
fp

Recall =
∑
tp∑

tp +
∑
fn

23

3. Evaluation

Lastly we can compute F1-score as:

F1 = 2 ·
precision · recall
precision + recall

F1-score work great in our case since cells can either be overlapping or not. With a prede-
fined ground truth, precision and recall can be calculated. Thus we can compare different
ways to assign occupancy for a cell at a timestamp, or change the algorithm and still obtain
an accuracy score.

F1-score is not entirely optimal since true negatives is ignored in precision and re-
call. True negatives is interesting because our algorithm can predict no overlap, while the
ground truth state no overlap. This is also relevant information. To solve this we can use
accuracy as:

Accuracy =
∑
tp +
∑
tn∑

total population

where total population is the total number of relevant items for the test. In our case
total population is the number of overlapping and non-overlapping cells in ground truth.
Now with F1-score, together with accuracy, we can compare any method for finding over-
lap efficiently.

3.2 Experimental setup
It is possible to derive different results depending on which thresholds and variables are
chosen. The list of thresholds and variables that can be changed are:

• ri = Number of cell rows in camera i.

• ci = Number of cell columns in camera i.

• a = Cell area coverage threshold (see figure 2.9).

• C∗ = Overlap certainty threshold (see equation 2.6).

• f = Frame length.

There are a number of problems to take into account when selecting these values. If ri or ci
are changed, then the area of the cells changes, which will affect the efficiency of threshold
a. The cameras spatial properties should also be taken into consideration before running
the test. If the camera is placed far away from moving objects, then the objects will appear
smaller in the camera’s field of view, and if r, c or a are too high, then the cell might not
ever register movement as the cell is too big and require significant area coverage from
movement rectangle to be considered occupied. We want to test which values are the best
for different setups. The initial thought is to select ri and ci so that most moving objects
have roughly the same size as a cell.

The frame length f should be as short as possible since the theory builds upon regis-
tered movement that happens at the same time. However, if the value of f is too small, the
time difference between the internal clocks in the cameras will affect which frame events

24

3.3 Problem with evaluating result

will be part of to a much greater degree. That is not a wanted behavior. Also, the smaller
value of f , the longer the length of the occupancy vectors will get, which will affect mem-
ory usage and the computational time negatively.

When testing, there is a problem of evaluating the result since it is hard to know the
ground truth for the current setup of cameras. It is possible to place the cameras in such a
way that you know a certain set of cells will overlap, but it requires very accurate camera
placement.

Tests will be carried out multiple times but with different values of ri, ci, a, C∗, f .
There is a problem of achieving the exact same spatial properties between the test. This
would require that movement happens at the exact same and time during every test and
the cameras cannot move. We consider this an almost impossible requirement to achieve
consequentially. It is also time consuming to have to wait another full test length when
you just want to change one variable. This problem is solved by saving all the event data
during the data gathering stage (see 2.4.1), and then run the occupancy vector building
stage and overlap calculation stage of this data. This way, a test that took several hours to
collect all the event data, can be run multiple times, taking only a few seconds.

There are multiple ways of placing two cameras so that their field of view overlap. We
do not have time to test every interesting possibility of camera placement. Therefore we
will focus on one test scenario, where it is fairly simple to generate a ground truth. This
test scenario will be referred to as full overlap, meaning that both cameras shares 100% of
its view with the other camera.

3.3 Problem with evaluating result
When evaluating our prototype there is a problem in having a valid ground truth. Cell
width and height in a cell determines which other cell it might overlap with, thus it exists
many ground truth for only two cameras if there is a known overlap in their field of view.
There does not exist any public database with camera streams, together with motion data
events, and polygons indicating which part of each camera’s stream share same field of
view with other cameras. We could either build said database ourselves, or find ways to
position cameras with a known ground truth beforehand. There is different kinds of ground
truth:

• Specific angle (e.g. half of the camera’s field of view is overlapped with another
camera).

