
A self-calibrating system for finger tracking using sound waves

Master’s thesis
by

Linus Hammarlund

September 7, 2017

About the report

Title A self-calibrating system for finger tracking using sound waves

Date September 7, 2017

Author Linus Hammarlund
linus.hammarlund@gmail.com

Supervisor Kalle Åström
kalle@maths.lth.se
Centre for Mathematical Sciences,
Faulty of Engineering,
Lund University

Co-supervisor Mikael Swartling
mikael.swartling@eit.lth.se
Department of Electrical and Information Technology,
Faulty of Engineering,
Lund University

i

Abstract

In this thesis a system for tracking the fingers of a user using sound waves is developed. The proposed
solution is to attach a small speaker to each finger and then have a number of microphones placed ad
hoc around a computer monitor listening to the speakers. The system should then be able to track the
positions of the fingers so that the coordinates can be mapped to the computer monitor and be used
for human-computer interfacing. The thesis focuses on the proof-of-concept of the system. The system
pipeline consists of three parts: signal processing, system self-calibration and real-time sound source
tracking.

In the signal processing step four different signal methods are constructed and evaluated. It is shown
that multiple signals can be used in parallel. The signal method with the best performance uses a number
of dampened sine waves stacked on top of each other, with each sound wave having a different frequency
within a specified frequency band. The goal was to use ultrasound frequency bands for the system but
experimenting showed that they gave rise to a lot of aliasing, thus rendering the higher frequency bands
unusable.

The second step, the system self-calibration, aims to do a scene reconstruction to find the positions
of the microphones and the sound source path using only the received signal transmissions. First the
time-difference of arrival (TDOA) values are estimated using robust techniques centred around a GCC-
PHAT. The time offsets are then estimated in order to convert the TDOA problem into a time-of-arrival
(TOA) problem so that the positions of the receivers and sound events can be calculated. Finally a
“virtual screen” is fitted to the sound source path to be used for coordinate projection.

The scene reconstruction was successful in 80 % of the test cases, in the sense that it managed
to estimate the spatial positions at all. The estimates for the microphones had errors of 11.8 ± 5
centimetres on average for the successful test cases, which is worse than the results presented in previous
research. However, the best test case outperformed the results of another paper. The newly developed
and implemented technique for finding the virtual screen was far from robust and only found a reasonable
virtual screen in 12.5 % of the test cases.

In the third step the sound events were estimated, one sound event at a time, using the SRP-PHAT
method with the CFRC improvement. Unfortunate choices of the search volumes made the calculations
very computationally heavy. The results were comparable to those of the system self-calibration when
using the same data and the estimated microphone positions.

iii

Acknowledgements

I would like to thank my supervisor Kalle Åström for all the input, help and encouraging discussions
during the work with this thesis. You are a source of inspiration! I would also like to thank Mikael
Swartling and Nedelko Grbic from the department of Electrical and Information Technology for all the
help with the signal processing and the hands-on experimenting with sound waves. The completion this
thesis stretched over a long period of time with a one-year break in the middle. Thank you, Maja, for
the support during all this time and for being an awesome person.

This thesis marks the end of my time at LTH. Thus I would also like to give my sincerest thanks
to all the student organisations welcoming me with open arms. Lund, the university and LTH would
not be what it is today without the student life and all the time and effort people commit. Thank you
F-sektionen, Spegatspexet and Teknologkåren for the time we shared together.

Finally a huge thanks to all my friends and family!

v

Table of Contents

About the report i

Abstract iii

Acknowledgements v

Table of Contents vi

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 1
1.3 Problem statement . 2

1.3.1 Goals . 2
1.3.2 Proposed solution . 2
1.3.3 Scope of the project . 3

1.4 Outline of the report . 3

2 Basics and conventions 5
2.1 Terminology and conventions . 5

2.1.1 List of concepts . 5
2.1.2 List of common abbreviations . 5
2.1.3 List of common notations . 6
2.1.4 List of common operators . 6

2.2 Acoustic Model . 6
2.2.1 Assumptions and prerequisites . 6
2.2.2 Near-field and far-field . 7
2.2.3 Signal propagation model . 7

2.3 The time-difference of arrival problem . 8
2.4 The time of arrival problem . 9

3 System Design 11
3.1 System overview . 11
3.2 Signal processing . 11

3.2.1 Sound frequencies . 11
3.2.2 Microphones and output devices . 12
3.2.3 Parallel signal transmissions from multiple sound sources 12

3.3 System self-calibration . 13
3.3.1 Scene reconstruction . 13
3.3.2 The virtual screen . 13

3.4 Sound source tracking and coordinate projection . 14

4 Techniques and theory 15
4.1 Generalized cross-correlation with Phase Transform . 15

4.1.1 Cross-correlation . 15
4.1.2 Generalized cross-correlation . 16
4.1.3 The Phase Transform . 16

4.2 Steered Response Power with Phase Transform . 16
4.2.1 Derivation of the SRP-PHAT . 16

vi

TABLE OF CONTENTS

4.2.2 Coarse-to-fine region contraction . 18
4.3 Techniques for solving the TDOA and the TOA problems 18

4.3.1 Minimal solver for the TDOA problem . 19
4.3.2 Rank-based non-linear optimization for offsets oj 20
4.3.3 Extending the solution of the minimal TDOA solver for remaining TDOA values . 20
4.3.4 Solving the TOA problem . 21
4.3.5 Bundle adjustment . 23

4.4 RANSAC: Random Consensus Sampling . 23
4.5 Procrustes superimposition . 24
4.6 Basic geometry for planes and lines . 25

4.6.1 Definition of a line L . 25
4.6.2 Projection of a point p onto a line L . 26
4.6.3 The intersection between two lines L1 and L2 . 26
4.6.4 Definition of a plane π . 26
4.6.5 Normal of a plane π . 26
4.6.6 Projection of a point p onto a plane π . 26
4.6.7 Distance between a point p and a plane π . 27

5 System Implementation 29
5.1 Generation and separation of signals . 29

5.1.1 The different signal methods . 29
5.1.2 Separation of multiple signals . 31

5.2 System self-calibration . 31
5.2.1 Estimation of the TDOA values ui,j . 31
5.2.2 Estimate offsets oj using TDOA values ui,j . 36
5.2.3 Estimate receiver positions ri and sound events sj 37
5.2.4 Fit a virtual screen . 37

5.3 SRP-PHAT using Coarse-to-fine Region Contraction 41

6 Experiments 43
6.1 Experiment setup . 43
6.2 Electronics . 43
6.3 Software implementation . 44
6.4 Experiment rig . 44
6.5 Used configuration for the microphones and sound source paths 45

7 Results 47
7.1 Signal processing . 47

7.1.1 A visual comparison using a single sound source 47
7.1.2 An in-depth comparison using a single sound source 48
7.1.3 Results using multiple sound sources . 50

7.2 System self-calibration . 51
7.2.1 Estimation of TDOA values ui,j . 51
7.2.2 Estimation of microphone positions ri . 52
7.2.3 Estimation of sound source path sj . 54
7.2.4 Estimation of the virtual screen . 56

7.3 Sound source tracking . 58

8 Analysis 61
8.1 Signal processing . 61
8.2 System self-calibration . 62

8.2.1 Estimation of microphone positions ri . 62
8.2.2 Estimation of sound source path sj . 63
8.2.3 Estimation of the virtual screen . 63

8.3 Sound source tracking . 63

9 Conclusions and future work 65
9.1 Conclusions . 65
9.2 Future work . 65

vii

TABLE OF CONTENTS

Bibliography 67

viii

Chapter 1

Introduction

In the first chapter a background to the problem is given, as well as a proper problem formulation with
goals and limitations.

1.1 Motivation
The ability to control a computer remotely using hand gestures have been a concept explored by the sci-fi
genre for a long time. One example is the movie The Minority Report [1] where the user interface of a
computer system is controlled by a detective using a set of gloves in combination with gesture tracking. A
similar setup exists in the movie Avatar [2]. The systems leave the moviegoers with a certain wow-factor.
Thus the idea for this thesis was born.

Systems like these offer an alternative way for users to interact with computers compare to classical
mouse/keyboard setups. The term coined for this is human-computer interaction (HCI). Sometimes they
may offer an easier and more intuitive way, whilst in other situations the experience might be worse.
There are environments where physical interactions with a computer or a computer monitor might be
undesirable, such as sterilized or dirty environments, where a remote interaction is preferable. Another
example where a mouse/keyboard setup will not do much good is when the users want to communicate
by sign language, an application where hand and finger gesture tracking will do the trick.

Techniques to accomplish this already exists in research and on the market today. One way is to
track the user’s hands using a camera by mapping the gestures of the hand with image analysis and
computer vision algorithms. This is effective and a lot of resources are put into research of the subject.
However there are situations where filming the user might lead to a lot of problems concerning personal
privacy. Therefore it is interesting to explore alternative solutions.

1.2 Related work
Using camera imaging to solve the problem of finger tracking is broad field of study. In Hongyong and
Youling [3], finger tracking and gesture recognition is accomplished using a Microsoft Kinect camera.
The depth information that the camera provides is used to segment the human from the video stream
and a K-nearest neighbours algorithm is used for object tracking.

In Ma et al. [4], visual light patterns are projected on a surface. Together with light sensors attached
to both the camera device and the fingers of the user, a real-time tracking of the fingers is accomplished.
Popa et al. [5] offers a way to track fingers based on quasi contiguous clusters of line strips using a
common web camera. In Shaker and Zliekha [6] a dual-camera setup is used to enable finger tracking.
No 3D model is constructed and the positions of the index fingers are estimated directly from the line
intersections and image processing.

Doing sound source localization using ultrasound techniques is an area far less researched. No papers
on finger- and gesture tracking have been found, however systems to track other objects exist and a few
examples are presented here. In Ens et al. [7] and Ens et al. [8] an ultrasound communication system
using time-difference of arrival is developed. Fixed transmitters are locating a mobile receiver and a
self-calibration is used to lower installation costs of the system. In Matsumoto et al. [9], human body
parts are tracked using distance measurements from sound waves. The system is implemented using
wearable devices.

1

1.3. PROBLEM STATEMENT

In Zhayida et al. [10] a self-calibration system for locating sound sources and a moving sound source
is done using estimated time-difference of arrival values. The sound waves used in the experiments are
an actual pop song from radio. The techniques used in this thesis are presented as the system design
unfold in chapter 3.

1.3 Problem statement

1.3.1 Goals
The goal of this master’s thesis is to build a system for interaction between a user and a computer using
sound transmissions. The system should

• be easy to use for ordinary people,

• be easy to setup at the user’s workplace or home,

• not interfere with the user’s workflow in a significant way,

• be able to track the user’s fingers in real-time,

• convert the finger movements to coordinate paths on a computer monitor, and

• be configurable to the extent that the user can choose how much the fingers need to be moved to
create a comfortable user experience.

To achieve these goals the problem needs to be divided into smaller parts. The sub-goals can be catego-
rized into the following groups:

• Usability and ease of setup. The system needs to

– assume no fixed positions of any components,
– have a simple input/output system,
– allow the user to calibrate the system,
– feature small components, and
– require no knowledge about sound waves on the user’s part.

• Localization. The system needs to

– be able to locate the fingers,
– be able to locate the microphones, and
– be able to convert the spatial positions of the fingers to coordinates on a computer screen.

• Signal processing. The system needs to

– process and generate sound in real-time, and
– transmit sounds that do not disturb the user.

1.3.2 Proposed solution
Attach a small sound source to each finger of a user. An easy way to do this would be to integrate the
sound sources into some sort of a glove. The user would also place a number of microphones around his
or her workstation, either in direct contact with the computer monitor or spread all over the desk. Let
the sound sources transmit sound waves outside the audible frequency spectrum as the user moves his
or her fingers around. By recording the sound waves the system will reconstruct the movement of the
fingers in real-time. The 3D coordinates of the fingers can then be projected onto the computer monitor
in order to steer the mouse.

2

1.4. OUTLINE OF THE REPORT

1.3.3 Scope of the project
An implementation of a system like this is a very large project and unfortunately outside the scope of
this master’s thesis. Things that fall outside the scope are:

• Whilst a real-time system is a big goal, this thesis is more of a proof-of-concept. The implementation
will be done in MATLAB which slows things down by a considerable amount. To produce a real-
time system one would have to implement it in a faster programming language. However, the
techniques used will take into account that they will be run for small discrete time steps. Also, the
speed of the techniques will be discussed.

• Gesture tracking (i.e. clicking, swiping and zooming) could also be obtained from the paths of
the finger movement by using machine learning techniques. This thesis will not feature gesture
tracking.

• A customized glove with attached sound sources will not be produced. Instead two hand-held
speakers will be used as a proof-of-concept.

• Mouse steering will not be implemented, nor an actual a projection of coordinates as they arrive.
A plane will be estimated onto which it is trivial to project and convert coordinates in a real
application.

• No experiments with five fingers will be conducted. To exemplify that more than one sound source
can be used, some of experiments will be run with two sound sources instead of one.

1.4 Outline of the report
The report is divided into the following chapters:

1. Introduction. A background to the problem is given, as well as a proper problem formulation
with goals and limitations.

2. Basics and conventions. The common terminology and conventions are presented. The under-
lying acoustic model is defined and the fundamental localization problems are introduced.

3. System design. The design of the system pipeline is described. Arguments are made to defend
why certain choices have been made and why other choices have been tossed aside.

4. Techniques and theory. Descriptions of all the algorithms, derivation of formulas and mathe-
matics used in the system implementation are presented.

5. System implementation. The system design, theory and techniques from the previous chapters
are put together into an actual implementation.

6. Experiments. In order to evaluate the system a number of experiments have to be conducted.
The process of setting up these experiments and what limitations they give rise to are presented
in this chapter.

7. Results. The results as well as some evaluation of said results are presented.

8. Analysis. The analysis of the results and evaluations are presented. The chapter is structured so
that the sections from the previous chapter maps to the same sections in this chapter.

9. Conclusions and future work. The work presented in thesis is summarized. The main findings
from the results, evaluations and analysis are presented briefly. Also some thoughts about what
angles to pursue next are put into words.

3

Chapter 2

Basics and conventions

In this chapter the common terminology and conventions are presented. The underlying acoustic model
is defined and the fundamental localization problems are introduced.

2.1 Terminology and conventions
In this section some terminology is introduced that will be used throughout this thesis. First a number
of concepts are introduced, followed by lists of common abbreviations, notations and mathematical
operations.

2.1.1 List of concepts

Sound source A sound source is an entity that generates some sort of sound. It can be anything
from humans, birds and loudspeakers to squeaks from doors and high-pitched noises
from electronic devices. All sound sources generate sound over varying periods of
time, be it short bursts of energy or long continuous signals. For each point in time
(assuming the time periods can be discritized), a sound source generates a sound
event.

Sound event A sound event is an emission of a sound source at a specific point in time (assuming
that the time can be discretized).

Receiver A receiver is a sensor that registers sound events, i.e. a microphone or an eardrum.
Output device See sound source.
Microphone See receiver.
Transmitter See sound source.
Sound recording In this thesis a sound recording refers to a recording of one or more sound sources

recorded by one or more receivers. A sound recording has M channels, one for each
receiver.

Channel A channel refers to the signal recorded by a specific receiver in a sound recording.
Inlier A “good” value. Complement of the outliers. See section 4.4.
Outlier A “bad” value. Complement of the inliers. See section 4.4.

2.1.2 List of common abbreviations

DOA Direction of arrival. See section 2.2.2.
TDOA Time-difference of arrival. See section 2.3.
TOA Time-of-arrival. See section 2.4.
GCC-PHAT Generalized cross-correlation with the Phase Transform. See section 4.1.
CFRC Coarse-to-fine region contraction. See section 4.2.2.

5

2.2. ACOUSTIC MODEL

SRC Stochastic region contraction. See section 3.4.
G.T. Ground truth values. See section 6.5.
Est. Estimated values.

2.1.3 List of common notations

M Number of receivers or channels in a recording.
N Number of sound events in a recording.
K Dimensionality of the affine space spanned by M and N , in this thesis the Euclidean

space R
3.

r An arbitrary receiver with spatial Euclidean coordinates (x, y, z).
R A K ×M matrix of receiver positions.
ri A column vector of R containing the coordinates of a single receiver.
s An arbitrary sound source with spatial Euclidean coordinates (x, y, z).
S A K ×N matrix of sound event positions.
sj A column vector of S containing the coordinates of a single sound event.
ui,j An element (i, j) of a matrix u containting TDOA values. See section 2.3
c The signal propagation speed, in this thesis the speed of sound.
oj The offset in the TDOA problem. See section 2.3.
τ A delay between two signals. See section 2.3 .

rp,q(τ) The GCC-PHAT method. See section 4.1

2.1.4 List of common operators

x ∗ y The convolution of the vectors x and y.
||x|| The Euclidean norm for vectors.
||x||2 The L2 norm for matrices.
||x||F The Frobenius norm for matrices.
x(t) The complex conjugate of x(t).

{a1, . . . , an} A set containing the elements a1, . . . , an.
A \B The set of elements in A but not in B.

2.2 Acoustic Model
In this section the acoustic model used in this thesis is defined. This includes assumptions about the
model and concepts relating to the signal theory.

2.2.1 Assumptions and prerequisites
To build a complete and accurate model consisting of a number of sound sources and receivers is difficult.
The sound sources all have different directionality and spatial attenuation. The speed of sound vary with
temperature and altitude. Receivers are tuned differently. Therefore a few assumptions have been made
about the sound sources, the receivers and the environment used in this thesis:

• All sound sources and receivers are omnidirectional and small. This means that they can be
modelled as single points in the Euclidean space R

3 and that the sound sources emit spherical
sound waves from point sources.

• A direct path between a sound source and a receiver can always be found. There are no objects
blocking the propagation path between them.

6

2.2. ACOUSTIC MODEL

• The signal propagation speed (the speed of sound) is constant within one experiment. For this
thesis the propagation speed is set to 340 m/s, which corresponds to sound waves travelling through
air, at sea level and at 15 ◦C.

2.2.2 Near-field and far-field
When working with sound sources and receivers two different cases exists, namely the far-field situation
and the near-field situation.

• The far-field situation describes a situation where the distance between a sound source and a
receiver is much larger than the distances between the different receivers.

• The near-field situation describes a situation where the distance between a sound source and a
receiver is smaller than or about the same length as the distances between the different receivers.

