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Abstract

Given the increasing performance disparity between processor speeds and
memory latency, making efficient use of cache memory is more important than
ever to achieve good performance in memory-bound workloads. Many modern
first-level caches store instructions separately from data, making code layout
and code size an important factor in the cache behavior of a program.

This work investigates two methods that attempt to improve code locality,
namely procedure splitting and procedure positioning, previously investigated
by Pettis and Hansen. They are implemented in the open-source compiler
framework LLVM to evaluate their effect on the SPEC CPU2000 benchmark
suite and a benchmark run of the PostgreSQL database system. We found
that our implementation is highly situational, but can be beneficial, reducing
execution time by up to 3% on suitable SPEC benchmarks and an increase of
3% in average transactions per second on PostgreSQL.

Keywords: Compiler optimization, Instruction caches, TLBs, LLVM, Code locality



2



Acknowledgements

We would like to thank our supervisor Jonas Skeppstedt for his guidance, providing many
tips and interesting discussions along the way.

We would also like to thank our examiner Krzysztof Kuchcinski for his useful comments
on the report.

3



4



Contents

1 Introduction 7

2 Background 9
2.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Virtual memory and paging . . . . . . . . . . . . . . . . . . . . 10

2.2 Program profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Profile Guided Code Positioning . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Static single assignment (SSA) . . . . . . . . . . . . . . . . . . . 13

2.5 LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Clang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 An example of LLVM IR . . . . . . . . . . . . . . . . . . . . . . 15

3 Method 17
3.1 Function splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Static function splitting . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Dynamic function splitting . . . . . . . . . . . . . . . . . . . . . 18

3.2 Function positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 SPEC CPU2000 . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Results and discussion 25
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Function positioning . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Function splitting . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3 Combining positioning with splitting . . . . . . . . . . . . . . . 27

4.2 The effect of program characteristics . . . . . . . . . . . . . . . . . . . . 28

5



CONTENTS

4.3 The implementation in LLVM . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 41
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Bibliography 43

Appendix A Patch for LLVM 4.0.0 47

Appendix B SPEC compatibility flags 49

Acronyms and abbreviations
Abbreviation Meaning
ABI Application Binary Interface
ASLR Address Space Layout Randomization
CFG Control Flow Graph
CPU Central Processing Unit
f2c A Fortran to C translator; described in [8]
GCC GNU Compiler Collection
I/O Input/Output
IR Intermediate Representation
LRU Least Recently Used
LTO Link-Time Optimization
OS Operating System
PGO Profile-Guided Optimization
RAM Random Access Memory
SSA (form) Static Single Assignment (form)
SQL Structured Query Language
TLB Translation Look-aside Buffer
TPS Transactions Per Second

6



Chapter 1
Introduction

Today, processors are improving faster than main memory, leading to a performance
disparity. This disparity is known as the memory wall [18] and has been growing for
some time, a trend likely to continue for the near future [14, 7]. For this reason, modern
microprocessors often contain several levels of cache memory in an attempt to reduce the
latency of memory operations. Using this cache memory efficently is key to achieving
good performance for memory-bound workloads.

Virtually all modern microprocessors are stored-program computers, which store in-
structions in main memory together with data. Instructions fetched from main memory are
cached along with data that has been accessed recently. This makes code size a concern for
performance, as too large a program will likely lead to poor cache behavior.

A program’s instructions and data can be classified as hot or cold depending on whether
they are accessed frequently or infrequently, respectively. Differentiating hot code from
cold can be done by profiling the program. This generates information that the compiler
can use to optimize the commonly taken code paths in the profiled executions, commonly
referred to as profile-guided optimization (PGO). One important aspect is that the input to
profiled runs be representative of real-world input; otherwise, the misleading profile may
well make the program slower on real data.

A common technique to improve cache behavior is to separate hot from cold. While
it is uncommon for optimizing compilers to automatically do this for data, many modern
compilers can do this for code by, for example, reordering hot basic blocks to be adjacent,
and moving away cold basic blocks. Pettis and Hansen introduced two optimizations,
procedure placement and procedure splitting, to separate hot and cold code on a procedure
level [16]. These two optimizations are not implemented in LLVM. The research questions
we will try to answer by implementing them are:

• Are Pettis and Hansen’s optimizations still relevant today?

• If they are relevant, is there a way to predict how well they will perform on a given
program?
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Chapter 2
Background

2.1 Memory

2.1.1 Caches
Due to the performance difference between microprocessors and memory, accessing mem-
ory has a high latency. The latency naturally varies across architectures and models; for
modern microprocessors, it tends to be on the order of magnitude of 100 cycles or more [13].
High-performance superscalar microprocessors with out-of-order execution can hide this
latency somewhat by reordering instructions with memory dependencies, but never entirely
for most typical programs.

For this reason, practically all microprocessors today have extremely fast, but small,
on-die caches. There are often several levels of cache, with each level being increasingly
larger, but slower. When memory is referenced, the first-level cache is checked first. If the
data is not cached, this is referred to as a cache miss. When a cache miss occurs at one
level, the next level of cache is checked. If the requested data is not in the last-level cache,
data is fetched from main memory, and is then loaded into cache.

A cache can optionally be split between data and instructions, so that they are cached
physically separate from one another. This can have a number of benefits, such as higher
bandwidth and improved access times [17], due to the different access patterns for data and
instructions. In many processor models the first-level cache is split, while the higher levels
are unified.

Caches store fixed-size blocks of data called cache lines. If any cache line can be placed
in any cache entry, the cache is called fully associative. This is generally not an option for
any but the smallest of caches, as searching all cache entries in parallel would require an
impractically large number of comparators to implement in hardware. On the other hand,
using an iterative approach would be too slow [7].

Another variant is a direct-mapped cache, where each cache line only can be placed in
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2. Background
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Figure 2.1: Example layout of a 64-bit address with a 6-bit offset
and a 7-bit set index.

a single entry. This makes lookup and eviction trivial; however, unfortunate access patterns
may cause an excessive number of cache misses if two cache lines mapped to the same
entry are accessed in an alternating manner.

An n-way associative cache is a trade-off between a direct-mapped cache and a fully
associative cache. In this case, the entire cache is partitioned into sets containing n cache
entries each; a cache line can be placed in any of the n entries of the set it belongs to. In
these terms a direct-mapped cache is 1-way associative, while a fully associative cache
is S-way associative, where S is the total number of cache entries. This combines the
advantages of being easy to implement with a degree of resistance against certain misses
due to unfortunate access patterns, similarly to a direct-mapped cache.

When memory is referenced, the requested address is used to look up the data in
the cache. The address is divided into three parts: the offset into the cache line, the set
containing the cache line, and a tag to uniquely identify this cache line among those mapped
to the same set. The three components are formed, in order, starting at the least significant
bit of the address; see fig. 2.1 for an illustration. In the presence of virtual memory, the
lookup address may be the virtual address, the physical address, or a mixture of both. In
particular, if the address bits representing the set is taken from the virtual address, the cache
is said to be virtually indexed.

When a cache line is loaded into cache but all of the entries of that particular set are
occupied, a decision must be made as to which old entry should be evicted. An algorithm
that determines which entry to discard is called an eviction policy. One of the most
commonly used policies is the least recently used (LRU) policy, which simply discards the
entry that has been accessed least recently.