• Spatial setup for cameras with no overlap.

We will focus on using specific spatial angles to get a known ground truth between two
cameras. We should only evaluate with ground truth for overlap, not for when or how
overlap was found. Lastly if there was no movement in a cell during the test, we should
assign no overlap in the ground truth to reduce false-negatives lowering our recall for F1-
score. We will be clear and consistent when we do this.

We have to assume a fixed ground truth. In a real world application there could be
regions in a camera’s stream in which there is no movement during training (e.g. locked
doors in a corridor). These regions could change and suddenly involve movement after

25

3. Evaluation

training. Thus the ground truth has been changed. During evaluation we must assume a
fixed ground truth to compare methods or configurations to our algorithm.

There is also a subjective interpretation of cell overlap when generating a grid of cells
over camera streams. As seen in figure 3.1, camera one can have zero or four cells that
overlap depending on visual ground truth (e.g. is some part of ground truth covered enough
to consider sharing same field of view ormust the whole ground truth be visible in the cell).

Figure 3.1: Illustration of ground truth when generating a grid of
cells over two cameras. GT is ground truth, i.e. the GT region in
camera 1 is sharing the same field of view in GT region in camera
2. One can argue which cell actually overlap with ground truth
depending on visual interpretation of the camera scene.

3.4 Validate prototype theory

This section aims to validate that the underlaying theory for the prototype works as a
method for overlap calculation. We do this in an environment where there is no prob-
lems with ground truth. This environment is simulated by only using one camera, and
then duplicate its output test data and assign it to a fictional camera, as if the fictional
camera also recorded exactly the same events. This ensures a full overlap and the ground
truth is thus known.

The prototype should output a graph almost identical to the ground truth. When using
some thresholds (a, C∗), it was discovered that the precision could be as good as 1.0,
but the recall was correlated to how many cells that has registered movement. This is
mentioned in the limitations, we can only find overlap between cells that have registered
some movement. The process of finding good thresholds is fairly simple, since we are able
to run the exact same test multiple times, we can just change these threshold between each
iteration and then see which threshold governs the best F1-score.

26

3.4 Validate prototype theory

Figure 3.2: Investigating different thresholds across two different
cell occupation methods. To the left centroid method is shown and
to the right area method from section 2.4.2 respectively. C∗ and
a are parameters defined in section 3.2. Notice how in the area
method, the search for the optimal parameter is more complex.

The results presented in figure 3.2 are both produced from the same test data and with
the same parameters, but with different methods for calculating which cells are covered
by movement rectangles. The fixed parameters for both tests are; the number of cameras,
number of cells, frame length, and test length. The number of cameras are 2 (one of
them is a fictional duplicate), and the total number of cells for these two cameras are
r0 ∗ c0 + r1 + c1 = 12 ∗ 6+ 12 ∗ 6 = 144. The frame length is 0.5s and the test length is 1h.
During the one hour the test was running, all areas of the field of view has experienced
some kind of movement.

When using the centroid method, we discovered that the optimal thresholds are C∗ =
0.67..0.99, all producing an F1-score of 0.86. When using the area method, we have to
find the optimal area threshold a and overlap threshold C∗ at the same time. In this case
the optimal values gained a perfect F1-score of 1.0 throughout many values of a at higher
thresholds C∗ > 0.9.

There are a few reasons the areamethodwins over the centroidmethod in this particular
test. It has a slightly better recall, without any loss of precision. The reason for the better
recall is that it is better at covering more cells. In this test, one movement rectangle is
most likely to be able to cover multiple cells with the area method, whereas the centroid
method is defined to only be able to activate one cell per movement rectangle. If we would
discard all cells that never gets covered by movement rectangles with the centroid method,
we would get a better result, as presented in figure 3.3. There we get an F1-score of 0.99.
This new result cannot directly be compared with the result presented in 3.2 since the tests
included cells and ground truth has been altered, but it shows that the centroid method is
also viable when enough cells gets covered.