Each direct path between a sound source s and a receiver r has a direction vector described by

d =
s− r

|s− r| . (2.1)

The vector d is called the direction of arrival (DOA) and is illustrated in fig. 2.1.

Figure 2.1: Illustation of the DOA concept. As the distance be-
tween the sound source s and the receivers ri grows, the vectors
di merge into one single DOA d̄o. Circles filled with black repre-
sent sound sources and circles with a touching tangent represent
receivers.

In the far-field case the DOA vectors spanned between a sound source and a number of different receivers
can be assumed equal in a practical setting. In other words it is impossible to distinguish the different
DOA vectors from each other when the sound source is very far away.

In this thesis it is assumed that the sound sources and the receivers are in the near-field situation.
One of the goals in this thesis is to estimate the location of the sound sources, and thus it is necessary
to have more information than just a single DOA vector for all the receivers.

2.2.3 Signal propagation model
A signal travelling along a direct path between a sound source and a receiver can be modelled by an
anechoic signal propagation model. This means that no reverberations are taken into account. The signal
is modelled as

x(t) = as(t− τ) + w(t) (2.2)
where x(t) is the received signal at time t, s(t) is the emitted signal with time delay τ between emission
and reception, a is the attenuation and w(t) is the noise.

The environment in this thesis is however likely to have walls and other obstacles in the experimental
setup. This will generate reverberation as the signal will bounce off the different surfaces and create a lot
of indirect paths. To describe the multi-path propagation, equation (2.2) is remodelled into a convolutive
signal propagation model

x(t) = s(t) ∗ h(t) + w(t) (2.3)

7

2.3. THE TIME-DIFFERENCE OF ARRIVAL PROBLEM

where h(t) is a filter that models the propagation delay and the attenuation. Later, in section 4.1.3, it
will be shown that the exact model for h(t) does not need to be described as the effects will be mitigated
with a smart choice of h(t).

2.3 The time-difference of arrival problem
Let s be the spatial coordinates of a sound source which is emitting a single sound event. Let rp and rq
be the spatial coordinates of two receivers. The time-difference of arrival (TDOA) is then defined as the
difference in time it takes for a signal emitted from s to reach rp compared to rq.

Let the timestamp of the signal emission be denoted t0, with tp and tq denoting the reception times
for rp and rq, respectively. The distance between s and rp can then be described by

||rp − s|| = c (tp − t0), (2.4)

where c is the signal propagation speed. Hence the distance up,q between rp and rq can be derived as

up,q = ||rp − s|| − ||rq − s||
= c (tp − t0)− c (tq − t0)
= c (tp − tq)
= ||rp − rq||.

(2.5)

An illustration of the concept can be found in fig. 2.2.

Figure 2.2: Illustration of equation (2.5), where the distance
up,q is shown. Circles filled with black represent sound sources
and circles with a touching tangent represent receivers.

The input to the system in this thesis consists of M sound recordings. Each channel corresponds to a
receiver ri at an unknown spatial position, for i = 1, . . . ,M . Fix channel one as a reference channel. For
each channel pair (i, 1) and a sound event from a sound source s, equation (2.5) then gives M distances

ui = ||ri − s|| − ||r1 − s||. (2.6)

The last part of the equation is equivalent for each index i, and can be rewritten as

o = −||r1 − s|| = −c (t1 − t0), (2.7)

yielding the equation
ui = ||ri − s||+ o. (2.8)

8

2.4. THE TIME OF ARRIVAL PROBLEM

A single sound source s, which is moved around, generates N sound events. Each sound event is denoted
sj for j = 1, . . . , N . Equation (2.8) then becomes

ui,j = ||ri − sj ||+ oj , (2.9)

for i = 1, . . . ,M and j = 1, . . . , N . An illustration of the concept can be found in fig. 2.3. The time-
difference of arrival problem is thus the problem of estimating the unkonwn parameters ri, sj and oj so
that equation (2.9) holds true.

Figure 2.3: An illustration of equation (2.9), where the distances
ui,j for i = 1, . . . , 3 and offsets oj are shown. Circles filled
with black represent sound sources and circles with a touching
tangent represent receivers.

In the case of multiple simultaneously moving sound sources, the signals are separated before anything
else is calculated. Thus the equations can be used as if there was only a single moving sound source.

2.4 The time of arrival problem
Closely related to the TDOA problem is the time-of-arrival (TOA) problem. The difference between the
two is that for the TOA problem the absolute distances di,j between each receiver and each sound event
are considered known. Hence the problem, given distances di,j , is to estimate ri and sj such that

di,j = ||ri − sj || (2.10)

This means that once the offsets oj in equation (2.9) have been estimated the TDOA problem can be
transformed into a TOA problem by setting di,j = ui,j − oj .

9

Chapter 3

System Design

The third chapter describes the design of the system pipeline. Arguments are made to defend why certain
choices have been made and why other choices have been tossed aside.

3.1 System overview
The system developed and implemented in this thesis is based on the research and implementations done
by Zhayida et al. [10], Segerblom Rex [11] and Do [12]. Some parts remain the same while others are
new. There are three big components in this system which can be seen as building blocks. They are
summarized in the list below and then explained further in the other sections of this chapter. The three
components are:

1. Signal processing. Generate, record and filter signals transmitted between the user’s output
devices and the receivers of the system.

2. System self-calibration. Estimate the locations of the receivers (as well as the output devices)
to do a self-calibration of the system.

3. Sound source tracking. Estimate the locations of the user’s output devices in real-time in order
to track the movement on a computer monitor.

3.2 Signal processing
As described in the first chapter the motion tracking in this thesis will be done using sound waves as
signals, instead of using a video feed. The system needs to be usable by a ordinary people within “normal”
environments, for example a living room or an office space. This raises a few questions, namely:

• How will the sound emitted affect the user and the environment?

• How will the environment affect the system?

• How easy will it be for a user to use the system?

These questions will be addressed as the system design unfolds.

3.2.1 Sound frequencies
To avoid distracting the user, the sound wave frequencies would fall outside the audible spectrum. Such
frequency bands are called ultrasound. The hearing range of ordinary people is commonly defined as 20
Hz - 20 kHz but the upper limit vary from person to person, and can often go as low as 8 kHz - 15 kHz
for an adult [13, p. 747].

When talking about the frequency span in an application the sampling rate Fs has to be taken into
account. The Shannon-Nyquist theorem [14] states that the sampling rate should be at least twice the
maximum frequency contained in the signal in order to avoid aliasing of the signal. Modern sound
interfaces usually use fixed sample rates, commonly Fs = 48 kHz, 96 kHz or 192 kHz. With a signal in

11

3.2. SIGNAL PROCESSING

the ultrasound band, say around 30 kHz, a sampling rate of at least Fs = 60 kHz would be required. On
the other hand the data processing requirements for a higher sampling rate are a lot higher than for a
lower sampling rate. For a real-time system low data processing requirements are better as the system
needs to be very fast. The aim of this thesis is to use a frequency range in the ultrasound band, but
other bands will also be explored.

Another aspect to think about is that most mainstream microphones available in retail stores are
built for human speech and normally ranges between about 500 Hz - 17 kHz. If the system is to be cheap
and available to a ordinary people this has to be taken into account. More about this in section 6.2.

3.2.2 Microphones and output devices
Systems involving receivers and sound sources can be divided into two different cases, namely closed
systems and open systems. In a closed system the signals emitted from the sound sources are known to
the receivers beforehand. The receivers and sound sources form a “loop”. In other words the receivers
have all the information about transmission times and the exact origins of the signals. In an open system
the opposite is true. The receivers have no information about the transmitted signals beforehand. The
only information available is the received signal and the timestamp at which it was received.

This thesis aims to have an open system. The reason for this being that the user has to be totally
disconnected from the computer, so that the system to be comparable to other input methods. If it were a
closed system the user would have to be connected to the computer by a wireless or wired communication
line.

Now, the question of where to put the receivers and where to put the sound sources is easier to
answer. This a question because there exists a duality in the problem to be solved. The techniques and
algorithms used later on can be used in two ways. Either the receivers are stationary and are tracking
one or more sound sources that are moved around, or the sound sources are stationary and the receivers
are moved around. The first case matches the one where a number of microphones are placed around a
computer screen and a small speaker is attached to each finger of the user.

There are two good arguments as to why the first case is the choice for this thesis. If all the receivers
would have been strapped to the user’s fingers, the received signal would have to be relayed back to the
system, i.e. it would have to be a closed system. With the sound sources on the user’s hand the signal
could be generated locally with no connection to the system at all, enabling the user to use the hand
device more like to a computer mouse. The second reason is that by transmitting the sound waves away
from the user’s hand and towards the receivers, the sound waves get a directionality away from the user’s
ear. If the opposite was true the user would be inside the sound direction all the time and exposed to
potentially harmful high volume signals. Of course the user will still be hit by indirect sound wave paths
but the exposure is a lot smaller.

3.2.3 Parallel signal transmissions from multiple sound sources
In order to track each of the user’s fingers individually the signals for each sound source needs to be
separated in some way. Otherwise the system will not be able to differentiate individual fingers as the
signals will interfere with each other. The principle is called multiplexing where the goal is to combine
multiple signal transfers over a shared medium.

One method would be to let each sound source operate on a different frequency band. For example,
the sound source s1 would operate on the band 30 kHz - 32 kHz and the sound source s2 would operate
on the band 33 kHz - 35 kHz. This solution is called frequency-division multiplexing where the frequency
band is split into multiple smaller bands. It is simple to implement but it does not scale very well as the
number of available bands are limited.

Another method is called time-division multiplexing. Here the sound sources are only allowed to
transmit for short intervals at given times, i.e. each sound source is given a transmission time slot. If
the intervals are small enough the received signals should have enough data for simple interpolations.
An upside to this method is that more frequency bands become available and multiple systems could be
used parallel within the same environment. However it is likely to be more difficult to implement since
the method increases the need to synchronize the system.

Both methods put a limit to the number of available bands as well as the number of parallel users,
which is clearly a downside. Neither does the solutions take into account the digital security of the
systems, leaving them open to malicious attacks. An ideal solution would encode the signals in some

12

3.3. SYSTEM SELF-CALIBRATION

way, making them more secure and allowing users to share frequency bands. These methods are called
code-division multiple access.

In this thesis a simple frequency division will be used, the reason being simplicity and to allow focus
on other parts of the system. The only thing that needs to be implemented is a bandpass filter to separate
the received signals.

3.3 System self-calibration
For the system to be easy to use for ordinary people the system setup and administration needs to be
simple. Hence there should not be any requirements on how to place the receivers around the computer
screen, nor should there be any distance measurements required. In other words the assumption is that
no “correct” positioning of the receivers exists and they can be placed ad hoc.

Together with the fact that the sound sources will be non-stationary, in the sense that they are moved
around, the system needs to be calibrated so that the positions of the sound sources can be correctly
mapped onto the computer monitor. Since both the positions of the receivers and the sound sources are
unknown this is called a self-calibration.

The self-calibration serves two purposes:

• To estimate the positions of the receivers for the real-time tracking (next section).

• To estimate the “virtual screen” from a sound source path so that the spatial positions of the
fingers can be projected onto a computer monitor.

3.3.1 Scene reconstruction
Provided a number of receivers and a number of sound events, a scene reconstruction can be com-
puted. The goal is to reconstruct the spatial positions of the receivers and sound sources from a number
of recorded signal transmissions. The system will be based on the work by Zhayida et al. [10] and
Segerblom Rex [11].

In Kuang and Åström [15] and in Ask et al. [16] solutions to the self-calibration are discussed in terms
of different numbers of receivers and sound events as well as different room dimensions, i.e. whether the
receivers and sound sources lie in a plane (2D), in the Euclidean space (3D) or any combination thereof.
In this thesis it is assumed that both the receivers and the sound events have spatial positions in the
Euclidean space.

The pipeline for the scene reconstruction has three components described below:

1. Estimate vectors uj for the TDOA problem from the recorded signal transmissions.

2. Estimate the offsets oj from the vectors uj using RANSAC [17] with minimal solvers and rank
constraints [15].

3. Estimate receiver and sound event locations by solving the TOA problem.

The techniques used are robust in the sense that other sounds in the environment that could interfere
with the system are negated.

3.3.2 The virtual screen
The output of the system are the locations of the receivers and the sound events for a sound source
path. These locations are translation and rotation invariant, which means that the locations are correct
in relation to each other, but for a fixed position the geometry can be rotated or translated. It turns out
that for this thesis it is not a problem. By having the user “draw” a quadrilateral in the air following
a certain direction and fixing one of the receiver positions in origo the system can work around these
invariances. The quadrilateral is called a virtual screen.

The user can be given the instructions to move a finger along a rectangle in the air, starting from
the bottom-right corner, to the bottom-left corner, to the top-left corner and so on. The size of the
rectangle will be projected to the size of the computer monitor, giving the user an option to decide how
large gestures he or she wants to use.

In this thesis the rectangle will be fitted to the sound event positions and RANSAC.

13

3.4. SOUND SOURCE TRACKING AND COORDINATE PROJECTION

3.4 Sound source tracking and coordinate projection
Once the system is calibrated the receiver positions are considered to be known to the system. Using
these, real-time tracking of the sound sources can be computed. The pipeline of the scene reconstruction
could be used here as well, but as it requires multiple measurements of sound events it is not as good as
other techniques.

There are (roughly) three categories into which algorithms for sound source localization can be
divided. One of them is the aforementioned two-stage TDOA algorithms. Another category is steered
beamformer algorithms [18, 19]. The last category is high-resolution spectrum estimation algorithms
[20]. The TDOA-based algorithms have stood the test of time for realistic implementations in real-time.
However, in Bradstein and Ward [21] and Birchfield [22] it has been shown that one-stage methods from
the second category, using steered response power (SRP) algorithms, are more robust, although at the
price of a higher computational cost.

In this thesis a method called Coarse-to-fine region contraction (CFRC) will be used to improve
the SRP. The CFRC method is introduced in Do and Silverman [23] and explored further in Do [12].
It is an extension of the Stochastic region contraction (SRC) [24]. The CFRC method has a smaller
computational cost than the SRC and both methods aims to reduce the computational cost of the
SRP method. Another reason for using the CFRC method in this thesis is to get a comparison of the
TDOA-approach and the CFRC approach.

After the three-dimensional position of a sound event is estimated it is projected onto the virtual
screen using linear algebra.

14

Chapter 4

Techniques and theory

The techniques and theory chapter presents all the algorithms, derivation of formulas and mathematics
used in the system implementation.

4.1 Generalized cross-correlation with Phase Transform
The GCC-PHAT method is used to find the TDOA between two different signals so that they can be
used for sound source localization. The GCC method is an extension of normal cross-correlation with an
added weighting function. The GCC is studied in Knapp and Carter [25]. By using a specific filter called
PHAT, the effect of noise and reverberation can be mitigated. The PHAT filter was first introduced in
Carter et al. [26]. This section describes the derivation of the GCC-PHAT method.

4.1.1 Cross-correlation
To compare two signals cross-correlation can be used. This will give a measurement of how “similar”
two signals are for different time delays τ . The cross-correlation between two continuous signals xp(t)
and xq(t) is given by

cp,q(τ) =

∫ ∞

−∞

xp(t) xq(t+ τ) dt, (4.1)

where xp(t) is the complex conjugate of xp(t). This function will reach its maximum value when the sig-
nals are perfectly aligned, i.e. when the corresponding time delay τ has the correct value. Mathematically
this is equivalent to finding

τp,q = argmax
τ

cp,q(τ). (4.2)

Applying the Fourier Transform to equation (4.1) yields

Cp,q(ω) =

∫ ∞

−∞

cp,q(τ)e
jωτdτ. (4.3)

Note that equation (4.1) is very similar to the definition of the convolution between xp(t) and xq(t), the
only difference being the use of the complex conjugate of the term xp(t). With the convolutive properties
of the Fourier Transform, Cp,q(ω) could also be written as

Cp,q(ω) = Xp(ω)Xq(ω), (4.4)

where Xp(ω) and Xq(ω) are the Fourier Transforms of xp(t) and xq(t). By substituting equation (4.4)
into equation (4.3) and taking the inverse Fourier Transform of the whole expression, a new expression
for the cross-correlation as terms of a Fourier Transform is obtained as

cp,q(τ) =

∫ ∞

−∞

Xp(ω)Xq(ω)e
jωτdω. (4.5)

15

4.2. STEERED RESPONSE POWER WITH PHASE TRANSFORM

4.1.2 Generalized cross-correlation
Introduce a filter function g(t). A filtered signal is obtained by convolving the signal with the filter. For
the new filtered signals xp(t)∗ gp(t) and xq(t)∗ gq(t), the cross-correlation defined by equation (4.5) then
becomes

rp,q(τ) =

∫ ∞

−∞

Xp(ω)Gp(ω)Xq(ω)Gq(ω)e
jωτdω (4.6)

where G(ω) is the Fourier Transform of g(t). This also happens to be the cross-correlation between
two signals modelled by the convolutive signal propagation model as defined in equation (2.3), with
h(t) = g(t) and the noise omitted.

Introducing a combined weighting function

ψp,q(ω) = Gp(ω)Gq(ω) (4.7)

and substituting it into equation (4.6) yields

rp,q(τ) =

∫ ∞

−∞

ψp,q(ω)Xp(ω)Xq(ω)e
jωτdω. (4.8)

This is known as the Generalized Cross-Correlation (GCC).

4.1.3 The Phase Transform
The weighting function defined by equation (4.7) is supposed to mitigate the effects of noise and rever-
beration. It has been shown in Zhang et al. [27] that the filter

ψp,q(ω) =
1

|Xp(ω)Xq(ω)|
(4.9)

works well for this purpose. This is known as the Phase Transform (PHAT). It performs worse than the
maximum likelihood weighting function in reverberant-free environments [28], but as the system in this
thesis will have a lot of reverberations it is a good fit. Thus, as mentioned in section 2.2.3, there is never
any need to exactly define the filter function h(t).

Combining the GCC with the PHAT gives the following formula

rp,q(τ) =

∫ ∞

−∞

1

|Xp(ω)Xq(ω)|
Xp(ω)Xq(ω)e

jωτdω, (4.10)

which is known as the GCC-PHAT method. Note that the GCC-PHAT can have many local maxima.

4.2 Steered Response Power with Phase Transform
A beamformer is essentially a microphone array (either placed in a fixed grid or ad hoc) that has the
ability to focus on signals emitted from specific locations. The beamformer can steer over an area to
find the position of a sound source s. The output of the beamformer for each point p in the area has a
steered response power (SRP) that reaches its maxima when p equals s.