For a uniprocessor, cache misses can be partitioned into three types: compulsorymisses,
capacity misses, and conflict misses [10]. The only type we will discuss further are conflict
misses; these are the misses that occur due to the cache not being fully associative. As
such, some cache lines must map to the same set and may evict one another, even if the
cache is not used to its full capacity by the application.

2.1.2 Virtual memory and paging
Virtual memory implementations allow each process on a system to have an independent
view of memory regardless of how the physical memory is distributed. The memory
management unit in the CPU and the operating system accomplishes this by mapping
virtual addresses, used by processes, to physical page frames. The granularity of this
mapping is typically that of the architectural page size.

Representing this mapping using a single table would be infeasible due to the large
amount of memory each table would consume for each process on the system. Instead,
the mapping is usually represented sparsely. Several techniques for doing this exist. For
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2.1 Memory
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Figure 2.2: A simplified example of a page walk on x86-64, look-
ing up a 4 kB page frame. In reality, each page map table contains
29 = 512 entries. The upper 16 bits of the virtual address are a
sign extension of bit 47, and are not used in the page walk.

instance, the x86-64 architecture achieves this by a four-level hierarchy of tables, where a
table refers to a table on a lower level, and tables on the lowest level refer to actual page
frame numbers. Parts of the 64-bit virtual address being looked up are used as an index
into these tables. See fig. 2.2 for an illustration of this.

To read a cache line given a virtual address, the CPU must traverse the tables until it
reaches the lowest level from which it can read the page frame number, or until it detects a
page fault: an access in a page which is not backed by physical memory. This process is
referred to as a page walk. Page walks are expensive, as they must read a number of memory
locations proportional to the number of levels in the page table hierarchy. In a stored-
program computer, instructions themselves must be fetched from memory; additionally,
programs typically contain many instructions that access memory, so requiring a page walk
each time a page is accessed would be disastrous for performance.

To avoid this situation, modern microprocessors contain one or more specialized caches
called translation look-aside buffers, or TLB. They cache recent translations of virtual
addresses, so that a page walk can be avoided entirely in case of a cache hit. As with
ordinary caches, there may exist several levels of TLBs, and there may also be separate
first-level TLBs for data (dTLB) and instruction (iTLB) address translations.

If a program accesses a virtual address that has no associated page frame, the processor
raises a page fault exception that is handled by the operating system. If a buggy program
accesses an invalid address, e.g. through a null pointer, the kernel delivers a segmentation
fault signal to that process. In some cases, page faults may occur when a program accesses
a seemingly valid address. Linux differentiates these page faults into two classes: minor
faults and major faults.

11



2. Background

Minor faults are those which do not require I/O to resolve, but can be satisfied by
remapping the address to an existing page frame. Some examples of minor faults are:

• Memory returned by the mmap system call when an anonymous mapping has been
requested, as done by the malloc function in the C standard library, and overcommit-
ting is turned on. In this case, the kernel delays reserving physical memory for the
mapping until the program tries to access it and a page fault is raised.

• Attempting to load part of a file which is already available in memory. For instance,
if the C standard library is compiled as a shared library, it is likely that it already
exists in memory due to other programs using it. All that needs to be done is to map
it into the address space of the process that requested it, resulting in a minor fault.

In contrast, a major fault cannot be serviced simply by remapping existing page frames,
but requires disk I/O. This could be the case when pages have been written to disk during a
shortage of physical memory and a process now requires that memory to proceed. A major
fault will also occur if accessing a memory-mapped file and the requested page is not in
the page cache and must be read from the disk.

2.2 Program profiling
In 1982 Graham et al. published a paper detailing the UNIX performance-analysis tool
gprof, which extended the functionality of the already existing prof tool [9]. The general
idea of these tools is to help the user identify parts of the code that could potentially be
improved and consequently help in the evaluation of the new code. They do this by collecting
information of the program at runtime and compiling the information into profiles.

The prof tool generates a so called flat profile which means it records the average and
total time spent in a function, as well as the number of times the function was called. Gprof
adds the ability to generate a call graph profile which not only records time spent in the
function itself, but also which functions are called and how much time is spent in those [3].
This information allows the creation of a call graph and the ability to identify hot and cold
code sections, both of which are important aspects of this thesis.

2.3 Profile Guided Code Positioning
The fact that processor speeds increase at a faster rate than memory speeds has been a
prevailing topic in computer science for a long time. In 1990, Pettis and Hansen published
an article which studied the performance effects of different code positioning techniques
[16]. The paper introduces three techniques that aim to improve the performance of the
instruction cache. Two of these techniques are the focus of our thesis, namely procedure
positioning and procedure splitting, while basic block positioning is already implemented
in LLVM. These techniques aim to reduce the working set of the program by grouping
together non-cold and related parts of the program and moving away cold parts, potentially
resulting in fewer TLB and page misses.

Procedure positioning uses the call graph to identify which procedures are tightly
interconnected. This method can reposition the procedures to be closer to each other.

12



2.4 Basic concepts

Procedure splitting uses dynamically collected profiling information about procedures,
this method can split and move away sections of the code that are considered cold and
thereby group together non-cold parts of the code.

2.4 Basic concepts
In this section, basic concepts needed for the optimization are defined. Proofs are omitted
for brevity; if the reader is interested, we refer to textbooks in compilers and graph theory.

2.4.1 Dominance
The basic blocks of a program may be organized as a control flow graph (CFG), which is
a directed graph in which basic blocks are vertices, and edges (u, v) represent a transfer
of control flow from u to v. For simplicity, all control flow graphs are assumed to have a
unique start vertex s, a unique exit vertex e, and are assumed to be connected.

A vertex u is said to dominate a vertex v, written u � v, if every path from the start
vertex s to v must pass through u. From this definition, the start vertex s dominates all
other vertices and every vertex dominates itself. We say that u strictly dominates v, written
u � v, if u � v and u 6= v.

We define the dominator set of a vertex v, written dom(v), as the set of all vertices u
which dominate it:

dom(v) = { u ∈ V : u � v }.

Except for s, any given vertex u may have many dominators, but is guaranteed to have
a unique immediate dominator, written idom(u). The immediate dominator idom(u) is
defined as the unique vertex v ∈ dom(u) such that v does not stricly dominate any vertex in
dom(u). In the case of the start vertex s, whose dominator set is empty, we leave idom(s)
undefined.

The concept of an immediate dominator allows us to organize the dominance relation
into a dominator tree. The vertices of the dominator tree are same as for the CFG, however,
the dominator tree has an edge (u, v) if and only if u is an immediate dominator of v. This
tree is rooted at the start vertex s, which does not have an immediate dominator. Figure 2.3
illustrates an example control flow graph and its dominator tree.

The dominance frontier of a vertex u is the set of all vertices v such that u 6� v, but
there exists a predecessor w ∈ pred(v) such that u � w.