27

3. Evaluation

Figure 3.3: Finding threshold with the centroid method where
cells that never has been covered bymovement rectangles has been
discarded from the test.

The results presented in this section has proven that our theory and implementation of
prototype works as intended. The next step in the evaluation process is to test the prototype
in a more realistic environment.

3.5 Full overlap between two cameras
This test will show how both methods performs when we do not have a perfect environ-
ment, i.e. we do not duplicate the test data to a fictional camera. The requirement for time
synchronization and equal configuration between the two cameras are now much greater.
We do also have to assume that both installations of VMD behave the same on both cam-
eras. In order to achieve that we use two cameras of the same model and two installations
of VMD with the same version number. Both cameras start out with a freshly installa-
tion of VMD, and the test starts when both cameras has a newly started VMD application
running. Both cameras captures the same scene, and should thus have full overlap. It is
much harder to ensure that there is full overlap between the two cameras since we have to
ensure that they have the exact spatial properties. We can of course not place both cameras
in the exact same location, so we have to place them next to each other and then capture
movement rectangles from objects moving from a long distance from the cameras so that
they have roughly the same pixel coordinates in both cameras.

3.5.1 Centroid and area method
In figure 3.4 we can see the best threshold for the centroid method regarding this scenario.
There is two lines, the green one (lower) belongs to the test where no cells has been dis-
carded, and the blue one (upper) belongs to the test where we have discarded cells that has
never been covered by movement rectangles. The offset between the two lines depends

28

3.5 Full overlap between two cameras

on the proportion of cells that has never been discarded. The optimal threshold is a bit

Figure 3.4: Finding threshold with the centroid method. Lower
line has not any discarded cells. Upper line has discarded cells
that never has been covered by movement rectangles.

lower than expected, this is due to the noisy environment the cameras was capturing. In
the previous chapter 3.4, there was no problems with noise, and the optimal threshold was
thus much higher. In figure 3.5 we can see the best values for the thresholds a and C∗
when using the area method. The left plot shows the F1-score for the test where no cells
are discarded. The best F1-score is 0.34 at a = 5%, C∗ = 82%. If we discard cells, we get
a better result, as seen in the right plot. There we get the best F1-score of 0.5 at a = 76%,
C∗ = 62%. In this test scenario, the centroid method was a clear winner. The reason for

Figure 3.5: Left plot shows F1-score at different thresholds using
the area method. Right plot shows F1-score at different thresholds
using the area method and with disposal of cells that never gets
covered by movement rectangles.

this is that the area method has problems with false-positives. With the area method we

29

3. Evaluation

find a lot of overlapping cells that is neighbouring cells with true overlap. This is all due
to the way that the area method is able to cover multiple cells per movement rectangle. We
thought it was possible to choose an area threshold a so that this problem wouldn’t occur,
and that is possible to some degree. But after trying a range of 100 area thresholds, it still
doesn’t beat the centroid method.

3.5.2 Test length
There is yet to explore how our prototype learns overlap through time. It is however, hard
to present the result in a graph where time is used as a dimension on one of the axis, since
we have no control over how many events are produced during one time instant. Therefore
we will show how our prototype learns overlap through how many events it has registered.
The scenario used in this test consists of 26 × 103 events, produced during one hour. By
using the centroid method we have calculated the F1-score after each gathered 103 events
and it is presented in figure 3.6.

Figure 3.6: Finding the best threshold after each gathered 103

events.

We can see that the F1-score increases with the number of sampled events. But the increase
stagnates after after about 20×103 events. This result is gathered without disposal of cells
since the set of non-covered cells differ between throughout the plot.