A sophisticated beamformer uses a filter-and-sum algorithm where an adaptive filter is applied to the
signals before they are summed. The filter used here will be the PHAT filter defined in section 4.1.3.
This section will describe the derivation of the SRP-PHAT from Do [12].

4.2.1 Derivation of the SRP-PHAT
Recall from eq. (2.3) that the signal xk(t) is the received signal at a receiver rk of an emitted signal s(t)
at time t from a point p. For a beamformer of M receivers, the signal s(t) is received at different times
for each individual receiver. Thus the received signal is

xk(t− δk) (4.11)

16

4.2. STEERED RESPONSE POWER WITH PHASE TRANSFORM

for k = 1, . . . ,M . Here the delays δ are called steering delays. In order to sum the signals they need to
be time-aligned so that the mapping of the signals become correct. This process is called a add-and-sum
algorithm and is defined as

y(t, δ) =

M∑

k=0

xk(t− δk). (4.12)

If a filter g(t) is applied to x(t) eq. (4.12) becomes a filter-and-sum process

y(t, δ) =

M∑

k=0

xk(t− δk) ∗ g(t), (4.13)

which in the domain frequency becomes

Y (t, δ) =
M∑

k=0

Gk(ω)Xk(ω)e
−jωδk . (4.14)

Now, fix one of the steering delays δi as δ0 (preferably the smallest) so that the other steering delays
δk, k ∈ {1, . . . ,M} \ {i}, can be expressed as time delays τk relative to the reference receiver. Define
τk = δk − δ0. For a receiver pair (p, q) the time delay is then

τp,q = τp − τq = (δp − δ0)− (δq − δ0) = δp − δq. (4.15)

When formulating the steering response power (SRP) it is more interesting to work with the relative
time delays τ . The SRP is defined as the output power of a filter-and-sum beamformer when steering
over all points p in a given grid. In other words this is a sum over all pairs (p, q) of filtered signals
x(t) ∗ g(t) for different time delays τp,q.

Thus, for each point p, the SRP in the frequency domain is defined as

P (τ) =

∫ ∞

−∞

Yp(ω, τ)Yq(ω, τ)dω, (4.16)

much like the cross-correlation. Expanding P (τ) yields

P (τ) =

∫ ∞

−∞

(
M∑

p=1

Xp(ω)Gp(ω)e
−jωτp

)(
M∑

q=1

Xq(ω)Gq(ω)e
jωτq

)
dω

=

∫ ∞

−∞

M∑

p=1

M∑

q=1

(
Gp(ω)Gq(ω)

)(
Xp(ω)Xq(ω)

)
ejω(τq−τp)dω

=

∫ ∞

−∞

M∑

p=1

M∑

q=1

ψp,q(ω)Xp(ω)Xq(ω)e
jωτq,pdω

(4.17)

for a filter ψp,q(ω) = Gp(ω)Gq(ω). Note that this is the same definition as in eq. (4.7).
Since both the signals and their filters have finite energy the intergral converges eventually. Thus the

integral and the sums are interchangeable. P (τ) from eq. (4.17) then becomes

P (τ) =

M∑

p=1

M∑

q=1

∫ ∞

−∞

ψp,q(ω)Xp(ω)Xq(ω)e
jωτp,qdω

=

M∑

p=1

M∑

q=1

rp,q(τ),

(4.18)

where rp,q(τ) is the GCC-PHAT from eq. (4.10) between signals xp(t) and xq(t). Note that the filtering
function ψp,q(ω) is set to the PHAT filter from section 4.1.3.

Expressing this in its full form yields

P (τ) =

M∑

p=1

M∑

q=1

∫ ∞

−∞

1

|Xp(ω)Xq(ω)|
Xp(ω)Xq(ω)e

jωτp,qdω. (4.19)

17

4.3. TECHNIQUES FOR SOLVING THE TDOA AND THE TOA PROBLEMS

The equation is known as the SRP-PHAT.
There is one last simplification to be done however. Since GCC-PHAT rp,q(τ) is the same as rq,p(τ)

this means that the matrix of pairs (p, q) forming the double sums in eq. (4.19), is a symmetric matrix
with close-to-zero elements in its diagonal (the delay between receivers p and p should be zero). Hence
it is enough to do a summation over the pairs in an upper-triangle since the output of the SRP-PHAT
will just be lowered by a factor of two.

Redefine P (τ) as

P ′(τ) =
M∑

p=1

M∑

q=p+1

∫ ∞

−∞

1

|Xp(ω)Xq(ω)|
Xp(ω)Xq(ω)e

jωτp,qdω. (4.20)

4.2.2 Coarse-to-fine region contraction
To find a sound source s with the SRP-PHAT method a full grid search over a predefined grid needs
to be done. For every point p in the grid, the function P ′(τ) has to be evaluated. This becomes very
expensive in terms of computing cost. Thus a method to reduce the number of evaluations is needed.
One such method is the Coarse-to-fine region contraction (CFRC) [23].

The idea is to select a number of equally spaced grid points, evaluate the SRP-PHAT for them and
then find a bounding box for the n best evaluations. Iteratively the bounding box, i.e. the region, is
contracted until a small enough volume is trapped, so that the SRP-PHAT can be evaluated for every
grid point contained therein. Hence the name coarse-to-fine region contraction; first a coarse grid net is
evaluated and then it is contracted into a finer and finer region for each iteration.

The first step is to determine some parameters for the initial step of the algorithm. A target volume
Vt that traps the maxima of the SRP-PHAT is needed as the peak is most likely larger than a single
grid point, especially considering spatial errors in the measurements. Also a search volume VS for which
the grid is to be formed is required. In order to make sure at least one grid point lies in Vt the initial
grid points should be spaced no further apart than VS

Vt
in each spatial direction. The initial grid points

is denoted J0. Finally the number of best results, N0, of the SRP-PHAT needs to be set (should be
significantly smaller than J0).

The steps of the CFRC are:

1. Initialization. Set the iteration counter i = 0, target volume Vt, search volume Vi = VS , grid
points to be evaluated Ji = J0, number of results to keep Ni = N0 and saved points Gi = 0.

2. Evaluation. Evaluate P ′(p) for each point p in Ji.

3. Sort and select. Sort and save the Ni best points of the union Ji and Gi.

4. Contract region. Find the smallest region Vi+1 that traps the Ni points.

5. Termination test.

• If Vi+1 < Vt then terminate with the best point in Vi+1.
• If Vi+1 = Vi then evaluate all the points in Vi+1 and terminate with the best point found.
• Otherwise, from the Ni points keep a subset of Gi+1 points that have values ≥ the mean µ of

the Ni points.

6. Select grid points. Setup a new grid Ji+1 of points to be evaluated and Ni+1 points to be saved.

7. Iteration step. Set i = i+ 1 and continue from step 2.

Thus a way to compute the new Ji+1 grid points as well as the new number Ni+1 is required in the
implementation.

4.3 Techniques for solving the TDOA and the TOA problems
When solving the TDOA and the TOA problems something called minimal solvers are used. Combined
with RANSAC techniques these become very powerful and robust. First some useful expansions of the

18

4.3. TECHNIQUES FOR SOLVING THE TDOA AND THE TOA PROBLEMS

problem formulations are deduced. Begin by rewriting equation (2.9) by moving oj to the other side and
then squaring both sides in order to obtain the equation

(ui,j − oj)2 = ||ri − sj ||2 = (ri − sj)
T (ri − rj), (4.21)

which is equivalent to
ui,j − 2ui,joj + o2j = rTi ri − 2rTi sj + sTj sj . (4.22)

Let

Ri =

1

ri

rTi ri

 (4.23)

be column vectors of R and

Sj =

sTj sj − o2j
−2sj
1

 (4.24)

be column vectors of S. The size of the matrix R will be (K + 2)×M and the size of the matrix S will
be (K+2)×N , where K is the dimensionality of the affine space spanned by ri and sj . Remember that
for this thesis K = 3.

Now equation (4.22) can be written as
D = RTS (4.25)

where D is a M ×N matrix with elements di,j = u2i,j − 2ui,joj . Since D is a matrix product, rank(D) ≤
rank(R) and rank(D) ≤ rank(S), which means that rank(D) ≤ (K + 2).

Construct a (M − 1)× (N − 1) matrix F such that

F = CT
MDCN = CT

MRTSCN = (RCM)TSCN = R̃T S̃, (4.26)

where R̃ = RCM , S̃ = SCN , CM = [−1(M−1) I(M−1)]
T and CN = [−1(N−1) I(N−1)]

T . Here 1(k−1) is
the (k − 1)× 1 matrix consisting of ones and I(k−1) is a (k − 1)× (k − 1) identity matrix.

Studying the matrices R̃ and S̃ it becomes clear that the first row of R̃ and the last row of S̃ will be
zero. Thus, when removing the last row of R̃ and the first row of S̃, the equality F = R̃T S̃ is preserved.
Redefine R̃ and S̃ as described above to obtain R̃i = [(ri+1 − r1)]K×1, S̃j = [−2(sj+1 − s1)]K×1 and F

with elements
fi,j = u2(i+1, j+1) − 2u(i+1, j+1)oj+1

−u2(1, j+1) + 2u(1, j+1)oj+1

−u2(i+1, 1) + 2u(i+1, 1)o1

+u2(1, 1) − 2u(1, 1)o1.

(4.27)

The matrix F(u,o) is called the double compaction matrix and has at most rank K, that is rank(F) ≤ K.
The arguments about the ranks of the matrices F and D are called rank-constraints.

4.3.1 Minimal solver for the TDOA problem
The column vectors of the double compaction matrix F(u,o) are all functions of unknown offsets
{o1, . . . , oN}. To solve for these offsets, rank constraints are enforced on the sub-matrices of F.

Let Q be all the (K + 1) × (K + 1) sub-matrices of F. They will all be rank deficient and have
a maximum rank K. Formulate the rank constraints using determinants: for each sub-matrix Q the
determinant will be zero, i.e. detQ = 0. The number of such constraints are

NQ =

(
M − 1

K + 1

)
·
(
N − 1

K − 1

)
, (4.28)

and among these (M − 1−K) · (N − 1−K) are linearly independent. Thus, each constraint gives rise
to a polynomial equation of degree K + 1 in offsets {o1, . . . , oN}.

The equation system is solvable and well-defined for a number of different combinations of M and
N . Different cases are explored in Kuang and Åström [15]. Some solvable cases for K = 3 can be found

19

4.3. TECHNIQUES FOR SOLVING THE TDOA AND THE TOA PROBLEMS

in table 4.1. The equations can be solved using numerically stable polynomial methods based on the
techniques in Byröd et al. [29].

(M , N) Solutions Solved in
(6, 8) 14 [15]
(7, 6) 5 [15]
(9, 5) 1 [15]
(10, 5) - [30]

Table 4.1: Different combinations of (M,N) for which the min-
imal cases are solvable.

4.3.2 Rank-based non-linear optimization for offsets oj

In order to improve the estimated offsets oj that are found by the minimal solvers in section 4.3.1
an iterative rank-based non-linear optimization technique is applied. It can also be applied to extend
the solution of offsets to the remaining receivers for the subset of columns in the minimal solution. The
technique can help with missing data, which the previous algorithms for the TDOA solver cannot handle.
The scheme is found in Zhayida et al. [31].

Given the estimated TDOA values ui,j and an initial estimation of the offsets oj the double compaction
matrix F(u,o) can be formed. The matrix is at most of rank K. The idea is to find better offsets such
that a matrix A after compaction is as close to rank K as possible. In other words it is a minimization
problem

min
o,A
||F(u,o)−A||F,Ω subject to rank(A) = K, (4.29)

where A is a (M − 1)× (N − 1) matrix and || · ||F,Ω is the Frobenious norm on matrix entries observed,
specified by the set Ω. Basically, the problem described is a least-squares problem. It is solved using the
iterative Newton-Gauss optimization algorithm [32].

Let Ak and ok be the estimations for each iteration. A local parametrization of Ak can be found by
doing a singular value decomposition. Let

Ak = UEkW, (4.30)

where U is the M ×M unitary matrix from the singular value decomposition Ak = USV T , W is the
K × N matrix formed by the first K rows of SV T and Ek is a M × K matrix formed by the first K
columns of a M ×M identity matrix.

The local parametrization is

Ak+1 = U e
∑N

i=1 ziBi Ek

KN∑

j=1

(W + wjCj)

 , (4.31)

where Cj form a basis for K × N matrices, Bi form a basis for M ×M antisymmetric matrices with
zeros in the upper-left K ×K block and zeros in the lower-right (M −K) × (M −K) block. Thus the
parametrization has M +K(M −K) +KN parameters x = (y, z, w).

Calculate the analytic derivatives of Ak+1 with respect to x and the derivatives of F(u,o) with
respect to o in order to make it possible to compute the residuals and the Jacobeans for the algorithm.

4.3.3 Extending the solution of the minimal TDOA solver for remaining
TDOA values

The goal is to extend the offsets oj found by the minimal TDOA solver for the subset hvecu (see
section 4.3.1) to cover all the columns of TDOA matrix u, i.e. the columns uj , j = {1, . . . , N} \ {j ∈ û}.
The new offsets are calculated columnwise.

After the calculations in section 4.3.2 the relation F̃(u,o) ≈ A holds true. Using eq. (4.26) to
substitute F̃(u, o) yields

A ≈ CT
MFCN = CT

M{ui,j − 2ui,joj}CN . (4.32)

20

4.3. TECHNIQUES FOR SOLVING THE TDOA AND THE TOA PROBLEMS

Now, fix j and the right hand side can be written as

CT
M{ui − 2uio}CN (4.33)

where ui is a column vector. Multiplying with CN from the right is equivalent to subtracting the first
column, which in this case will be the first column of the solved TDOA subset û, from u2

i − 2uio. This
yields

CT
M{u2

i − 2uio}CN = CT
M{u2

i − 2uio − (û2
1 − 2û1o1)︸ ︷︷ ︸

=γ

}

= CT
M {u2

i − γ}︸ ︷︷ ︸
=αi

−CT
M 2{ui}︸ ︷︷ ︸

=βi

o.
(4.34)

Likewise multiplying with CM from the left is equivalent to removing the first row from all elements of
the column vectors. The first element of the column vector (which is now a zero) is removed so that
eq. (4.32) holds. The resulting expression is

(αk − α1)− (βk − β1)o, (4.35)

where k = 1, . . . , (M − 1).
Now pick K random column vectors from A to form a basis Abasis. Since A is at most rank K this

means that all columns vectors Aj , j = 1, . . . , (N − 1), of A is linearly dependent on Abasis and can be
written as

Aj = Abasisx, (4.36)

for some column vector x. Note that x has K = 3 elements.
Using the same fixed j as above, eq. (4.35) combined with eq. (4.36) gives

Abasisx ≈ (αk − α1)︸ ︷︷ ︸
=a

− (βk − β1)︸ ︷︷ ︸
=b

o (4.37)

which can be rewritten as
a ≈ Abasisx+ bo. (4.38)

In matrix notation this becomes
a ≈ [Abasis b] · [x o]T (4.39)

and can be solved for o and x using the MATLAB backslash operator in

[x o]T ≈ [Abasis b] \ a. (4.40)

4.3.4 Solving the TOA problem
Reducing the TDOA problem to a TOA problem is done by setting di,j = ui,j − oj since the offsets oj
are known. Then, for the TOA problem, the following equation is true

di,j = ||ri − sj ||, (4.41)

for column vectors ri and sj and distance estimations di,j . Square both sides to get

d2i,j = (ri − sj)
T (ri − rj) = rTi ri − 2rTi sj + sTj sj (4.42)

For the index pairs (i, 1), (1, j) and (1, 1) the following three equations are derived

d2i,1 = rTi ri − 2rTi s1 + sT1 s1 (4.43a)
d21,j = rT1 r1 − 2rT1 sj + sTj sj (4.43b)
d21,1 = rT1 r1 − 2rT1 s1 + sT1 s1 (4.43c)

Then add equation (4.43c) to equation (4.42) and subtract equations (4.43a) and (4.43b) from the same
equation to get

d2i,j − d2i,1 − d21,j + d21,1

−2 = (ri − r1)
T (sj − s1) (4.44)

21

4.3. TECHNIQUES FOR SOLVING THE TDOA AND THE TOA PROBLEMS

Thus, for i = 2, . . . ,M and j = 2, . . . N , there are (M − 1) × (N − 1) equations (4.44). Let R be a
3× (M − 1) matrix, S be a 3× (N − 1) matrix,

Ri = [(ri − r1)]3×1 be column vectors of R,
Sj = [(sj − s1)]3×1 be column vectors of S and

D̃ =

{
d2i,j − d2i,1 − d21,j + d21,1

−2

}
be a (M − 1)× (N − 1) matrix.

Then D̃ = RTS where the rank depends on the affine span of the sound events and the receivers. Hence
D̃ will have rank 3.

Using singular value decomposition D̃ = R̃TL−1LS̃ = RTS is computed for an unknown full-rank
matrix L. This is done using the Eckart-Young theorem [33] by partitioning the singular value decom-
position

D̃ = UΣVT (4.45)
into

U =
[
U1 U2

]
, Σ =

[
Σ1 0

0 Σ2

]
and V =

[
V1 V2

]
(4.46)

where Σ1 is a r × r matrix, U1 is a (M − 1)× r matrix and V1 is a (N − 1)× r matrix. Then R̃ = UT
1

and S̃ = Σ1V
T
1 .