2.4.2 Static single assignment (SSA)
A program is said to be in static single assigment (SSA) form if every variable in the
program has a single definition and each use of the variable only is reachable by that single
definition. A detailed algorithm to efficiently transform a non-SSA program into SSA form
is given by Cytron et al. [5]. One step of this algorithm is to insert so called φ nodes in the
dominance frontier of the set of basic blocks where a variable is defined.

The φ nodes takes a value from each predecessor of its basic block and, depending on
from which predecessor control was transferred, selects that value and assigns it a new
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(a) An example control flow graph.
Here A is the start vertex and I is the
exit vertex.
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(b) The dominator tree of the control
flow graph in fig. 2.3a.

Figure 2.3: Illustration of a dominator tree.

name. This allows for the merging of two assignments to the same variable, such as an
induction variable in a loop, while still preserving the property of a single definition per
variable required by SSA form. Conceptually, all φ nodes in a basic block are executed in
parallel.

2.5 LLVM
LLVM1 is an open source optimization framework and compiler backend [4]. For a
comprehensive overview, the reader is referred to [12].

LLVM uses a statically typed intermediate representation (IR) of programs based on
SSA form for optimization. The largest unit of IR is the module, which corresponds to a
translation unit in C or C++. Each module contains declarations and definitions of global
variables and functions. A function consists of basic blocks which, in turn, consist of
instructions.

The IR language has explicit support for exception handling. This support is designed
so that exception handling constructs are reflected locally in a function’s control flow graph.

Most analyses and transformations in LLVM’s middle-end are organized in terms of
passes: separate pieces of code that can run on a unit of IR, be it a basic block, a function or
an entire module. These passes can depend on other passes, forming an acyclic dependency
graph. In the case of analyses, these may compute results that may be useful for other
passes. LLVM is able to schedule execution of passes so that dependencies of a pass are

1Formerly an abbreviation of Low Level Virtual Machine, however, this is no longer the case.
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2.5 LLVM

run before the pass itself. Analyses which are not invalidated by transformations are cached,
so that wasteful recalculation is avoided. The machine-dependent backends are largely
organized in the same fashion, except on machine IR, which contain machine-specific
instructions rather than generic LLVM operations.

2.5.1 Clang
Clang [1] is a project under the LLVM umbrella that provides a frontend for LLVM,
supporting compilation of C, C++ and Objective-C code. It can mostly act as a drop-in
replacement for GCC, using the system assembler and linker to generate binaries.

Like GCC, Clang supports several optimization levels through the use of the flag family
-On. In terms of LLVM, this is implemented by associating each optimization level with a
sequence of passes that are run on a module prior to code generation. 2 Arbitrary passes
can be inserted into selected points in this pass sequence through the use of extension
points. This, in combination with the fact that opt and Clang can load passes from shared
libraries, allow for development of free-standing passes outside of LLVM’s source tree.

LLVM supports profile-guided optimization for code compiled with Clang. During
compilation of a program, Clang can add instrumentation that generates a call-graph profile
as discussed in section 2.2, which is then written to an output file before the instrumented
program halts. It can also use output from some sample-based profilers, such as perf.

After a profile has been generated for a program, whether via sampling or instrumenta-
tion, subsequent compilations can use the information in the profile to aid optimization.
This information is exposed in the IR as metadata.

2.5.2 An example of LLVM IR
1 @.str = private unnamed_addr constant [12 x i8] c"true\00", align 1
2 @.str.1 = private unnamed_addr constant [16 x i8] c"false\00", align 1
3

4 define i32 @main(i32, i8**) !prof !28 {
5 %3 = mul nsw i32 %0, 7
6 %4 = icmp eq i32 %3, 8
7 br i1 %4, label %5, label %7, !prof !29
8

9 ; <label>:5: ; preds = %2
10 %6 = tail call i32 @puts(i8* getelementptr inbounds ([12 x i8], [12

x i8]* @.str, i64 0, i64 0))
11 br label %9
12

13 ; <label>:7: ; preds = %2
14 %8 = tail call i32 @puts(i8* getelementptr inbounds ([16 x i8], [16

x i8]* @.str.1, i64 0, i64 0))
15 br label %9
16

17 ; <label>:9: ; preds = %7, %5
18 ret i32 0
19 }

2For further details, consult the llvm::PassManagerBuilder class.
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2. Background

20

21 declare i32 @puts(i8* nocapture readonly) local_unnamed_addr #1
22

23 !llvm.module.flags = !{!0}
24 !llvm.ident = !{!27}
25

26 !0 = !{i32 1, !"ProfileSummary", !1}
27 !1 = !{!2, !3, !4, !5, !6, !7, !8, !9}
28 !2 = !{!"ProfileFormat", !"InstrProf"}
29 !3 = !{!"TotalCount", i64 1}
30 !4 = !{!"MaxCount", i64 1}
31 !5 = !{!"MaxInternalCount", i64 0}
32 !6 = !{!"MaxFunctionCount", i64 1}
33 !7 = !{!"NumCounts", i64 2}
34 !8 = !{!"NumFunctions", i64 1}
35 !9 = !{!"DetailedSummary", !10}
36 !28 = !{!"function_entry_count", i64 1}
37 !29 = !{!"branch_weights", i32 1, i32 2}

Listing 2.1: The above is an abridged example of LLVM IR
produced by Clang from a small C program. The program was
compiled using profile-guided optimization.

Tokens starting with an exclamation mark refer to metadata located at the end of
listing 2.1. Note especially the metadata attached to the definition of the function main
(!prof !28) and the conditional branch instruction br (!prof !29). These refer to the
metadata nodes !28 and !29 which store the function’s execution count and the branch’s
target probability, respectively. Branch probability metadata is stored as a scaled integer
weight; in the example above, the metadata node !29 means that the branch condition
is estimated to have a 1/3 probability of being true and a 2/3 probability of being false.
The probability for other conditional branch constructs, such as the switch instruction, are
encoded in the same way.

Basic block execution counts are not stored directly as metadata, but can be computed
from the branch probabilities, using utility passes such as ProfileSummaryInfo, in
order to more easily make optimization decisions.

In listing 2.1, the calls to puts are marked as tail calls. This means that LLVM may,
but is not required to, perform tail call optimization on these calls. In cases where this
is not possible, they are emitted as ordinary function calls. There is an related attribute,
musttail, which means that the call must undergo tail call optimization, or compilation
will fail.
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Chapter 3
Method

The two optimizations we implemented are called procedure splitting and procedure
positioning by Pettis and Hansen. We will refer to our implementations as function splitting
and function positioning, respectively, to follow the terminology used by LLVM.

3.1 Function splitting
Procedure splitting as described by Pettis and Hansen in [16] is guided by an execution pro-
file of the program. In addition to evaluating this approach, measurements were performed
using a variant in which a profile is not available (static function splitting henceforth); the
only information available to the optimization pass in this case is information that can be
collected statically.

3.1.1 Static function splitting
Our static function splitting pass locates call instructions to functions annotated with the
noreturn or cold attributes and may extract the basic block containing the call into a separate
function, depending on a heuristic. The rationale is that functions such as abort, exit
and __assert_fail1 are typically executed on error paths, and the C standard library
by GNU annotates these as noreturn. Usually, error paths are not performance critical and
are seldom executed; however, if located in a performance-sensitive part of the program,
we may be able to improve performance by moving error handling away from other code.