3.5.3 Frame length
Another variable that can affect the F1-score is the frame length. Testing has until now
utilized a frame length f = 0.5. We will use the centroid method for this test again since it
has the best performance in this scenario. Figure 3.7 shows two plots, the left one has frame
lengths from f ≤ 1s and the right plot has frame lengths f ≥ 1s. We can see that frame

30

3.5 Full overlap between two cameras

Figure 3.7: Finding the best threshold with the centroid method
and different frame length.

lengths below 1s offsets to the left while still remaining roughly the same peak F1-score.
If the frame length is shortened, we must also use a lower value of C∗. We recommend to
not use a frame length lower than 0.5s since we do not get any better F1-score and shorter
frame length has some drawbacks like more memory usage and worse tolerance of C∗.
The tolerance for bad values of C∗ is very low when looking at the graph for frame length
0.125s. Any threshold over 0.5 will result in a F1-score of 0. If we instead take a look at
the right plot we can see that if we increase the frame length, bad guesses of C∗ is more
acceptable, but for the price of an overall lower F1-score. By remembering the occupancy
vectors defined in equation 2.2, we can explained the behavior of different C∗ tolerance
for different frame length. Lower frame length results in higher difference between the
cells occupancy vectors, and higher frame length results in the opposite. An extreme case
would be if the test length and frame length would be the same, the test would only have
one frame, and all cells that have registered movement would be equal. By taking both
plots into consideration, we can conclude that a frame length between 0.5 and 2 is the best
choice.

3.5.4 Cell size
It is hard to consistently test how the cell size affects the F1-score since an increase or
decrease also affects the total number of cells in the test. In general, if fewer cells are
included in the test, the F1-score gets better because of the simple ground truth. We have
tested this, and it is true for both the centroid and area method. But if we would like to
include more cells in the test, which method would perform the best. Until now, the tests
have utilized a cell size relatively near the average area of movement rectangles, and the
centroid method had the best performance. The area method should, at some point, have
better performance than the centroid method if we would decrease the cell size. If we
consider the smallest possible cell size, the pixel perfect cell size, the centroid method
might not work at all whereas the area method can still perform. This threshold between
when area method is better than centroid method could possibly be found, but we omit it
in the report because of the complexity and limited time.

31

3. Evaluation

32

Chapter 4

Conclusions

4.1 Discussion

In this thesis we purposed an unsupervised learning algorithm to find overlap between
multiple cameras field of view. The algorithm can also be seen as either online or offline
depending on implementation but we chose evaluating an offline version. Our method can
also be seen as incremental learning with streamed data. A trained model can be loaded
and continued trained on.

Given the problem of evaluating our results and prototype, we still managed to show
that our method works and solves the problem stated in problem definition. While evalua-
tion only was for two cameras, it can support many cameras in a network. Only limitation
is memory which increases by the total number of cells in the network.

In a real-world solution each camera would probably be consistently in training mode
since all movement regions in all cameras would probably not be covered during training.
Also in a real-world environment new cameras could be installed in the network and our
method has to find any new overlap by being continued trained on. Our method can not
handle massive crowd. One way to solve this is by disable training when there is multiple
events in one time frame, to suppress noise in computations.

We see potential in using our method to add an additional knowledge on top of a system
of network cameras. New use cases arises and effectiveness in surveillance is increased.
One common use case is using a panorama camera and PTZ to collaborate. An operator
can monitor a panorama camera and if an interesting object is found, the operator can click
on a cell and a nearby PTZ will zoom in to that cell in its own field of view. In short the
operator will be given a new perspective.

33

4. Conclusions

4.2 Limitation
How we generate cells is a crucial step of our method. The way we generate cells for PTZ
camera is not optimal. In figure 2.5 we can see that cells near the poles has significantly
lower area than cells near the equator. Thus we waste memory since these cells must still
be present in our matrices for computation. A better approach would be to generate cells
with uniform area. However, it would change the geometry of the cells and thus maybe not
be optimal for each scene in a real-world environment. A numerical method for generating
cells with roughly uniform area could also work.