Now parameterize so that R = L−T R̃ (hence RT = R̃TL−1) and S = LS̃. Let

r1 = 03×1 i.e. fix receiver 1 in origo, (4.47)
s1 = Lb, (4.48)
ri = L−T R̃i, i = 2, . . . ,M, (4.49)
sj = L(S̃+ b), j = 2,N (4.50)

This results in M − 1 equations

d2i,1 − d21,1 = rTi ri − 2rTi s1 = R̃T
i (L

TL)−1R̃i − 2bR̃i. (4.51)

Let H = (LTL)−1 be a symmetric matrix with 6 unkonwns, and b be a vector with 3 unknowns:

H =

z1 z2 z3

z2 z4 z5

z3 z5 z6

 b =

z7

z8

z9

Then
d2i,1 − d21,1 = R̃T

i HR̃i − 2bR̃i. (4.52)
To solve for the unknowns zk, let ri = (rxi , r

y
i , r

z
i)

T . Rewrite H to

H =

6∑

k=1

zkBk, (4.53)

where B are base matrices for H. Then expand the right-hand side of equation (4.52) into

R̃T
i HR̃i =

6∑

k=1

zk(R̃
T
i BkR̃i), (4.54)

and
−2bR̃i = −2(rxi z7 + r

y
i z8 + rzi z9). (4.55)

Each product R̃T
i BkR̃i in equation (4.54) is just a scalar and the following equation is derived from

equation (4.52), using equations (4.54) and (4.55):

[
((rxi)

2 2rxi r
y
i 2rxi r

z
i (ryi)

2 2ryi r
z
i (rzi)

2 −2rxi −2ryi −2rzi)
]

︸ ︷︷ ︸
=A(M−1)×9

z1
...
z9

 =

[
(di,1 − d1,1)

]

︸ ︷︷ ︸
=C(M−1)×1

, (4.56)

22

4.4. RANSAC: RANDOM CONSENSUS SAMPLING

for i = 2, . . .M . Using the MATLAB backslash operator it is possible to solve equation (4.56) with
z = A \ C. Reconstruct H and b using the calculated z. Then compute L using Cholesky factorization

L = chol (H−1). (4.57)
Using the paramterizations it is now possible to reconstruct R = L−T R̃ and S = L(S̃ + b). Thus the
positions of all the receivers ri and the sound events sj have been estimated.

4.3.5 Bundle adjustment
With ri, sj , oj and ui,j known it is possible to optimize ri, sj and oj a little bit further. Construct the
equation

min
ri,sj ,oj

∑

i,j

(ui,j − (||ri − sj ||+ oj))
2. (4.58)

This is a non-linear least squares optimization problem where the sum of squared distances between the
TDOA values ui,j and the estimated values ri, sj and oj are minimized. It can be locally optimized
using techniques such as the iterative Levenberg-Marquardt algorithm [34, 35] with the estimated ri, sj
and oj as initial parameters. This will yield the maximum likelihood estimation of the parameters.

Let fi,j(βi,j) = ||ri − sj || + oj where βi,j is a parameter pack containing ri, sj and oj . Then the
adjustment step δ is computed for each iteration of the algorithm using the formula

(JTJ+ λI)δ = JT (f(β)− u), (4.59)
where J is a Jacobian matrix with components Ji and f(β) is a matrix with components fi,j(βi,j). Here
Ji is the gradient of fi,j with respect to βi,j . The sparsity of the top left corner of J can be seen in
fig. 4.1.

0 20 40 60 80 100

0

20

40

60

80

100

120

140

160

180

Figure 4.1: The sparsity of the top-left corner of J. The rest of
J extends in a similar pattern.

4.4 RANSAC: Random Consensus Sampling
Most mathematical methods have a number of parameters that need to be estimated from some observed
data. The data can be measurements of a set of points or sound levels for example. Some of the data

23

4.5. PROCRUSTES SUPERIMPOSITION

may be good and relevant to the model while some of the measurements may be noise or extreme values.
These two categories are usually called inliers and outliers, representing “good values” and “bad values”.

A number of different ways to estimate the model parameters from said data exist. In this thesis Ran-
dom Consensus Sampling (RANSAC) will be explored further. Other estimators include M-estimators
of which least-squares estimators are a subclass. However no other estimators have been explored due
to the prevalent use of RANSAC in the papers this thesis is based upon.

The RANSAC algortihm was first developed by Fischler and Bolles [17] and has since been improved.
It is an iterative method that minimizes the effect of outliers on the parameter estimation by not taking
them into account. Advantages of using RANSAC are that the algorithm can detect outliers with a high
precision even when their numbers are significant, in other words it is a robust estimator. A downside is
that it has no upper bound time limit if the aim is to find an optimal solution.

The outline of the RANSAC algorithm is:

1. Estimate the parameters of the model with as few data points as possible. The subset of data
points is selected at random among all of the data points.

2. With the model parameters estimated, compute error residuals using the rest of the data points.
The consensus set is defined as the data points for which the error residuals are less than a
predefined threshold.

3. Repeat step 1 and 2 for a given number of iterations and then choose the model parameters that
yield the largest consensus set. The consensus set then consists of the inliers to the problem.

An illustrative example of the algorithm is the problem of fitting a line to a set of points (x, y) in a
two-dimensional space R

2. A line is described by y = ax+ b with a being the slope of the line and b the
offset.

First a and b are estimated using a subset of the points (this can be as few as two points). The error
residual is chosen as the distance between the line and point being evaluated. So step two consists of
computing distances from the line to the remaining points and then the score is given by the number of
distances below a certain value. The score is assigned to the parameters a and b. These two steps are
repeated until the upper bound of iterations is reached. The model parameters with the highest score
are then selected as the best fit.

4.5 Procrustes superimposition
A way to compare two different but similar objects is to superimpose one of the objects onto the other
object. To superimpose means to place one thing onto another in such a way that they “overlap” as
much as possible. In a perfect world the result of a superimposition would be that the two objects are
translated, rotated and uniformly scaled in such a way that they both occupy exactly the same space.
One way to achieve this is to use Procrustes superimposition which will be derived in this section.

Let A and B be two K×M point matrices with row vectors Ai and Bi, i = 1, . . . ,K. In other words
each matrix represent M points of dimension K. The task at hand is to superimpose A onto B.

Begin by moving the matrices centres of mass to origo in order to remove the translational component.
The means are defined by

Ai =
ai,1 + ai,2 + . . .+ ai,M

M
,

Bi =
ai,1 + ai,2 + . . .+ ai,M

M
,

(4.60)

and resulting translated matrices are Â = A−A and B̂ = B−B.
The next step is to remove the scale component by uniformly rescaling Â to B̂. The scaling factor s

can be calculated by

s =
||Â||2
||B̂||2

. (4.61)

The final step is to compute the rotation factor so that Â is aligned to B̂. This is a complex task called
Orthogonal Procrustes problem where the goal is to calculate an orthogonal matrix R that maps Â to B̂

as closely as possible, i.e.
R = argmin

Ω
||ΩÂ− B̂||F (4.62)

24

4.6. BASIC GEOMETRY FOR PLANES AND LINES

such that ΩTΩ = I.
A solution can be found in Schönemann [36]. Let M = B̂ÂT . Finding the nearest orthogonal matrix

to M is equivalent to solving the problem above. The singular value decomposition of M can be written
as

M = UΣVT . (4.63)

The solution to the problem is
R = UVT . (4.64)

Putting all this together yields an expression for superimpositioning A onto B

Ã =
1

s
RÂ+ B̂, (4.65)

where Ã is the matrix resulting from the superimposition of A. Note the term B which is added at the
end in order to translate the superimpositioned points back to the original position of B.

In order to use the superimposition for more points than the ones in A (this can be the case if A is
a subset of a larger matrix that happened to have a known mapping in B for A) an alternative form is
computed.

Expand eq. (4.65) to

Ã =
1

s
R(A−A) + B̂

=
1

s
RA− 1

s
RA+ B̂,

(4.66)

and collect the terms as
Q =

1

s
R and T = B̂− 1

s
RA, (4.67)

so that Ã = QA + T. Then this formula can easily be used to compute the superimposition for other
points than those in A.

4.6 Basic geometry for planes and lines
In this section some basic definitions and formulas for point, line and plane geometry in three dimensions
are introduced. First recall two important linearly algebraic definitions.

The dot product between two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) is given by

u · v =

n∑

i=1

uivi. (4.68)

The projection of a vector u onto a vector v is given by

Pv(u) =
u · v
||v||2v. (4.69)

4.6.1 Definition of a line L

A line L in R
3 can be described by a point p and a vector v

L(t) = p+ tv, (4.70)

for some scalar t. The vector v is the direction of the line. The line L passes through the point p. For
two points p and q the line Lp,q is then described by

Lp,q(t) = p+ t(q− p). (4.71)

Alternatively the line L can be described as the intersection between two planes, where (x, y, z) ∈ l are
given by

{(x, y, z) ∈ R
3 : a1x+ b1y + c1z + d1 = 0 and a2x+ b2y + c2z + d2 = 0}. (4.72)

25

4.6. BASIC GEOMETRY FOR PLANES AND LINES

4.6.2 Projection of a point p onto a line L

Given two points q1 and q2 the equation for a line L is

L(t) = q1 + tv. (4.73)

as described by eq. (4.71), where v = q2 − q1. To project a point p onto L the projection formula 4.69
is used. The difference it that the “offset” for the line has to be taken into account. This yields the
projection forumla

PL(p) = q1 +
(p− q1) · v
||v||2 v. (4.74)

4.6.3 The intersection between two lines L1 and L2

Given two lines L1 and L2 constructed from two point pairs (a,b) and (c,d) the two line equations
become

L1 = a+ t(b− a) and L2 = c+ s(d− c). (4.75)

An intersection is found if and only if L1 = L2 has a solution (t, s). In a solution (t0, s0) the value of t0
is the displacement from point a on the line L1 and similarly for s0, c and L2.

4.6.4 Definition of a plane π

A plane π in R
3 can be described by the equation

ax+ by + cz + d = 0, (4.76)

for some parameters a, b, c and d. The normal n = (a, b, c) of the plane is by definition perpendicular to
the plane. A plane whose normal is n and passes through a point p = (x0, y0, z0) can be calculated by
solving the equation

a(x− x0) + b(y − y0) + c(z − z0) = 0. (4.77)

Using the dot product, it is then simple to calculate d = −n · p = −(ax0 + by0 + cz0).

4.6.5 Normal of a plane π

The normal of a plane π can be computed in a few different ways. One way is to use the cross product.
Given three points p,q and r, all in R

3, construct the vectors u = p − q and v = p − r. These two
vectors will be linearly independent if q ̸= r. The definition of the cross product says that the result of
the cross product a× b will be perpendicular to a and b.

Thus the normal n = (a, b, c) can be calculated as

n = u× v. (4.78)

since u and v spans a two-dimensional plane.

4.6.6 Projection of a point p onto a plane π

A plane π can be defined by a normal n and point pπ as shown in section 4.6.4. To project a point p

onto π the projection formula in eq. (4.69) is used. The difference it that the point pπ has to be taken
into account.

This yields the projection forumla

Pπ(p) = pπ +
(p− pπ) · n
||n||2 n. (4.79)

26

4.6. BASIC GEOMETRY FOR PLANES AND LINES

4.6.7 Distance between a point p and a plane π

The shortest distance between a point p = (x, y, z) ∈ R
3 and a plane π is along a perpendicular line to

the plane, parallel to the normal. Here the unit normal is used, defined as

n̂ =
n

||n|| =
(a, b, c)√
a2 + b2 + c2

. (4.80)

Let q = (xπ, yπ, zπ) be an arbitrary point on the plane and form the vector v = p − q. The distance
D is then the length of the projection of v onto n̂. Since n̂ is of length one, this is equivalent to the
absolute value of the dot product between v and n̂,

D = |v · n̂|. (4.81)

Recall from eq. (4.77) that for a point r = (x0, y0, z0) belonging to a plane with normal n, parameter d
from the plane eq. (4.76) is dr = −(ax0 + by0 + cz0). Rewrite D as

D =
|av + bv + cv|√
a2 + b2 + c2

=
|a(x− xπ) + b(y − yπ) + c(y − yπ)|√

a2 + b2 + c2

=
|ax+ by + cz − (axπ + byπ + czπ))|√

a2 + b2 + c2
,

(4.82)

and it is easy to see that −(axπ + byπ + czπ) can be substituted for dπ as q ∈ π. Thus the final equation
after substituting is

D =
|ax+ by + cz + dπ|√

a2 + b2 + c3
. (4.83)

27

Chapter 5

System Implementation

In this chapter the system design, theory and techniques from the previous chapters are put together into
an actual implementation.

5.1 Generation and separation of signals
A simple signal y(t) can be generated by a sine wave as

y(t) = A sin(2πft+ θ), (5.1)

where y(t) is the signal at a time t, A is the amplitude, f is the frequency and θ is the phase.
For practical implementations this means that the amplitude A controls the volume of the output

signal, and lie within the interval [0, 1]. The frequency f will control the tone of the output signal. For
example, f = 440 Hz will correspond to the musical tone A. The phase θ, which controls where the wave
will be at t = 0 will not be used and is therefore set to zero.

As the system uses actual recordings the signals will be sampled by the audio processor, hence signals
are discrete and not continuous. The sampling frequency Fs has to be at least twice the size of f [14],
i.e. Fs ≥ 2f , in order to avoid aliasing. The audio will also arrive from the audio processor in blocks of
nB sample points. Therefore eq. (5.1) can be rewritten as a sampled signal

y[o, x1, x2, . . . , xnB
] = A sin

(
2π

f

Fs

(o+ [x1, . . . , xnB
])

)
, (5.2)

where x1, . . . , xnB
represent the nB sample points in the current block, located at an offset o from the

first sample point at t = 0.

5.1.1 The different signal methods
It was hypothesized in this thesis that a plain sinusoid would not yield the best results when running
the GCC-PHAT on a recording. To experiment with this, four different signal types were constructed,
namely

• a Continuous Level signal method,

• a Periodic Level signal method,

• a Periodic Scaled signal method, and

• a Stacked Periodic Random signal method.

The Continuous Level signal method (CL)

The Continuous Level signal method is simply the signal defined in eq. (5.2).

29

5.1. GENERATION AND SEPARATION OF SIGNALS

The Periodic Level signal method (PL)

The Periodic Level signal method emits short audio pulses and is therefore not continuous. The pulses
are controlled by a pulse length Pl, measured in seconds, and the number of pulses per second Pn.

Let the number of sample points in a pulse be sp = PlFs. Given an offset o, the offset in the current
pulse can be calculated op = o mod Fs

Pn
. To determine if the start of a block lies within a pulse, compute

C = sp − (op + nb). Initialize y[op, x1, x2, . . . , xnB
] as a zero vector of length nB . If C > nB then the

signal equation is given by

y[op, x1, x2, . . . , xnB
] = A sin

(
2π

f

Fs

(o+ [x1, . . . , xnB
])

)
. (5.3)

Otherwise, if C < nB and C ≥ 0 the signal equation is given by

y[op, x1, x2, . . . , xC] = A sin

(
2π

f

Fs

(o+ [x1, . . . , xC])

)
. (5.4)

If neither of the two conditions above are true, the signal remains zero, indicating that it lies between
two pulses.

In this thesis the values of Pl and Pn were selected after experimenting: GCC-PHAT images were
generated for different combinations of Pl and Pn values. The values yielding the most pristine image
were chosen, namely Pl = 0.2 seconds and Pn = 3 pulses per second.

The Periodic Scaled signal method (PS)

The Periodic Scaled signal method has a varying frequency within a given frequency band. It is called
scaled because the frequency varies between fmin and fmax in a musical scale instead of having just a
static frequency f . The only difference from the PS signal method is that f is computed instead of given.

Given a base frequency fmin, the width w of the frequency band [fmin, fmax] and a scale m containing
a number of values in the interval [0, 1] the frequency f can be computed. Let

z =

(
o

sp
mod nm

)
+ 1, (5.5)

where the nm is the length of m. The frequency is then given by

f = fmin + wmz. (5.6)

In this thesis the width of the frequency span [fmin, fmax] was set to w = 1000 Hz and the scale m was
the ratios for the musical tones in the C Major scale, namely

m = [0.0000, 0.1224, 0.2599, 0.3348, 0.4983, 0.6818, 0.4983, 0.3348, 0.2599, 0.1224].

By doing experiments in the same way as for the PL signal method, the values Pl = 0.3 seconds and
Pn = 3 pulses per second were established as the best combination.

The Stacked Periodic Random signal method (SPR)

The Stacked Periodic Random signal method is the one that deviates most from the other signal methods.
It consists of a number of damped sine waves, ns, stacked on top of each other. Each sine wave will have
a random frequency f in the interval [fmin, fmax]. The dampening coefficient is denoted d.

The different sine waves will be stored in a list P containing up to ns elements. Only one damped
sine wave will be added for each incoming audio block and thus the SPR has a windup effect. Let the
frequency of a sine wave be

f = fmin + wγ, (5.7)
where γ is a random number in the interval [0, 1]. Then, for each incoming audio block, check if the size
of P ≥ ns. If not, add a new sine wave to P with the offset o as the starting sample point.

Initialize y[op, x1, x2, . . . , xnB
] as a zero vector of length nB . To generate the signal, iterate over all

the elements Pi of P. For each iteration, set op = o − oi. If op ≥ Pl, remove Pi from the list as it has
been phased out. Otherwise calculate the signal part

yi[op, x1, x2, . . . , xnB
] = A sin

(
2π
Pi

Fs

(op + [x1, . . . , xnB
])

)
ed(op+[x1,...,xnB

]). (5.8)

30

5.2. SYSTEM SELF-CALIBRATION

The signal part yi is then added to the signal y[op, x1, x2, . . . , xnB
]. Finally the signal is normalized to

the interval [−1, 1].
The frequency width w was kept at 1000 Hz. By doing experiments similar to the previous ones, the

combination of values ns = 10, Pl = 0.1 and d = −0.005 were found to be the best.

5.1.2 Separation of multiple signals
When the recording contains multiple signals they need to be separated before the system can be run.
This is done by using a bandpass filter that only allows a specific frequency band to pass. The bandpass
filter was designed with the Signal Processing Toolbox 7.0 in Matlab, using a Parks-McClellan optimal
FIR filter order estimation.

The frequency bands [fmin, fmax] in the SPR signal method have the width w = 1000 Hz. The edges
of the frequency band (defined by two values) are set to

F =
2

Fs

((fmin − 100, fmin + 100), (fmax − 100, fmax + 100)).

The amplitudes outside the frequency band edges should be zero, whilst it should be one between them.
Finally the Matlab implementation also requires a vector D that, to cite the Matlab reference manual,

“specifies the maximum allowable deviation or ripples between the frequency response and the desired
amplitude of the output filter for each band” and a density factor df that was set to 20. The vector D
was designed with the toolbox and set to

D = (0.000177827941, 0.0057563991496, 0.000177827941).

The filter function is designed as in algorithm 1.

Algorithm 1 Creating the bandpass filter with the MATLAB Signal Processing Toolbox 7.0
1: [N,Fo, Ao,W] = firpmord(F, [0 1 0], D)
2: b = firpm(N,Fo, Ao,W, {df})
3: Hd = dfilt.dffir(b)

5.2 System self-calibration
In order to find the positions of the receivers a scene reconstruction needs to be done. This is a process
involving many steps which are described in this section. In the end this will result in two matrices.