1__assert_fail is an internal helper function called when the expression of an assert evaluates
to false. It ultimately terminates the program.
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3. Method

3.1.2 Dynamic function splitting
This optimization consists of two phases: identifying cold regions, and extracting regions
if deemed prudent. We define a region as a connected, single-entry set of basic blocks
in the control flow graph. The unique entry block for a region is called a header. Our
implementation makes use of the CodeExtractor utility in LLVM, which performs
much of the mechanical work involved in extracting a region to form a separate function.
Functions created by extracting cold regions are moved to another section in order to
separate it from non-cold code, and are also marked with the noinline attribute to
prevent subsequent inlining passes from undoing the process.

Finding a viable region
Our dynamic function splitting pass takes advantage of the execution profile in order to
identify basic blocks that are suitable for extraction. A basic block being cold is the most
basic criterion for extraction. LLVM has the ability to analyze the entry count of a basic
block and determine if it is located in the percentile corresponding to it being cold or not.
We first identify all functions whose entry counts are considered cold. By doing so, we can
conclude that the whole function is cold. A cold function is marked as such, removed from
the worklist, and can be moved directly to the section containing cold code.

A leaf function is a function which does not call any functions, but may contain a tail
call to another function. Because of this, all caller-saved registers can be used for other
computations throughout the function. However, if a leaf function is split and a call is
inserted, the callee must be assumed to clobber all caller-saved registers, increasing register
pressure. This may force the register allocator to make use of callee-saved registers. If this
happens, the compiler must generate a prologue and epilogue to preserve these values. This
added code may adversely affect performance in the case of a hot code path, so we avoid
splitting non-cold leaf functions and they are removed from the worklist when encountered.
Transforming a leaf function into a non-leaf function may also have architecture-specific
consequences. One example of this is stack red-zoning on x86-64, where a leaf function
may use up to 128 bytes of storage below the stack pointer, removing the need to manipulate
the stack pointer for functions with small stack usage. This may not be possible if a call is
added.

The remaining functions in the worklist are then analyzed in order to find cold regions.
This is done by searching the dominator tree of a function in a top-down fashion. If a node
corresponding to a cold basic block is found, we can create a new region consisting of
all basic blocks in the subtree rooted at this node in the dominator tree. This set of basic
blocks is guaranteed to be a region: connected with a single entry point, assuming that
the dominator tree has a unique entry node which dominates all other nodes. The header
by definition dominates all nodes in this subtree. In the absence of any loops, all of the
nodes in this subtree are also cold, which makes the region a candidate for extraction. If
the region contains a loop that iterates many times, the loop body may be hotter than the
header. However, this is not an issue, as loops typically incur few instruction cache misses
anyway.

Once all cold regions have been identified we need to make sure that if a function has a
cold region which contains recursive calls, that function is skipped. Should that function
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3.1 Function splitting

remain in the worklist, we would counteract the purpose of the optimization. By having
recursive calls in the cold region, we would be alternating between parts of the code that
were local to each other from the start, but are now placed in separate sections of the object
file.

If the cold region contains any exception handling constructs, for example the invoke,
landingpad, or resume instructions, it is also not viable for extraction. LLVM does not
support exception handling being split into separate functions.

Before we can start with the actual extraction of regions we have to determine if splitting
them makes sense from a performance standpoint. This is done by a heuristic which takes
into account a variety of different attributes of the cold region. The end goal of the heuristic
is to ensure that the cold region is replaced with a call sequence that is smaller than the
original code, reducing the size of the function. Since we cannot map every LLVM IR
instruction to a machine-specific instruction we have to approximate the final size of the call
sequence. Some of the given constants in the following inequality are based on empirical
evidence collected by testing different configurations.

Inputs + Outputs + 4 · PhiStubsRequired + 2 <
InstructionCount

2
+ GlobalVariables

The left hand side can be regarded as the cost of the extraction, while the right hand side
represents the benefits. If the inequality holds for a given cold region, it is deemed viable
to be extracted.

Inputs are values that are defined outside the region and used in it; they are modeled
as parameters. Outputs are values that are defined within the region and need to be used
outside the region; they are modeled as pointer parameters that the extracted function writes
to and need to be reloaded into SSA values immediately after the inserted call. Each input
and output carry an additional cost, as each parameter generated by them either needs to be
moved to the correct register or pushed onto the stack, depending on the specific platform.

φ stubs are basic blocks inserted to handle the special case explained in the next section.
They only consist of a branch instruction. The high factor is due to the extra complexity
introduced in the CFG. There is also an extra constant 2 in the cost which represents the
instructions needed to call the new function.

The instruction count is the number of LLVM IR instructions in the cold region. Natu-
rally, a large instruction count means that there is a higher probability of a viable extraction.
Extraction of references to global variables are considered an extra benefit, as loading a
global variable typically results in longer machine instruction sequences than an average
LLVM IR instruction.

Extraction
After a region has been extracted, it is replaced with a single basic block containing the
call to the extracted part, labeled the call block.

If the region had more than a single successor, the call block will need to decide which
of the successors to branch to. This is handled by returning a value of type i1 or i16
from the extracted function and performing a conditional branch depending on that value.

If the call block has a successor containing a φ node which uses multiple values defined
inside the region, it will now have fewer predecessors to choose a value from. Fig. 3.1
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E x ← φ(A,C,D)
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E x ← φ(A, ???)
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Figure 3.1: A minimal example of a control flow graph exhibiting
the problem of naïvely splitting regions with depending φ nodes.
Here, E is in the dominance frontier ofB, the header of the candidate
region to be split; in addition, E has a φ node which depends on
more than one value from the region. After splitting, the φ node
that previously had three predecessors to select a value from now
only has two.

shows an example of what will happen if we don’t identify this case. Ideally LLVM’s code
extractor would be able to handle this on its own, but that is not the case. To solve this,
basic blocks referred to as φ stubs are inserted between the cold region and the affected φ
node to preserve its predecessor count. An illustration of this process can be seen in fig. 3.2.
The basic blocks serving as φ stubs only contain a branch instruction, as their only purpose
is to serve as a predecessor block for the following φ node.

It also has to handle some edge cases. If the header of a cold region contains a φ node,
that basic block needs to be split from the region in order to avoid complications with
predecessor blocks. The same logic is applied to basic blocks that contain ret instructions.
When the function has been extracted, all that remains is to update the dominator tree to
reflect the new control flow graph.

3.2 Function positioning
The second optimization we implemented, called procedure positioning by Pettis and
Hansen in [16], is also an attempt to improve code locality. In general, it accomplishes this
by first constructing a call graph of the entire program and determining which functions
are related, in the sense that there are many calls between them. Functions that are strongly
related are then placed adjacent to each other. This process is repeated until all functions
in the program have been ordered.