In a worst case scenario a camera network consist only of PTZ cameras. In order to
find cameras sharing the same field of view, all cameras must pan and tilt to cover all
combinations. To cover all combinations is a brute-force search. The best way to tackle
this problem is that PTZ cameras must consistently be in online trainingmodewith a "good
enough" mentality for real-world surveillance application.

Two or more cameras with non-overlapping field of view should not have cells that are
occupied at the same time frequently. If that is the case, false positives is generated.

4.3 Future work
The generated cells for PTZ cameras is not optimal since cells closer to the equator has
bigger area than cells near the poles. Each cell requires memory and put an unnecessary
load to our prototype as well as worse performance since cells near poles is smaller. Future
work would look into generate cells with approximately uniform area when projected on
a sphere. One way is to use inversed cylindrical equal-area projection since we have our
2-dimensional plane of limited mechanical pan and tilt values. Different cylindrical equal-
area projections exists [4].

Future work would also investigate on using adaptive cell sizes. E.g. instead of gen-
erating a fixed number of cells, specific to each camera type, we would generate cells
depending on movement. Each camera is responsible to cover as much as is possible with
a fixed number of cells. In a camera’s field of view, some part has no movement at all
and some part has a lot of movement. Areas with no movement should have as few cells
as possible and the opposite of areas with high movement. With adaptive cell sizes, we
would also solve the problem of having cells with too little area near the poles for PTZ
cameras. The adaptive cell size method could be also used on both PTZ cameras as well
as on static cameras instead of having two different solutions which our prototype uses.

Our prototype uses a centralized solution. Each camera streams to a centralized com-
puter to generate occupancy vector and compute overlap. In a real world solution with
many cameras in a network, a centralized solution may be impossible due to the amount
of bandwidth and memory required.

In a distributed solution each camera would get a fixed number of cells to generate
unique cells with. Then each camera sends only which cell was occupied at a specific
frame to a localized computer. The localized computer would then compute overlap be-
tween cells. This approach would save a lot of bandwidth and abstract out cell generation.
Each camera is responsible for handling, depending on its own capabilities, how a cell is
represented.

34

4.3 Future work

In a decentralized solution, combiningwith a distributed solution, a few cameras would
act as a server node which receives local cell id occupancy and generate a local overlap
matrix. Then the local overlap matrix is passed to another server camera which compares
with its own matrix. In this way less memory is required per server node than a central-
ized solution. Operation is also more stable as server nodes can crash without crashing
the whole program. However it increases complexity and could increase bandwidth as
potentially redundancy information is passed around.

If we had more time, we would build a database of saved video streams for each camera
and manually annotated which region overlap with another camera with polygons. Then
when generating a grid, one could check if a cell is inside ground truth polygon and if so,
which cell it should overlap with. This way we could generate a ground truth database for
easy evaluation. As this field is not well investigated, there exist no public ground truth
database. Meanwhile there exists ground truth databases for computer vision, machine
learning, etc. but not for this specific problem. This part could easily be a thesis itself.

35

4. Conclusions

36

Bibliography

[1] Niall Jenkins. Video Surveillance Camera Installed Base Report - Industrial , Security
and Medical | Video Surveillance. IHS, pages 12–13, 2015.

[2] Zhaolin Cheng, Dhanya Devarajan, and Richard J Radke. Determining Vision Graphs
for Distributed Camera Networks Using Feature Digests. 2007, 2007.

[3] Henry Detmold, Anton Van Den Hengel, Anthony Dick, Alex Cichowski, Rhys Hill,
Ekim Kocadag, Katrina Falkner, and David S Munro. Topology Estimation For
Thousand-Camera Surveillance Networks. 2007.

[4] John P. Snyder. Map Projections: a Working Manual. Number no. 1395 in U.S.
Geological Survey professional paper, pages 76–85. U.S. Government Printing Office,
1987.

37

BIBLIOGRAPHY

38

Appendices

39

Appendix A
List of Abbreviations and Expressions

Network camera
A static or dome camera with its own IP address and built-in wired or wireless network
capability.