• One 3×M matrix containing the positions of the receivers within the recording.

• One 3×N matrix containing the positions of the sound events within the recording.

A virtual screen will also be fitted to the second matrix and presented as four corner points ck.

5.2.1 Estimation of the TDOA values ui,j

The first step in the scene reconstruction is to get a good estimation of the TDOA values for each sound
event in each channel of the recording. The simplest solution would be to use the maximum value of
each use of the GCC-PHAT and use these values for the remainder of the scene reconstruction. However
this will not generate a smooth path of sound events later on since the reverberations, reflections and
background has to be taken into consideration. By chopping the continuous signal into smaller time
frames a smooth path would also be difficult be obtain because of the discretization.

Most of the work here is based on the work done by Segerblom Rex [11]. The main idea is to use the
inital values from the GCC-PHAT and then reduce the number of outliers while keeping the number of
inliers high. When a good enough path is found it is smoothed to yield a nice path.

The algorithm described below is run once for each channel pair between the reference channel and
the other channels. The steps are:

1. GCC-PHAT. Use GCC-PHAT to get all possible initial TDOA values from the channel pairs.

31

5.2. SYSTEM SELF-CALIBRATION

2. Peak selection. Find peaks within the resulting GCC-PHAT matrix for each time frame. Then
run a refining algorithm using the data from all the other channel pairs.

3. Fit tracklets with RANSAC. Place the points into different groups and fit a line to each point
group using RANSAC to create a number of tracklets.

4. Connect tracklets. Connect a number of tracklets to form a tracklet chain.

5. Smoothen and fit a spline. Smoothen the tracklet chain and fit a spline to the original peaks
to fill the gaps and create a continuous path of sound events.

6. Convert to metric system. Finally the estimated TDOA values are converted from sample
points to meters.

It is also noteworthy that each channel pair may contain multiple paths (tracklets chains) since there are
reflections and aliasing of the signal. The strongest path should correspond to the direct path between
the sound source and the receiver.

Step 1: GCC-PHAT

In order to estimate the initial TDOA values of u, for the different channel pairs the signals need to
be processed using GGC-PHAT. The matrix u is usually displayed as a greyscale heatmap where the
different paths easily can be seen and interpreted. The heatmap is referred to as the GCC-PHAT image.

Assuming that the sound source is moving, the signal needs to be divided into a number of time
frames, the reason being that GCC-PHAT needs to be applied to a time frame small enough to consider
the sound source stationary (and hence becoming a sound event). The bigger time the frames, the less
stationary the sound sources become within a time frame.

To decide the width of the time frames, boundary conditions need to be set. Here it is assumed that
the sound source is moving at vss = 1 m/s. This might be a tad slow for a hand moving across a normal
22′′ computer screen, but it is an estimation good enough. The next thing that needs to be decided is
how big the spatial error can be. With a search space of about 1 m3 an error of about ϵ = ±2 cm can
be tolerated without too much user impact.

With a sampling rate Fs = 48000 Hz and an error ϵ = 0.04 m the time frame width should be

wgcc =
Fs · ϵ
vss

=
48000 · 0.04

1
= 1920. (5.9)

For practical reasons the frame width should be a power of two in order to speed up the computations in
the Fast Fourier Transform. Hence wgcc = 2048 is chosen. An overlap of 1048 sample points between the
frames will be used to make the movement of the sound source linear when considering adjacent frames.
This will put the frames 1000 sample points apart.

Running the GCC-PHAT results in a GCC-PHAT matrix u with elements ui,j which contains TDOA
values measured in sample points.

Step 2: Peak selection

The goal in this step is to find a number of peaks in each time frame of the GCC-PHAT matrix u. The
points are hopefully inliers to the path of TDOA values. The maximum number of peaks per time frame
are here denoted Q. In this thesis Q = 4 was chosen as a good fit. However, not every frame has Q
distinct peaks and thus a minimum energy threshold at 0.01 was chosen to avoid outliers).

First all the local maxima in each time frame are located. After that the Q top local maxima above
the minimum energy threshold are selected as points of interest. By using the local maxima instead of
the highest valued peaks, peaks from different paths are hopefully located. The result of the initial peak
selection can be found on the left-hand side in fig. 5.1.

In order to remove more outliers, the peaks are refined. This is done by using the data from the
remaining channel pairs (which in turn also has up to Q points for each time frame). Hence the initial
peak selection must be run for all channel pairs before the refinement step.

The reason this is possible is because ui,j from equation (2.9) can also be rewritten as the difference
between two other receivers. Rewrite ui,j = q

puj , denoting the TDOA between receivers rp and rq from
a sound source sj . Then the following is true:

q
puj =

p
kuj −

q
kuj , k ∈ {1, . . . , M} \ {p, q}. (5.10)

32

5.2. SYSTEM SELF-CALIBRATION

This results in M − 2 new equations for ui,j where each equation will have up to Q · Q inliers. Then,
together with the original Q inliers for ui,j , each frame will contain up to Q+Q2(M − 2) inliers in total.

All the available inliers for a time frame are then sorted into a number of bins. The width of the
bins was set to five sample points. For all bins with at least two inliers, a median is calculated using the
values of the points in the bin. The newly calculated medians are used as new inliers, replacing the old
ones.

A comparison between the initial inliers and the refined inliers can be seen in fig. 5.1.

Frame No.
50 100 150 200 250 300 350 400 450

O
ffs

et

200

400

600

800

1000

1200

1400

1600

(a) The initial peak selection (red
circles) with up to Q = 4 peaks in
each time frame.

Frame No.
50 100 150 200 250 300 350 400 450

O
ffs

et

200

400

600

800

1000

1200

1400

1600

(b) Refined points (green dots)
using the medians from different
bins as new peaks.

Figure 5.1: A comparison between the initial peaks from the
local maxima and the refined inliers.

Step 3: Fit tracklets with RANSAC

When a good selection of inlier peaks are found it is time to fit a number of short lines to them. These
short lines are called tracklets. The reason for using a number of short tracklets instead of fitting a curve
directly to all the peaks is that the peaks can belong to many different paths of TDOA values in the
GCC-PHAT matrix u. By using the strengths of RANSAC more robust paths can be found.

First all of the inliers from the previous step are rearranged into a new number of frames called
RANSAC frames. A RANSAC frame width of 15 time frames were used, with each RANSAC frame
overlapping the neighbouring frames with 3 time frames. The RANSAC scheme is described below. The
algorithm was run for a maximum of 350 iterations for each RANSAC frame.

• Instead of finding a single tracklet for a given RANSAC frame, multiple tracklets were computed.
The tracklets chosen were the ones with the highest number of inliers. In this thesis up to 4
tracklets were selected for each frame and the tracklets within one frame could share a maximum
of 4 inliers with the other tracklets in the same frame (to avoid multiple tracklets stacked on top
of each other).

• The error residual were chosen as the distances from the points to the computed tracklet. The
threshold for this was set to 3.5 sample points.

• A threshold for the slope of a tracklet, as well as a minimum number of inliers for a tracklet, was
implemented. The slope threshold was set to 2.5 and the minimum number of inliers was set to 4.

A number of tracklets for each RANSAC frame in a recording is shown in fig. 5.2.

Step 4: Connect tracklets

The newly computed tracklets now need to be connected in order to form a tracklet chain, which essen-
tially is a number of 2D points stretching from the left side to the right side of the GCC-PHAT image.
The method for doing this differs significantly from Segerblom Rex [11].

33

5.2. SYSTEM SELF-CALIBRATION

Frame No.
100 150 200 250 300 350 400

700

750

800

850

900

Figure 5.2: A number of tracklets (1 to 4) fitted to the peaks in
each RANSAC frame.

To connect the tracklets, a depth first search was implemented recursively, using dynamic programming
for efficiency. The output consists of a number of tracklet chains, each starting at a unique tracklet. The
tracklet chains are then sorted by the number of tracklets in the chains. Finally the top candidate for
each channel pair is returned as the best fit.

The algorithm works as follows (for each channel pair):

1. Construct a NF ×NL tracklet chain matrix C, where NF is the number of RANSAC frames and
NL is the maximum number of tracklets for each RANSAC frame. The goal is to fill each element
in the matrix with a tracklet chain.

2. Iterate over the RANSAC frames ni ∈ {1, . . . , NF }, and the tracklets nj ∈ {1, . . . , NL}. Unless
the tracklet chain at position (ni, nj) in the tracklet chain matrix C is already computed, do the
following steps:

(a) Call the recursive function for the position (ni, nj).
(b) If ni happens to refer to the same frame as previously, return an empty tracklet chain and go

to (2).
(c) In this step the first thing to do is to set the current tracklet. This is done by checking if the

tracklet at position (ni, nj) exists. If it does, set the current tracklet to that tracklet. Otherwise
search backwards through the RANSAC frames in the tracklet chain until an existing tracklet
is found and set the tracklet as the current tracklet.
Next, there exists an exit condition if there are no tracklets in frame ni+1 to connect to. If
that is the case proceed to step (d).
A comparison with each of the tracklets in the next frame ni+1 is executed. For each such
tracklet two different alternatives exist.

i. The number of frames between the current tracklet and the tracklet in the next frame
ni+1 is below a certain threshold. In this thesis the threshold was set to 3 RANSAC
frames.

ii. The number of frames between the current and the tracklet in the next frame ni+1 is
above the threshold.

In the case of alternative (i) the last three points (the overlapping points as defined in sec-
tion 5.2.1) of the current tracklet and the first three points of the tracklet from ni+1 are used
to compute the mean vertical distance between the point pairs. If the distance mean is small
enough the tracklet as a candidate for the next tracklet in the tracklet chain. Small enough
in this case is a distance less than 25 sample points.
In the case of alternative (ii) the same points as described in (i) are used to fit a line between
them. If the number of inlier points within a certain distance from the line is small enough,

34

5.2. SYSTEM SELF-CALIBRATION

add the tracklet is a candidate for the next tracklet in the tracklet chain. Points within a
distance of 25 sample points were considered inliers and the ratio of inliers had to be above
0.04.

(d) Each potential next tracklet found in step (d) is now expanded by executing step (a) with
ni = ni+1 and nj the value of the j-position of the current tracklet.

(e) When the expansion is complete compare all returned tracklet chains. The best tracklet chain
is saved into the tracklet chain matrix C at position (ni, nj). The best tracklet chain is the
one with the highest number of tracklets. If number of tracklets is equal between two chains,
the result with the smallest mean distance between the overlapping points is chosen.

3. Sort the tracklet chain matrix C by number of tracklets in each chain and return the tracklet chain
with the highest number of tracklets.

For a comparison between the algorithm developed in Segerblom Rex [11] and the improved one, see
fig. 5.3.

50 100 150 200 250 300 350 400 450

200

400

600

800

1000

1200

1400

1600

(a) Algorithm described in [11].
Frame No.

50 100 150 200 250 300 350 400 450

O
ffs

et
200

400

600

800

1000

1200

1400

1600

(b) Algorithm described in this thesis.

Figure 5.3: A comparison of the tracklet connection step of the
algorithm described in this thesis and the algorithm described
in Segerblom Rex [11]. Here the channel pair (2, 5) can be seen,
where the best tracklet chain found is marked with blue dots.
The different tracklets for each frame are shown in red, orange,
yellow and green.

Step 5: Smoothen and fit spline

The last step is to smooth the tracklet chain and then fit a spline to fill out potentially missing parts of
the tracklet chain, i.e. RANSAC frames where no tracklets were found to be a good enough fit. In the
implementation, the underlying points for the each tracklet in the tracklet chain are used instead of the
points computed. The points closest to the values used in the tracklet are selected.

The smoothing is accomplished by using a moving average filter along the tracklet chain. When the
smoothing is finished a M ×N matrix with all the TDOA values ui,j between the reference receiver r1
and every other receivers for each sound event sj will be exported. The row for the reference receiver,
in this case the first row, will be zero as the TDOA values there will be non-existing.

Step 6: Convert to metric system

The TDOA values ui,j are converted to meters from sample points using the formula

ui,j

vss

Fs

. (5.11)

35

5.2. SYSTEM SELF-CALIBRATION

5.2.2 Estimate offsets oj using TDOA values ui,j

This part is already implemented previously and can be found at [37]. This section explains briefly how
the implementation is done.

Once the TDOA values ui,j are estimated, the offsets oj can be estimated. This is using a RANSAC
scheme with the following steps:

1. Use a minimal solver defined in section 4.3.1 with (M,N) = (7, 6). Solve for the unknown offsets oj
in the subset û, consisting of 7 rows and 6 columns of u. The subset represents 7 receivers ri and 6
sound events sj . This results in up to five solutions. The minimal solver will use pre-computations
if possible.

2. Explore each solution found. Valid solutions have real-valued offsets oj . Extend the solution for
the remaining rows using the rank-based non-linear optimization described in section 4.3.2. With
the estimated matrix A, another RANSAC scheme can be used to estimate the offsets for the
remaining columns in u using the technique in section 4.3.3.

3. Repeat steps (1) and (2) and keep the solution with the maximum number of inliers among the
calculated offsets oj .

This RANSAC scheme is shown in greater detail, with actual values for each parameters, in algorithm 2.

Algorithm 2 Estimate offsets oj using RANSAC and minimal solvers
Precondition: A M ×N matrix u of TDOA values.
Precondition: The number of RANSAC iterations n.
Precondition: The RANSAC threshold ξ.

1: function EstimateOffsetsFromTDOA(u, n, ξ)
2: sb ← A struct containing the best solution.
3: for i← 1 to n do
4: û ← Random subset of 7 rows (always include the first row) and 6 columns of u
5: ô ← MinimalOffsetSolver(û)
6: if Length(ô) < 0 then
7: Continue with the next RANSAC iteration.

8: for Solution ô in ô, do
9: if ô ̸∈ R then

10: Continue with next solution ô.

11: ô ← RankBasedNonLinearOptimization(û, ô) ◃ See section 4.3.2
12: û ← û extended to all rows in u

13: (ô, A) ← RankBasedNonLinearOptimization(û, ô)

14: (U, S, V) ← SVD(A) ◃ Single value decomposition
15: Ab ← The first three columns of U ◃ A basis for A

16: o ← A vector of length N

17: for j ← 1 to N do
18: uj ← The j:th column of u
19: (x, oc) ← EstimateOffsetForColumn(uj , Ab) ◃ See section 4.3.3
20: if Distance(Abx,uj) < ξ then
21: oj ← oc
22: else
23: oj ← 0

24: if Length(o ̸= 0) >Length(sb.o ̸= 0) then
25: sb.o ← o

26: return sb.o

36

5.2. SYSTEM SELF-CALIBRATION

5.2.3 Estimate receiver positions ri and sound events sj

This part is already implemented previously and can be found at [37]. This section explains briefly how
the implementation is done.

With offsets oj and the TDOA values ui,j estimated, the positions of the receivers ri and the sound
events sj can be estimated. This is done using the technique in section 4.3.4. Once this is completed the
bundle adjustment technique in section 4.3.5 can be used to optimize the estimations for ri, sj and oj .

Finally a second optimization is done to find more inliers among the column vectors of u. Form the
problem

min
ri

N∑

j=1

(ui,j − ||ri − sj ||2), (5.12)

and use trilateralation followed by a bundle adjustment to refine ri.

5.2.4 Fit a virtual screen
Once a good estimation for the sound events sj is found, the virtual screen can be calculated. This is
a process consisting of three steps where each step makes use of the results in the previous step. The
result is a virtual screen which lies in a plane and is defined by its four corner points.

The steps are

1. Fit a plane to the sound events sj ∈ S using RANSAC.

2. Project the points in S onto the plane and fit four lines using RANSAC.

3. Compute the intersections between all lines and find the four intersections that are the best fit for
corner points.

Step 1: Fit a plane to the sound events

To fit a two-dimensional plane to the sound events sj , RANSAC is used. The algorithm can be seen in
algorithm 3 and uses the points of S which contains all the sound events sj . By experimenting it was
found that n = 400 iterations and a threshold ξ = 0.02 meters were a good fit.

Algorithm 3 Fit a plane using RANSAC
Precondition: S are points ∈ R

3.
Precondition: The number of RANSAC iterations n.
Precondition: The RANSAC threshold ξ.

1: function FitPlaneToPoints(Sp, n, ξ)
2: π ← A struct containing the plane parameters.
3: for 1 to n do
4: p ← Random point from S

5: q ← Random point from S

6: r ← Random point from S

7: n ← (p− q)× (p− r) ◃ see eq. (4.78)
8: d ← p · n ◃ see eq. (4.77)
9: Distances D ← DistancePointsToPlane(S, n, d) ◃ see section 4.6.7

10: if Length(D < ξ) > Length(π.inliers) then
11: π.inliers ← S(D < ξ)
12: π.p ← p

13: π.q ← q

14: π.r ← r

15: π.n ← n

16: π.d ← d

17: return A

37

5.2. SYSTEM SELF-CALIBRATION

Step 2: Fit four lines to the sound events and the plane

To construct a virtual screen all the lines should lie in a plane. All points in S are therefore projected
onto the computed plane (see eq. (4.79)) to form the new points Sp. Using these points and a RANSAC
scheme, a line in the plane can then be found.

To fit four different lines an iterative method is used. When a line has been fitted all points considered
inliers are removed from Sp before the next iteration is run. Thus the number of available points decreases
and the likelihood of finding another line increases.

The algorithm used is presented in algorithm 4. By experimenting it was found that n = 400 iterations
and a threshold ξ = 0.15 meters were a good fit. A result of this can been seen in fig. 5.4a.

Algorithm 4 Fit four lines using RANSAC
Precondition: Sp are points ∈ R

3 projected onto a plane.
Precondition: The number of RANSAC iterations n.
Precondition: The RANSAC threshold ξ.

1: function FitFourLines(Sp, n, ξ)
2: A ← A struct containing four lines
3: for i← 1 to 4 do
4: P ← Sp ̸∈ A1 ... (i−1).inliers
5: for 1 to n do
6: p ← Random point from P

7: q ← Random point from P

8: Pproj ← ProjectPointsOnLine(P, p, q) ◃ see section 4.6.2
9: Distances d ← ||Pproj −P||

10: if Length(d < ξ) > Length(Ai.inliers) then
11: Ai.inliers ← P(d < ξ)
12: Ai.p ← p

13: Ai.q ← q

14: return A

Step 3: Find the corners of the virtual screen

After the four lines are fitted, the corners of the virtual screen can be found. This is done by first
finding the intersections between all different line combinations. A score is then computed using the line
parameters t and s for each line combination, in order to find out which two lines every line would prefer
to share corners with. The score is the sum of the absolute values of t and s.