By placing strongly related functions next to each other, they are likely to be placed
on the same page in memory during execution. This may reduce the working set size of
the program, reducing the risk of a TLB miss or page fault occurring as a result of control
transfers between them. Although less likely, parts of the two functions can also reside on
the same cache line, which would avoid a cache miss if a late part of the first function calls
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Figure 3.2: Illustration of how inserting φ stubs allows the code
extractor to solve the problem described in fig. 3.1. The only
instruction in the vertices φ1 and φ2 is a branch to E, as they exist
only to serve as a predecessor block for its φ node.

the latter, whose prologue is in cache.
Pettis and Hansen’s implementation described in [16] modifies the linker to sort symbols

based on a key derived from the process described above. To construct the call graph, they
rely on a modified linker to inject code stubs into each edge in the call graph. Each stub
counts the number of times that edge has been traversed.

We do not modify the linker at all. As such, the only way to construct a complete call
graph is to use LLVM’s support for link-time optimization (LTO) to merge the source of
the entire program into a monolithic LLVM module. It is also possible to perform this
optimization without access to the entire call graph, by applying it locally to each module
in the program. By doing so, the intended effect is diminished somewhat; if the program
contains many cross-module calls, strongly related functions may still be placed far apart if
they are located in different modules.

Our implementation in LLVM only constructs module-local call graphs. It relies on the
fact that functions are emitted to the output file in approximately the same order as they are
defined in the module,2 avoiding the need to implement any custom sorting criteria in the
linker. Cross-module calls are simply ignored; thus, as mentioned above, the optimization
reorders functions within modules, but is unable to act on the entire program at once. To
test the effects of function positioning when the entire program is visible in a single module,
we also ran it with LTO enabled.

The profiling metadata does not explicitly track the frequency of call instructions.
However, due to the definition of a basic block as a straight-line sequence of code, we
can simply query LLVM for the execution count of the basic block the call resides in to
determine the execution count of the call. We are unable to account for the targets of
indirect calls when constructing the call graph, as these are not represented in the profiling

2The order may change if LLVM decides to place certain functions in separate sections based on their
hotness; however, the order is correct within each section.
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metadata that LLVM exposes. Indirect calls are ignored, which can skew the weights
somewhat, especially if execution of the program involves many of them. This may be a
problem for C++ programs due to the frequent use of virtual functions, which appear as
indirect calls in LLVM IR.

3.3 Evaluation
To evaluate the impact of these optimizations, we compared metrics from programs com-
piled with the optimizations to baseline metrics. The baseline metrics consist of mea-
surements of the same programs built with the same optimization flags, but without our
optimization passes. In particular, as the optimizations depend heavily on the presence of
profiling information, all comparisons were done with profile-guided optimization turned
on.

Measuring the execution time is of most interest, as the goal is to have programs run
faster when compiled with the optimizations. They aim to achieve this by improving
the cache behaviour of compiled programs, so it is also relevant to measure metrics that
summarize this. The metrics of most interest in this regard are the number of instruction
cache misses and the number of TLB misses. The number of page faults incurred is also of
interest, as it too is affected by code size.

Cachegrind is a cache simulator using the cache parameters of the host processor,
built on top of the Valgrind dynamic binary instrumentation framework described in [15].
Executing a program under Cachegrind gives an indication of the cache behavior of a
program without external influences, such as context switches and migrations between
CPU cores.

perf is a tool that reports events gathered by the Linux kernel from the processor’s
performance counters. This includes misses caused by external factors, such as context
switches. These factors are a source of measurement noise, requiring an average of several
runs to obtain a good result. For these reasons, we based our perf results on at least 10
executions and ran pgbench on a separate machine, connecting to the database server over
a network. The SPEC benchmarks require a long time to run, in some cases more than a
minute. Because of this, a significant chunk of cache misses reported by perf are caused by
these external factors.

The SPEC CPU2000 benchmark suite was used, in addition to PostgreSQL run under a
typical benchmarking load. These were run on the system specified in table 3.1.

We used a patched version of LLVM 4.0.0 to work around a bug. The patch can be
found in appendix A. All sources were compiled with Clang 4.0.0, and linked with the
GNU gold linker (version 1.14, from GNU Binutils 2.28). The different optimization flags
used were -O2, -O3 and -Os.

3.3.1 SPEC CPU2000
SPEC CPU2000 is a benchmark suite which aims to measure the performance of the
CPU, memory and compiler of a computer system [11]. The suite consists of 26 different
benchmarks derived from real-world applications written in C, C++ and Fortran.

22



3.3 Evaluation

CPU Intel Core i7-860 @ 2.80GHz
Cache line size 64 bytes
L1 instruction cache 32 kB, 4-way associative
L1 data cache 32 kB, 8-way associative
L2 cache 256 kB unified, 8-way associative
L3 cache 8 MB unified, 16-way associative
L1 data TLB (4K pages) 64 entries, 4-way associative
L1 data TLB (2M pages) 32 entries, 4-way associative
L1 instruction TLB (4K pages) 64 entries, 4-way associative
L1 instruction TLB (2M pages) 7 entries, fully associative
L2 TLB 512 entries, 4-way associative
RAM 2× 4 GB, 1333 MHz
OS Mageia 5 (Linux 4.4.68)

Table 3.1: The test system.

The LLVMproject has no official frontend for Fortran. In order to compile the Fortran 77
benchmarks,3 they were first translated to C using the Fortran to C translator f2c described
in [8]. Unfortunately, f2c does not support translation of Fortran 90, so we were unable to
measure the impact on those benchmarks.4 The perlbmk and gap benchmarks were also
ignored, as they consistently produced incorrect output on the test system, regardless of
what compiler or flags were used. The apsi benchmark was ignored due to compilation
errors after translation with f2c. In total, 18 out of the 26 benchmarks were used.

The tools that accompany the benchmark suite have built-in support for running a multi-
pass compilation, as is required in the case of profile-guided optimization. Each benchmark
uses different data sets for training the profile and for running the actual benchmark.

Some benchmarks require compilation with specific flags, such as preprocessor defini-
tions, to compile or run successfully. Appendix B contains a table with all additional flags
used to successfully compile and run them on the test system.

3.3.2 PostgreSQL
PostgreSQL is a widely used open-source relational database management system [2].
Version 9.6.2, released on 2017–02–09, was used.

A typical PostgreSQL installation ships with a program called pgbench intended to
benchmark a PostgreSQL server. It does so by repeatedly executing a transaction consisting
of a sequence of SQL statements based on the TPC-B benchmark. The specific SQL
statements issued can be seen in listing 3.1.

1 BEGIN;
2 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid =

:aid;
3 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
4 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid =

:tid;

3168.wupwise, 171.swim, 172.mgrid, 173.applu, 200.sixtrack, and 301.apsi
4178.galgel, 187.facerec, 189.lucas, and 191.fma3d
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5 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid =
:bid;

6 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
(:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);

7 END;

Listing 3.1: The SQL statements involved in each transaction
executed by pgbench.

We use the mean transactions performed per second (TPS) as reported by pgbench to gauge
the performance of PostgreSQL. As recommended by the PostgreSQL manual,5 pgbench
was run for an hour at a time when measuring the transaction count, to reduce measurement
noise due to external factors.

The test system which the database server was run on has a mechanical hard disk drive,
which is a bottleneck. Most of the time would be spent waiting for disk I/O, rather than
performing useful work. To avoid this, the PostgreSQL binaries and its data directory were
placed on a virtual disk stored in RAM using the ramfs pseudo-filesystem on Linux.