PTZ
Pan-Tilt-Zoom. Mechanical camera movement capability.

VMD
Axis Video Motion Detection. Plug-in program to Axis network cameras to allow for mo-
tion detection and detect bounding box of moving objects.

Movement rectangle
Output from VMD. When the program register movement, it outputs the image coordi-
nates to the smallest rectangle that surrounds the found movement of an object.

Timestamp
Output from VMD. Specifies at what time in UTC format a movement rectangle was
recorded.

Test data
All movement rectangles and timestamps outputted from VMD running on an camera dur-
ing one test.

41

INSTITUTION FOR MATHEMATICAL SCIENCES | LUNDS TEKNISKA HÖGSKOLA | PRESENTATION DAY 2017-09-25

MASTER THESIS Finding Field of View Overlap by Motion Analysis
STUDENT Fredrik Sydvart, Hampus Altvall
SUPERVISOR Cristian Sminchisescu (LTH), Fredrik Andersson (Axis Communications AB)
EXAMINER Kalle Åström (LTH)

Picture analysis free approach for
finding shared field of view between
network cameras

POPULAR SCIENCE SUMMARY Fredrik Sydvart, Hampus Altvall

Network cameras has significantly increased in the recent years. Each camera is
independent and its monitoring task can easily be remotely altered. This work focuses
on increasing effectiveness of a system of cameras by adding additional knowledge on
top of the system and by utilizing multiple cameras when a shared field of view has
been found.
With the rise of network cameras over the years,
human operators responsible for monitoring is
flooded with cameras. In order to filter out rel-
evant information, intelligent software analyzing
video streams becomes more important.
If a terrorist is moving in one camera, and the

terrorist’s face is not shown in the camera, an op-
erator might desperately look if there is another
camera nearby monitoring the same object. This
relies on that the operator knows the camera en-
vironment. For instance, the city. We present an
approach where cameras automatically figures out
which camera shares the same field of view, that
is, what a camera is seeing, with another camera.
In this way, the operator can get a list of cameras
monitoring the terrorist in multiple perspectives
and select the one required for the job.
Our approach is based on movement. Imagine

you have many cameras in a closed network. In
each camera you divide the field of view into a grid
of cells. When movement is detected, a bound-
ing box surrounding the object is generated. This
bounding box is used to derive which cell is consid-
ered occupied at the current time. Our approach

uses contradicting proof to find connectivity be-
tween cells. If one cell is occupied at a time and
another cell is not occupied at the same time, then
those two cells can surely not observe the same
thing. If this is done over a significant time and
there is enough movement across all cameras in
the system, we can find cameras sharing the same
field of view.
There is multiple uses cases our solution solves.

One powerful use case is switching perspectives,
another one is optimizing camera installation as
each camera cost money to manufacture, install
and maintain. If too many cameras observe the
same thing, this is not optimal and waste re-
sources. By also implementing tracking, that
means following an object’s path across multiple
cameras, an operator can also follow that same ob-
ject in other cameras field of view and thus maybe
identify a terrorists face to alert the public.
Our prototype showed very promising results

and shared field of view could be found very
quickly as long as there is movement in each cam-
era stream.

	Introduction
	Background
	Problem Definition
	Motivation
	Requirements
	Related work

	Method
	Coordinate systems
	Image pixel coordinates
	Spherical coordinates

	Cell generation
	Static camera
	PTZ camera

	Overlap computation
	Implementation
	Data gathering stage
	Occupancy vector building stage
	Overlap calculation stage

	Assumption

	Evaluation
	F1-score
	Experimental setup
	Problem with evaluating result
	Validate prototype theory
	Full overlap between two cameras
	Centroid and area method
	Test length
	Frame length
	Cell size

	Conclusions
	Discussion
	Limitation
	Future work

	Bibliography
	Appendix List of Abbreviations and Expressions