After the scores are computed, each of the four lines are connected to two other lines. However this
often leads to bad results and hence a refinement step is executed. During the refinement it is also
ensured that the corners (and lines) form a cyclic quadrilateral. This makes it easier to compute the
area of the virtual screen, amongst other things.

The algorithm used to find all intersections can be seen in algorithm 5 and the algorithm to find
the best corners can be found in algorithm 6. Thus, with the four corners found, the virtual screen is
completed. The result can be seen in fig. 5.4b.

38

5.2. SYSTEM SELF-CALIBRATION

Algorithm 5 Find the intersection between all the line combinations
Precondition: The variable A consists of four lines L.
Precondition: A line L has two points p and q defining the line.

1: function FindIntersections(A)
2: for i← 1 to 4 do
3: Li ← Ai

4: for j ̸= i← 1 to 4 do
5: Lj ← Aj

6: (a, b, c, d) ← (Li.p, Li.q, Lj .p, Lj .q)
7: (t, s) ← Solution of the system [b− a,−(d− c)][t, s]T = [c− a, c− a]T ◃ see section 4.6.3
8: Li.intersects(j) ← a+ t(b− a) ◃ see section 4.6.3
9: Li.scores(j) ← |t|+ |s|

10: Li.preferred-corners ← [Max(Li.scores)1, Max(Li.scores)2]
11: return A

Algorithm 6 Find the four corners of the virtual screen among the line intersections
Precondition: The variable A consists of four lines L.
Precondition: A line L has two preferred lines with whom it wants to share corners.
Precondition: A line L has three intersection points with all the other lines.

1: function FindCorners(A)
2: Q ← A 4× 2 index matrix to contain the preferred-corners for each line.
3: α ← Row indices of two lines L in A which have duplicate preferred-corners.
4: Qα ← Aα.preferred-corners
5: Q{1,2,3,4}̸∈α ← [α1, α2]
6: for i← 1 to 3 do
7: n ← Qi,2

8: if n ̸= i+ 1 then
9: Swap(Qi+1, Qn)

10: Swap(Qk=n, Qk= i+1) ◃ k = any element in Q

11: Swap(Ai+1, An)
12: for j ← 1 to 4 do
13: Swap(Aj .intersects(n), Aj .intersects(i+ 1))
14: if i ̸= Qi+1,1 then
15: Qi+1 ← FlipUpsideDown(Qi+1)

16: for i← 1 to 4 do
17: Ai.corners(1) ← Ai.intersects(Qi,1)
18: Ai.corners(2) ← Ai.intersects(Qi,2)
19: return A

39

5.2. SYSTEM SELF-CALIBRATION

x-position in meters

1

0.5

0

-0.5

-1-1
-0.5

y-position in meters

0
0.5

1

1

0.5

0

-0.5

-1

z-
po

si
tio

n
in

 m
et

er
s

Estimated sj

The plane π

Inliers to line 1

Inliers to line 2

Inliers to line 3

Inliers to line 4

(a) After the four lines been fitted to the plane.

x-position in meters

1

0.5

0

-0.5

3

-1

4

-1

2

1

-0.5
y-position in meters

0
0.5

1

-0.5

0

0.5

1

-1

z-
po

si
tio

n
in

 m
et

er
s

New line 1

New line 2

New line 3

New line 4

(b) After corner points have been found.

Figure 5.4: An example of the virtual screen in two different
stages.

40

5.3. SRP-PHAT USING COARSE-TO-FINE REGION CONTRACTION

5.3 SRP-PHAT using Coarse-to-fine Region Contraction
The CFRC method is implemented very closely to its theoretical description in section 4.2.2. See algo-
rithm 7. In this thesis the target volume Vt was set to 4 × 4 × 4 centimetres, using a similar error as
in section 5.2.1. The initial search volume VS was set to an extra large volume to present good results,
something that was done at a high computing power cost. The value set was VS = 2.5×2.5×2.5 meters.

The number of points Ji to evaluate each iteration was set to a constant after the initial J0. The
number of points to save each iteration Ni was constant as well. The grid was searched with centimetre
precision, the resolution R being 0.01 meters.

Algorithm 7 The CFRC method to estimate a sound event sj .
Precondition: A target volume Vt.
Precondition: An initial search volume VS .
Precondition: The resolution R of the search volume VS .
Precondition: An audio segment a of 2048 sample points.
Precondition: Microphone positions r.

1: function CFRC(Vt, VS , R, a, r)
2: gcc ← UpperTriangleGccPhat(r, a)
3: k ← (x, y, z)

4: J0
k ← 1

R

V S
k

V t
k

5: Jk ← 1
2J

0
k

6: N0 ← 50
7: N ← 30

8: Step size sk ← Max(1
J0
k

SideLength(V S
k), 1)

9: Grid D ← ConstructGrid(VS , s)

10: Evaluated points P ← EvaluateSrpPhat(D,R, r, gcc)
11: Ps ← Select(Sort(P), N0)

12: for i← 1 to 100 do
13: B

(i−1)
k ← Bi

k

14: Bi
k ← FindBoundaryBox(Ps)

15: sk ← Max(Bi
k

Jk
, 1)

16: Di ← ConstructGrid(Bi
k, s)

17: if Bi
k ≤ Vt or Bi

k = B
(i−1)
k then

18: P ← EvaluateSrpPhat(Bi
k, R, r, gcc)

19: p ← Sort(P)1
20: Break from the loop.
21: else
22: Gi ← Ps > Mean(Ps)

23: P ← EvaluateSrpPhat(Di, R, r, gcc)
24: Ps ← Select(Sort(P ∪Gi), N)

25: return p

41

Chapter 6

Experiments

In order to evaluate the system a number of experiments have to be conducted. This chapter describes
the process of setting up these experiments and what limitations they give rise to.

6.1 Experiment setup
Ideally the experiments would take place in a laboratory setting. The microphone positions could then
be placed at locations measured in millimetre precision. A robot arm could control the movement of
the sound source(s) to give an exact path for which all the transmission times are known. Noise and
reverberation could be measured. All the comparisons to the estimated values would then be very easy
to do and yield good results.

This was however not an option for this thesis and hence an experimental setup was created to mimic
the laboratory setting just described.

6.2 Electronics
Eight microphones were used in this thesis to satisfy the minimal problem in section 4.3. The microphones
were Shure SV100 microphones and their frequency response can be seen in fig. 6.1.

Figure 6.1: The frequency response of a Shure SV100 micro-
phone. Image source is the user manual for the microphone.

To interface with the computer an audio interface from Roland was used, namely the STUDIO-CAPTURE.
While both the microphones and the speakers were connected to the same device, the system still acted
as an open system.

43

6.3. SOFTWARE IMPLEMENTATION

Input jack Microphone Connection Sensitivity
1–4 Shure SV100 XLR – XLR 58 dB
5–8 Shure SV100 XLR – 6.35 mm TRS 58 dB

Table 6.1: Settings for the microphones.

Output jack Speaker type DAW output level
7 Portasound 5 dB
8 Cubee -13 dB

Table 6.2: Settings for the speakers.

The settings used for the microphones are found in table 6.1. A low cut filter with a cutoff frequency at
75 Hz was enabled on the device for all of the input jacks.

The speakers used to generate sound were a Roxcore Portasound speaker and a Roxcore Cubee
Portabel Bluetooth-speaker. Since the experiments in this thesis never use more than two microphones
as mentioned in section 1.3.3, only one speaker of each type was used. When recordings were produced
with only one output channel the latter speaker was used.

The master output level was set to -20 dB on the STUDIO-CAPTURE. The other settings can be
found in table 6.2.

6.3 Software implementation
The system in this thesis was implemented in MATLAB as mentioned in section 1.3.3. To interface with
the STUDIO-CAPTURE it was connected to the computer via USB 2.0 using the driver ASIO4ALL, a
Universal ASIO Driver For WDM Audio. The entire project was run on the Windows platform.

To generate sounds and record synchronized sounds the Real-Time Audio Processing Framework for
Matlab developed by Swartling [18] was used. The audio was processed in blocks of 512 sample points at
a time, both for the signal transmissions and for the recordings. The signals were pre-generated before
the transmissions to avoid output lag. Likewise for the real-time part of the system pipeline, the entire
signal was recorded before running the real-time experiments. However, the recording was split into the
same block size as the recording had been recorded in, before being fed to the real-time system.

6.4 Experiment rig
A custom rig was built in order to maintain the setup between different experiments. Having known
positions for the microphones and known positions for the sound source path(s) make it easier to do
ground truth comparisons. The use case is to remotely control a monitor of a computer. Likely this
could be a 22 inch monitor with the microphones placed ad hoc around it. However, the microphones
should not be placed in a plane since this messes with the system and it becomes rank-deficient. The
monitor, the microphones and the hand of the user would probably fit within one cubic meter.

An L-shaped particle-board with feet was constructed. At different measured locations holes were
drilled, allowing microphones to be slotted in different configurations. Thus the microphones could be
inserted both vertically and horizontally and a few configurations thereof made it possible to not slot
them in a plane.

A couple of nails were also hammered onto the construction at measured locations. A thread was
attached to a nail and then looped around via a couple of other nails, to make it possible to get a rough
ground truth path for the sound source paths.

The construction can be seen in fig. 6.2.

44

6.5. USED CONFIGURATION FOR THE MICROPHONES AND SOUND SOURCE PATHS

Figure 6.2: The experiment rig constructed for this thesis.

6.5 Used configuration for the microphones and sound source
paths

Here the ground truth configuration used for the majority of the experiments is presented. The locations
in meters of the M = 8 microphones used are

r̂ =

0.54 0.00 0.45

0.54 0.60 0.45

0.45 0.00 0.01

0.45 0.60 0.01

0.00 0.00 0.01

0.00 0.60 0.01

0.00 0.30 0.01

0.54 0.30 0.20

M×(x,y,z)

. (6.1)

When unscrewing one of the microphones it was found that the sensor membrane was not located at the
exact middle line which the microphone rest on in the experiment rig. Hence the offset of one centimetre
in either the x-axis or the z-axis. The location of microphone five is therefore found at (0, 0, 0.1) instead
of (0, 0, 0).

The k = 4 corner points of the sound path are located at

ĉ =

−0.005 −0.005 0.035

−0.005 0.605 0.035

0.45 0.605 0.455

0.45 −0.005 0.455

k×(x,y,z)

. (6.2)

This is actually three centimetres inside and lower than the thread seen in fig. 6.2. The size of the Cubee

45

6.5. USED CONFIGURATION FOR THE MICROPHONES AND SOUND SOURCE PATHS

speak is 6× 6× 6 centimetres, thus half of the width is 2.5 centimetres. So when the speaker is moved
along the thread (on the inside) the offset above is obtained. Touching the thread with the speaker
generates a noise and hence an extra 0.5 centimetres are added as the path shrinks a little bit more.

The locations of the microphones and the sound source path can be seen in fig. 6.3.
The experiments conducted generated signals of 11 seconds. In those 11 seconds the speaker was

moved, one loop along the sound source path thread, from the bottom-right corner to the bottom-left
corner all away around until the bottom-right corner was reached again. If any time remained after the
loop the speaker was moved towards the opposite corner of the path from the starting position.

x-position in meters

0.6

1

0.4

3

0.2

8

0

5

0

2

4

0.2

y-position in meters

7
0.4

6

0.6

0

0.1

0.2

0.3

0.4

Ground truth ri

Ground truth sj

Figure 6.3: The ground truth positions for the microphones and
the sound path in the experiments conducted.

46

Chapter 7

Results

In this chapter the results as well as some evaluation of said results are presented.

7.1 Signal processing

7.1.1 A visual comparison using a single sound source
In order to decide which signal method and frequency band to use, a comparison of the four different
signal methods were done for three different frequency bands. The GCC-PHAT images are plotted
against each other in fig. 7.1 for the channel pair (1, 3). From a visual inspection of the subfigures it
seems like the SPR signal method preforms best for both 440 – 1 440 Hz (fig. 7.1j) and 6 500 – 7 500 Hz
(fig. 7.1k), with the first band preforming slightly better. None of the signal methods seems to perform
well in the frequency span 15 000 – 16 000 Hz (figs. 7.1c, 7.1f, 7.1i and 7.1l).

47

7.1. SIGNAL PROCESSING

C
on

tin
uo

us
le

ve
l

440 – 1 440 Hz

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a)
6 500 – 7 500 Hz

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b)
15 000 – 16 000 Hz

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(c)

Pe
rio

di
c

le
ve

l

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(d)

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(e)

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(f)

Pe
rio

di
c

sc
al

ed

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(g)

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(h)

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(i)

St
ac

ke
d

pe
rio

di
c

ra
nd

om

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(j)

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(k)

Time t [s]
1 2 3 4 5 6 7 8 9 10 11

D
el

ay
 τ

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

(l)

Figure 7.1: A comparison of different GCC-PHAT for channel
pair (1, 3), where the frequency and the signal method vary.

7.1.2 An in-depth comparison using a single sound source
A visual inspection is not the best comparison method. Therefore an alternative way to compare the
different signal methods for different frequencies was developed. The method has two steps:

1. Compose a ground truth image.

2. Compare each ground truth image with the measured signal.

Constructing a ground truth image, ideally, consists of computing the TDOA value for each time frame
within the GCC-PHAT, for each channel pair, for each different signal method and for each different
frequency band to be tested. If the experimental setup had a way to automate the path of the sound
source, so that at each point in time the location of the sound source would be known, the TDOA could
easily be calculated. This setup was not available as described in section 6.1.

The alternative option is to construct ground truth images by hand. This has to be done individually
for each recording as the exact path of the sound source is unknown. For the four different signal methods
and three different frequencies this is 4 · 3 ·m(M − 1)! = 672 different ground truth images. Which is

48

7.1. SIGNAL PROCESSING

way too many for the scope of this thesis. Therefore ground truth images were only created for channel
pairs (1, ai) for each recording, where ai = 2, . . . , 8. This yields a total number of 4 · 3 · 7 = 84 images.

To produce the ground truth images a GCC-PHAT image was created for each of the 84 channel
pairs. Then the most “likely” path was coloured in black and white to represent a bit mask, where the
white (true values) represented the TDOA value chosen as the correct one. See fig. 7.2 for an example.
This method has several drawbacks however:

• It is very easy to draw the “line” a few pixels off by accidental hand movements.

• It is constructed from the GCC-PHAT images, which means that

– any errors produced by the GCC-PHAT method will follow into the ground truth images,

– the evaluation step uses the same data that was the basis for the ground truth image, and

– when the image is very fuzzy or unclear the ground truth path will be the result of guesswork.

Thus a visual confirmation should be done in conjunction with this method.

Figure 7.2: The ground truth image for channel pair (1, 3) for
the CL signal method with the frequency span 6 500 – 7 500 Hz.
Here it is overlayed on top of the GCC-PHAT image in fig. 7.1b
with the ground truth TDOA path represented in red.

The evaluation step consists of the following steps:

1. Compute peaks p and refined peaks pr as described in section 5.2.1 for all of the 84 channels pairs.

2. For each channel pair, the distance (in sample points) between the ground truth TDOA value for
each time frame and the closest TDOA value in p and pr will be computed.

3. All distances smaller than a threshold ξ in each recording are then summed and divided by the
total number of time frames.

This results in a percentage that describes how well the signal method and the frequency band preforms.
Here ξ = 5.6 sample points = 0.04 meters was chosen (as in section 5.2.1). The result for the same
recordings as in fig. 7.1 can be seen in table 7.1.

440 – 1 440 Hz 6 500 – 7 500 Hz 15 000 – 16 000 Hz
p pr p pr p pr

Continuous level (CL) 57.91% 40.43% 36.01% 71.74% 2.39% 1.03%
Periodic level (PL) 32.10% 21.39% 31.57% 51.40% 0.97% 0.85%
Periodic scaled (PS) 32.17% 26.53% 39.78% 26.54% 1.22% 0.46%
Stacked periodic random (SPR) 88.83% 90.63% 50.98% 82.80% 2.42% 0.39%

Table 7.1: A comparison of how well the different signal methods
perform for some different frequency bands. Comparable to the
results in fig. 7.1.

49

7.1. SIGNAL PROCESSING

7.1.3 Results using multiple sound sources

In the experiment with multiple sound source, two speakers were used in this thesis. Each speaker emits
a different signal. This results in a single M channel recording that is separated into two new M channel
recordings using a bandpass filter. In fig. 7.3 the result of such a separation can be seen. The span of the
peaks in each new M channel recording are clearly shown as different intervals, indicating a successful
separation.

The first output signal used the SPR signal method for the frequency band 400 – 1 400 Hz, and
the second one used the SPR signal method for the frequency band 1 500 – 2 500 Hz. In fig. 7.4 the
GCC-PHAT images shows two different TDOA paths confirming that the separation worked. Although
it might be difficult to distinguish the path in the right image as there is aliasing of the signal due to the
higher frequency band.

Frequency [Hz] ×104

0 0.5 1 1.5 2 2.5

P
ow

er

0

5

10

15

20

25

30

35

40

45

(a) Frequency band: 400 – 1 400 Hz.
Frequency [Hz] ×104

0 0.5 1 1.5 2 2.5

P
ow

er

0

2

4

6

8

10

12

(b) Frequency band: 1 500 – 2 500
Hz

Figure 7.3: The frequency spectrum for the two extracted audio
clips after the separation of the recording.

Frame No.
50 100 150 200 250 300 350 400 450 500

O
ffs

et

200

400

600

800

1000

1200

1400

1600

(a) Frequency band: 400 – 1 400 Hz.
Frame No.

50 100 150 200 250 300 350 400 450 500

O
ffs

et

200

400

600

800

1000

1200

1400

1600

(b) Frequency band: 1 500 – 2 500
Hz

Figure 7.4: The GCC-PHAT image for channel pair (2, 7) for the
two extracted audio clips after the separation of the recording.

50

7.2. SYSTEM SELF-CALIBRATION

7.2 System self-calibration

7.2.1 Estimation of TDOA values ui,j

To evaluate the estimator for the TDOA values ui,j a comparison to the same ground truth images as
created in section 7.1.2 is carried out. The ground truth TDOA values are referred to as ûi,j .