We benchmarked PostgreSQL using pgbench in two different ways. First, pgbench and
the database server were located on different machines. This benchmarks the system in a
more realistic setting: real-world deployments of database systems typically have clients
and servers running on separate computers, communicating over a network. In this mode,
the network is likely to be the bottleneck in determining the transactions per second.

We also ran pgbench and the PostgreSQL server on the same machine. This is a less
realistic scenario, but does eliminate the network bottleneck, hopefully giving a clearer
picture of how the optimizations impact the performance of PostgreSQL. However, pgbench
and the server may compete for resources if run on the same machine, specifically CPU
and cache.

In all cases, only the database server was compiled using the described optimizations.
The pgbench binary used was compiled with the default optimization flags,6 as we are only
interested in the performance difference of the server, rather than the benchmarking tool
used to measure it.

The pgbench tool has the ability to simulate multiple clients concurrently. Some
preliminary testing was done to determine the number of clients that maximized the
completed transactions per second when run over the network. On the test system, five
concurrent clients resulted in the highest number of transactions performed; this is the
setting used for all of our PostgreSQL benchmarks.

When running PostgreSQL under perf to observe metrics related to memory, we ran
pgbench for a fixed amount of transactions rather than a fixed time, to eliminate the
possibility that different results are due to a varying number of finished transactions.

Because of the size of the PostgreSQL source code, it is sensitive to optimizations that
affect code size. On the test system, compiling PostgreSQL with the -Os optimization flag
results in a higher amount of transactions per second. As such, we ran pgbench against
versions of PostgreSQL compiled with the default optimization flag -O2, as well as versions
compiled with -Os.

5https://www.postgresql.org/docs/9.6/static/pgbench.html
6-O2, without any profile-guided optimization.
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Chapter 4
Results and discussion

The two optimizations are primarily intended to reduce TLB and page misses by grouping
related and non-cold code, respectively. This makes them probabilistic in nature: they can
only reduce the probability of misses occurring, but cannot guarantee a particular result, as
we cannot predict the exact addresses of functions ahead of time. Because the optimizations
achieve this by primarily moving code around, they will likely affect cache behavior, e.g.
miss rate, as a secondary effect. The impact of cache on a program is uncertain on a large
scale, and is heavily dependent on the processor architecture, as well as random factors, for
instance ASLR, described below.

4.1 Results
The execution times for the selected SPEC benchmarks are found in fig. 4.2, and the trans-
actions performed per second for PostgreSQL are found in fig. 4.3 and fig. 4.4, respectively.

Modern operating systems, including Linux, implement address space layout random-
ization (ASLR), a security measure that randomizes the location of some sections in the
address space of a process. Among the sections randomized are the base virtual addresses
for shared libraries. Depending on the cache parameters such as the number of sets and
whether it is virtually indexed, ASLR may affect which set a given piece of code is cached
in. On the test system, the C standard library is available as a shared library. As PostgreSQL
and the SPEC benchmarks written in C all use this library to varying extents, the number
of conflict misses may change between executions.

One thing to note is that Cachegrind handles shared libraries slightly differently than the
Linux dynamic linker. Cachegrind typically loads them in a different location in memory,
and does not support ASLR, always placing symbols loaded from shared libraries at the
same address. One advantage of this is that Cachegrind will always yield the same results
given the same program and input. However, these characteristics, combined with random
external factors, may make results differ greatly from those measured on an actual processor.
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Since the Fortran 77 benchmarks were translated to C with f2c, care should be taken
when interpreting the results for those benchmarks. Because of differing language semantics
and the fact that f2c requires the use of a utility library linked into the target program to
implement operations not natively available in C, it is possible that the results would have
been different if the program was compiled directly with a Fortran frontend targeting LLVM.
As with the C standard library, the f2c utility library is a shared library on the host system;
thus, it is also relocated to a random address on program startup.

Neither of our optimizations have any significant effect on the number of page faults.
For both the SPEC benchmarks and PostgreSQL, we observed no major faults. This was
not entirely unexpected, as their working sets are far smaller than main memory on the test
system, precluding the need to page memory to disk. Pettis and Hansen’s article was first
published in 1990 [16]; compared to then, the main memory in an average computer today
is larger by several orders of magnitude, commonly being measured in gigabytes rather
than megabytes.

In theory, our optimizations do not cause the compiled programs to perform any ad-
ditional operations that would incur minor faults (cf. the examples on page 10). As seen
in fig. 4.12, the difference in minor faults is minimal. This difference is so small that it can
likely be attributed to measurement noise due to external factors.

When run in isolation, our optimizations cannot have a positive effect on the number
of instructions executed. Function positioning only reorders functions and does not affect
the number of instructions inside them. Function splitting moves existing cold code and
emits calls to the moved code. In the best case scenario no cold code is ever executed,
in which case the additional call sequence is also never executed, leaving the instruction
references unchanged. However, if a cold region is entered, the additional instructions in
the call sequence will increase the number of instructions executed. Despite this, we see
reductions in the instruction references reported by perf for some SPEC benchmarks, as
seen in fig. 4.9. This may be caused by interactions with surrounding optimizations.

4.1.1 Function positioning
Large modular applications such as PostgreSQL are likely to contain many calls across
translation units. As discussed in section 3.2 on page 20, our version of the function
positioning algorithm is not very effective in this case, as seen in fig. 4.3 and fig. 4.4.

For all but one SPEC benchmark, we did not observe any significant improvement in
execution time with function positioning, seen in fig. 4.6. When function positioning was
applied, the only benchmark which saw a large reduction in both first-level instruction
cache misses and iTLB misses was vortex, as seen in fig. 4.10 and fig. 4.11. This is likely
the reason that it was the only benchmark to also have a significantly reduced execution
time.

Because the whole call graph is not visible without LTO, functions are only reordered
locally within a translation unit. In this case, the ideal situation would be that two strongly
related functions in separate translation units, which would otherwise be placed on separate
pages, are reordered such that they end up on the same page. However, it is equally possible
that the two functions are moved apart. In the vast majority of cases, however, strongly
related functions in separate translation units tend to end up on different pages, and remain
so even after applying function positioning.
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In an attempt to see how function positioning would perform when given the complete
call graph of a program, we also ran it with LTO enabled. This is not comparable to the
non-LTO results, as other optimizations may behave differently when LTO is enabled,
for example inlining. For PostgreSQL, we found that function positioning negatively
affected the transactions performed per second in the presence of LTO; see fig. 4.5. TLB
misses increased by 10%, while the impact on first-level cache misses were negligible. As
discussed in section 3.3.2 on page 23, the network bottleneck largely hides the effect of the
increased TLB misses; the effect is more pronounced when run locally.

4.1.2 Function splitting
The effect of static function splitting on execution time of the selected SPEC benchmarks
was not significant. We only considered basic blocks that contained calls to functions which
do not return; it is possible that there are other methods to identify code that is likely to be
cold, but without having access to profiling data, these methods are speculative. We will
only consider dynamic function splitting in the rest of the discussion.

We have analyzed the cache behavior of a few selected SPEC benchmarks using a
modified version of Cachegrind that writes a trace log of all first-level instruction cache
events. This analysis shows that at least some of the large swings seen in fig. 4.8 and fig. 4.11
are caused by conflict misses when function splitting is applied. These types of misses may
either be resolved or caused by applying function splitting.