The estimator for the TDOA values ui,j seems to be robust in the sense that it follows some path
and is able to span the entire width of GCC-PHAT image. A few examples can be seen in fig. 7.5 for
some different channel pairs, signal methods and frequency bands.

However, the ground truth often differs from the estimated TDOA path quite a bit. It is hard to say
if this is because ûi,j is badly drawn in the ground truth image or if the estimated TDOA values ui,j are
bad. The recording with the SPR signal method and the frequency band 440 – 1440 Hz, see figs. 7.1j
and 7.5c, will be studied further in the thesis. This recording will be referred to as SPR440.

Time [s]
1 2 3 4 5 6 7 8 9 10 11

T
D

O
A

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

Estimated TDOA values û

Ground truth TDOA values û

(a) The CL signal method for 6 500 – 7 500
Hz for the channel pair (1, 2).

Time [s]
1 2 3 4 5 6 7 8 9 10 11

T
D

O
A

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

Estimated TDOA values û

Ground truth TDOA values û

(b) The PS signal method for 440 – 1 440 Hz
for the channel pair (1, 4).

Time [s]
1 2 3 4 5 6 7 8 9 10 11

T
D

O
A

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

Estimated TDOA values û

Ground truth TDOA values û

(c) The SPR signal method for 440 – 1 440
Hz for the channel pair (1, 8).

Time [s]
1 2 3 4 5 6 7 8 9 10 11

T
D

O
A

 [m
]

-5

-4

-3

-2

-1

0

1

2

3

4

5

Estimated TDOA values û

Ground truth TDOA values û

(d) The CL signal method for 6 500 – 7 500
Hz for the channel pair (1, 6).

Figure 7.5: Examples of comparisons between the estimated
TDOA values ui,j (in red) and he ground truth TDOA values
ûi,j (in blue), for some different channel pairs, signal methods
and frequency bands.

Looking at the SRP440, it is time to compare the estimated TDOA values ui,j more closely to the
ground truth TDOA values ûi,j . First the distances d between all the values ui,j and all the values ûi,j
are calculated as

dk = |wk − ŵk| (7.1)

51

7.2. SYSTEM SELF-CALIBRATION

where w is the flattened matrix u and ŵ is the flattened matrix û. That yields n =M ×N distances d.
The distances are used as an error measurement. The lower the distance, the better.

The mean of the error is calculated by

µ =
1

n

n∑

i=1

di. (7.2)

The standard deviation of the error is calculated by

σ =

√√√√ 1

n

n∑

i=1

(di − µ)2. (7.3)

The root mean square of the error, RMS, is calculated by

RMS =

√√√√ 1

n

n∑

i=1

d2i . (7.4)

As only one recoding is used to evaluate the estimator, the error measurements defined above were
calculated for 50 different iterations. The reason being that the estimator is not deterministic. The
average of the distance errors were found to be (in sample points)

µ = 1.692, σ = 1.517 and RMS = 2.227.

In meters this becomes
µ = 0.012, σ = 0.011 and RMS = 0.016.

This is a very small error of about 1 ± 1 centimetres. Studying the other channel pairs visually for
SPR440 it is hard to say if this is because of an incorrect ground truth image or not. The fact remains
that it is very good nonetheless.

7.2.2 Estimation of microphone positions ri

Similarly to how the TDOA values ui,j were studied, the estimated microphone positions ri can be
studied. The ground truth microphones positions r̂i are defined in section 6.5. The distances d between
the estimated ri and the ground truth r̂i are calculated by

di =
√
(rix − r̂ix)2 + (riy − r̂iy)2 + (riz − r̂iz)2 (7.5)

where ri = [rix, r
i
y, r

i
z]

T and r̂i = [r̂ix, r̂
i
y, r̂

i
z]

T . Again the distances are used as error measurements. Then
the mean µ, the standard deviation σ and the RMS can be calculated for the error measurements as in
eqs. (7.2) to (7.4).

Again the tests are run on SPR440 with 50 iterations. Of the 50 iterations, one of them produced an
error in the last optimization step of section 5.2.3 and nine of them failed to estimate any ri (and sj) at
all. Therefore these were removed yielding a total of 40 iterations instead.

The average of the error measurements were found to be (in meters)

µ = 0.118, σ = 0.050 and RMS = 0.129.

In fig. 7.6 the different means of the errors for each of the iterations can be studied in detail.
This time it is very interesting to make a visual comparison of the iterations since there is a geometric

interpretation of the problem. In fig. 7.7 two good examples and two bad examples are shown as well
as their individual µ, σ and RMS. It is somewhat difficult to see how far away the points are from each
other in certain angles, this becomes easier when rotating them around in MATLAB however.

52

7.2. SYSTEM SELF-CALIBRATION

Iteration
0 5 10 15 20 25 30 35 40 45 50 55

D
is

ta
nc

e
er

ro
r
µ

 [m
]

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 7.6: The means of the distance errors with their standard
deviations for each iteration when evaluating ri.

x-position [m]

1

0.5

0

1
1

-0.5

33

8

5

-0.5

8

5

2
2

4
7

4

7

0

6
6

y-position [m]

0.5
1

-0.5

0.5

1

0z-
po

si
tio

n
[m

]

G.T. r̂i

Est. ri

(a) Iteration 6 with µ = 0.154 m, σ =

0.076 m and RMS = 0.772 m. (Bad.)

x-position [m]

1

0.5

0

1

-0.5

3

1

3
5

8

-0.5

5

4

8
2

2

4

77

0

6

y-position [m]

6

0.5
1

-0.5

0.5

1

0z-
po

si
tio

n
[m

]
G.T. r̂i

Est. ri

(b) Iteration 22 with µ = 0.190 m, σ =

0.057 m and RMS = 0.119 m. (Bad.)

x-position [m]

1

0.5

0

11

3

-0.5

3

88

5

-0.5

5

22

4

77

4

0

66

y-position [m]

0.5
1

-0.5

0

0.5

1

z-
po

si
tio

n
[m

]

G.T. r̂i

Est. ri

(c) Iteration 25 with µ = 0.048 m, σ =

0.016 m and RMS = 0.051 m. (Good.)

x-position [m]

1

0.5

0

1

-0.5

3

1

3

88

5

-0.5

5

22

44

77

0

6
6

y-position [m]

0.5
1

0

0.5

-0.5

1

z-
po

si
tio

n
[m

]

G.T. r̂i

Est. ri

(d) Iteration 46 with µ = 0.063 m, σ =

0.030 m and RMS = 0.070 m. (Good.)

Figure 7.7: Examples of estimated ri compared to their ground
truths r̂i for SPR440.

53

7.2. SYSTEM SELF-CALIBRATION

7.2.3 Estimation of sound source path sj

Now the sound events sj will be compared to the ground truth sound source path spanned by the corner
points ĉk defined in section 6.5. In order to get some error metrics a few tricks has to be done.

First all the estimated sj are projected down onto all of the four lines formed by ĉk. Then the
distances between all the projected points and all of the lines are computed. Each original point sj is
then assigned to the line closest to itself. The algorithm can be seen in algorithm 8.

Algorithm 8 Assign each sound event sj to a ground truth line.
Precondition: A variable A consisting of four lines L that define the ground truth sound source path.
Precondition: A line L has two points p and q defining the line.
Precondition: Estimated sound event points sj located in S.

1: function AssignPointToLine(A, S)
2: n ← Length(S)
3: D ← A n× 4 matrix containing the distances from each point to each line.
4: P ← A n× 4 matrix containing the projection of S onto each line.
5: for j ← 1 to n) do
6: s ← Sj

7: for k ← 1 to 4 do
8: p ← Ak.p

9: p ← Ak.q

10: Dj,k ← DistancePointToLine(s, p, q)
11: Pj,k ← ProjectPointOntoLine(s, p, q)
12: c ← Min(D, 2) ◃ c = index of the closest line for each point.
13: for k ← 1 to 4 do
14: Ak.distances ← Dc= k

15: Ak.inliers ← Pc= k

16: return A

The distance between each sound event sj and a line can be computed by eq. (4.83) and distances will
be used as the error measurements. The standard metrics; the mean µ, the standard deviation σ and
the RMS; can be calculated for the errors as in eqs. (7.2) to (7.4). The metrics are computed for the
exact same iterations as in section 7.2.2.

Before computing the errors some extreme outliers among the sound events sj were removed. All
sj whose distance to a line were above four meters were considered extreme outliers. For the majority
of the iterations the amount of such outliers were zero and for the other cases it was between five and
twenty points.

The average of values were found to be (in meters)

µ = 0.292, σ = 0.273 and RMS = 0.405.

In fig. 7.8 the different means of the errors for each of the iterations can be studied in detail.
Again the visual comparison of the iterations is interesting. In fig. 7.9 a few examples are shown as

well as their individual µ, σ and RMS. The colors of the points and the line segments indicate which
points are measured to which line.

54

7.2. SYSTEM SELF-CALIBRATION

Iteration
0 5 10 15 20 25 30 35 40 45 50 55

D
is

ta
nc

e
er

ro
r
µ

 [m
]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7.8: The means of the distance errors with their standard
deviations for each iteration when evaluating sj .

x-position [m]

1

0.5

0

1

3

-0.5

8

5

-0.5

2

4

7

0

6

y-position [m]

0.5

1

0

-0.5

1

0.5

z-
po

si
tio

n
[m

]

G.T. r̂i
G.T. path sj from ĉk

Est. sj matched to ĉk

(a) Iteration 6 with µ = 0.298 m, σ =

0.453 m and RMS = 0.542 m.

x-position [m]

1

0.5

0

1

3

-0.5

8

5

-0.5

2

4

7

0

6

y-position [m]

0.5

1

0.5

1

-0.5

0z-
po

si
tio

n
[m

]

G.T. r̂i
G.T. path sj from ĉk

Est. sj matched to ĉk

(b) Iteration 10 with µ = 0.601 m, σ =

0.557 m and RMS = 0.819 m.

x-position [m]

1

0.5

0

1

3

-0.5

8

5

-0.5

2

4

7

0

6

y-position [m]

0.5

1

0.5

0

1

-0.5

z-
po

si
tio

n
[m

]

G.T. r̂i
G.T. path sj from ĉk

Est. sj matched to ĉk

(c) Iteration 14 with µ = 0.223 m, σ =

0.175 m and RMS = 0.283 m.

x-position [m]

1

0.5

0

1

3

-0.5

8

5

-0.5

2

4

7

0

6

y-position [m]

0.5

1

-0.5

0

0.5

1

z-
po

si
tio

n
[m

]

G.T. r̂i
G.T. path sj from ĉk

Est. sj matched to ĉk

(d) Iteration 18 with µ = 0.133 m, σ =

0.065 m and RMS = 0.148 m.

Figure 7.9: Examples of estimated sj compared to the lines
spanned by ground truth ĉk for SPR440.

55

7.2. SYSTEM SELF-CALIBRATION

7.2.4 Estimation of the virtual screen
A few examples of the virtual screen compared to the sound events sj can be seen in fig. 7.10. The
examples are generated from SPR440. Sometimes the quadrilaterals calculated are neither simple or
convex, which is bad (namely complex and concave quadrilaterals). Other times the algorithm yields
good results visually.

Complex quadrilateral are quadrilaterals where the diagonals of the quadrilateral intersect and con-
cave quadrilateral are quadrilaterals where one of the interior angles of the quadrilateral is greater than
180 degrees. Examples of these shapes can be seen in fig. 7.10d. A better algorithm for finding the
virtual screen would reject these complex and concave quadrilaterals.

Error metrics for the evaluation are calculated using the virtual screen corner points ck and the ground
truth virtual screen spanned by the ground truth corner points ĉk. The points ĉk form a rectangular
quadrilateral and the points ck form a general quadrilateral as previously mentioned. To compare the
quadrilaterals the following metrics are used as error measurements: the distances d between the mid
points, the difference between the areas A, and the difference between the circumferences C.

The area of a quadrilateral can be computed using the corner points. A quadrilateral spanned by the
corners a,b, c and d has two diagonals D1 = c− a and D2 = d− b. The area is then given by

A =
|D1 ×D2|

2
. (7.6)

To compute the mid points, the intersection of the diagonals D1 and D2 is calculated using the technique
in section 4.6.3. Finally the circumference is calculated as the sum of all the four sides b−a, c−b,d−c

and a− d.
The metrics are computed for the exact same iterations as in section 7.2.2. The average of values

were found to be
µd = 1.044 m, µC = 2.608 m and µA = 0.474 m2.

The individual errors for all the iterations can be found in fig. 7.11. In some places the error values are
outside the graph since it is more interesting to study the majority of the error measurements. So if a
value that existed in a previous error graph (figs. 7.6 and 7.8) is now missing it just lies at a much higher
value than the graph displays.

A visual comparison of all the 40 iterations was also done as the average of the errors is quite high.
Only five iterations were found to be reasonably fitted, namely iterations 15, 17, 21, 25 and 49. Four of
these can be seen in fig. 7.10.

56

7.2. SYSTEM SELF-CALIBRATION

x-position [m]

1

0.5

0

1

3

-0.5

8

5

-0.5

2

4

7

0

6

y-position [m]

0.5

1

0.5

1

-0.5

0z-
po

si
tio

n
[m

]
G.T. r̂i
G.T. plane from ĉk

Est. sj
Est. virtual screen from ck

(a) A reasonable fitted virtual screen (iteration
15). The ground truth plane from ck intersect
with the virtual screen.

x-position [m]

1

0.5

0

1

3

-0.5

8

5

-0.5

2

4

7

0

6

y-position [m]

0.5

1

-0.5

0

0.5

1

z-
po

si
tio

n
[m

]

G.T. r̂i
G.T. plane from ĉk

Est. sj
Est. virtual screen from ck

(b) A reasonable fitted virtual screen (iteration
17). The ground truth plane from ck intersect
with the virtual screen.

x-position [m]

1

0.5

0

1

3

-0.5

8

5

2

-0.5

4

7
6

0

y-position [m]

0.5

1

-0.5

0

0.5

1

z-
po

si
tio

n
[m

]

G.T. r̂i
G.T. plane from ĉk

Est. sj
Est. virtual screen from ck

(c) A badly fitted virtual screen (iteration 16).

1

x-position [m]

0.5

18

2

3

4

0

5

7

6

-0.5
-0.5

0

0.5

1

1

0.5

0

-0.5

y-position [m]

z-
po

si
tio

n
[m

]

G.T. r̂i
G.T. plane from ĉk

Est. sj
Est. virtual screen from ck

(d) A complex virtual screen (iteration 38).

x-position [m]

-0.5

0

0.5

1

6

4

7
2

1

5
83

1

0.5

y-position [m]

0
-0.5
-0.5

0

0.5

1

z-
po

si
tio

n
[m

]

G.T. r̂i
G.T. plane from ĉk

Est. sj
Est. virtual screen from ck

(e) A reasonable fitted virtual screen (iteration 21).
x-position [m]

1
0.5

1

3

0

8

2

4

-0.5

5
7

-0.5

6

0

y-position [m]

0.5

1

-0.5

0

0.5

1

z-
po

si
tio

n
[m

]

G.T. r̂i
G.T. plane from ĉk

Est. sj
Est. virtual screen from ck

(f) A reasonable fitted virtual screen (iteration 25).

Figure 7.10: A few examples of virtual screen compared to the
sound events sj for SPR440.

57

7.3. SOUND SOURCE TRACKING

Iteration
0 5 10 15 20 25 30 35 40 45 50 55

D
is

ta
nc

e
er

ro
r
µ

d
 [m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) The mid point distance errors.
Iteration

0 5 10 15 20 25 30 35 40 45 50 55

C
irc

um
fe

re
nc

e
di

ffe
re

nc
e

er
ro

r
µ

c [m
]

0

1

2

3

4

5

6

(b) The circumference difference er-
rors.

Iteration
0 5 10 15 20 25 30 35 40 45 50 55

A
re

a
di

ffe
re

nc
e

er
ro

r
µ

A
 [m

2
]

0

0.5

1

1.5

(c) The area difference errors.

Figure 7.11: The means of the error measurements for each
iteration when evaluating the virtual screen.

7.3 Sound source tracking
The result of the CFRC method in section 5.3 is a number of sound events scj , where the c denoted them
as CFRC. A few results can be seen in fig. 7.12 where they are compared to the sj computed by the
system self-calibration.

x-position [m]

1

0.5

0

1

1

-0.5

3

3

88

5

-0.5

5

2
2

7

4

7

0

4
66

y-position [m]

0.5
1

-0.5

0

0.5

1

z-
po

si
tio

n
[m

]

G.T. r̂i

Est. ri

Est. sj : Self-calibration

Est. scj : CRFC method

(a) Iteration 3 with µ = 0.331,
σ = 0.269 and RMS = 0.426.

x-position [m]

1

0.5

0

11

-0.5

33

88

-0.5

55

2
2

4
4
7

7

0

66

y-position [m]

0.5
1

1

-0.5

0.5

0z-
po

si
tio

n
[m

]

G.T. r̂i

Est. ri

Est. sj : Self-calibration

Est. scj : CRFC method

(b) Iteration 9 with µ = 0.230,
σ = 0.234 and RMS = 0.328.

x-position [m]

1

0.5

0

11

3

-0.5

3

88

5

-0.5

5

22

4

77

4

0

66

y-position [m]

0.5
1

0.5

0

-0.5

1
z-

po
si

tio
n

[m
]

G.T. r̂i

Est. ri

Est. sj : Self-calibration

Est. scj : CRFC method

(c) Iteration 25 with µ = 0.239,
σ = 0.302 and RMS = 0.386.

Figure 7.12: Examples of estimated scj for SPR440. Values in
meters.

The experiments with the CFRC method had to be done with an extra large room volume as mentioned
in section 5.3. For the exact same 40 iterations as in section 7.2.2 the script took about 2 full days to
complete, far from a real-time solution. Nonetheless after running the 40 iterations, a visual inspection
revealed another 9 iterations where the room volume had been to small and had generated artifacts in
the results. Thus the error metrics were computed for a total of 31 iterations.

The error metrics are computed exactly in the same way as for section 7.2.3 with the same pre-
computations. The average of the error distances were found to be (in meters)

µ = 0.310, σ = 0.293 and RMS = 0.429.

In fig. 7.13 the different means of the errors for each of the iterations can be studied in detail.

58

7.3. SOUND SOURCE TRACKING

Iteration
0 5 10 15 20 25 30 35 40 45 50 55

D
is

ta
nc

e
er

ro
r
µ

 [m
]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 7.13: The mean values of errors with their standard de-
viations for the different iterations when evaluating scj .

59

Chapter 8

Analysis

This chapter presents the analysis of the results and evaluations. It is structured so that the sections in
the previous chapter maps to the same sections in this chapter.

8.1 Signal processing
The results in table 7.1 confirms the visual findings in fig. 7.1. However there are some interesting points
to make.

While the SPR signal method preforms significantly worse for 6 500 – 7 500 Hz than for 440 – 1 440
Hz when looking at p the difference is not that larger with all channel pairs taken into account (pr). This
indicates that the refinement step of section 5.2.1 is quite robust. The same observation can be made
for the CL signal method for the same frequency bands.

When comparing all the signal methods with each other it also seems like the CL signal method
performs better than the periodic ones (PL and PS). One reason could be that the silence between the
beeps results in non-existing or outlier values for p and pr, thus giving them a lower score when using
the evaluation method.

Time [s]
9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8

T
D

O
A

 [m
]

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

(a) Close up of the SPR signal method
for 6 500 – 7 500 Hz.

Time [s]
6.6 6.8 7 7.2 7.4 7.6 7.8

T
D

O
A

 [m
]

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(b) Close up of the SPR signal method
for 15 000 – 16 000 Hz.

Figure 8.1: A close up of the GCC-PHAT images of two different
frequency spans for the SPR signal method.

Finally it is interesting to take a closer look at the GCC-PHAT images for some higher frequency bands.
In fig. 8.1 a repetitive pattern can be seen, with more and tighter repetitions for the higher frequency
band on the right-hand side of the figure. Measuring the distance between two repetitions gives a distance
of da = 7 sample points for fig. 8.1a and db = 3 sample points for fig. 8.1b. Converting this to meters
yields da = 0.0496 and db = 0.0213.

Most likely this has to do with aliasing. To avoid aliasing of the signal the distance D between two
microphones should be D < λ

2 [38] where λ is the smallest wave length of the signal. The wave length is

61

8.2. SYSTEM SELF-CALIBRATION

defined as λ = v
f

where v is the signal propagation speed and f is the frequency of the wave. Hence for
a frequency band [f0, f1] the distance between two microphones should be D < v

2f0
.

For 440 – 1 440 Hz this means thatD < 0.385 meters for v = 340 meters per second. The configuration
used in the experiment setup has distances that ranges between 0.3 meters to 0.92 meters. Thus it is no
surprise that aliasing occurs for the higher frequency bands.

8.2 System self-calibration

8.2.1 Estimation of microphone positions ri

Naturally, it is very bad that the system is not robust enough to estimate ri and sj for all iterations.
The algorithm implementations are the same as the ones in Zhayida et al. [10] uploaded at Zhayida et al.
[37] so it is a pre-existing problem.

The average distance errors between the estimated microphone positions to the ground truth positions
are 11.8± 5 centimetres. Considering that finger movements are to be tracked, the errors should be an
order of magnitude smaller. Tot the greatest of results in other words.

Looking at fig. 7.6 it seems like there are two clusters of data points. The first cluster have its
average errors located in the interval 5 – 12 centimetres and the second cluster have its average errors
in the interval 13 – 20 centimetres. As to why this happens would be interesting to study further, but is
unfortunately outside the time frame for this thesis.

Studying the first cluster, the average error distances would instead be µ1 = 0.089 meters with the
average standard deviation σ1 = 0.041 meters, while for the second cluster the values would be µ2 = 0.157
meters and σ2 = 0.064 meters. The first cluster then have average distance errors of 8.9±4.1 centimetres.
The average RMS for cluster one is 9.8 centimetres.

For a comparison, numbers from two different papers can be found. In Kuang and Åström [15] an
average distance error of 2.60 centimetres is obtained for the ri and r̂i. In Ask et al. [16] a RMS of
6.7 centimetres. The best average error distance in this thesis is found for iteration 25 with 4.8 ± 1.6
centimetres and an average RMS of 5.1 centimetres.

A concluding summary can be found in table 8.1.

Source Avg. dist. error Avg. σ Avg. RMS
This thesis, all 40 iterations 11.8 5 12.9
This thesis, cluster one 8.9 4.1 9.8
This thesis, best iteration 4.8 1.6 5.1
Kuang and Åström [15] 2.6 - -
Ask et al. [16] - - 6.7

Table 8.1: A comparison between the different average distance
errors between ti and r̂i. Values in centimetres.

62

8.3. SOUND SOURCE TRACKING

8.2.2 Estimation of sound source path sj

An average distance error of 29.2± 27.3 centimetres is extremely high. Studying fig. 7.8 no clusters, like
for the ri distance errors, can easily be identified. The majority of the measurements lies relatively close
together. However, whenever the standard deviation is “small” for an iteration for the sj evaluation the
corresponding ri seems to be in its first cluster. Also the average distance error for sj in that iteration
tends to be among the lowest in fig. 7.8.

Inspecting the results visually in fig. 7.9 reveals that many of the estimated points sj seems be mapped
to the wrong ground truth line segment. This is a consequence of the algorithm applied in order to make
the points comparable when calculating the error metrics. Look closer at the points in fig. 7.9a. Studying
the leftmost line segment, a group of neighbouring points are coloured red (meaning that they should
belong to the bottommost line). Likewise for a group of black points near the top of the line segment.
Along the topmost line segment a lot of the points are instead blue, indicating that they should belong
to the previous line segment.

The reason this happens is that the points are projected to their closest line, not the closest line
segment. Imagine that the line segments extend outwards on both sides to infinity. Then it is not so
strange that near an intersection the points could lie closer to the wrong line segment so to speak. Thus
it is hard to make sense of the point-line mapping of the evaluation, which might give rise to errors in
the error metrics.

There also seems to be a scaling problem in the system. For two of the images in fig. 7.9 the
quadrilateral of points is a lot larger than the ground truth sound source path. This is also the case
for a lot of the other images among the iterations. Why this is the case is unknown and it would be
interesting to study the problem further.

8.2.3 Estimation of the virtual screen
The results from the virtual screen fitting is harder to analyse as the usual metrics are unavailable,
due to the fact that for each iteration no “point clouds” are comparable. This gets harder when then
algorithm seems to be far from perfect as only five good results is obtained out of 40, the remaining
results being either bad fittings or complex quadrilaterals. As such, there can be a lot of improvements
to the algorithm.

It is important to notice the fact that the virtual screen fittings are compared with the ground
truth virtual screen arising from the ground truth corner points ĉk rather than the estimated points sj
themselves. The reason for this is that the points should only used to compute the virtual screen in an
actual implementation, whether or not the vertical screen fits them perfectly is not as important. The
algorithm should be robust in the sense that it works regardless if the estimation sj is good or not.

In fig. 7.11 the three different error metrics are compared. When looking at the good iterations 15,
17, 21, 25 and 49 for the midpoint distance errors in fig. 7.11a it can be seen that all of them have small
such errors. However, they are not exclusively small among all of the iterations. A lot of other iterations
are small as well. So it is not a two-way implication.

For the circumference difference errors no conclusion can be drawn as they are spread along the
y-axis. None of them are however that close to the bottom. Likewise for the area difference error. One
reason could be that when marking results as “good” it is easy to choose virtual screens that represent
the estimated sj very well. None of the other virtual screens had good quadrilaterals however, so while
there might be a bias it is not one of too great consequences for this analysis.

8.3 Sound source tracking
One thing that is easily noted when comparing the sound events sj from the system self-calibration with
the sound events scj from the CFRC method is that sj usually lies on a much smoother line. One reason
could be that the this is one of the benefits when using all of the sound events to do the estimation. The
CFRC only has access to the known positions of the microphones for eacj scj . The points mapped by the
CFRC do however tend to follow the self-calibration points pretty well.

A comparison of the error metrics between the two methods can be found in table 8.2. The averages
for the CFRC are a bit worse but they are not actually that far away from the ones for the system
self-calibration. Using smoothing techniques together with some of the previous points scj−k for some
k ∈ [1, j − 1] could probably improve the results.

63

8.3. SOUND SOURCE TRACKING

Method No. iterations Avg. dist. error Avg. σ Avg. RMS
TDOA 2-step 40 29.2 27.3 40.5

SRP-PHAT with CFRC 31 31.0 29.3 42.9

Table 8.2: A comparison between the sound events sj from the
TDOA 2-step method and the sound events scj from the CFRC
method. Values in centimetres.

For an actual implementation, instead of a proof-of-concept, the room volume problem would need to
be handled as well. It could probably be set dynamically in some way using the system self-calibration
with the virtual screen as a base measure. Hopefully this would save a lot of computing time as well.

64

Chapter 9

Conclusions and future work

In this chapter the work of this thesis is summarized. The main findings from the results, evaluations
and analysis are presented briefly. Also some thoughts about what angles to pursue next are put into
words.

9.1 Conclusions
The main goal of this thesis was to build a proof-of-concept of a system where a user could interact with
the computer using sound waves. A full pipeline have been implemented, where a synchronized array
of microphones placed ad hoc can be self-calibrated to the degree that a virtual screen can be fitted.
Multiple signal sources emitting generated sound waves can be moved around and then separated at the
receiving end. Finally the positions of the sound sources can be tracked. Thus all of the goals have been
reached in some way, except that the system can not handle frequencies outside the audible spectrum.

Out of the four different signal generation methods the most complicated method turned out to be
the best one, beating the others by a large margin. Although the method used to estimate the TDOA
values was very robust it could not handle frequencies above a certain threshold due to aliasing in the
GCC-PHAT. The system runs well enough on lower frequencies however.

The system self-calibration did manage to to a scene reconstruction for 80% of the test cases. It did
not show as good results as previous papers and it was hard to evaluate due to the lack of a proper lab
setting. For all of the test cases the estimations yielded an average distance error of 11.8±5 centimetres for
the receivers and and average distance error of 29.2± 27.3 centimetres for the sound events generated by
the moving sound source. The best test case did however beat a previous RMS score for the microphones.
The implementation seem to have a scaling error for some unknown reason.

A new technique for estimating a so called virtual screen was introduced. The initial findings show
that the method is not very robust. The algorithm resulted in good estimation for 12.5% of the test
cases. The error metrics did not reveal that much information either and could be improved upon.

Finally the real-time sound source tracking turned out to be not so real-time for the implementation
of the CFRC. Mainly because of the badly chosen search volumes. Compared to the TDOA 2-step
method in the system self-calibration it preformed worse, although with a very small margin.

9.2 Future work
There are a lot of things that could be improved upon in this thesis, both regrading techniques and
implementation details. Another thing that would be interesting to see is an implementation in a
programming language suited for real-time processing. The different parts of the system could then be
compared to an actual use case, “for real”.

The main thing to explore further would be to make the system self-calibration robust for higher
frequencies. Right now the techniques pretty much ignore many of the distance requirements regarding
aliasing due to the ad hoc approach of the receiver placements. The GCC-PHAT might not be the best
suited method for the task at hand. An alternative would be to study its settings further.

Another big thing would be to pay closer attention to the implementation of the different estimators
used to find the scene reconstruction. Remove the scaling errors and handle the problems arising from
using different dimensionalities in the microphone setup and the sound source path. Also some sort of

65

9.2. FUTURE WORK

recovery procedure would be need to handle the cases where the estimators are unable find any good
solutions.

The virtual screen can be improved upon in many ways as previously mentioned. Everything from
handling complex quadrilaterals to review the order of subsystems. Maybe fit the lines first and then
project them onto a plane? Finally it would be interesting to combine the system-self calibration with
the SRP-PHAT with CFRC to dynamically improve the search volume for the CFRC algortihm. Right
now the only relationship between the techniques is that the second one uses the estimated microphones
positions. Making the CFRC SRP-PHAT aware of previous results to use smoothing and extrapolation
techniques would be interesting to see as well.

66

Bibliography

[1] Steven Spielberg (Director). Minority report. DreamWorks Pictures, 2002.

[2] James Cameron (Director). Avatar. 20th Century Fox, 2009.

[3] Tao Hongyong and Yu Youling. Finger tracking and gesture recognition with kinect. In 2012 IEEE
12th International Conference on Computer and Information Technology, pages 214–218, October
2012.

[4] Shang Ma, Qiong Liu, Chelhwon Kim, and Phillip Sheu. Lift: Using projected coded light for finger
tracking and device augmentation. In 2017 IEEE International Conference on Pervasive Computing
and Communications (PerCom), pages 153–159, March 2017.

[5] Daniel Popa, Vasile Gui, and Marius Otesteanu. Real-time multi-cue finger tracking for human
computer interaction. In 2015 38th International Conference on Telecommunications and Signal
Processing (TSP), pages 1–7, July 2015.

[6] Noor Shaker and M. Abou Zliekha. Real-time finger tracking for interaction. In 2007 5th In-
ternational Symposium on Image and Signal Processing and Analysis, pages 141–145, September
2007.

[7] Alexander Ens, Leonhard M. Reindl, Joan Bordoy, Johannes Wendeberg, and Christian Schindel-
hauer. Unsynchronized ultrasound system for tdoa localization. In 2014 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), pages 601–610, October 2014.

[8] Alexander Ens, Leonhard M. Reindl, Thomas Janson, and Christian Schindelhauer. Low-power
simplex ultrasound communication for indoor localization. In 2014 22nd European Signal Processing
Conference (EUSIPCO 2014), pages 731–735, September 2014.

[9] Masatoshi Matsumoto, Kazumasa Kaneta, Miyabi Naruoka, Hiroshi Tanaka, and Kosuke Takano.
Tracking positions of human body parts based on distance measurement with sound wave. In 2017
31st International Conference on Advanced Information Networking and Applications Workshops
(WAINA), pages 514–518, March 2017.

[10] Simayijiang Zhayida, Fredrik Andersson, Yubin Kuang, and Kalle Åström. An automatic system for
microphone self-localization using ambient sound. In 22nd European Signal Processing Conference
(EUSIPCO 2014), pages 954–958, September 2014.

[11] Simon Segerblom Rex. Robust time difference estimation for unknown microphone positions with
reverberation. Master’s thesis, Lund University, 2015.

[12] Hoang Do. Real-time srp-phat source location implementations on a large-aperature microphone
array. Master’s thesis, Brown University, 2009.

[13] Thomas D. Rossing, editor. Springer Handbook of Acoustics. Springer, 2007.

[14] Hans Dieter Lüke. The origins of the sampling theorem. IEEE Communications Magazine, 37(4):
106–108, April 1999.

[15] Yubin Kuang and Kalle Åström. Stratified sensor network self-calibration from tdoa measurements.
In 21st European Signal Processing Conference (EUSIPCO 2013), pages 1–5, June 2013.

67

BIBLIOGRAPHY

[16] Erik Ask, Yubin Kuang, and Kalle Åström. A unifying approach to minimal problems in collinear
and planar tdoa sensor network self-calibration. In 22nd European Signal Processing Conference
(EUSIPCO 2014), pages 1935–1939, September 2014.

[17] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the ACM, 24
(6):381–395, June 1981.

[18] Mikael Swartling. Direction of Arrival Estimation and Localization of Multiple Speech Sources in
Enclosed Environments. PhD thesis, Blekinge Institute of Technology, 2012.

[19] Joseph Hector DiBiase. A high-accuracy, low-latency technique for talker localization in reverberant
environments using microphone arrays. PhD thesis, Brown University, 2000.

[20] Jacob Benesty. Adaptive eigenvalue decomposition algorithm for passive acoustic source localization.
The Journal of the Acoustical Society of America, 107(1):384–391, January 2000.

[21] Michael Bradstein and Darren Ward, editors. Microphone arrays: Signal Processing Techniques and
Applications. Springer-Verlag, 2001.

[22] Stanley T. Birchfield. A unifying framework for acoustic localization. In 12th European Signal
Processing Conference (EUSIPCO 2004), pages 1127–1130, September 2004.

[23] Hoang Do and Harvey F. Silverman. A fast microphone array srp-phat source location implemen-
tation using coarse-to-fine region contraction (cfrc). In 2007 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, pages 295–298, October 2007.

[24] Hoang Do, Harvey F. Silverman, and Ying Yu. A real-time srp-phat source location implementation
using stochastic region contraction (src) on a large-aperture microphone array. In 2007 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP ’07), pages 121–124,
April 2007.

[25] C. Knapp and G. Carter. The generalized correlation method for estimation of time delay. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 24(4):320–327, August 1976.

[26] G.C. Carter, A.H. Nuttall, and P.G. Cable. The smoothed coherence transform. Proceedings of the
IEEE, 61(10):1497–1498, October 1973.

[27] Cha Zhang, Dinei Florencio, and Zhengyou Zhang. Why does phat work well in lownoise, rever-
berative environments? In 2008 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’08), pages 2565–2568, March 2008.

[28] Michael S. Brandstein and Harvey F. Silverman. A robust method for speech signal time-delay
estimation in reverberant rooms. In 1997 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’97), volume 1, pages 375–378, April 1997.

[29] Martin Byröd, Klas Josephson, and Kalle Åström. Fast and stable polynomial equation solving
and its application to computer vision. International Journal of Computer Vision, 84(3):237–256,
September 2009.

[30] Marc Pollefeys and David Nister. Direct computation of sound and microphone locations from
time-difference-of-arrival data. In 2008 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP ’08), pages 2445–2448, March 2008.

[31] Simayijiang Zhayida, Simon Segerblom Rex, Yubin Kuang, Fredrik Andersson, and Kalle Åström.
An automatic system for acoustic microphone geometry calibration based on minimal solvers. arXiv
preprint arXiv:1610.02392, October 2016.

[32] Åke Björck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied
Mathematics, 1996.

[33] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psy-
chometrika, 1(3):211–218, September 1936.

68

BIBLIOGRAPHY

[34] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Mathematics, 2(2):164–168, July 1944.

[35] Donald Marquardt. An algorithm for least-squares estimation of nonlinear parameter. SIAM Journal
on Applied Mathematics, 11(2):431––441, June 1963.

[36] Peter H. Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika,
31(1):1–10, March 1966.

[37] Simayijiang Zhayida, Simon Segerblom Rex, Yubin Kuang, Fredrik Andersson, and Kalle Åström.
Structure from sound. GitHub, 2016. https://github.com/kalleastrom/StructureFromSound
[Accessed: 2017-09-01].

[38] Jacek Dmochowski, Jacob Benesty, and Sofiène Affès. On spatial aliasing in microphone arrays.
IEEE Transactions on Signal Processing, 57(4):1383–1395, April 2009.

69