The most extreme example of this that we observed is the 680% increase in first-level
instruction cache misses in the vpr benchmark reported by Cachegrind, seen in fig. 4.8.
This large increase is the result of a repeated sequence of conflict misses caused by a large
loop in the benchmark. The loop calls the C standard library function fgets, which causes
part of the loop body to be evicted from the instruction cache. In the next iteration, fgets
has been evicted by other code run in the loop, causing yet more cache misses. A similarly
large spike is not seen in the corresponding output from perf in fig. 4.11, which relies on
cache events reported by hardware. Perf reports an increase of about 8% in cache misses
when the benchmark is compiled with function splitting. This further suggests that results
from Cachegrind may not always correspond to what would happen on real hardware.

A similar effect is reported in the eon benchmark by Cachegrind. In this case, the
baseline contains multiple similar sequences of conflict misses with the C standard library.
When function splitting is run during compilation, the heuristic determines that the functions
directly involved in the conflict are not worth splitting anything from due to their small
size. However, code is extracted from surrounding functions, causing the position of the
conflicting functions to change, thus resolving the issue by moving them into different sets.

4.1.3 Combining positioning with splitting
The CodeExtractor utility in LLVM that is used to extract a region preserves profile
data for the generated call block; it will have the same execution count as the header of the
extracted region did. Hence, function positioning will still work as intended when function
splitting has been run beforehand. However, since all functions created by the splitting pass
are marked as cold, they are moved to a separate code section when the resulting object file
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is written. Because of this, the interactions between the two optimizations are in theory
limited.

The results show that the impact of combining the two optimizations is related to how
they perform individually. For instance, in the art benchmark seen in fig. 4.2, positioning
performs poorly, while splitting has negligible impact on the execution time. Combining
them therefore performs poorly. On the other hand, both optimizations perform well
individually when run on the vortex benchmark, as does the combination of the two.

4.2 The effect of program characteristics
As with all compiler optimizations, the behavior of the program has a large impact on the
efficacy of the optimizations.

The working set of a program has a large effect on its TLB and cache behavior. For
instance, applications whose program code can fit entirely into the first-level instruction
cache will generally not incur many instruction cache misses. An example of this from
SPEC is the 179.art benchmark, which compiles to 18 kilobytes of object code.

Applications that spend the majority of their time in tight hand-tuned loops are also
unlikely to incur many instruction cache misses or TLB misses, nullifying much of the
potential benefit. The SPEC benchmark suite features a few benchmarks of this kind, such
as 171.swim, 183.equake and 256.bzip2. Another notable case of this is the 200.sixtrack
benchmark, which spends 99% of its execution time inside a single loop despite consisting
of almost 50,000 source lines in total. For these benchmarks, we found that changes in
execution time and the instruction cache miss count were not significant.

Typical examples of cold code in programs include initialization and error handling.
The ideal case for our optimizations would be a large program with such code mixed in
with important, hot parts of code. In this case, function positioning could move this kind
of code out of the working set, and function splitting could group together more relevant
code into the working set.

Of all programs in the SPEC benchmark suite, 252.eon and 255.vortex benefit the
most in terms of execution time with function splitting activated. In both cases, this is
likely partly attributable to the large reduction in first-level instruction cache misses as seen
in fig. 4.8 and fig. 4.11. The execution time of these two benchmarks is spread out, rather
than being heavily concentrated in a few functions, which tends to lead to a larger working
set.

Function splitting fares well when applied to PostgreSQL, as seen by the metrics
gathered by perf in fig. 4.7. PostgreSQL is harder to analyze in detail due to the size of its
source code and the fact that the database server forks into several processes on startup.
However, one thing that it has in common with the eon and vortex benchmarks is that it has
a relatively flat execution profile.

It would be desirable to automatically find characteristics of a program that indicate
whether the optimizations will be successful. If these could be identified, logic could be
added to the compiler passes so that the optimizations only are performed when deemed
suitable. However, we have been unable to find any strong correlations between the relative
improvement in execution time, and the following characteristics among SPEC benchmarks:

• Source code size (measured in lines or bytes)
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• The .text section size of an executable compiled without the optimizations

• The number of cold functions extracted

• The total size of cold functions extracted

• The average size of cold functions extracted

• First-level instruction cache references/misses, as measured by Cachegrind

• First-level data cache references/misses, as measured by Cachegrind

• iTLB load misses, as measured by perf

• Whether it is classified as an integer or floating point benchmark by SPEC

The only characteristics we have identified are a high instruction cache miss rate as well
as a high instruction TLB miss rate, which indicates that a program could potentially be
improved by the optimizations. However, as discussed in the chapter prologue, this is not
guaranteed.

4.3 The implementation in LLVM
In function splitting, we split cold regions to a separate LLVM function. Every such
function will respect the application binary interface (ABI) of the platform, incurring
some overhead due to parameter passing conventions and the need to preserve callee-saved
registers. This fact makes it important to have a good heuristic for when a region should be
split into a separate function.

The difference in impact of where function positioning is placed in the optimization
pipeline is largely insignificant, as it only reorganizes functions in the module; it does not
modify them at all. As such, its effects on other optimizations is limited. Our implementa-
tion places it last in the machine-independent pipeline, in case any previous optimizations
creates new functions.

Function splitting is far more sensitive to when it is run, as other optimizations may
affect the size and shape of regions before they are split. Performing splitting early could
expose additional optimization opportunities, as any optimizations performed afterwards
may apply to both the original function and the extracted function. On the other hand, due
to the simple heuristic we used, it is generally beneficial to place it late in the pipeline. This
is because LLVM IR does not correspond directly to machine code, but running it later
will tend to give a more accurate evaluation as to whether a region is worth extracting.

Inserting the pass into different positions in the pipeline gave varying results between
SPEC benchmarks. The placement of function splitting in the pipeline was determined
empirically by running SPEC with the splitting pass at varying positions in the pipeline, and
choosing the overall best option. Because of the complex interactions between optimizations,
determining the optimal position analytically is extremely difficult. The optimal position
could also vary depending on the architecture being compiled for. Some backends in LLVM,
including the x86 backend, perform machine-dependent optimizations on their own before
generating the final machine code. Our implementation places it close to the end of the
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machine-independent pipeline, while still allowing for some basic optimizations to be done
on the extracted function, such as simplifying the CFG.

We have identified, but not implemented, an alternative solution to the φ problem
described in fig. 3.1. Instead of inserting φ stubs to preserve the predecessor count of a
φ node, part of the operation is moved inside the extracted function. The resulting value
is passed to the φ node using an output parameter that the extracted function writes to,
effectively “splitting” the computation of the problematic φ node. See fig. 4.1 for an
illustration of this.

A

B

C D

E x ← φ(A,C,D)

A

F

E x ← φ(A, p)

B

C D

G ∗p = φ(C,D)

&p

Figure 4.1: An alternative solution to the φ problem described
in fig. 3.1. Here, the inputs for the φ node in E originating in the
shaded region are replaced with a value that the extracted function
writes to via a pointer. This value is reloaded after the call and
used as an input to the affected φ node in E.

The advantage of this solution is that there is no need to create additional basic blocks
inside the original function to act as φ stubs. Because of this, no extra branches are needed
in many cases. Additionally, if the values taken from the region are used only in that φ node,
there is no need to create individual output parameters for them; only a single parameter is
required for the combined value of the φ. The downside is that other optimizations and
analyses, such as register allocation and pointer analysis, can be affected by taking the
address of a local variable in this manner. Another downside is that if variables are used
both in a φ node and elsewhere, separate output parameters must still be created for each
variable, in addition to the output parameter for the φ.
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benchmark and configuration. Lower is better.
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Figure 4.3: Transactions per second as reported by pgbench, run-
ning against a PostgreSQL server compiled with our optimizations.
The optimization level used for this was -O2. Higher is better.
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were located on the same machine. Higher is better.
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time optimization (LTO) was enabled. Higher is better.
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34



4.3 The implementation in LLVM

100 75 50 25 0 25 50 75 100
percentage first-level instruction cache misses difference to baseline

164.gzip

168.wupwise

171.swim

172.mgrid

173.applu

175.vpr

176.gcc

179.art

181.mcf

183.equake

186.crafty

188.ammp

197.parser

200.sixtrack

252.eon

255.vortex

256.bzip2

300.twolf

be
nc

hm
ar

k

FP
FS
FP+FS

Figure 4.8: Relative difference in first-level instruction cache
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better.
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Figure 4.9: Relative difference from the baseline for each bench-
mark in instruction references, as reported by perf. Negative is
better.
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Figure 4.10: Relative difference from the baseline for each bench-
mark in iTLB load misses, as reported by perf. Negative is better.
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Figure 4.11: Relative difference from the baseline for each bench-
mark in first-level instruction cache load misses, as reported by
perf. Negative is better.
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Figure 4.12: Relative difference from the baseline for each bench-
mark in minor faults, as reported by perf. Negative is better.
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Chapter 5
Conclusion

We have presented an implementation of profile-guided function positioning and function
splitting in LLVM, inspired by Pettis and Hansen’s work [16]. Because we did not make
major modifications to LLVM’s architecture or the system linker, our versions of the
optimizations are more limited in scope, due to working on the level of LLVM IR.

The questions posed in the introduction were:

• Are these optimizations still relevant today?

• If they are relevant, is there a way to predict how well they will perform on a given
program?

As a consequence of the memory wall, improving the cache behavior of a program should,
in theory, be more beneficial today because of the increasing number of CPU cycles required
to access main memory.

Although situational, we believe that the optimizations are relevant when given the
right program to run on. As shown with the eon and vortex benchmarks from SPEC, and
with PostgreSQL, function splitting has a real possibility of improving cache and TLB
behavior, reducing execution time. Our version of function positioning only works locally,
but can still yield some benefits, as seen with the vortex benchmark. Despite the fact that
it should work better with LTO, providing a complete call graph to work with, we saw a
reduction in performance compared to an LTO baseline. This may be attributable to other
optimizations.

We have attempted to find some simple predictors for how well our optimizations would
work for a given program. As a result of the unpredictable nature of caches on a larger scale,
including the TLB, this has proven to be difficult. Our simple metrics were not enough to
reliably predict the impact of our optimizations. Deeper analysis may yield better results.

Due to the varying results in the SPEC benchmark suite, it is inappropriate to classify
our optimizations as general optimizations that should be enabled by default. Instead, the
decision to apply one or both of the optimizations should be evaluated on a case-by-case
basis, based on performance measurements.
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5.1 Future work
If one could automatically identify the characteristics of a program which are likely to
benefit from the optimizations, more fine-grained logic could be added to the optimization
to control which functions that are appropriate to split code from. This may reduce the
negative impact on certain programs.

The impact on other architectures may differ, as the instruction set architecture of a
processor has an effect on program size and memory characteristics [6]. Other architectures
could also have different cache and TLB configurations, which may affect the results.

One improvement to function splitting which may prove beneficial is simply to move
basic blocks out-of-line into a “bare” function, which does not respect the ABI, but simply
acts as a placeholder for the basic blocks of a split region. This would eliminate the overhead
due to ABI constraints, such as parameter passing or saving caller-saved registers. Invoking
this function would simply be a matter of branching to its entry block, and the function
would simply branch back instead of executing a return instruction, as it is only ever called
from a single place. This is the approach Pettis and Hansen used in [16], but it is not easily
implementable in LLVM today, as described below.

These “bare” functions can in principle be formed in two places: at the LLVM IR level,
as part of the machine-independent optimization pipeline, or in the backend after register
allocation has been performed. There are obstacles to both approaches at this time.

LLVM has some support for what is called a “naked” function, which omits any
prologue and epilogue that would otherwise be generated. Implementing function splitting
on the LLVM IR level would additionally require modification of the register allocator
infrastructure to support register allocation for a function and all of its split bare functions
in unison, as they would need to agree on the location of variables shared between them.

Implementing the optimization late in the backend is conceptually simpler. In this case,
register allocation would already have been performed, so a cold region could simply be
moved out-of-line. However, determining which regions are cold requires the use of an
execution profile via utility passes that can parse and supply this information. Since this
pass would necessarily add functions to the module, it would need to be a module pass.
Based on some experimentation, we have concluded there is little support for this specific
scenario, i.e. a module pass placed late in the backend that has dependencies on other
utility passes.
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Appendix A
Patch for LLVM 4.0.0

This patch fixes a bug in CodeExtractor. When a region header was split due to
containing a φ node, the immediate dominators of the children of the split block were not
updated properly. This issue was fixed independently upstream after our implementation
was done.1

1 --- a/lib/Transforms/Utils/CodeExtractor.cpp
2 +++ b/lib/Transforms/Utils/CodeExtractor.cpp
3 @@ -231,8 +231,21 @@ void CodeExtractor::severSplitPHINodes(BasicBlock

*&Header) {
4

5 // Okay, update dominator sets. The blocks that dominate the new
one are the

6 // blocks that dominate TIBB plus the new block itself.
7 - if (DT)
8 - DT->splitBlock(NewBB);
9 + if (DT) {

10 + // Old dominates New. New node dominates all other nodes dominated
11 + // by Old.
12 + DomTreeNode *OldNode = DT->getNode(OldPred);
13 + SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
14 + OldNode->end());
15 +
16 + DomTreeNode *NewNode = DT->addNewBlock(NewBB, OldPred);
17 +
18 + for (DomTreeNode *I : Children)
19 + DT->changeImmediateDominator(I, NewNode);
20 + DT->verifyDomTree();
21 + }
22

23 // Okay, now we need to adjust the PHI nodes and any branches from
within the

1https://reviews.llvm.org/D32308
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24 // region to go to the new header block instead of the old header
block.
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Appendix B
SPEC compatibility flags

Benchmark Flags

176.gcc -std=gnu89
186.crafty -DLINUX_i386
252.eon -DHAS_ERRLIST -fpermissive -DSPEC_CPU2000_LP64
255.vortex -DSPEC_CPU2000_LP64
300.twolf -Wno-return-type
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